1
|
Galland LM, Faske TM, Osuna-Mascaró C, Bisbing SM, Parchman TL. Geography and Environment Shape Spatial Genetic Variation and Predict Climate Maladaptation Across Isolated and Disjunct Populations of Pinus muricata. Mol Ecol 2025:e17638. [PMID: 39911095 DOI: 10.1111/mec.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Assessing the evolutionary potential of rare species with limited migration amidst ongoing climate change requires an understanding of patterns of genetic variation and local adaptation. In contrast to the large distributions and population sizes of most pines, Pinus muricata (bishop pine) occurs in a few isolated populations along coastal western North America and is listed as threatened by the IUCN. To quantify how current genetic variation is influenced by distribution and environment, we generated reduced representation DNA sequencing data for most extant populations of P. muricata (12 locations, 7828 loci). We assessed geographic variation in differentiation and diversity and used genetic-environment association (GEA) analyses to characterise the contribution of environmental variables to local adaptation and genetic structure. Based on these inferences, we quantified genomic offset as a relative estimate of potential maladaptation under mild (SSP1-2.6) and severe (SSP5-8.5) climate change scenarios across 2041-2060 and 2081-2100. Despite occurring in small, isolated populations, genetic diversity was not low in P. muricata. Population differentiation was, however, defined across a hierarchy of spatial scales, with stands generally forming genetically identifiable groups across latitude and environments. GEA analyses implicated temperature- and soil-related variables as most strongly contributing to local adaptation. Estimates of maladaptation to future climate varied non-linearly with latitude, increased with severity of projections and over time, and were predicted by increases in annual temperature. Our results suggest that isolation and local adaptation have shaped genetic variation among disjunct populations and that these factors may shape maladaptation risk under projected climate change.
Collapse
Affiliation(s)
- Lanie M Galland
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Trevor M Faske
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Carolina Osuna-Mascaró
- Department of Biology, University of Nevada, Reno, Nevada, USA
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Gdansk, Poland
| | - Sarah M Bisbing
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Natural Resources and Environmental Science, University of Nevada, Nevada, USA
| | - Thomas L Parchman
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
2
|
Wojahn JMA, Callmander MW, Buerki S. Pandanus plastomes decoded: When climate mirrors morphology and phylogenetic relationships. AMERICAN JOURNAL OF BOTANY 2025; 112:e16461. [PMID: 39887358 DOI: 10.1002/ajb2.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Pandanus Parkinson (Pandanaceae) is a large genus of paleotropical tree-like monocots. Previous studies using small DNA regions questioned the monophyly of the seven Pandanus subgenera, but low phylogenetic branch support hindered further investigations. We aimed to (1) test Pandanus subgeneric monophyly, (2) identify clade morphological synapomorphies, (3) investigate correlations between leaf anatomy of water storage tissue and climatic differentiation across clades, and (4) construct hypotheses on the genus' spatiotemporal history. METHODS We sequenced 50 Pandanus species using genome skimming and reconstructed plastomes with MITObim. We inferred partitioned RAxML phylogenetic trees to test subgeneric monophyly using Shimodaira-Hasegawa tests. We inferred a partitioned dated BEAST phylogenetic tree used for ancestral state reconstructions of morphological traits. Phylogenetic clades were used to compare climatic (Bioclim) and soil (UNESCO Digital Soil Map) conditions using random forests. We correlated present morphology and climatic niche with past climate events. RESULTS Our phylogenetic analyses revealed two clades and four subclades. Only subgenus Coronata was monophyletic. Staminate synapomorphies were identified for three subclades. Hypertrophied and hyperplasic water-storage tissue was a synapomorphy for clade II, correlating with more seasonal temperature and precipitation regimes and more well-draining soil. Clades differentiated during the advent of the Southeast Asian monsoon in the early Miocene, whereas subclades differentiated during the Miocene Thermal Maximum. CONCLUSIONS Pandanus subgeneric classification needs to be revised. Hypertrophied hyperplasic water-storage tissue is a key trait in Pandanus evolution, possibly explaining climatic and biogeographic patterns because it is key to maintaining photosynthesis during periods of hydric stress.
Collapse
Affiliation(s)
- John M A Wojahn
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| | - Martin W Callmander
- Conservatoire et Jardin botaniques de Genève, CP 71, 1292, Chambésy, Switzerland
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| |
Collapse
|
3
|
Zhu H, Lei W, Lai Q, Sun Y, Ru D. Comparative analysis shows high level of lineage sorting in genomic regions with low recombination in the extended Picea likiangensis species complex. PLANT DIVERSITY 2024; 46:547-550. [PMID: 39280968 PMCID: PMC11390601 DOI: 10.1016/j.pld.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 09/18/2024]
Abstract
•Phylogenomic analysis uncovers widespread discordance in the extended Picea likiangensis complex.•Introgression (54.99%) and incomplete lineage sorting (ILS; 33.12%) are key drivers of this incongruity.•Recombination rates shape ILS and introgression, with high rates correlating with elevated levels.•Genes linked to abiotic stress responses exhibit significant introgression and ILS, suggesting adaptive evolution.•Lower recombination rates improve accuracy in species relationships.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
5
|
Kazilas C, Dufresnes C, France J, Kalaentzis K, Martínez-Solano I, de Visser MC, Arntzen JW, Wielstra B. Spatial genetic structure in European marbled newts revealed with target enrichment by sequence capture. Mol Phylogenet Evol 2024; 194:108043. [PMID: 38382821 DOI: 10.1016/j.ympev.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.
Collapse
Affiliation(s)
- Christos Kazilas
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.
| | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - James France
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Konstantinos Kalaentzis
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manon C de Visser
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Cruz-Nicolás J, Jaramillo-Correa JP, Gernandt DS. Stochastic processes and changes in evolutionary rate are associated with diversification in a lineage of tropical hard pines (Pinus). Mol Phylogenet Evol 2024; 192:108011. [PMID: 38195010 DOI: 10.1016/j.ympev.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The study of the patterns of polymorphism and molecular evolution among closely related species is key to understanding the evolutionary forces involved in the diversification of lineages. This point is a big challenge in species with slow evolutionary rates, long life cycles, and ancient, shared polymorphisms such as conifers. Under the premise of divergence in a stepwise migration process, we expect clinal geographical patterns of purifying selection efficiency, and genetic structure related to latitude or longitude. If migration is accompanied by changes in the environment, we could further expect a role of positive selection in driving species divergence. Here, we infer patterns of polymorphism, efficiency of purifying selection, and molecular evolution using a dataset of 161 nuclear genes (∼71 Kb) in a lineage of hard pines from North America, the Caribbean, Mexico, and Central America presumed to have migrated from North America toward lower latitudes with tropical conditions. Under the premise of differences in selective pressures, we also look for possible signals of positive selection. To test our hypothesis, first we estimated different indices to infer patterns of polymorphism and efficiency of purifying selection (Ka, Ks, Ka/Ks, dN, dS, dN/dS, and dxy) and compared these metrics across five clades. Also, we investigated possible clinal patterns in these indices and morphological traits (needle length and cone length). Then we inferred genetic structure and environmental differences among species to test for possible signals of positive selection using phylogenetic methods in specific clades. We found differences among clades using Ka, Ks, and Ka/Ks with a relaxation of purifying selection, especially in the Elliotti and Patula clades. We also found environmental differences related to geographic distance, and among clades suggesting differences in selective pressures. The indices Ks, dxy, and needle length had relationships with geography but not ovulate cone length. Finally, we found that most analyzed genes are under purifying selection, but there was an exception of faster evolutionary rate in some pine species, suggesting the possible action of positive selection in divergence. Our study indicated that stochastic processes have played a key role in the diversification of the group, with a possible input of positive selection in pines from Mexico and Central America.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| |
Collapse
|
7
|
Wang X, Zhao L, Yang XX, Liu ZL. Complete chloroplast genome sequence of Pinus tabuliformis var. henryi (Mast.) C.T.Kuan 1983 (Pinaceae). Mitochondrial DNA B Resour 2024; 9:83-87. [PMID: 38222979 PMCID: PMC10786436 DOI: 10.1080/23802359.2023.2301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Pinus tabuliformis var. henryi (Mast.) C.T.Kuan 1983 is an endemic and rare subtropical pine, mainly distributed in central China. In this study, we sequenced the complete chloroplast (cp) genome of P. tabuliformis var. henryi and reported it for the first time. The cp genome was 119,634 base pairs (bp) in total length, including two inverted repeats (IRs, 495 bp), separated by a large single-copy region (LSC, 65,600 bp) and a small single-copy region (SSC, 53,044 bp). There are 114 different genes in the cp genome of P. tabuliformis var. henryi, including 74 protein-coding genes, 36 transfer RNA genes, and four ribosomal RNA genes. The overall GC content of the cp genome was 38.5%. Our phylogenetic analysis of P. tabuliformis var. henryi demonstrated that it was closely related to P. tabuliformis and could be used to identify and analyze its genetic diversity, which was expected to provide new data for taxonomic and phylogenetic studies of Pinus.
Collapse
Affiliation(s)
- Xi Wang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Lin Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xing-Xue Yang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhan-Lin Liu
- College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
8
|
Baldwin E, McNair M, Leebens-Mack J. Rampant chloroplast capture in Sarracenia revealed by plastome phylogeny. FRONTIERS IN PLANT SCIENCE 2023; 14:1237749. [PMID: 37711293 PMCID: PMC10497973 DOI: 10.3389/fpls.2023.1237749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genus Sarracenia L. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis of Sarracenia estimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring in Sarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembled de-novo from sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history of Sarracenia.
Collapse
Affiliation(s)
- Ethan Baldwin
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mason McNair
- Department of Plant & Environmental Science, Clemson University, Florence, SC, United States
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Barrett CF, Santee MV, Fama NM, Freudenstein JV, Simon SJ, Sinn BT. Lineage and role in integrative taxonomy of a heterotrophic orchid complex. Mol Ecol 2022; 31:4762-4781. [PMID: 35837745 PMCID: PMC9452484 DOI: 10.1111/mec.16617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Lineage-based species definitions applying coalescent approaches to species delimitation have become increasingly popular. Yet, the application of these methods and the recognition of lineage-only definitions have recently been questioned. Species delimitation criteria that explicitly consider both lineages and evidence for ecological role shifts provide an opportunity to incorporate ecologically meaningful data from multiple sources in studies of species boundaries. Here, such criteria were applied to a problematic group of mycoheterotrophic orchids, the Corallorhiza striata complex, analysing genomic, morphological, phenological, reproductive-mode, niche, and fungal host data. A recently developed method for generating genomic polymorphism data-ISSRseq-demonstrates evidence for four distinct lineages, including a previously unidentified lineage in the Coast Ranges and Cascades of California and Oregon, USA. There is divergence in morphology, phenology, reproductive mode, and fungal associates among the four lineages. Integrative analyses, conducted in population assignment and redundancy analysis frameworks, provide evidence of distinct genomic lineages and a similar pattern of divergence in the extended data, albeit with weaker signal. However, none of the extended data sets fully satisfy the condition of a significant role shift, which requires evidence of fixed differences. The four lineages identified in the current study are recognized at the level of variety, short of comprising different species. This study represents the most comprehensive application of lineage + role to date and illustrates the advantages of such an approach.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Mathilda V. Santee
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Nicole M. Fama
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - John V. Freudenstein
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1315 Kinnear Rd., Columbus, Ohio, USA 43212
| | - Sandra J. Simon
- Department of Biology, West Virginia University Institute of Technology, Beckley, WV, USA
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, USA
- Department of Botany and Ecology, University of Latvia, Jelgavas iela 1, Riga, LV-1004, Latvia
| |
Collapse
|
10
|
Liu B, Chen Y, Zhu H, Liu G. Phylotranscriptomic and Evolutionary Analyses of the Green Algal Order Chaetophorales (Chlorophyceae, Chlorophyta). Genes (Basel) 2022; 13:genes13081389. [PMID: 36011300 PMCID: PMC9407426 DOI: 10.3390/genes13081389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the phylogenetic differences in the taxonomic framework of the Chaetophorales as determined by the use of nuclear molecular markers or chloroplast genes, the current study was the first to use phylotranscriptomic analyses comparing the transcriptomes of 12 Chaetophorales algal species. The results showed that a total of 240,133 gene families and 143 single-copy orthogroups were identified. Based on the single-copy orthogroups, supergene analysis and the coalescent-based approach were adopted to perform phylotranscriptomic analysis of the Chaetophorales. The phylogenetic relationships of most species were consistent with those of phylogenetic analyses based on the chloroplast genome data rather than nuclear molecular markers. The Schizomeriaceae and the Aphanochaetaceae clustered into a well-resolved basal clade in the Chaetophorales by either strategy. Evolutionary analyses of divergence time and substitution rate also revealed that the closest relationships existed between the Schizomeriaceae and Aphanochaetaceae. All species in the Chaetophorales exhibited a large number of expanded and contracted gene families, in particular the common ancestor of the Schizomeriaceae and Aphanochaetaceae. The only terrestrial alga, Fritschiella tuberosa, had the greatest number of expanded gene families, which were associated with increased fatty acid biosynthesis. Phylotranscriptomic and evolutionary analyses all robustly identified the unique taxonomic relationship of Chaetophorales consistent with chloroplast genome data, proving the advantages of high-throughput data in phylogeny.
