1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Li Y, Zhang Q, Duan B, Qu X, Guo M, Mackay CR, Zhang X, Wang Q. Near-infrared light driven photodynamic therapy by hyaluronic acid encapsulated ionic polymer integrated with oxygen self-supply and high acetate supplement for chronic wound healing. Int J Biol Macromol 2025; 314:144424. [PMID: 40403517 DOI: 10.1016/j.ijbiomac.2025.144424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/17/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Hypoxia, persistent inflammation, excessive reactive oxygen species (ROS), bacterial infection, immune regulation disorder, and impaired angiogenesis are critical factors hindering diabetic wound healing. So far, clinical treatment still lacks comprehensive solutions to address these challenges. The main objective of this study is to develop and evaluate a novel multifunctional nanomaterial (Gen-BioCa/i-ZnPPOPs@HA) for enhancing the treatment of bacterial-infected diabetic wounds through a combination of photodynamic therapy, oxygen self-supply, and acetate supplementation. When infection occurs, Hyaluronic Acid (HA) shells are initially decomposed by hyaluronidase (HAase) secreted by the bacteria, releasing Gen, biomass Calcium peroxide (BioCa) and ionic porphyrin-based polyporous organic polymer (i-ZnPPOPs). BioCa decomposes to oxygen and Ca(OH)2, which alleviates the hypoxia in diabetes wounds and neutralize lactic acid released by the damaged blood vessels. Under NIR irradiation, cationic i-ZnPPOPs combined with Gen showed bacteria-targeting capacity, rapid and high-efficient microbicidal activity. The vitro/vivo experiments results revealed that Gen-BioCa/i-ZnPPOPs@HA could promote macrophages toward M2 polarization, accelerating angiogenesis, collagen deposition and tissues remodeling. In addition, further introduction of acetate supplement shorten the inflammatory period and accelerated wound healing process. This study provides a new strategy for the treatment of chronic bacterial infectious diseases, indicating the important potential of multifunctional nanomaterials in chronic wounds treatment.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Binqiu Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mei Guo
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
3
|
Zhang W, Li Z, Zhang Q, Zheng S, Zhang Z, Chen S, Wang Z, Zhang D. Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:939-962. [PMID: 39620352 DOI: 10.1080/09205063.2024.2434300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/19/2024] [Indexed: 05/03/2025]
Abstract
Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.
Collapse
Affiliation(s)
- Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zhe Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shilian Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zijia Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Simin Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zixin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Dongmei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
4
|
Liu Z, Xu J, Wang X. Bioactive hemostatic materials: a new strategy for promoting wound healing and tissue regeneration. MedComm (Beijing) 2025; 6:e70113. [PMID: 40123833 PMCID: PMC11928890 DOI: 10.1002/mco2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/25/2025] Open
Abstract
Wound healing remains a critical global healthcare challenge, with an annual treatment cost exceeding $50 billion worldwide. Over the past decade, significant advances in wound care have focused on developing sophisticated biomaterials that promote tissue regeneration and prevent complications. Despite these developments, there remains a crucial need for multifunctional wound healing materials that can effectively address the complex, multiphase nature of wound repair while being cost effective and easily applicable in various clinical settings. This review systematically analyzes the latest developments in wound healing materials, examining their chemical composition, structural design, and therapeutic mechanisms. We comprehensively evaluate various bioactive components, including natural polymers, synthetic matrices, and hybrid composites, along with their different forms, such as hydrogels, powders, and smart dressings. Special attention is given to emerging strategies in material design that integrate multiple therapeutic functions, including sustained drug delivery, infection prevention, and tissue regeneration promotion. The insights provided in this review illuminate the path toward next-generation wound healing materials, highlighting opportunities for developing more effective therapeutic solutions that can significantly improve patient outcomes and reduce healthcare burden.
