1
|
Schat L, Schubert M, Fjellheim S, Humphreys AM. Drought tolerance as an evolutionary precursor to frost and winter tolerance in grasses. Evolution 2025; 79:541-556. [PMID: 39826096 DOI: 10.1093/evolut/qpaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic, and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.e., the evolution of these responses relative to each other, is poorly known. Here, we test whether adaptation to frost and/or severe winters in grasses (Poaceae) was facilitated by ancestral adaptation to drought. We used occurrence patterns across Köppen-Geiger climate zones to classify species as drought, frost, and/or winter tolerant, followed by comparative analyses. Ancestral state reconstructions revealed different evolutionary trajectories in different clades, suggesting both drought-first and frost-first scenarios. Explicit simultaneous modelling of drought and frost/winter tolerance provided some support for correlated evolution, but suggested higher rates of gain of frost/winter tolerance in drought-sensitive rather than drought-tolerant lineages. Overall, there is limited support across grasses as a whole that drought tolerance acted as an evolutionary precursor to frost or severe winter tolerance. Different scenarios in different clades is consistent with present-day grasses being either cold or drought specialists, possibly as a consequence of trade-offs between different stress tolerance responses.
Collapse
Affiliation(s)
- Laura Schat
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Marian Schubert
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Aelys M Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Pennell M, MacPherson A. Reading Yule in light of the history and present of macroevolution. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230299. [PMID: 39976403 PMCID: PMC11867152 DOI: 10.1098/rstb.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 07/21/2024] [Indexed: 02/21/2025] Open
Abstract
Yule's 1925 paper introducing the branching model that bears his name was a landmark contribution to the biodiversity sciences. In his paper, Yule developed stochastic models to explain the observed distribution of species across genera and to test hypotheses about the relationship between clade age, diversity and geographic range. Here, we discuss the intellectual context in which Yule produced this work, highlight Yule's key mathematical and conceptual contributions using both his and more modern derivations and critically examine some of the assumptions of his work through a modern lens. We then document the strange trajectory of his work through the history of macroevolutionary thought and discuss how the fundamental challenges he grappled with-such as defining higher taxa, linking microevolutionary population dynamics to macroevolutionary rates, and accounting for inconsistent taxonomic practices-remain with us a century later.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California90007, USA
- Department of Biological Sciences, University of Southern California90007, USA
- Department of Computational Biology, Cornell University, Ithaca, NY14850, USA
| | | |
Collapse
|
3
|
O'Meara BC, Beaulieu JM. Noise leads to the perceived increase in evolutionary rates over short time scales. PLoS Comput Biol 2024; 20:e1012458. [PMID: 39269992 PMCID: PMC11424004 DOI: 10.1371/journal.pcbi.1012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Across a variety of biological datasets, from genomes to conservation to the fossil record, evolutionary rates appear to increase toward the present or over short time scales. This has long been seen as an indication of processes operating differently at different time scales, even potentially as an indicator of a need for new theory connecting macroevolution and microevolution. Here we introduce a set of models that assess the relationship between rate and time and demonstrate that these patterns are statistical artifacts of time-independent errors present across ecological and evolutionary datasets, which produce hyperbolic patterns of rates through time. We show that plotting a noisy numerator divided by time versus time leads to the observed hyperbolic pattern; in fact, randomizing the amount of change over time generates patterns functionally identical to observed patterns. Ignoring errors can not only obscure true patterns but create novel patterns that have long misled scientists.
Collapse
Affiliation(s)
- Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee; Knoxville, Tennessee, United States of America
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas; Fayetteville, Arkansas, United States of America
| |
Collapse
|
4
|
Elliott TL, Spalink D, Larridon I, Zuntini AR, Escudero M, Hackel J, Barrett RL, Martín‐Bravo S, Márquez‐Corro JI, Granados Mendoza C, Mashau AC, Romero‐Soler KJ, Zhigila DA, Gehrke B, Andrino CO, Crayn DM, Vorontsova MS, Forest F, Baker WJ, Wilson KL, Simpson DA, Muasya AM. Global analysis of Poales diversification - parallel evolution in space and time into open and closed habitats. THE NEW PHYTOLOGIST 2024; 242:727-743. [PMID: 38009920 PMCID: PMC11497318 DOI: 10.1111/nph.19421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.