Collapse
Affiliation(s)
- Benwen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yangliang Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: ; Tel.: +86-027-6878-0576
| |
Collapse
|
11
|
Hatami E, Jones KE, Kilian N. New Insights Into the Relationships Within Subtribe Scorzonerinae (Cichorieae, Asteraceae) Using Hybrid Capture Phylogenomics (Hyb-Seq). FRONTIERS IN PLANT SCIENCE 2022; 13:851716. [PMID: 35873957 PMCID: PMC9298463 DOI: 10.3389/fpls.2022.851716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Subtribe Scorzonerinae (Cichorieae, Asteraceae) contains 12 main lineages and approximately 300 species. Relationships within the subtribe, either at inter- or intrageneric levels, were largely unresolved in phylogenetic studies to date, due to the lack of phylogenetic signal provided by traditional Sanger sequencing markers. In this study, we employed a phylogenomics approach (Hyb-Seq) that targets 1,061 nuclear-conserved ortholog loci designed for Asteraceae and obtained chloroplast coding regions as a by-product of off-target reads. Our objectives were to evaluate the potential of the Hyb-Seq approach in resolving the phylogenetic relationships across the subtribe at deep and shallow nodes, investigate the relationships of major lineages at inter- and intrageneric levels, and examine the impact of the different datasets and approaches on the robustness of phylogenetic inferences. We analyzed three nuclear datasets: exon only, excluding all potentially paralogous loci; exon only, including loci that were only potentially paralogous in 1-3 samples; exon plus intron regions (supercontigs); and the plastome CDS region. Phylogenetic relationships were reconstructed using both multispecies coalescent and concatenation (Maximum Likelihood and Bayesian analyses) approaches. Overall, our phylogenetic reconstructions recovered the same monophyletic major lineages found in previous studies and were successful in fully resolving the backbone phylogeny of the subtribe, while the internal resolution of the lineages was comparatively poor. The backbone topologies were largely congruent among all inferences, but some incongruent relationships were recovered between nuclear and plastome datasets, which are discussed and assumed to represent cases of cytonuclear discordance. Considering the newly resolved phylogenies, a new infrageneric classification of Scorzonera in its revised circumscription is proposed.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Katy E. Jones
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Montes J, Peláez P, Moreno‐Letelier A, Gernandt DS. Coalescent-based species delimitation in North American pinyon pines using low-copy nuclear genes and plastomes. AMERICAN JOURNAL OF BOTANY 2022; 109:706-726. [PMID: 35526278 PMCID: PMC9321694 DOI: 10.1002/ajb2.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. METHODS We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. RESULTS Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. CONCLUSIONS We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.
Collapse
Affiliation(s)
- José‐Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México62210CuernavacaMorelosMexico
| | - Alejandra Moreno‐Letelier
- Jardín Botánico, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - David S. Gernandt
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| |
Collapse
|
13
|
Phylotranscriptomic and Evolutionary Analyses of Oedogoniales (Chlorophyceae, Chlorophyta). DIVERSITY 2022. [DOI: 10.3390/d14030157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study determined the transcriptomes of eight Oedogoniales species, including six species from Oedogonium and two species from Oedocladium to conduct phylotranscriptomic and evolutionary analyses. 155,952 gene families and 192 single-copy orthogroups were detected. Phylotranscriptomic analyses based on single-copy orthogroups were conducted using supermatrix and coalescent-based approaches. The phylotranscriptomic analysis results revealed that Oedogonium is polyphyletic, and Oedocladium clustered with Oedogonium. Together with the transcriptomes of the OCC clade in the public database, the phylogenetic relationship of the three orders (Oedogoniales, Chaetophorales, Chaetopeltidales) is discussed. The non-synonymous (dN) to synonymous substitution (dS) ratios of single-copy orthogroups of the terrestrial Oedogoniales species using a branch model of phylogenetic analysis by maximum likelihood were estimated, which showed that 92 single-copy orthogroups were putative rapidly evolving genes. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses results revealed that some of the rapidly evolving genes were associated with photosynthesis, implying that terrestrial Oedogoniales species experienced rapid evolution to adapt to terrestrial habitats. The phylogenetic results combined with evolutionary analyses suggest that the terrestrialization process of Oedogoniales may have occured more than once.
Collapse
|
14
|
de Lima Ferreira P, Batista R, Andermann T, Groppo M, Bacon CD, Antonelli A. Target sequence capture of Barnadesioideae (Compositae) demonstrates the utility of low coverage loci in phylogenomic analyses. Mol Phylogenet Evol 2022; 169:107432. [DOI: 10.1016/j.ympev.2022.107432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
|
15
|
Escobari B, Borsch T, Quedensley TS, Gruenstaeudl M. Plastid phylogenomics of the Gynoxoid group (Senecioneae, Asteraceae) highlights the importance of motif-based sequence alignment amid low genetic distances. AMERICAN JOURNAL OF BOTANY 2021; 108:2235-2256. [PMID: 34636417 DOI: 10.1002/ajb2.1775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The genus Gynoxys and relatives form a species-rich lineage of Andean shrubs and trees with low genetic distances within the sunflower subtribe Tussilaginineae. Previous molecular phylogenetic investigations of the Tussilaginineae have included few, if any, representatives of this Gynoxoid group or reconstructed ambiguous patterns of relationships for it. METHODS We sequenced complete plastid genomes of 21 species of the Gynoxoid group and related Tussilaginineae and conducted detailed comparisons of the phylogenetic relationships supported by the gene, intron, and intergenic spacer partitions of these genomes. We also evaluated the impact of manual, motif-based adjustments of automatic DNA sequence alignments on phylogenetic tree inference. RESULTS Our results indicate that the inclusion of all plastid genome partitions is needed to infer well-supported phylogenetic trees of the Gynoxoid group. Whole plastome-based tree inference suggests that the genera Gynoxys and Nordenstamia are polyphyletic and form the core clade of the Gynoxoid group. This clade is sister to a clade of Aequatorium and Paragynoxys and also includes some but not all representatives of Paracalia. CONCLUSIONS The concatenation and combined analysis of all plastid genome partitions and the construction of manually-curated, motif-based DNA sequence alignments are found to be instrumental in the recovery of well-supported relationships of the Gynoxoid group. We demonstrate that the correct assessment of homology in genome-level plastid sequence data sets is crucial for subsequent phylogeny reconstruction and that the manual post-processing of multiple sequence alignments improves the reliability of such reconstructions amid low genetic distances between taxa.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| | - Taylor S Quedensley
- Department of Biology, Texas Christian University, Fort Worth, TX, 76109, USA
| | - Michael Gruenstaeudl
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
16
|