Collapse
Affiliation(s)
- Zhengyuan Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of Sciences (UCAS)BeijingChina
- Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Junnan Xu
- Department of Urologythe Third Medical Center of PLA General HospitalBeijingChina
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
6
|
Ye H, Dong T, Wu S, Han G, Chen Q, Lou CW, Chi S, Liu Y, Liu C, Lin JH. Thermoresponsive and Strain-Sensitive Hydrogels with Inscribable Transparency-Based Dynamic Memory Behaviors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15921-15937. [PMID: 40019150 DOI: 10.1021/acsami.4c19368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Personal health management drives the development of intelligent hydrogel dressings, which pursue optical transparency, stretchability, and conductivity and are required to perceive specific environmental stimuli by dynamic structure, shape, or color memory. However, the incorporation of weak perceptive elements or black conductive polymers limits the fabrication of these hydrogels. Herein, we propose smart hydrogels with inscribable dynamic memorizing-forgetting transparency behavior by in situ degrading and immobilizing conductive polydopamine-doped polypyrrole (PDA-PPy) nanodots into an interpenetrating poly(NIPAm-co-acrylic acid) copolymer/polyacrylamide (PNAc/PAM) network. These hydrogels are not only optically transparent (∼64.99%), stretchable (∼1052%), self-adhesive (21-105 kPa), and highly conductive (∼0.8 S/m), but also can perceive temperature changes via structure shifts, which enables temperature-induced reversible transparency control. Especially, the temperature-dependent transparent-opaque transition kinetics of the hydrogels are tuned by the protonation of -COOH groups at pH < pKa, utilizing which the hydrogels achieve inscribed programmed dynamic memory for information memorizing-forgetting-recalling based on a pH-engraved dynamic transparency evolution of the hydrogel in response to temperature changes. These intelligent hydrogels can not only be used as efficient near-infrared (NIR) light-controlled drug release carriers to realize on-demand drug release, but also serve as a soft sensor to recognize different body postures and movement behaviors with high strain sensitivity (gauge factor, GF = 5.98), broad working strain (5-500%), rapid response (139 ms), and excellent sensing reliability (≈1000 cycles at 50% strain).
Collapse
Affiliation(s)
- Huabiao Ye
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Shaohua Wu
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Que Chen
- Fujian Aton Advanced Materials Science and Technology Co., Ltd., Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
7
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
8
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
9
|
Zhou S, Zhang K, Li M, Qi K, Jia D, Guan F, Sui X. An Antifreezing Scaffold-Based Cryopreservation Platform of Stem Cells for Convenient Application in Wound Repair. Adv Healthc Mater 2025; 14:e2404228. [PMID: 39723717 DOI: 10.1002/adhm.202404228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Efficient cryopreservation of stem cells is crucial to fabricating off-the-shelf cell products for tissue engineering and regeneration medicine. However, it remains challenging due to utilization of toxic cryoprotectants for reducing ice-related cryodamages to stem cells during freeze-thaw cycle, stringent post-thaw washing process, and further integration of stem cells with scaffolds to form tissue engineering constructs for downstream applications. Herein, a novel cryopreservation platform of stem cells based on an antifreezing polyvinylpyrrolidone/gellan gum/gelatin (PGG) scaffold together is reported with an L-proline assisted cell pre-dehydration strategy. Results show that this platform is capable of inhibiting extra-/intracellular ice, thus can achieve high cryoprotection efficacy to stem cells (≈95%) without using any toxic cryoprotectants and eliminate traditional washing process. Meanwhile, the post-thawed stem cells can maintain their proliferation, differentiation, and paracrine functionalities. More importantly, due to the biocompatibility and three dimensional structure of the PGG scaffold, the post-thawed stem cell-laden PGG scaffold can be directly used as tissue engineering constructs for wound repair by mitigating inflammation and promoting collagen deposition at regenerating tissue sites. This present work demonstrates the feasibility of antifreezing scaffold-based cryopreservation platform of stem cells, which may advance the off-the-shelf stem cell-laden tissue engineering constructs for clinical translation.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengya Li
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
10
|
Wang Z, Hu Q, Yao S, Wang S, Liu X, Zhang C, Wang ZL, Li L. Flexible Triboelectric Nanogenerator Patch for Accelerated Wound Healing Through the Synergy of Electrostimulation and Photothermal Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409756. [PMID: 39791305 DOI: 10.1002/smll.202409756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect. To fabricate the triboelectric e-patch, a flexible and conductive hydrogel with a dual network of polyacrylamide (PAM) and polydopamine (PDA) is synthesized and doped with multi-walled carbon nanotubes (MCNTs). The hydrogel exhibits high conductivity, good stretchability, and high biocompatibility. The triboelectric e-patch assembled from the hydrogel can detect mechanical and electrical signals of human motions in a real-time manner. In a rodent model of full-thickness dorsal skin wound, the e-patch integrating self-driven electrostimulation and photothermal effect under the near-infrared light irradiation efficiently promotes wound repair and hair follicle regeneration through relieving inflammation, fastening collagen deposition, vascular regeneration, and epithelialization. It offers a promising way to accelerate wound healing.