Collapse
Affiliation(s)
- Tammy L. Elliott
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityKotlarska 2Brno611 37Czech Republic
- Department of Biological SciencesUniversity of Cape TownCape Town7700South Africa
| | - Daniel Spalink
- Department of Ecology and Conservation BiologyTexas A&M University, College StationTexasTX77843‐2258USA
| | - Isabel Larridon
- Royal Botanic GardensKew, RichmondSurreyTW9 3AEUK
- Systematic and Evolutionary Botany Lab, Department of BiologyGhent UniversityK.L. Ledeganckstraat 359000GentBelgium
| | | | - Marcial Escudero
- Department of Plant Biology and Ecology, Faculty of BiologyUniversity of SevilleReina Mercedes 6Seville41012Spain
| | - Jan Hackel
- Royal Botanic GardensKew, RichmondSurreyTW9 3AEUK
- Department of BiologyUniversity of MarburgKarl‐von‐Frisch‐Str. 835043MarburgGermany
| | - Russell L. Barrett
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Australian Botanic GardenLocked Bag 6002Mount AnnanNSW2567Australia
| | - Santiago Martín‐Bravo
- Botany Area, Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de Olavidectra. de Utrera km 141013SevilleSpain
| | - José Ignacio Márquez‐Corro
- Royal Botanic GardensKew, RichmondSurreyTW9 3AEUK
- Botany Area, Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de Olavidectra. de Utrera km 141013SevilleSpain
| | - Carolina Granados Mendoza
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoMexico CityCP 04510Mexico
| | - Aluoneswi C. Mashau
- Foundational Research and Services, South African National Biodiversity Institute (SANBI)Private Bag X101Pretoria0184South Africa
| | - Katya J. Romero‐Soler
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoMexico CityCP 04510Mexico
| | - Daniel A. Zhigila
- Department of BotanyGombe State UniversityTudun WadaGombe760001Nigeria
| | - Berit Gehrke
- Universitetet i Bergen, UniversitetsmuseetPostboks 7800NO‐5020BergenNorway
| | | | - Darren M. Crayn
- Sir Robert Norman Building (E2)James Cook UniversityPO Box 6811CairnsQLD4870Australia
| | | | - Félix Forest
- Royal Botanic GardensKew, RichmondSurreyTW9 3AEUK
| | | | - Karen L. Wilson
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Australian Botanic GardenLocked Bag 6002Mount AnnanNSW2567Australia
| | - David A. Simpson
- Royal Botanic GardensKew, RichmondSurreyTW9 3AEUK
- Botany Department, School of Natural SciencesTrinity College, The University of DublinDublin 2Ireland
| | - A. Muthama Muasya
- Department of Biological SciencesUniversity of Cape TownCape Town7700South Africa
| |
Collapse
|
5
|
Chanderbali AS, Dervinis C, Anghel IG, Soltis DE, Soltis PS, Zapata F. Draft genome assemblies for two species of Escallonia (Escalloniales). BMC Genom Data 2024; 25:1. [PMID: 38166621 PMCID: PMC10759652 DOI: 10.1186/s12863-023-01186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES Escallonia (Escalloniaceae) belongs to the Escalloniales, a diverse clade of flowering plants with unclear placement in the tree of life. Escallonia species show impressive morphological and ecological diversity and are widely distributed across three hotspots of biodiversity in the Neotropics. To shed light on the genomic substrate of this radiation and the phylogenetic placement of Escalloniales as well as to generate useful data for comparative evolutionary genomics across flowering plants, we produced and annotated draft genomes for two species of Escallonia. DATA DESCRIPTION Genomic DNA from E. rubra and E. herrerae was sequenced with Oxford Nanopore sequencing chemistry, generating 3.4 and 12 million sequence reads with an average read length of 9.4 and 9.1 Kb (approximately 31 and 111 Gb of sequence data), respectively. In addition, we generated Illumina 100-bp paired-end short read data for E. rubra (approximately 75 Gb of sequence data). The Escallonia rubra genome was 566 Mb, with 3,233 contigs and an N50 of 285 Kb. The assembled genome for E. herrerae was 994 Mp, with 5,760 contigs and an N50 of 317 Kb. The genome sequences were annotated with 31,038 (E. rubra) and 47,905 (E. herrerea) protein-coding gene models supported by transcriptome/protein evidence and/or Pfam domain content. BUSCO assessments indicated completeness levels of approximately 98% for the genome assemblies and 88% for the genome annotations.
Collapse
Affiliation(s)
- Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Christopher Dervinis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Ioana G Anghel
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Henríquez-Piskulich P, Hugall AF, Stuart-Fox D. A supermatrix phylogeny of the world's bees (Hymenoptera: Anthophila). Mol Phylogenet Evol 2024; 190:107963. [PMID: 37967640 DOI: 10.1016/j.ympev.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
The increasing availability of large molecular phylogenies has provided new opportunities to study the evolution of species traits, their origins and diversification, and biogeography; yet there are limited attempts to synthesise existing phylogenetic information for major insect groups. Bees (Hymenoptera: Anthophila) are a large group of insect pollinators that have a worldwide distribution, and a wide variation in ecology, morphology, and life-history traits, including sociality. For these reasons, as well as their major economic importance as pollinators, numerous molecular phylogenetic studies of family and genus-level relationships have been published, providing an opportunity to assemble a bee 'tree-of-life'. We used publicly available genetic sequence data, including phylogenomic data, reconciled to a taxonomic database, to produce a concatenated supermatrix phylogeny for the Anthophila comprising 4,586 bee species, representing 23% of species and 82% of genera. At family, subfamily, and tribe levels, support for expected relationships was robust, but between and within some genera relationships remain uncertain. Within families, sampling of genera ranged from 67 to 100% but species coverage was lower (17-41%). Our phylogeny mostly reproduces the relationships found in recent phylogenomic studies with a few exceptions. We provide a summary of these differences and the current state of molecular data available and its gaps. We discuss the advantages and limitations of this bee supermatrix phylogeny (available online at beetreeoflife.org), which may enable new insights into long standing questions about evolutionary drivers in bees, and potentially insects more generally.