Garrick RC, Arantes ÍC, Stubbs MB, Havill NP. Weak spatial-genetic structure in a native invasive, the southern pine beetle ( Dendroctonus frontalis), across the eastern United States. PeerJ 2021; 9:e11947. [PMID: 34557344 PMCID: PMC8418799 DOI: 10.7717/peerj.11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of D. frontalis individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for D. frontalis, in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Ísis C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Megan B Stubbs
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, United States of America
| |
Collapse
|
17
|
Thomas AE, Igea J, Meudt HM, Albach DC, Lee WG, Tanentzap AJ. Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. AMERICAN JOURNAL OF BOTANY 2021; 108:1289-1306. [PMID: 34173225 DOI: 10.1002/ajb2.1678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
PREMISE Recent, rapid radiations present a challenge for phylogenetic reconstruction. Fast successive speciation events typically lead to low sequence divergence and poorly resolved relationships with standard phylogenetic markers. Target sequence capture of many independent nuclear loci has the potential to improve phylogenetic resolution for rapid radiations. METHODS Here we applied target sequence capture with 353 protein-coding genes (Angiosperms353 bait kit) to Veronica sect. Hebe (common name hebe) to determine its utility for improving the phylogenetic resolution of rapid radiations. Veronica section Hebe originated 5-10 million years ago in New Zealand, forming a monophyletic radiation of ca 130 extant species. RESULTS We obtained approximately 150 kbp of 353 protein-coding exons and an additional 200 kbp of flanking noncoding sequences for each of 77 hebe and two outgroup species. When comparing coding, noncoding, and combined data sets, we found that the latter provided the best overall phylogenetic resolution. While some deep nodes in the radiation remained unresolved, our phylogeny provided broad and often improved support for subclades identified by both morphology and standard markers in previous studies. Gene-tree discordance was nonetheless widespread, indicating that additional methods are needed to disentangle fully the history of the radiation. CONCLUSIONS Phylogenomic target capture data sets both increase phylogenetic signal and deliver new insights into the complex evolutionary history of rapid radiations as compared with traditional markers. Improving methods to resolve remaining discordance among loci from target sequence capture is now important to facilitate the further study of rapid radiations.
Collapse
Affiliation(s)
- Anne E Thomas
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Javier Igea
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Dirk C Albach
- Carl von Ossietzky-University, Oldenburg, D-26111, Germany
| | - William G Lee
- Manaaki Whenua - Landcare Research Otago, Dunedin, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Chumová Z, Záveská E, Hloušková P, Ponert J, Schmidt PA, Čertner M, Mandáková T, Trávníček P. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:511-524. [PMID: 33960537 DOI: 10.1111/tpj.15306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 05/21/2023]
Abstract
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Eliška Záveská
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| | | | - Jan Ponert
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, CZ-17100, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, CZ-12844, Czech Republic
| | - Philipp-André Schmidt
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Martin Čertner
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| |
Collapse
|
19
|
Ottenlips MV, Mansfield DH, Buerki S, Feist MAE, Downie SR, Dodsworth S, Forest F, Plunkett GM, Smith JF. Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex. AMERICAN JOURNAL OF BOTANY 2021; 108:1217-1233. [PMID: 34105148 PMCID: PMC8362113 DOI: 10.1002/ajb2.1676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/26/2021] [Indexed: 05/29/2023]
Abstract
PREMISE Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. METHODS The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. RESULTS The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. CONCLUSIONS The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.
Collapse
Affiliation(s)
| | | | - Sven Buerki
- Department of Biological SciencesBoise State UniversityBoiseID83725USA
| | | | - Stephen R. Downie
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Steven Dodsworth
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUK
- School of Life SciencesUniversity of BedfordshireLutonLU1 3JUUK
| | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUK
| | - Gregory M. Plunkett
- Cullman Program for Molecular SystematicsNew York Botanical Garden2900 Southern BoulevardBronxNY10458USA
| | - James F. Smith
- Department of Biological SciencesBoise State UniversityBoiseID83725USA
| |
Collapse
|
20
|
Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci U S A 2021; 118:2022302118. [PMID: 33941644 PMCID: PMC8157994 DOI: 10.1073/pnas.2022302118] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.
Collapse
|
21
|
Cruz-Nicolás J, Villarruel-Arroyo A, Gernandt DS, Fonseca RM, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP. Non-adaptive evolutionary processes governed the diversification of a temperate conifer lineage after its migration into the tropics. Mol Phylogenet Evol 2021; 160:107125. [PMID: 33636326 DOI: 10.1016/j.ympev.2021.107125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Constructing phylogenetic relationships among closely related species is a recurrent challenge in evolutionary biology, particularly for long-lived taxa with large effective population sizes and uncomplete reproductive isolation, like conifers. Conifers further have slow evolutionary rates, which raises the question of whether adaptive or non/adaptive processes were predominantly involved when they rapidly diversified after migrating from temperate regions into the tropical mountains. Indeed, fine-scale phylogenetic relationships within several conifer genus remain under debate. Here, we studied the phylogenetic relationships of endemic firs (Abies, Pinaceae) discontinuously distributed in the montane forests from the Southwestern United States to Guatemala, and addressed several hypotheses related to adaptive and non-adaptive radiations. We derived over 80 K SNPs from genotyping by sequencing (GBS) for 45 individuals of nine Mesoamerican species to perform phylogenetic analyses. Both Maximum Likelihood and quartets-inference phylogenies resulted in a well-resolved topology, showing a single fir lineage divided in four subgroups that coincided with the main mountain ranges of Mesoamerica; thus having important taxonomic implications. Such subdivision fitted a North-South isolation by distance framework, in which non-adaptive allopatric processes seemed the rule. Interestingly, several reticulations were observed within subgroups, especially in the central-south region, which may explain past difficulties for generating infrageneric phylogenies. Further evidence for non-adaptive processes was obtained from analyses of 21 candidate-gene regions, which exhibited diminishing values of πa/πs and Ka/Ks with latitude, thus indicating reduced efficiency of purifying selection towards the Equator. Our study indicates that non-adaptive allopatric processes may be key generators of species diversity and endemism in the tropics.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Alfredo Villarruel-Arroyo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, AP 70-233, Mexico City CDMX 04510, Mexico
| | - Rosa María Fonseca
- Laboratorio de Plantas Vasculares, Facultad de Ciencias, Universidad Nacional Autónoma de México, AP 70-282, Mexico City CDMX 04510, Mexico
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico
| | - Juan P Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico City CDMX 04510, Mexico.