Collapse
Affiliation(s)
- Zhuo Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Quanhong Hu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shuncheng Yao
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shaobo Wang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xi Liu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Mishra R, Singh TG, Bhatia R, Awasthi A. Unveiling the therapeutic journey of snail mucus in diabetic wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03657-9. [PMID: 39869187 DOI: 10.1007/s00210-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization. Additionally, in DW there is the presence of microbial load which makes the wound worse and impedes the wound healing cycle. There are several treatment strategies which have been employed by the researchers to mitigate the aforementioned challenges. However, they failed to address the multifactorial pathogenic nature of the disease. Looking at the severity of the disease researchers have explored snail mucus and its components such as achacin, allantoin, elastin, collagen, and glycosaminoglycan due to its multiple therapeutic potentials; however, glycosaminoglycan (GAGs) is very important among all because they accelerate the wound-healing process by promoting reepithelialization, vascularization, granulation, and angiogenesis at the site of injury. Despite its varied applications, the field of snail mucus in wound healing is still underexplored. The present review aims to highlight the role of snail mucus in diabetic wound healing, the advantages of snail mucus over conventional treatments, the therapeutic potential of snail mucus, and the application of snail mucus in DW. Additionally, clinical trials, patents, structural variations, and advancements in snail mucus characterization have been covered in the article.
Collapse
Affiliation(s)
- Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
12
|
Wang H, Yao D, Luo Y, Zhong B, Gu Y, Wu H, Yang BR, Li C, Tao K, Wu J. Ultrasensitive, Fast-Response, and Stretchable Temperature Microsensor Based on a Stable Encapsulated Organohydrogel Film for Wearable Applications. ACS Sens 2024; 9:6833-6843. [PMID: 39541260 DOI: 10.1021/acssensors.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ionic conductive hydrogel-based temperature sensors have emerged as promising candidates due to their good stretchability and biocompatibility. However, the unsatisfactory sensitivity, sluggish response/recovery speed, and poor environmental stability limit their applications for accurate long-term health monitoring and robot perception, especially in extreme environments. To address these concerns, here, the stretchable temperature sensors based on a double-side elastomer-encapsulated thin-film organohydrogel (DETO) architecture are proposed with impressive performance. It is found that the water-polyol binary solvent, organohydrogel film, and sandwiched device structure play important roles in the temperature sensing performance. By modifying the composition of binary solvent and thicknesses of organohydrogel and elastomer films, the DETO microsensors realize a thickness of only 380 μm, unprecedented temperature sensitivity (37.96%/°C), fast response time (6.01 s) and recovery time (10.53 s), wide detection range (25-95.7 °C), and good stretchability (40% strain), which are superior to those of conventional hydrogel-based sensors. Furthermore, the device displays good environmental stability with negligible dehydration and prolonged operation duration. With these attributes, the wearable sensor is exploited for the real-time monitoring of various physiological signals such as human skin temperature and respiration patterns as well as temperature perception for robots.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
| | - Dijie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bizhang Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiqun Gu
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen 518063, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
13
|
Wei H, Jing H, Cheng C, Liu Y, Hao J. A Biomimetic One‐Stone‐Two‐Birds Hydrogel with Electroconductive, Photothermally Antibacterial and Bioadhesive Properties for Skin Tissue Regeneration and Mechanosensation Restoration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 01/06/2025]
Abstract
AbstractSevere skin wounds arising from burns, cancers, and accidents can damage the entire tissue structure, resulting in permanent somatosensory dysfunction in patients. Although emerging hydrogel dressings have shown clinical potential for accelerating wound repair, the use of an individual material to synchronously restore the tissue structure and sensory function of defective skin remains a challenge. Herein, a multifunctional hydrogel that combines electroconductive polydopamine‐capped graphene nanosheets (PrGOs) embedded in a dynamically crosslinked dual‐polysaccharide (xyloglucan and chitosan) matrix network is presented. The fabricated hydrogels have an adjustable modulus that can be matched to skin tissue at the wound site, owing to the dynamic Schiff‐based crosslinking as well as the facile photo‐triggered secondary crosslinking. Furthermore, the photothermal activity of PrGO can elevate the local temperature up to ≈50 °C, significantly restraining bacterial growth. These two factors jointly promote the regeneration of skin tissue. Tissue adhesion of hydrogels is also reported that offers a conformable and robust interface that can detect and quantify human movement and physiological signals to mimic the human skin somatosensory system. This hydrogel offers an effective one‐stone‐for‐two‐birds material that simultaneously achieves tissue regeneration and multi‐signal sensing, promoting the restoration and/or replacement of the structure and function of damaged skins.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Can Cheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| |