Collapse
Affiliation(s)
| | - Andrew F Hugall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Sciences, Museums Victoria, Melbourne, Victoria, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Morinaga G, Wiens JJ, Moen DS. The radiation continuum and the evolution of frog diversity. Nat Commun 2023; 14:7100. [PMID: 37925440 PMCID: PMC10625520 DOI: 10.1038/s41467-023-42745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Most of life's vast diversity of species and phenotypes is often attributed to adaptive radiation. Yet its contribution to species and phenotypic diversity of a major group has not been examined. Two key questions remain unresolved. First, what proportion of clades show macroevolutionary dynamics similar to adaptive radiations? Second, what proportion of overall species richness and phenotypic diversity do these adaptive-radiation-like clades contain? We address these questions with phylogenetic and morphological data for 1226 frog species across 43 families (which represent >99% of all species). Less than half of frog families resembled adaptive radiations (with rapid diversification and morphological evolution). Yet, these adaptive-radiation-like clades encompassed ~75% of both morphological and species diversity, despite rapid rates in other clades (e.g., non-adaptive radiations). Overall, we support the importance of adaptive-radiation-like evolution for explaining diversity patterns and provide a framework for characterizing macroevolutionary dynamics and diversity patterns in other groups.
Collapse
Affiliation(s)
- Gen Morinaga
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Boyko JD, Hagen ER, Beaulieu JM, Vasconcelos T. The evolutionary responses of life-history strategies to climatic variability in flowering plants. THE NEW PHYTOLOGIST 2023; 240:1587-1600. [PMID: 37194450 DOI: 10.1111/nph.18971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The evolution of annual or perennial strategies in flowering plants likely depends on a broad array of temperature and precipitation variables. Previous documented climate life-history correlations in explicit phylogenetic frameworks have been limited to certain clades and geographic regions. To gain insights which generalize to multiple lineages we employ a multi-clade approach analyzing 32 groups of angiosperms across eight climatic variables. We utilize a recently developed method that accounts for the joint evolution of continuous and discrete traits to evaluate two hypotheses: annuals tend to evolve in highly seasonal regions prone to extreme heat and drought; and annuals tend to have faster rates of climatic niche evolution than perennials. We find that temperature, particularly highest temperature of the warmest month, is the most consistent climatic factor influencing the evolution of annual strategy in flowering plants. Unexpectedly, we do not find significant differences in rates of climatic niche evolution between perennial and annual lineages. We propose that annuals are consistently favored in areas prone to extreme heat due to their ability to escape heat stress as seeds, but they tend to be outcompeted by perennials in regions where extreme heat is uncommon or nonexistent.
Collapse
Affiliation(s)
- James D Boyko
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Michigan Institute of Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Henao-Diaz LF, Pennell M. The Major Features of Macroevolution. Syst Biol 2023; 72:1188-1198. [PMID: 37248967 DOI: 10.1093/sysbio/syad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Evolutionary dynamics operating across deep time leave footprints in the shapes of phylogenetic trees. For the last several decades, researchers have used increasingly large and robust phylogenies to study the evolutionary history of individual clades and to investigate the causes of the glaring disparities in diversity among groups. Whereas typically not the focal point of individual clade-level studies, many researchers have remarked on recurrent patterns that have been observed across many different groups and at many different time scales. Whereas previous studies have documented various such regularities in topology and branch length distributions, they have typically focused on a single pattern and used a disparate collection (oftentimes, of quite variable reliability) of trees to assess it. Here we take advantage of modern megaphylogenies and unify previous disparate observations about the shapes embedded in the Tree of Life to create a catalog of the "major features of macroevolution." By characterizing such a large swath of subtrees in a consistent way, we hope to provide a set of phenomena that process-based macroevolutionary models of diversification ought to seek to explain.