| |
Collapse
|
22
|
Breinholt JW, Carey SB, Tiley GP, Davis EC, Endara L, McDaniel SF, Neves LG, Sessa EB, von Konrat M, Chantanaorrapint S, Fawcett S, Ickert‐Bond SM, Labiak PH, Larraín J, Lehnert M, Lewis LR, Nagalingum NS, Patel N, Rensing SA, Testo W, Vasco A, Villarreal JC, Williams EW, Burleigh JG. A target enrichment probe set for resolving the flagellate land plant tree of life. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11406. [PMID: 33552748 PMCID: PMC7845764 DOI: 10.1002/aps3.11406] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
PREMISE New sequencing technologies facilitate the generation of large-scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms. METHODS We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single-copy or low-copy nuclear genes across flagellate plant lineages. RESULTS Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics. CONCLUSIONS A target enrichment approach using the new probe set provides a relatively low-cost solution to obtain large-scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.
Collapse
Affiliation(s)
- Jesse W. Breinholt
- RAPiD GenomicsGainesvilleFloridaUSA
- Intermountain HealthcareIntermountain Precision GenomicsSaint GeorgeUtahUSA
| | - Sarah B. Carey
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - George P. Tiley
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Lorena Endara
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | | | | | - Emily B. Sessa
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Matt von Konrat
- Department of Research and EducationThe Field MuseumChicagoIllinoisUSA
| | | | - Susan Fawcett
- Pringle HerbariumDepartment of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| | - Stefanie M. Ickert‐Bond
- Department of Wildlife and Biology and UA Museum of the NorthUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Paulo H. Labiak
- Departamento de BotânicaUniversidade Federal do ParanáCuritibaParanáBrazil
| | - Juan Larraín
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Marcus Lehnert
- Department of Geobotany and Botanical GardenHerbarium, Martin Luther University Halle‐WittenbergHalleGermany
| | - Lily R. Lewis
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | | | - Nikisha Patel
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Weston Testo
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | | | | | | | | |
Collapse
|
23
|
Breinholt JW, Carey SB, Tiley GP, Davis EC, Endara L, McDaniel SF, Neves LG, Sessa EB, von Konrat M, Chantanaorrapint S, Fawcett S, Ickert-Bond SM, Labiak PH, Larraín J, Lehnert M, Lewis LR, Nagalingum NS, Patel N, Rensing SA, Testo W, Vasco A, Villarreal JC, Williams EW, Burleigh JG. A target enrichment probe set for resolving the flagellate land plant tree of life. APPLICATIONS IN PLANT SCIENCES 2021. [PMID: 33552748 DOI: 10.1101/2020.05.29.124081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE New sequencing technologies facilitate the generation of large-scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms. METHODS We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single-copy or low-copy nuclear genes across flagellate plant lineages. RESULTS Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics. CONCLUSIONS A target enrichment approach using the new probe set provides a relatively low-cost solution to obtain large-scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.
Collapse
Affiliation(s)
- Jesse W Breinholt
- RAPiD Genomics Gainesville Florida USA
- Intermountain Healthcare Intermountain Precision Genomics Saint George Utah USA
| | - Sarah B Carey
- Department of Biology University of Florida Gainesville Florida USA
| | - George P Tiley
- Department of Biology University of Florida Gainesville Florida USA
- Department of Biology Duke University Durham North Carolina USA
| | | | - Lorena Endara
- Department of Biology University of Florida Gainesville Florida USA
| | | | | | - Emily B Sessa
- Department of Biology University of Florida Gainesville Florida USA
| | - Matt von Konrat
- Department of Research and Education The Field Museum Chicago Illinois USA
| | | | - Susan Fawcett
- Pringle Herbarium Department of Plant Biology University of Vermont Burlington Vermont USA
| | - Stefanie M Ickert-Bond
- Department of Wildlife and Biology and UA Museum of the North University of Alaska Fairbanks Fairbanks Alaska USA
| | - Paulo H Labiak
- Departamento de Botânica Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Juan Larraín
- Instituto de Biología Pontificia Universidad Católica de Valparaíso Valparaíso Chile
| | - Marcus Lehnert
- Department of Geobotany and Botanical Garden Herbarium, Martin Luther University Halle-Wittenberg Halle Germany
| | - Lily R Lewis
- Department of Biology University of Florida Gainesville Florida USA
| | | | - Nikisha Patel
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | | | - Weston Testo
- Department of Biology University of Florida Gainesville Florida USA
| | | | | | | | | |
Collapse
|
24
|
Feng YY, Shen TT, Shao CC, Du H, Ran JH, Wang XQ. Phylotranscriptomics reveals the complex evolutionary and biogeographic history of the genus Tsuga with an East Asian-North American disjunct distribution. Mol Phylogenet Evol 2020; 157:107066. [PMID: 33387645 DOI: 10.1016/j.ympev.2020.107066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
The disjunct distribution between East Asia and North America is one of the best established biogeographic patterns. A robust phylogeny is fundamental for understanding the biogeographic histories of taxa with this distribution pattern. Tsuga (hemlock) is a genus of Pinaceae with a typical intercontinental disjunct distribution in East Asia and eastern and western North America, and its phylogeny has not been completely reconstructed in previous studies. In this study, we reconstructed a highly resolved phylogeny of Tsuga using 881 nuclear genes, 60 chloroplast genes and 23 mitochondrial genes and explored its biogeographic and reticulate evolutionary history. The results of phylogenetic analysis, molecular dating and ancestral area reconstruction indicate that Tsuga very likely originated from North America in the late Oligocene and dispersed from America to East Asia via the Bering Land Bridge during the middle Miocene. In particular, we found complex reticulate evolutionary pattern among the East Asian hemlock species. T. sieboldii possibly originated from hybridization with the ancestor of T. chinensis from mainland China and T. forrestii as the paternal donor and the ancestor of T. diversifolia and T. ulleungensis as the maternal donor. T. chinensis (Taiwan) could have originated by hybridization together with T. sieboldii and then evolved independently after dispersal to the Taiwan Island, subsequently experiencing mitochondrial DNA introgression with T. chinensis from mainland China. Moreover, our study found that T. chinensis from western China is more closely related to T. forrestii than to T. chinensis from eastern China. The nonmonophyletic T. chinensis needs taxonomic reconsideration.