Collapse
|
14
|
Luo T, Lu X, Ma H, Cheng Q, Liu G, Ding C, Hu Y, Yang R. Design Strategy, On-Demand Control, and Biomedical Engineering Applications of Wet Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25729-25757. [PMID: 39575642 DOI: 10.1021/acs.langmuir.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The adhesion of tissues to external devices is fundamental to numerous critical applications in biomedical engineering, including tissue and organ repair, bioelectronic interfaces, adhesive robotics, wearable electronics, biomedical sensing and actuation, as well as medical monitoring, treatment, and healthcare. A key challenge in this context is that tissues are typically situated in aqueous and dynamic environments, which poses a bottleneck to further advancements in these fields. Wet adhesion technology (WAT) presents an effective solution to this issue. In this review, we summarize the three major design strategies and control methods of wet adhesion, comprehensively and systematically introducing the latest applications and advancements of WAT in the field of biomedical engineering. First, single adhesion mechanism under the frameworks of the three design strategies is systematically introduced. Second, control methods for adhesion are comprehensively summarized, including spatiotemporal control, detachment control, and reversible adhesion control. Third, a systematic summary and discussion of the latest applications of WAT in biomedical engineering research and education were presented, with a particular focus on innovative applications such as tissue-electronic interface devices, ingestible devices, end-effector components, in vivo medical microrobots, and medical instruments and equipment. Finally, opportunities and challenges encountered in the design and development of wet adhesives with advanced adhesive performance and application prospects are discussed.
Collapse
Affiliation(s)
- Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hui Ma
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
15
|
Yan Y, Chen Y, Dai H, Zhang W, Guo R. Reconfiguring the endogenous electric field of a wound through a conductive hydrogel for effective exudate management to enhance skin wound healing. J Mater Chem B 2024; 12:11347-11358. [PMID: 39499499 DOI: 10.1039/d4tb01349b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The ionic environment has a strong influence on the bioelectricity of skin, which is also present in the wound healing process. Inspired by this, we proposed a mechanism for hydrogel-based dressings to respond to endogenous electric fields through exudate absorption and conducted a verification study using a typical hydrogel, namely, polyacrylamide and sodium alginate (PAM-SA) hydrogels, as an example. Theoretical calculations showed that the PAM-SA hydrogels could absorb and orient the various electrolytes of exudate in the hydrogel at the wound site, contributing to the reconstruction of the electric field at the wound site. During the treatment process, this effect significantly accelerated the healing process of the rat epidermis, which exceeded the conventional dressing in terms of healing speed and efficacy, and the wounds on the complete layer of rat skin (wound area: 1.13 cm2) could be rapidly repaired within 10 days. Revealing the electrophysiological behavior of PAM-SA dressings during wound healing can help further improve the design model, the optimization concept, and development paths for the bioelectrical structures of modern dressings and bioelectrical stimulation in wound healing.
Collapse
Affiliation(s)
- Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Yuanyuan Chen
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Ruiqian Guo
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Tang C, Li Y, Fei X, Zhao W, Tian J, Xu L, Wang Y. An integrally formed Janus supramolecular bio-gel with intelligent adhesion for multifunctional healthcare. J Colloid Interface Sci 2024; 680:1030-1041. [PMID: 39549347 DOI: 10.1016/j.jcis.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Despite the rapid development of Janus adhesive hydrogels, most of them still entail complex fabrication processes and have the inherent flaws, such as fragility and instability, thereby restricting their biomedical applications. In this study, a novel Janus bio-gel with strong mechanical and intelligent adhesion functions is facilely fabricated through a gravity-driven settlement strategy, employing poly-cyclodextrin microspheres (PCDMs). This strategy takes advantage of the sedimentation behavior of PCDMs with various diameters to establish structural disparities on both sides of the Janus bio-gel, thereby resolving multiple predicaments including the tedious synthesis steps and poor bonding of multilayer hydrogels. Owing to the multiple dynamic interactions between polymers and PCDMs, the Janus supramolecular bio-gel demonstrates outstanding mechanical toughness (1.97 MJ/m3) and elongation rate (≈800 %). More attractively, the resulting Janus bio-gel exhibits remarkable adhesiveness (316.4 J/m2 for interfacial toughness) and adhesive differences that are exceed 50 times between the two surfaces. Furthermore, the Janus supramolecular bio-gel also has excellent antibacterial properties, biocompatibility, environmental stability, and multiple monitoring functions, accelerating wound stably healing and monitoring physiologic parameters on the skin. This strategy provides a straightforward and promising approach to directly achieve multifunctional integration for smart health management.
