1
|
Mattioli F, Friðriksdóttir R, Hebert A, Bassani S, Ibrahim N, Naz S, Chrast J, Pailler-Pradeau C, Oddsson Á, Sulem P, Halldorsson GH, Melsted P, Guðbjartsson DF, Palombo F, Pippucci T, Nouri N, Seri M, Farrow EG, Saunders CJ, Guex N, Ansar M, Stefansson K, Reymond A. Bi-allelic variants in BRF2 are associated with perinatal death and craniofacial anomalies. Genome Med 2025; 17:38. [PMID: 40229899 PMCID: PMC11995667 DOI: 10.1186/s13073-025-01463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Variants in genes encoding multiple subunits of the RNA Polymerase III complex which synthesizes rRNAs, tRNAs, and other small RNAs were previously associated with neurological disorders, such as syndromic hypomyelination leukodystrophies, pontocerebellar hypoplasia, and cerebellofaciodental syndrome. One new such candidate is BRF2, which encodes a TFIIB-like factor that recruits the RNA polymerase III complex to type 3 promoters to initiate transcription of U6, RnaseP, and 7SK RNAs. METHODS We combined sequencing with functional analyses to investigate the effects of BRF2 variants. RESULTS We observe that a previously reported significant underrepresentation of double transmission of a splice variant results in recessive lethality in three large Icelandic families with multiple perinatal losses. Using data aggregation, we identified an additional seven individuals worldwide from three unrelated families carrying biallelic variants in BRF2. Affected individuals present a variable phenotype ranging from severe craniofacial anomalies with early death to intellectual disability with motor and speech development. In silico 3D modelling and functional analyses showed functional impairment of the identified variants, e.g., differences in target loci occupancy. Zebrafish knocked down for the orthologous brf2 presented with abnormal escape response, reduced swimming velocity and head size, and craniofacial malformations. These defects were complemented by the human wild-type but not mutated BRF2 mRNA further demonstrating their deleteriousness. CONCLUSIONS Overall, our results support the association of biallelic BRF2 variants with a novel neurodevelopmental disease and provide an additional link between RNA polymerase III, its targets and craniofacial anomalies.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | - Anne Hebert
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Clara Pailler-Pradeau
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Páll Melsted
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche, Programma Di Neurogenetica, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Nayereh Nouri
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Carol J Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland.
- Health2030 Genome Center, Foundation Campus Biotech Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Khan A, Al Shamsi B, Al Shehhi M, Kashgari AA, Al Balushi A, Al Dihan FA, Alghamdi MA, Manal A, González‐Álvarez AC, Arold ST, Eyaid W. Further delineation of Wiedemann-Rautenstrauch syndrome linked with POLR3A. Mol Genet Genomic Med 2024; 12:e2274. [PMID: 38348603 PMCID: PMC10958179 DOI: 10.1002/mgg3.2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 03/23/2024] Open
Abstract
Wiedemann-Rautenstrauch Syndrome (WRS; MIM 264090) is an extremely rare and highly heterogeneous syndrome that is inherited in a recessive fashion. The patients have hallmark features such as prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, facial dysmorphology, hypomyelination leukodystrophy, and mental impairment. Biallelic disease-causing variants in the RNA polymerase III subunit A (POLR3A) have been associated with WRS. Here, we report the first identified cases of WRS syndrome with novel phenotypes in three consanguineous families (two Omani and one Saudi) characterized by biallelic variants in POLR3A. Using whole-exome sequencing, we identified one novel homozygous missense variant (NM_007055: c.2456C>T; p. Pro819Leu) in two Omani families and one novel homozygous variant (c.1895G>T; p Cys632Phe) in Saudi family that segregates with the disease in the POLR3A gene. In silico homology modeling of wild-type and mutated proteins revealed a substantial change in the structure and stability of both proteins, demonstrating a possible effect on function. By identifying the homozygous variants in the exon 14 and 18 of the POLR3A gene, our findings will contribute to a better understanding of the phenotype-genotype relationship and molecular etiology of WRS syndrome.