Collapse
Affiliation(s)
- L Francisco Henao-Diaz
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Matt Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, USA
| |
Collapse
|
10
|
Anderson B, Pannell J, Billiard S, Burgarella C, de Boer H, Dufay M, Helmstetter AJ, Méndez M, Otto SP, Roze D, Sauquet H, Schoen D, Schönenberger J, Vallejo-Marin M, Zenil-Ferguson R, Käfer J, Glémin S. Opposing effects of plant traits on diversification. iScience 2023; 26:106362. [PMID: 37034980 PMCID: PMC10074578 DOI: 10.1016/j.isci.2023.106362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence. Such opposing trait effects can manifest as differences in diversification rates that depend on ecological context, spatiotemporal scale, and associations with other traits. The complexity of pathways linking traits to diversification suggests that the mechanistic underpinnings behind their correlations may be difficult to interpret with any certainty, and context dependence means that the effects of specific traits on diversification are likely to differ across multiple lineages and timescales. This calls for taxonomically and context-controlled approaches to studies that correlate traits and diversification.
Collapse
|
11
|
Vasconcelos T. A trait-based approach to determining principles of plant biogeography. AMERICAN JOURNAL OF BOTANY 2023; 110:e16127. [PMID: 36648370 DOI: 10.1002/ajb2.16127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lineage-specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait-environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait-environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time.
Collapse
Affiliation(s)
- Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
12
|
Lotterhos KE, Fitzpatrick MC, Blackmon H. Simulation Tests of Methods in Evolution, Ecology, and Systematics: Pitfalls, Progress, and Principles. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2022; 53:113-136. [PMID: 38107485 PMCID: PMC10723108 DOI: 10.1146/annurev-ecolsys-102320-093722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Complex statistical methods are continuously developed across the fields of ecology, evolution, and systematics (EES). These fields, however, lack standardized principles for evaluating methods, which has led to high variability in the rigor with which methods are tested, a lack of clarity regarding their limitations, and the potential for misapplication. In this review, we illustrate the common pitfalls of method evaluations in EES, the advantages of testing methods with simulated data, and best practices for method evaluations. We highlight the difference between method evaluation and validation and review how simulations, when appropriately designed, can refine the domain in which a method can be reliably applied. We also discuss the strengths and limitations of different evaluation metrics. The potential for misapplication of methods would be greatly reduced if funding agencies, reviewers, and journals required principled method evaluation.
Collapse
Affiliation(s)
- Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA
| | - Matthew C Fitzpatrick
- Appalachian Lab, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Černý D, Natale R. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes). Mol Phylogenet Evol 2022; 177:107620. [PMID: 36038056 DOI: 10.1016/j.ympev.2022.107620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/20/2023]
Abstract
Shorebirds (Charadriiformes) are a globally distributed clade of modern birds and, due to their ecological and morphological disparity, a frequent subject of comparative studies. While molecular phylogenies have been key to establishing the suprafamilial backbone of the charadriiform tree, a number of relationships at both deep and shallow taxonomic levels remain poorly resolved. The timescale of shorebird evolution also remains uncertain as a result of extensive disagreements among the published divergence dating studies, stemming largely from different choices of fossil calibrations. Here, we present the most comprehensive non-supertree phylogeny of shorebirds to date, based on a total-evidence dataset comprising 353 ingroup taxa (90% of all extant or recently extinct species), 27 loci (15 mitochondrial and 12 nuclear), and 69 morphological characters. We further clarify the timeline of charadriiform evolution by time-scaling this phylogeny using a set of 14 up-to-date and thoroughly vetted fossil calibrations. In addition, we assemble a taxonomically restricted 100-locus dataset specifically designed to resolve outstanding problems in higher-level charadriiform phylogeny. In terms of tree topology, our results are largely congruent with previous studies but indicate that some of the conflicts among earlier analyses reflect a genuine signal of pervasive gene tree discordance. Monophyly of the plovers (Charadriidae), the position of the ibisbill (Ibidorhyncha), and the relationships among the five subfamilies of the gulls (Laridae) could not be resolved even with greatly increased locus and taxon sampling. Moreover, several localized regions of uncertainty persist in shallower parts of the tree, including the interrelationships of the true auks (Alcinae) and anarhynchine plovers. Our node-dating and macroevolutionary rate analyses find support for a Paleocene origin of crown-group shorebirds, as well as exceptionally rapid recent radiations of Old World oystercatchers (Haematopodidae) and select genera of gulls. Our study underscores the challenges involved in estimating a comprehensively sampled and carefully calibrated time tree for a diverse avian clade, and highlights areas in need of further research.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA.