Collapse
Affiliation(s)
- Chenyang Tang
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Wenhui Zhao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
17
|
Fang Y, Han Y, Yang L, Kankala RK, Wang S, Chen A, Fu C. Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regen Biomater 2024; 12:rbae127. [PMID: 39776855 PMCID: PMC11703555 DOI: 10.1093/rb/rbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance. This review delves into the preparation, mechanisms and applications of CHs in wound management, highlighting their diverse and significant advantages. It emphasizes the effectiveness of CHs in treating various chronic wounds, such as diabetic ulcers, infected wounds, temperature-related injuries and athletic joint wounds. Additionally, it explores the diverse applications of multifunctional intelligent CHs in advanced wound care technologies, encompassing self-powered dressings, electrically-triggered drug delivery, comprehensive diagnostics and therapeutics and scar-free healing. Furthermore, the review highlights the challenges to their broader implementation, explores the future of intelligent wound dressings and discusses the transformative role of CHs in chronic wound management, particularly in the context of the anticipated integration of artificial intelligence (AI). Additionally, this review underscores the challenges hindering the widespread adoption of CHs, delves into the prospects of intelligent wound dressings and elucidates the transformative impact of CHs in managing chronic wounds, especially with the forthcoming integration of AI. This integration promises to facilitate predictive analytics and tailor personalized treatment plans, thereby further refining the healing process and elevating patient satisfaction. Addressing these challenges and harnessing emerging technologies, we postulate, will establish CHs as a cornerstone in revolutionizing chronic wound care, significantly improving patient outcomes.
Collapse
Affiliation(s)
- Ying Fang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Yiran Han
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lu Yang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
18
|
Long J, Zhou G, Yu X, Xu J, Hu L, Pranovich A, Yong Q, Xie ZH, Xu C. Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery. Carbohydr Polym 2024; 343:122461. [PMID: 39174134 DOI: 10.1016/j.carbpol.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
This study reports a pH/magnetic dual-responsive hemicellulose-based nanocomposite hydrogel with nearly 100 % carbohydrate polymer-based and biodegradable polymer compositions for drug delivery. We synthesized pure Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) using a co-precipitation method, then engineering xylan hemicellulose (XH), acrylic acid, poly(ethylene glycol) diacrylate, and Fe3O4 to synthesize the pH/magnetic dual-responsive hydrogel (Fe3O4@XH-Gel), through graft polymerization on XH with in-situ doping Fe3O4 MNPs initiated by the ammonium persulfate/tetramethylethylenediamine redox system. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), swelling gravimetric analysis, vibrating sample magnetometer (VSM) were employed to analyze the hydrogel's chemical structures, morphologies, pH-responsive behaviors, and magnetic responsiveness characteristics, mechanical and rheological properties, as well as cytotoxicity and biodegradability. The results indicate that the Fe3O4@XH-Gel exhibited excellent dual responsiveness to pH and magnetism. Furthermore, an emphasis was placed on the in-depth analysis of the pH response mechanism. Finally, we utilized this cutting-edge hydrogel to investigate the controlled-release behavior of two model drugs, Acetylsalicylic acid and Theophylline. The hydrogel demonstrated exceptional controlled release attributes, positioning it as a potential carrier for targeted drug delivery, particularly to the gastrointestinal conditions.
Collapse
Affiliation(s)
- Jilan Long
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Guangliang Zhou
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Xiaomeng Yu
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Jiayun Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Liqiu Hu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Andrey Pranovich
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland
| | - Qiwen Yong
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China; Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland; Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
| | - Zhi-Hui Xie
- Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China.