Collapse
Affiliation(s)
- Amjad Khan
- Faculty of Science, Department of Biological Sciences (Zoology)University of Lakki MarwatLakki MarwatPakistan
- Institute for Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Alexander von Humboldt Fellowship FoundationBerlinGermany
| | - Bushra Al Shamsi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
- Child Health DepartmentThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Maryam Al Shehhi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Amna A. Kashgari
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Aaisha Al Balushi
- National Genetics CenterThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
- Child Health DepartmentThe Royal Hospital, Ministry of HealthMuscatSultanate of Oman
| | - Fahad A. Al Dihan
- College of MedicineKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Mohannad A. Alghamdi
- College of MedicineKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Abothnain Manal
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Ana C. González‐Álvarez
- Bioscience Program, Bioengineering Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Computational Biology Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Bioengineering Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Computational Biology Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierFrance
| | - Wafaa Eyaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre (KAIMRC)King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard‐Health Affairs (MNGHA)RiyadhSaudi Arabia
- King Abdullah Specialized Children's Hospital (KASCH)Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| |
Collapse
|
3
|
Iwata-Otsubo A, Skraban CM, Yoshimura A, Sakata T, Alves CAP, Fiordaliso SK, Kuroda Y, Vengoechea J, Grochowsky A, Ernste P, Lulis L, Nesbitt A, Tayoun AA, Gray C, Towne MC, Radtke K, Normand EA, Rhodes L, Seiler C, Shirahige K, Izumi K. Biallelic variants in GTF3C5, a regulator of RNA polymerase III-mediated transcription, cause a multisystem developmental disorder. Hum Genet 2024; 143:437-453. [PMID: 38520561 DOI: 10.1007/s00439-024-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Cara M Skraban
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atsunori Yoshimura
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah K Fiordaliso
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yukiko Kuroda
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jaime Vengoechea
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Angela Grochowsky
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paige Ernste
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Invitae, San Francisco, CA, 94103, USA
| | - Lauren Lulis
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Addie Nesbitt
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Veritas Genetics, Danvers, MA, 01923, USA
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, UAE
| | - Christopher Gray
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | | | | - Christoph Seiler
- Zebrafish Core, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kosuke Izumi
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8573, USA.
| |
Collapse
|
4
|
Кунгурцева АЛ, Попович АВ, Тихонович ЮВ, Витебская АВ. [Wiedemann-Rautenstrauch syndrome. The first description of a clinical case in the Russian Federation]. PROBLEMY ENDOKRINOLOGII 2023; 70:86-93. [PMID: 38796765 PMCID: PMC11145571 DOI: 10.14341/probl13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 05/28/2024]
Abstract
Wiedemann-Rautenstrauch syndrome (neonatal progeroid syndrome) is an ultra-orphan disease from the group of premature aging syndromes with an autosomal recessive type of inheritance associated with mutations in the POLR3A, POLR3B, and POLR3GL genes encoding RNA polymerase III. The incidence of the disease is currently unknown. We present the first clinical description in Russian Federation of a patient 7 years 6 months old with Wiedemann-Rautenstrauch syndrome (compound heterozygous mutations in POLR3A gene) with progeroid features, adentia, growth retardation (height SDS -3,41, height velocity SDS -2,47), underweight (BMI SDS -6,20), and generalized lipodystrophy. The article presents the observation of the patient for 1.5 years, the world experience of dynamic follow-up of patients with neonatal progeroid syndrome, differential diagnosis, as well as recommendations for the management of patients with this syndrome. Given the lack of specific treatment to date, patients are observed by a multidisciplinary team of physicians.