Collapse
Affiliation(s)
- Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Cheng-Cheng Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Uckele KA, Adams RP, Schwarzbach AE, Parchman TL. Genome-wide RAD sequencing resolves the evolutionary history of serrate leaf Juniperus and reveals discordance with chloroplast phylogeny. Mol Phylogenet Evol 2020; 156:107022. [PMID: 33242585 DOI: 10.1016/j.ympev.2020.107022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Juniper (Juniperus) is an ecologically important conifer genus of the Northern Hemisphere, the members of which are often foundational tree species of arid regions. The serrate leaf margin clade is native to topologically variable regions in North America, where hybridization has likely played a prominent role in their diversification. Here we use a reduced-representation sequencing approach (ddRADseq) to generate a phylogenomic data set for 68 accessions representing all 22 species in the serrate leaf margin clade, as well as a number of close and distant relatives, to improve understanding of diversification in this group. Phylogenetic analyses using three methods (SVDquartets, maximum likelihood, and Bayesian) yielded highly congruent and well-resolved topologies. These phylogenies provided improved resolution relative to past analyses based on Sanger sequencing of nuclear and chloroplast DNA, and were largely consistent with taxonomic expectations based on geography and morphology. Calibration of a Bayesian phylogeny with fossil evidence produced divergence time estimates for the clade consistent with a late Oligocene origin in North America, followed by a period of elevated diversification between 12 and 5 Mya. Comparison of the ddRADseq phylogenies with a phylogeny based on Sanger-sequenced chloroplast DNA revealed five instances of pronounced discordance, illustrating the potential for chloroplast introgression, chloroplast transfer, or incomplete lineage sorting to influence organellar phylogeny. Our results improve understanding of the pattern and tempo of diversification in Juniperus, and highlight the utility of reduced-representation sequencing for resolving phylogenetic relationships in non-model organisms with reticulation and recent divergence.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| | - Robert P Adams
- Baylor University, Utah Lab, 201 N 5500 W, Hurricane, UT 84790, USA.
| | - Andrea E Schwarzbach
- Department of Health and Biomedical Sciences, University of Texas - Rio Grande Valley, 1 W University Drive, Brownsville, TX 78520, USA.
| | - Thomas L Parchman
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
26
|
Peláez P, Ortiz-Martínez A, Figueroa-Corona L, Montes JR, Gernandt DS. Population structure, diversifying selection, and local adaptation in Pinus patula. AMERICAN JOURNAL OF BOTANY 2020; 107:1555-1566. [PMID: 33205396 DOI: 10.1002/ajb2.1566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Climate change is predicted to affect natural and plantation forests. The responses of conifers to overcome changing environments will depend on their adaptation to local conditions; however, intraspecific adaptive genetic variation is unknown for most gymnosperms. Studying genetic diversity associated with phenotypic variability along environmental gradients will enhance our understanding of adaptation and may reveal genetic pools important for conservation and management. METHODS We used target enrichment and genome skimming to obtain single nucleotide polymorphisms (SNPs) from 61 individuals of Pinus patula, a pine tree native to Mexico widely used in plantation forestry. We investigated the adaptive genetic variation of two varieties with morphological and distributional differences potentially related to genetic and adaptive divergence. RESULTS Population structure and haplotype network analyses revealed that genetic diversity between P. patula var. patula and P. patula var. longipedunculata was structured, even within populations of P. patula var. longipedunculata. We observed high genetic diversity, low inbreeding rate, and rapid linkage disequilibrium (LD) decay in the varieties. Based on outlier tests, loci showing signatures of natural selection were detected in geographically distant P. patula var. longipedunculata populations. For both varieties, we found significant correlations between climate-related environmental variation and SNP diversity at loci involved in abiotic stress, cell transport, defense, and cell wall biogenesis, pointing to local adaptation. CONCLUSIONS Overall, significant intraspecific adaptive genetic variation in P. patula was detected, highlighting the presence of different genetic pools and signs of local adaptation that should be considered in forestry and conservation.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Alfredo Ortiz-Martínez
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Laura Figueroa-Corona
- Posgrado en Ciencias Biológicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - José Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
27
|
Ma ZY, Nie ZL, Ren C, Liu XQ, Zimmer EA, Wen J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol Phylogenet Evol 2020; 154:106948. [PMID: 32866616 DOI: 10.1016/j.ympev.2020.106948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
The grape family consists of 16 genera and ca. 950 species. It is best known for the economically important fruit crop - the grape Vitis vinifera. The deep phylogenetic relationships and character evolution of the grape family have attracted the attention of researchers in recent years. We herein reconstruct the phylogenomic relationships within Vitaceae using nuclear and plastid genes based on the Hyb-Seq approach and test the newly proposed classification system of the family. The five tribes of the grape family, including Ampelopsideae, Cayratieae, Cisseae, Parthenocisseae, and Viteae, are each robustly supported by both nuclear and chloroplast genomic data and the backbone relationships are congruent with previous reports. The cupular floral disc (raised above and free from ovary at the upper part) is an ancestral state of Vitaceae, with the inconspicuous floral disc as derived in the tribe Parthenocisseae, and the state of adnate to the ovary as derived in the tribe Viteae. The 5-merous floral pattern was inferred to be the ancestral in Vitaceae, with the 4-merous flowers evolved at least two times in the family. The compound dichasial cyme (cymose with two secondary axes) is ancestral in Vitaceae and the thyrse inflorescence (a combination of racemose and cymose branching) in tribe Viteae is derived. The ribbon-like trichome only evolved once in Vitaceae, as a synapomorphy for the tribe Viteae.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| |
Collapse
|
28
|
Rose JP, Toledo CAP, Lemmon EM, Lemmon AR, Sytsma KJ. Out of Sight, Out of Mind: Widespread Nuclear and Plastid-Nuclear Discordance in the Flowering Plant Genus Polemonium (Polemoniaceae) Suggests Widespread Historical Gene Flow Despite Limited Nuclear Signal. Syst Biol 2020; 70:162-180. [PMID: 32617587 DOI: 10.1093/sysbio/syaa049] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Cassio A P Toledo
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biolgia, Universidade Estadual de Campinas-UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP. CEP: 13083-862, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Hale H, Gardner EM, Viruel J, Pokorny L, Johnson MG. Strategies for reducing per-sample costs in target capture sequencing for phylogenomics and population genomics in plants. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11337. [PMID: 32351798 PMCID: PMC7186906 DOI: 10.1002/aps3.11337] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 05/19/2023]
Abstract
The reduced cost of high-throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequencing projects is the per-sample cost, which can be inflated when using off-the-shelf kits or reagents not purchased in bulk. Here, we discuss methods to reduce per-sample costs in high-throughput targeted sequencing projects. We review the minimal equipment and consumable requirements for targeted sequencing while comparing several alternatives to reduce bulk costs in DNA extraction, library preparation, target enrichment, and sequencing. We consider how each of the workflow alterations may be affected by DNA quality (e.g., fresh vs. herbarium tissue), genome size, and the phylogenetic scale of the project. We provide a cost calculator for researchers considering targeted sequencing to use when designing projects, and identify challenges for future development of low-cost sequencing in non-model plant systems.