| | - Rossy Natale
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA
| |
Collapse
|
14
|
Vasconcelos T, O'Meara BC, Beaulieu JM. A flexible method for estimating tip diversification rates across a range of speciation and extinction scenarios. Evolution 2022; 76:1420-1433. [PMID: 35661352 DOI: 10.1111/evo.14517] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/08/2022] [Indexed: 01/21/2023]
Abstract
Estimates of diversification rates at the tips of a phylogeny provide a flexible approach for correlation analyses with multiple traits and to map diversification rates in space while also avoiding the uncertainty of deep time rate reconstructions. Available methods for tip rate estimation make different assumptions, and thus their accuracy usually depends on the characteristics of the underlying model generating the tree. Here, we introduce MiSSE, a trait-free, state-dependent speciation and extinction approach that can be used to estimate varying speciation, extinction, net diversification, turnover, and extinction fractions at the tips of the tree. We compare the accuracy of tip rates inferred by MiSSE against similar methods and demonstrate that, due to certain characteristics of the model, the error is generally low across a broad range of speciation and extinction scenarios. MiSSE can be used alongside regular phylogenetic comparative methods in trait-related diversification hypotheses, and we also describe a simple correction to avoid pseudoreplication from sister tips in analyses of independent contrasts. Finally, we demonstrate the capabilities of MiSSE, with a renewed focus on classic comparative methods, to examine the correlation between plant height and turnover rates in eucalypts, a species-rich lineage of flowering plants.
Collapse
Affiliation(s)
- Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701
| |
Collapse
|
15
|
de Brito V, Betancur-R R, Burns MD, Buser TJ, Conway KW, Fontenelle JP, Kolmann MA, McCraney WT, Thacker CE, Bloom DD. Patterns of Phenotypic Evolution Associated with Marine/Freshwater Transitions in Fishes. Integr Comp Biol 2022; 62:406-423. [PMID: 35675320 DOI: 10.1093/icb/icac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades. We used phylogenetic comparative methods to analyze body size data in nine major fish clades that have crossed the marine/freshwater boundary. We explored how habitat transitions, ecological opportunity, and community interactions influenced patterns of phenotypic diversity. Our analyses indicated that transitions between marine and freshwater habitats did not drive body size evolution, and there are few differences in body size between marine and freshwater lineages. We found that body size disparity in freshwater lineages is not correlated with the number of independent transitions to freshwaters. We found a positive correlation between body size disparity and overall species richness of a given area, and a negative correlation between body size disparity and diversity of closely related species. Our results indicate that the diversity of incumbent freshwater species does not restrict phenotypic diversification, but the diversity of closely related taxa can limit body size diversification. Ecological opportunity arising from colonization of novel habitats does not seem to have a major effect in the trajectory of body size evolution in trans-marine/freshwater clades. Moreover, competition with closely related taxa in freshwaters has a greater effect than competition with distantly related incumbent species.
Collapse
Affiliation(s)
- Victor de Brito
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5410, USA
| | - Ricardo Betancur-R
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, OK 73019, USA
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell Museum of Vertebrates, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850-1923, USA
| | - Thaddaeus J Buser
- Department of BioSciences, Rice University, W100 George R. Brown Hall, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX 77843, USA
| | - João Pedro Fontenelle
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3E8, Canada
| | - Matthew A Kolmann
- Museum of Paleontology, Biological Sciences Building, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109-1085, USA
| | - W Tyler McCraney
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive South, Los Angeles, CA 90095-7246, USA
| | - Christine E Thacker
- Research and Collections, Section of Ichthyology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA.,Vertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5410, USA.,Institute of the Environment and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5419, USA
| |
Collapse
|
16
|
Crouch NMA, Tobias JA. The causes and ecological context of rapid morphological evolution in birds. Ecol Lett 2022; 25:611-623. [PMID: 35199918 DOI: 10.1111/ele.13962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Episodic pulses in morphological diversification are a prominent feature of evolutionary history, driven by factors that remain widely disputed. Resolving this question has proved challenging because comprehensive species-level data are generally unavailable at sufficient scale. Combining global phylogenetic and morphological data for birds, we show that pulses of diversification in lineages and traits tend to occur independently and in different contexts. Speciation pulses are preceded by greater differentiation in overall morphology and habitat niche, then followed by increased rates of beak evolution. Contrary to standard hypotheses, pulses of morphological diversification tend to be associated with habitat niche stability rather than adaptation to different diets and habitat types. These patterns suggest that the timing of diversification varies across traits according to their ecological function, and that pulses of morphological evolution may occur when successful lineages subdivide niche space within particular habitat types. Our results highlight the growing potential of functional trait data sets to refine macroevolutionary models.
Collapse
Affiliation(s)
- Nicholas M A Crouch
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
17
|
Chafin TK, Douglas MR, Bangs MR, Martin BT, Mussmann SM, Douglas ME. Taxonomic Uncertainty and the Anomaly Zone: Phylogenomics Disentangle a Rapid Radiation to Resolve Contentious Species (Gila robusta Complex) in the Colorado River. Genome Biol Evol 2021; 13:evab200. [PMID: 34432005 PMCID: PMC8449829 DOI: 10.1093/gbe/evab200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed "threatened" status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the "anomaly zone" of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.