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland.
| |
Collapse
|
19
|
Liu C, Wang Y, Shi S, Zheng Y, Ye Z, Liao J, Sun Q, Dang B, Shen X. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. ACS NANO 2024; 18:27420-27432. [PMID: 39331416 DOI: 10.1021/acsnano.4c07677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
Collapse
Affiliation(s)
- Chencong Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yubo Zheng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiaqi Liao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
20
|
Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, Mendoza DR, Reis RL, Kundu SC. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv Healthc Mater 2024; 13:e2401195. [PMID: 38824416 DOI: 10.1002/adhm.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Hydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein-based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix-metalloproteinase-triggered amino acid motifs. Integration of cell-friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Fátima Franco De Silva
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Alejandro Bedón Vacas
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Javier Adonay Gutiérrez Gómez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Naomi Yael Montes Goo
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Daniela Ruiz Mendoza
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
21
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
22
|
Ma H, Liu Z, Lu X, Zhang S, Tang C, Cheng Y, Zhang H, Liu G, Sui C, Ding C, Yang R, Luo T. 3D printed multi-coupled bioinspired skin-electronic interfaces with enhanced adhesion for monitoring and treatment. Acta Biomater 2024; 187:183-198. [PMID: 39222704 DOI: 10.1016/j.actbio.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Skin-electronic interfaces have broad applications in fields such as diagnostics, therapy, health monitoring, and smart wearables. However, they face various challenges in practical use. For instance, in wet environments, the cohesion of the material may be compromised, and under dynamic conditions, maintaining conformal adhesion becomes difficult, leading to reduced sensitivity and fidelity of electrical signal transmission. The key scientific issue lies in forming a stable and tight mechanical-electronic coupling at the tissue-electronic interface. Here, inspired by octopus sucker structures and snail mucus, we propose a strategy for hydrogel skin-electronic interfaces based on multi-coupled bioinspired adhesion and introduce an ultrasound (US)-mediated interfacial toughness enhancement mechanism. Ultimately, using digital light processing micro-nano additive manufacturing technology (DLP 3D), we have developed a multifunctional, diagnostic-therapeutic integrated patch (PAMS). This patch exhibits moderate water swelling properties, a maximum deformation of up to 460%, high sensitivity (GF = 4.73), and tough and controllable bioadhesion (shear strength increased by 109.29%). Apart from outstanding mechanical and electronic properties, the patch also demonstrates good biocompatibility, anti-bacterial properties, photothermal properties, and resistance to freezing at -20 °C. Experimental results show that this skin-electronic interface can sensitively monitor temperature, motion, and electrocardiogram signals. Utilizing a rat frostbite model, we have demonstrated that this skin-electronic interface can effectively accelerate the wound healing process as a wound patch. This research offers a promising strategy for improving the performance of bioelectronic devices, sensor-based educational reforms and personalized diagnostics and therapeutics in the future. STATEMENT OF SIGNIFICANCE: Establishing stable and tight mechanical-electronic coupling at the tissue-electronic interface is essential for the diverse applications of bioelectronic devices. This study aims to develop a multifunctional, diagnostic-therapeutic integrated hydrogel skin-electronic interface patch with enhanced interfacial toughness. The patch is based on a multi-coupled bioinspired adhesive-enhanced mechanism, allowing for personalized 3D printing customization. It can be used as a high-performance diagnostic-therapeutic sensor and effectively promote frostbite wound healing. We anticipate that this research will provide new insights for constructing the next generation of multifunctional integrated high-performance bioelectronic interfaces.