Collapse
Affiliation(s)
- Haley Hale
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| | - Elliot M. Gardner
- The Morton ArboretumLisleIllinois60532USA
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106USA
- Singapore Botanic GardensNational Parks Board1 Cluny Road259569Singapore
| | - Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Lisa Pokorny
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
- Present address:
Centre for Plant Biotechnology and Genomics (CBGP) UPM‐INIA28223Pozuelo de Alarcón (Madrid)Spain
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| |
Collapse
|
30
|
Wehenkel C, Mariscal-Lucero SDR, González-Elizondo MS, Aguirre-Galindo VA, Fladung M, López-Sánchez CA. Tall Pinus luzmariae trees with genes from P. herrerae. PeerJ 2020; 8:e8648. [PMID: 32149029 PMCID: PMC7049253 DOI: 10.7717/peerj.8648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
CONTEXT Pinus herrerae and P. luzmariae are endemic to western Mexico, where they cover an area of more than 1 million hectares. Pinus herrerae is also cultivated in field trials in South Africa and South America, because of its considerable economic importance as a source of timber and resin. Seed quality, afforestation success and desirable traits may all be influenced by the presence of hybrid trees in seed stands. AIMS We aimed to determine the degree of hybridization between P. herrerae and P. luzmariae in seed stands of each species located in the Sierra Madre Occidental, Durango, Mexico. METHODS AFLP molecular markers from samples of 171 trees across five populations were analyzed with STRUCTURE and NewHybrids software to determine the degree of introgressive hybridization. The accuracy of STRUCTURE and NewHybrids in detecting hybrids was quantified using the software Hybridlab 1.0. Morphological analysis of 131 samples from two populations of P. herrerae and two populations of P. luzmariae was also conducted by Random Forest classification. The data were compared by Principal Coordinate Analysis (PCoA) in GenAlex 6.501. RESULTS Hybridization between Pinus herrerae and P. luzmariae was observed in all seed stands under study and resulted in enhancement of desirable silvicultural traits in the latter species. In P. luzmariae, only about 16% molecularly detected hybrids correspond to those identified on a morphological basis. However, the morphology of P. herrerae is not consistent with the molecularly identified hybrids from one population and is only consistent with 3.3 of those from the other population. CONCLUSIONS This is the first report of hybrid vigour (heterosis) in Mexican pines. Information about hybridization and introgression is essential for developing effective future breeding programs, successful establishment of plantations and management of natural forest stands. Understanding how natural hybridization may influence the evolution and adaptation of pines to climate change is a cornerstone to sustainable forest management including adaptive silviculture.
Collapse
Affiliation(s)
- Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Samantha del Rocío Mariscal-Lucero
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Instituto Tecnológico del Valle del Guadiana, Tecnológico Nacional de México, Durango, Mexico
| | | | - Víctor A. Aguirre-Galindo
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Carlos A. López-Sánchez
- Department of Organisms and Systems Biology, University of Oviedo, Polytechnic School of Mieres, Asturias, Spain
| |
Collapse
|
31
|
Bagley JC, Uribe-Convers S, Carlsen MM, Muchhala N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol Phylogenet Evol 2020; 152:106769. [PMID: 32081762 DOI: 10.1016/j.ympev.2020.106769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Targeted sequence capture is a promising approach for large-scale phylogenomics. However, rapid evolutionary radiations pose significant challenges for phylogenetic inference (e.g. incomplete lineages sorting (ILS), phylogenetic noise), and the ability of targeted nuclear loci to resolve species trees despite such issues remains poorly studied. We test the utility of targeted sequence capture for inferring phylogenetic relationships in rapid, recent angiosperm radiations, focusing on Burmeistera bellflowers (Campanulaceae), which diversified into ~130 species over less than 3 million years. We compared phylogenies estimated from supercontig (exons plus flanking sequences), exon-only, and flanking-only datasets with 506-546 loci (~4.7 million bases) for 46 Burmeistera species/lineages and 10 outgroup taxa. Nuclear loci resolved backbone nodes and many congruent internal relationships with high support in concatenation and coalescent-based species tree analyses, and inferences were largely robust to effects of missing taxa and base composition biases. Nevertheless, species trees were incongruent between datasets, and gene trees exhibited remarkably high levels of conflict (~4-60% congruence, ~40-99% conflict) not simply driven by poor gene tree resolution. Higher gene tree heterogeneity at shorter branches suggests an important role of ILS, as expected for rapid radiations. Phylogenetic informativeness analyses also suggest this incongruence has resulted from low resolving power at short internal branches, consistent with ILS, and homoplasy at deeper nodes, with exons exhibiting much greater risk of incorrect topologies due to homoplasy than other datasets. Our findings suggest that targeted sequence capture is feasible for resolving rapid, recent angiosperm radiations, and that results based on supercontig alignments containing nuclear exons and flanking sequences have higher phylogenetic utility and accuracy than either alone. We use our results to make practical recommendations for future target capture-based studies of Burmeistera and other rapid angiosperm radiations, including that such studies should analyze supercontigs to maximize the phylogenetic information content of loci.