Collapse
Affiliation(s)
- Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Max R Bangs
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bradley T Martin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Global Campus, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven M Mussmann
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, USA
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
18
|
Combining molecular and geographical data to infer the phylogeny of Lamiales and its dispersal patterns in and out of the tropics. Mol Phylogenet Evol 2021; 164:107287. [PMID: 34365014 DOI: 10.1016/j.ympev.2021.107287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
Lamiales is one of the most intractable orders of flowering plants, with several changes in family composition, and circumscription throughout history. The order is worldwide distributed, occurring in tropical forests and frozen habitats. In this study, a comprehensive phylogeny of Lamiales was reconstructed using DNA sequences. The tree was used to infer dispersal patterns, focusing on the tropics and extratropics. Molecular and species geographic data available from public repositories were combined to address both objectives. A total of 6,910 species, and 842 genera of Lamiales were sampled using the Python tool PyPHLAWD. The tree was inferred using RAxML, and recovered a monophyletic Lamiales. All 26 families were recovered as monophyletic with high support. The families Bignoniaceae, and Plantaginaceae are remarkable examples. The first emerged as monophyletic and included tribe Jacarandeae, while the later emerged as monophyletic in its sensu lato and included both the tribes Angelonieae, and Gratioleae. Distribution points for all species were retrieved from GBIF. After filtering, 1,136,425 records were retained. Species were coded as present in extratropical or tropical environments. The in and out of the tropics dispersal patterns were inferred using a maximum likelihood approach that identifies hidden rate changes. The model recovered higher rates of transition from extratropics to tropics, estimating two rates of state transitions. When ancestral states are considered, more discrete transitions from extratropics to tropics were observed. The extratropical state was also inferred for the crown node of Lamiales and old nested nodes, revealing a rare pattern of transitions to the tropics throughout the upper Cretaceous and Tertiary. A significant phylogenetic signal was recovered for the in and out of the tropics dispersal patterns, showing that state transitions are not frequent enough to erase the effect of tree structure on the data.
Collapse
|
19
|
Clarke JT. Evidence for general size-by-habitat rules in actinopterygian fishes across nine scales of observation. Ecol Lett 2021; 24:1569-1581. [PMID: 34110065 PMCID: PMC8362132 DOI: 10.1111/ele.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
Identifying environmental predictors of phenotype is fundamentally important to many ecological questions, from revealing broadscale ecological processes to predicting extinction risk. However, establishing robust environment—phenotype relationships is challenging, as powerful case studies require diverse clades which repeatedly undergo environmental transitions at multiple taxonomic scales. Actinopterygian fishes, with 32,000+ species, fulfil these criteria for the fundamental habitat divisions in water. With four datasets of body size (ranging 10,905–27,226 species), I reveal highly consistent size‐by‐habitat‐use patterns across nine scales of observation. Taxa in marine, marine‐brackish, euryhaline and freshwater‐brackish habitats possess larger mean sizes than freshwater relatives, and the largest mean sizes consistently emerge within marine‐brackish and euryhaline taxa. These findings align with the predictions of seven mechanisms thought to drive larger size by promoting additional trophic levels. However, mismatches between size and trophic‐level patterns highlight a role for additional mechanisms, and support for viable candidates is examined in 3439 comparisons.
Collapse
Affiliation(s)
- John T Clarke
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.,Institute of Ecology and Earth Sciences, Department of Zoology, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Miller EC, Mesnick SL, Wiens JJ. Sexual Dichromatism Is Decoupled from Diversification over Deep Time in Fishes. Am Nat 2021; 198:232-252. [PMID: 34260865 DOI: 10.1086/715114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexually selected traits have long been thought to drive diversification, but support for this hypothesis has been persistently controversial. In fishes, sexually dimorphic coloration is associated with assortative mating and speciation among closely related species, as shown in classic studies. However, it is unclear whether these results can generalize to explain diversity patterns across ray-finned fishes, which contain the majority of vertebrate species and 96% of fishes. Here, we use phylogenetic approaches to test for an association between sexual dichromatism and diversification rates (speciation minus extinction) in ray-finned fishes. We assembled dichromatism data for 10,898 species, a data set of unprecedented size. We found no difference in diversification rates between monochromatic and dichromatic species when including all ray-finned fishes. However, at lower phylogenetic scales (within orders and families), some intermediate-sized clades did show an effect of dichromatism on diversification. Surprisingly, dichromatism could significantly increase or decrease diversification rates. Moreover, we found no effect in many of the clades initially used to link dichromatism to speciation in fishes (e.g., cichlids) or an effect only at shallow scales (within subclades). Overall, we show how the effects of dichromatism on diversification are highly variable in direction and restricted to certain clades and phylogenetic scales.