Collapse
Affiliation(s)
- Hui Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei Anhui, 230601, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Shengting Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chenlong Tang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Hui Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei Anhui, 230601, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Tan YL, Wong YJ, Ong NWX, Leow Y, Wong JHM, Boo YJ, Goh R, Loh XJ. Adhesion Evolution: Designing Smart Polymeric Adhesive Systems with On-Demand Reversible Switchability. ACS NANO 2024; 18:24682-24704. [PMID: 39185924 DOI: 10.1021/acsnano.4c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Nicholas Wei Xun Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
24
|
Fu F, Liu C, Jiang Z, Zhao Q, Shen A, Wu Y, Gu W. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. SMART MEDICINE 2024; 3:e20240027. [PMID: 39420950 PMCID: PMC11425052 DOI: 10.1002/smmd.20240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Zhenlin Jiang
- College of Chemistry and Chemical EngineeringResearch Center for Advanced Mirco‐ and Nano‐Fabrication MaterialsShanghai University of Engineering ScienceShanghaiChina
| | - Qingyu Zhao
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Aining Shen
- Shenzhen Bay LaboratoryShenzhenGuangdongChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Wenyi Gu
- Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
25
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
26
|
Yuan R, Fang Z, Liu F, He X, Du S, Zhang N, Zeng Q, Wei Y, Wu Y, Tao L. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing. ACS Macro Lett 2024; 13:475-482. [PMID: 38591821 DOI: 10.1021/acsmacrolett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sa Du
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Qiang Zeng
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
28
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Kumar R, Rezapourian M, Rahmani R, Maurya HS, Kamboj N, Hussainova I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics (Basel) 2024; 9:209. [PMID: 38667221 PMCID: PMC11048303 DOI: 10.3390/biomimetics9040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Ramin Rahmani
- CiTin–Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus–Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Himanshu S. Maurya
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Mechanical and Materials Engineering, University of Turku, 20500 Turku, Finland
- TCBC–Turku Clinical Biomaterials Centre, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| |
Collapse
|
30
|
Zhang S, Guo F, Li M, Yang M, Zhang D, Han L, Li X, Zhang Y, Cao A, Shang Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J Colloid Interface Sci 2024; 658:137-147. [PMID: 38100970 DOI: 10.1016/j.jcis.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengdan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
31
|
Lu G, Zhao G, Wang S, Li H, Yu Q, Sun Q, Wang B, Wei L, Fu Z, Zhao Z, Yang L, Deng L, Zheng X, Cai M, Lu M. Injectable Nano-Micro Composites with Anti-bacterial and Osteogenic Capabilities for Minimally Invasive Treatment of Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306964. [PMID: 38234236 DOI: 10.1002/advs.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 01/19/2024]
Abstract
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.
Collapse
Affiliation(s)
- Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanqing Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linshan Yang
- Taikang Bybo Dental, Shanghai, 200001, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
32
|
Wang Y, Guo J, Cao X, Zhao Y. Developing conductive hydrogels for biomedical applications. SMART MEDICINE 2024; 3:e20230023. [PMID: 39188512 PMCID: PMC11235618 DOI: 10.1002/smmd.20230023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2024]
Abstract
Conductive hydrogels have attracted copious attention owing to their grateful performances, such as similarity to biological tissues, compliance, conductivity and biocompatibility. A diversity of conductive hydrogels have been developed and showed versatile potentials in biomedical applications. In this review, we highlight the recent advances in conductive hydrogels, involving the various types and functionalities of conductive hydrogels as well as their applications in biomedical fields. Furthermore, the current challenges and the reasonable outlook of conductive hydrogels are also given. It is expected that this review will provide potential guidance for the advancement of next-generation conductive hydrogels.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
33
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Wang S, Feng Y, Jia X, Ma X, Chen W, Yang L, Li J. Cotton fiber-based dressings with wireless electrical stimulation and antibacterial activity for wound repair. Int J Biol Macromol 2024; 256:128496. [PMID: 38035956 DOI: 10.1016/j.ijbiomac.2023.128496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Although cotton dressing is one of the most commonly used wound management materials, it lacks antimicrobial and healing-promoting activity. This work developed a multilayer electroactive composite cotton dressing (Ag/Zn@Cotton/Paraffin) with exudate-activated electrical stimulation and antibacterial activity by the green and sustainable magnetron-sputtering and spraying methods. The inner hydrophilic layer of the cotton dressing was magnetron sputtered with silver/zinc galvanic couple arrays (Ag/Zn), which can be activated by wound exudate, generating an electrical stimulation (ES) into the wound. The Ag/Zn@Cotton showed efficient antibacterial activities against S. aureus and E. coli. Meanwhile, the paraffin-sprayed outer surface showed excellent antibacterial adhesion rates for S. aureus (99.82 %) and E. coli (97.92 %). The in vitro cell experiments showed that the ES generated by Ag/Zn@Cotton/Paraffin increased the migration of fibroblasts, and the in vivo mouse model indicated that the Ag/Zn@Cotton/Paraffin could enhance wound healing via re-epithelialization, inflammatory inhibition, collagen deposition, and angiogenesis. MTT method and live/dead staining showed that Ag/Zn@Cotton/Paraffin had no significant cytotoxic effects. This work may shed some light on designing and fabricating multi-functional electroactive composited dressings based on traditional biomedical textiles.
Collapse
Affiliation(s)
- Shuang Wang
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yujie Feng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, China
| | - Xihui Jia
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xiaoran Ma
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Weichao Chen
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Liguo Yang
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles and Clothing, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, China.
| |
Collapse
|