Collapse
Affiliation(s)
- Justin C Bagley
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Mónica M Carlsen
- Research Department, Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO 63110, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
32
|
Granados-Aguilar X, Granados Mendoza C, Cervantes CR, Montes JR, Arias S. Unraveling Reticulate Evolution in Opuntia (Cactaceae) From Southern Mexico. FRONTIERS IN PLANT SCIENCE 2020; 11:606809. [PMID: 33519858 PMCID: PMC7838128 DOI: 10.3389/fpls.2020.606809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
The process of hybridization occurs in approximately 40% of vascular plants, and this exchange of genetic material between non-conspecific individuals occurs unequally among plant lineages, being more frequent in certain groups such as Opuntia (Cactaceae). This genus is known for multiple taxonomic controversies due to widespread polyploidy and probable hybrid origin of several of its species. Southern Mexico species of this genus have been poorly studied despite their great diversity in regions such as the Tehuacán-Cuicatlán Valley which contains around 12% of recognized Mexico's native Opuntia species. In this work, we focus on testing the hybrid status of two putative hybrids from this region, Opuntia tehuacana and Opuntia pilifera, and estimate if hybridization occurs among sampled southern opuntias using two newly identified nuclear intron markers to construct phylogenetic networks with HyDe and Dsuite and perform invariant analysis under the coalescent model with HyDe and Dsuite. For the test of hybrid origin in O. tehuacana, our results could not recover hybridization as proposed in the literature, but we found introgression into O. tehuacana individuals involving O. decumbens and O. huajuapensis. Regarding O. pilifera, we identified O. decumbens as probable parental species, supported by our analysis, which sustains the previous hybridization hypothesis between Nopalea and Basilares clades. Finally, we suggest new hybridization and introgression cases among southern Mexican species involving O. tehuantepecana and O. depressa as parental species of O. velutina and O. decumbens.
Collapse
Affiliation(s)
- Xochitl Granados-Aguilar
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Xochitl Granados-Aguilar,
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristian Rafael Cervantes
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Salvador Arias,
| |
Collapse
|
33
|
Boutte J, Fishbein M, Liston A, Straub SCK. NGS-Indel Coder: A pipeline to code indel characters in phylogenomic data with an example of its application in milkweeds (Asclepias). Mol Phylogenet Evol 2019; 139:106534. [PMID: 31212081 DOI: 10.1016/j.ympev.2019.106534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Targeted genome sequencing approaches allow characterization of evolutionary relationships using a considerable number of nuclear genes and informative characters. However, most phylogenomic analyses only utilize single nucleotide polymorphisms (SNPs). Studies at the species level, especially in groups that have recently radiated, often recover low amounts of phylogenetically informative variation in coding regions, and require non-coding sequences, which are richer in indels, to resolve gene trees. Here, NGS-Indel Coder, a pipeline to detect and omit false positive indels inferred from assemblies of short read sequence data, was developed to resolve the relationships among and within major clades of the American milkweeds (Asclepias), which are the result of a rapid and recent evolutionary radiation, and whose phylogeny has been difficult to resolve. This pipeline was applied to a Hyb-Seq data set of 768 loci including targeted exons and flanking intron regions from 33 milkweed species. Robust species tree inference was improved by excluding small alignment partitions (<100 bp) that increased gene tree ambiguity and incongruence. To further investigate the robustness of indel coding, data sets that included small and large indels were explored, and species trees derived from concatenated loci versus coalescent methods based on gene trees were compared. The phylogeny of Asclepias obtained using nuclear data was well resolved, and phylogenetic information from indels improved resolution of specific nodes. The Temperate North American, Mexican Highland, and Incarnatae clades were well supported as monophyletic. Asclepias coulteri, which has been considered part of the Sonoran Desert clade based on plastome analyses, was placed as sister to all the other milkweed species studied here, rather than as a member of that clade. Two groups within the Temperate North American and Mexican clades were not resolved, and the inferred relationships strongly conflicted when comparing results based on data sets that did or did not include indel characters. This new pipeline represents a step forward in making maximal use of the information content in phylogenomic data sets.
Collapse
Affiliation(s)
- Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA.
| |
Collapse
|
34
|
Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). THE NEW PHYTOLOGIST 2019; 221:515-526. [PMID: 30136727 DOI: 10.1111/nph.15386] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Cytonuclear discordance is commonly observed in phylogenetic studies, yet few studies have tested whether these patterns reflect incomplete lineage sorting or organellar introgression. Here, we used whole-chloroplast sequence data in combination with over 1000 nuclear single-nucleotide polymorphisms to clarify the extent of cytonuclear discordance in wild annual sunflowers (Helianthus), and to test alternative explanations for such discordance. Our phylogenetic analyses indicate that cytonuclear discordance is widespread within this group, both in terms of the relationships among species and among individuals within species. Simulations of chloroplast evolution show that incomplete lineage sorting cannot explain these patterns in most cases. Instead, most of the observed discordance is better explained by cytoplasmic introgression. Molecular tests of evolution further indicate that selection may have played a role in driving patterns of plastid variation - although additional experimental work is needed to fully evaluate the importance of selection on organellar variants in different parts of the geographic range. Overall, this study represents one of the most comprehensive tests of the drivers of cytonuclear discordance and highlights the potential for gene flow to lead to extensive organellar introgression in hybridizing taxa.
Collapse
Affiliation(s)
- Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Harvard University Herbaria, Cambridge, MA, 02138, USA
| | - Simon Joly
- Institut Recherche en Biologie Végétale, QC, H1X 2B2, Canada
- Jardin botanique de Montréal, Department Sciences Biologiques, Université de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Rose L Andrew
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
35
|
Gernandt DS, Reséndiz Arias C, Terrazas T, Aguirre Dugua X, Willyard A. Incorporating fossils into the Pinaceae tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:1329-1344. [PMID: 30091785 DOI: 10.1002/ajb2.1139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/12/2018] [Indexed: 05/27/2023]
Abstract
PREMISE OF THE STUDY Pinaceae have a rich but enigmatic early fossil record, much of which is represented by permineralized seed cones. Our incomplete knowledge of morphology and anatomy in living and extinct species poses an important barrier to understanding their phylogenetic relationships and timing of diversification. METHODS We expanded a morphology matrix to 46 fossil and 31 extant Pinaceae species, mainly adding characters from stem and leaf anatomy and seed cones. Using parsimony and Bayesian inference, we compared phylogenetic relationships for extant taxa with and without fossils from the morphology matrix combined with an alignment of plastid gene sequences. KEY RESULTS Combined analysis of morphological and molecular characters resulted in a phylogeny of extant Pinaceae that was robust at all nodes except those relating to the interrelationships of Pinus, Picea, and Cathaya and the position of Cedrus. Simultaneous analysis of all fossil and extant species did not result in changes in the relationships among the extant species but did greatly reduce branch support. We found that the placement of most fossils was sensitive to the method of phylogenetic reconstruction when analyzing them singly with the extant species. CONCLUSIONS A robust phylogenetic hypothesis for the main lineages of Pinaceae is emerging. Most Early Cretaceous fossils are stem or crown lineages of Pinus, but close relationships also were found between fossils and several other extant genera. The phylogenetic position of fossils broadly supports the existence of extant genera in the Lower Cretaceous.
Collapse
Affiliation(s)
- David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Cecelic Reséndiz Arias
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Xitlali Aguirre Dugua
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Ann Willyard
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| |
Collapse
|
36
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|