Collapse
|
21
|
Lloyd GT, Slater GJ. A Total-Group Phylogenetic Metatree for Cetacea and the Importance of Fossil Data in Diversification Analyses. Syst Biol 2021; 70:922-939. [PMID: 33507304 DOI: 10.1093/sysbio/syab002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic trees provide a powerful framework for testing macroevolutionary hypotheses, but it is becoming increasingly apparent that inferences derived from extant species alone can be highly misleading. Trees incorporating living and extinct taxa are are needed to address fundamental questions about the origins of diversity and disparity but it has proved challenging to generate robust, species-rich phylogenies that include large numbers of fossil taxa. As a result, most studies of diversification dynamics continue to rely on molecular phylogenies. Here, we extend and apply a recently developed meta-analytic approach for synthesizing previously published phylogenetic studies to infer a well-resolved set of species level, time-scaled phylogenetic hypotheses for extinct and extant cetaceans (whales, dolphins and allies). Our trees extend sampling from the ∼ 90 extant species to over 500 living and extinct species, and therefore allow for more robust inference of macroevolutionary dynamics. While the diversification scenarios we recover are broadly concordant with those inferred from molecular phylogenies they differ in critical ways, notably in the relative contributions of extinction and speciation rate shifts in driving rapid radiations. The metatree approach provides the most immediate route for generating higher level phylogenies of extinct taxa, and opens the door to re-evaluation of macroevolutionary hypotheses derived only from extant taxa.
Collapse
Affiliation(s)
- Graeme T Lloyd
- School of Earth and Environment, University of Leeds, Leeds, U.K
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, USA
| |
Collapse
|
22
|
Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen Z, Soltis DE, Guralnick RP. Recent accelerated diversification in rosids occurred outside the tropics. Nat Commun 2020; 11:3333. [PMID: 32620894 PMCID: PMC7335165 DOI: 10.1038/s41467-020-17116-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/05/2020] [Indexed: 01/28/2023] Open
Abstract
Conflicting relationships have been found between diversification rate and temperature across disparate clades of life. Here, we use a supermatrix comprising nearly 20,000 species of rosids-a clade of ~25% of all angiosperm species-to understand global patterns of diversification and its climatic association. Our approach incorporates historical global temperature, assessment of species' temperature niche, and two broad-scale characterizations of tropical versus non-tropical niche occupancy. We find the diversification rates of most subclades dramatically increased over the last 15 million years (Myr) during cooling associated with global expansion of temperate habitats. Climatic niche is negatively associated with diversification rates, with tropical rosids forming older communities and experiencing speciation rates ~2-fold below rosids in cooler climates. Our results suggest long-term cooling had a disproportionate effect on non-tropical diversification rates, leading to dynamic young communities outside of the tropics, while relative stability in tropical climes led to older, slower-evolving but still species-rich communities.
Collapse
Affiliation(s)
- Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA. .,Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark. .,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.,Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.,Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL, 32608, USA
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA.,Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL, 32608, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA. .,Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
23
|
Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen Z, Soltis DE, Guralnick RP. Estimating rates and patterns of diversification with incomplete sampling: a case study in the rosids. AMERICAN JOURNAL OF BOTANY 2020; 107:895-909. [PMID: 32519354 PMCID: PMC7384126 DOI: 10.1002/ajb2.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/03/2020] [Indexed: 05/03/2023]
Abstract
PREMISE Recent advances in generating large-scale phylogenies enable broad-scale estimation of species diversification. These now common approaches typically are characterized by (1) incomplete species coverage without explicit sampling methodologies and/or (2) sparse backbone representation, and usually rely on presumed phylogenetic placements to account for species without molecular data. We used empirical examples to examine the effects of incomplete sampling on diversification estimation and provide constructive suggestions to ecologists and evolutionary biologists based on those results. METHODS We used a supermatrix for rosids and one well-sampled subclade (Cucurbitaceae) as empirical case studies. We compared results using these large phylogenies with those based on a previously inferred, smaller supermatrix and on a synthetic tree resource with complete taxonomic coverage. Finally, we simulated random and representative taxon sampling and explored the impact of sampling on three commonly used methods, both parametric (RPANDA and BAMM) and semiparametric (DR). RESULTS We found that the impact of sampling on diversification estimates was idiosyncratic and often strong. Compared to full empirical sampling, representative and random sampling schemes either depressed or inflated speciation rates, depending on methods and sampling schemes. No method was entirely robust to poor sampling, but BAMM was least sensitive to moderate levels of missing taxa. CONCLUSIONS We suggest caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled trees and in the use of summary backbone trees and other data sets with high representative bias, and we stress the importance of explicit sampling methodologies in macroevolutionary studies.
Collapse
Affiliation(s)
- Miao Sun
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- Department of BioscienceAarhus UniversityAarhus8000Denmark
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi39762USA
| | - Matthew A. Gitzendanner
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32608USA
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32608USA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| |
Collapse
|
24
|
Howard CC, Landis JB, Beaulieu JM, Cellinese N. Geophytism in monocots leads to higher rates of diversification. THE NEW PHYTOLOGIST 2020; 225:1023-1032. [PMID: 31469440 DOI: 10.1111/nph.16155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
Geophytes, plants with buds on underground structures, are found throughout the plant tree of life. These below ground structures allow plants to inhabit highly seasonal and disturbance-prone environments across ecosystems. Past researchers have hypothesised that the bulbous, cormous and tuberous habits promote diversification, but this had yet to be tested. Using a comprehensive monocot data set of almost 13 000 taxa, we investigated the effects of the geophytic habit on diversification using both state-dependent and state-independent models. We found that geophytes exhibit increased rates of diversification relative to nongeophytes. State-dependent analyses recovered higher yet similar rates of diversification for bulbous, cormous and tuberous taxa compared with rhizomatous and nongeophytic taxa. However, the state-independent model returned no difference in rates among the different traits. Geophytism shows higher rates of diversification relative to nongeophytes but we found little support for the hypothesis that the evolution of the bulb, corm or tuber appears to provide a diversification increase relative to rhizomatous and nongeophytic taxa. Our broad-scale analysis highlights the overall evolutionary importance of the geophytic habit (i.e. belowground bud placement). However, our results also suggest that belowground morphological diversity alone cannot explain this rate increase. In order to further test the evolutionary significance of these underground structures, future studies should consider these in combination with other biotic and abiotic factors.
Collapse
Affiliation(s)
- Cody Coyotee Howard
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Jacob B Landis
- University of California, Riverside, Riverside, CA, 92521, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72731, USA
| | - Nico Cellinese
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
25
|
Nakov T, Beaulieu JM, Alverson AJ. Diatoms diversify and turn over faster in freshwater than marine environments*. Evolution 2019; 73:2497-2511. [DOI: 10.1111/evo.13832] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Teofil Nakov
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| | - Jeremy M. Beaulieu
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| | - Andrew J. Alverson
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| |
Collapse
|
26
|
Beaulieu JM, O'Meara BC. Diversity and skepticism are vital for comparative biology: a response to Donoghue and Edwards (2019). AMERICAN JOURNAL OF BOTANY 2019; 106:613-617. [PMID: 31050366 DOI: 10.1002/ajb2.1278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996-1610, USA
| |
Collapse
|
27
|
Chang J, Rabosky DL, Smith SA, Alfaro ME. An
r
package and online resource for macroevolutionary studies using the ray‐finned fish tree of life. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13182] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jonathan Chang
- School of Biological Sciences Monash University Clayton VIC Australia
| | - Daniel L. Rabosky
- Museum of Zoology Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI
| | - Stephen A. Smith
- Museum of Zoology Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCA
| |
Collapse
|
28
|
Donoghue MJ, Edwards EJ. Model clades are vital for comparative biology, and ascertainment bias is not a problem in practice: a response to Beaulieu and O'Meara (2018). AMERICAN JOURNAL OF BOTANY 2019; 106:327-330. [PMID: 30882894 DOI: 10.1002/ajb2.1255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Michael J Donoghue
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520-8106, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520-8106, USA
| |
Collapse
|
29
|
Zapata F, Villarroel D. A new species of Escallonia (Escalloniaceae) from the inter-Andean tropical dry forests of Bolivia. PeerJ 2019; 7:e6328. [PMID: 30723621 PMCID: PMC6360080 DOI: 10.7717/peerj.6328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, renewed fieldwork in poorly explored areas of the tropical Andes has dramatically increased the comparative material available to study patterns of inter- and intraspecific variation in tropical plants. In the course of a comprehensive study of the genus Escallonia, we found a group of specimens with decumbent branching, small narrowly elliptic leaves, inflorescences with up to three flowers, and flowers with red petals. This unique combination of traits was not present in any known species of the genus. To evaluate the hypothesis that these specimens belonged to a new species, we assessed whether morphological variation between the putative new species and all currently known Escallonia species was discontinuous. The lack of overlap in tolerance regions for vegetative and reproductive traits combined with differences in habit, habitat, and geographic distribution supported the hypothesis of the new species, which we named Escallonia harrisii. The new species grows in sandstone inter-Andean ridges and cliffs covered with dry forest, mostly on steep slopes between 1,300–2,200 m in southern Bolivia. It is readily distinct in overall leaf and flower morphology from other Escallonia species in the region, even though it does not grow in sympatry with other species. Because E. harrisii is locally common it may not be threated at present, but due to its restricted geographic distribution and the multiple threats of the tropical dry forests it could become potentially vulnerable.
Collapse
Affiliation(s)
- Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Daniel Villarroel
- Fundación Amigos de la Naturaleza, Santa Cruz, Bolivia
- Universidad Autónoma Gabriel René, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz, Bolivia
| |
Collapse
|
30
|
Smith SA, Walker JF. Py
PHLAWD
: A python tool for phylogenetic dataset construction. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen A. Smith
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| | - Joseph F. Walker
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| |
Collapse
|
31
|
Soltis DE, Moore MJ, Sessa EB, Smith SA, Soltis PS. Using and navigating the plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:287-290. [PMID: 29702724 DOI: 10.1002/ajb2.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
| |
Collapse
|