Collapse
Affiliation(s)
- А. Л. Кунгурцева
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
| | - А. В. Попович
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
| | - Ю. В. Тихонович
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
| | - А. В. Витебская
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
| |
Collapse
|
5
|
Siddiqi S, Ain NU, Kauser M, Mukhtar Z, Ansar M, Umair M. Variants in FREM1 and trisomy 18 identified in a neonatal progeria patient. Mol Biol Rep 2023; 50:7935-7939. [PMID: 37470964 DOI: 10.1007/s11033-023-08595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Neonatal progeroid disorders are rare disorders with clinical features including low body mass index, proptosis, aged and dysmorphic facial features at the time of birth, prominent veins, sparse scalp hairs, and severe growth retardation. Very few cases have been identified with an unknown genetic cause. Here, we report clinical and genetic findings of a proband with hallmark features of neonatal progeria. METHODS Microarray comparative genomic hybridization, whole exome sequencing (WES) and Sanger sequencing were performed using standard methods. RESULTS Array combined genome hybridization data revealed trisomy 18 in the proband (II-1), and WES data identified novel compound heterozygous variants (c.247 C > T; p.H83Y and c.14769868InsA) in the FREM1 gene. CONCLUSION We report a novel complex case of neonatal progeria with atrial septal defects, trisomy 18 without typical features of Edward syndrome. The phenotype of the patient was more consistent with neonatal progeria, thus we speculate it to be caused by the FREM1 variants.
Collapse
Affiliation(s)
- Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Noor Ul Ain
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Mehran Kauser
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
- Department of Animal Sciences/MLT, Faculty of life sciences, Karakoram International University (KIU), Gilgit, GB, Pakistan
| | - Zahra Mukhtar
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
- PMAS arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ansar
- Laboratory of Genetic medicine and Development, University of Geneva, Geneva, Switzerland
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Zea Vera A, Bruce A, Larsh TR, Jordan Z, Brüggemann N, Westenberger A, Espay AJ, Gilbert DL, Wu SW. Spectrum of Pediatric to Early Adulthood POLR3A-Associated Movement Disorders. Mov Disord Clin Pract 2023; 10:316-322. [PMID: 36825045 PMCID: PMC9941928 DOI: 10.1002/mdc3.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Background POLR3A pathogenic variants are associated with hypomyelination, hypodontia, hypogonadism, and movement disorders. Cases We describe the range of movement disorders seen in six patients (four female, two male) with POLR3A variants [three novel (c.2214del, c.3775G>A, c.3905G>T) and six previously reported (c.760C>T, c.1771-7C>G, c.1909+22G>A, c.2005C>T, c.2422C>T, c.3337-11T>C)]. Patient 1 presented with a neonatal progeroid syndrome and developed parkinsonism, dystonia, ataxia, and spasticity. Patient 2 presented with infant-onset rapidly progressive chorea, and dystonia. Three patients (patients 3, 5, 6) presented predominantly with ataxia in combination with spasticity and dystonia. Patient 4 developed segmental dystonia during adolescence and ataxia in early adulthood. Four patients had vertical gaze impairment. The most common brain MRI abnormality was T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain. Conclusion POLR3A-related disorders exhibit significant phenotypic pleomorphism. Vertical gaze dysfunction and T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain may be useful signs suggestive of this condition.
Collapse
Affiliation(s)
- Alonso Zea Vera
- Department of NeurologyChildren's National HospitalWashingtonDCUSA
- Department of NeurologyGeorge Washington University School of Medicine & Health SciencesWashingtonDCUSA
| | - Adrienne Bruce
- Department of PediatricsPrisma HealthGreenvilleSouth CarolinaUSA
- University of South Carolina School of Medicine GreenvilleGreenvilleSouth CarolinaUSA
| | - Travis R. Larsh
- Division of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Zachary Jordan
- Department of NeurologyUniversity of Cincinnati Gardner Neuroscience InstituteCincinnatiOhioUSA
| | - Norbert Brüggemann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
- Department of NeurologyUniversity of LübeckLübeckGermany
| | | | - Alberto J. Espay
- Department of NeurologyUniversity of Cincinnati Gardner Neuroscience InstituteCincinnatiOhioUSA
| | - Donald L. Gilbert
- Division of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Steve W. Wu
- Division of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
7
|
Araújo-Vilar D, Fernández-Pombo A, Cobelo-Gómez S, Castro AI, Sánchez-Iglesias S. Lipodystrophy-associated progeroid syndromes. Hormones (Athens) 2022; 21:555-571. [PMID: 35835948 DOI: 10.1007/s42000-022-00386-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
With the exception of HIV-associated lipodystrophy, lipodystrophy syndromes are rare conditions characterized by a lack of adipose tissue, which is not generally recovered. As a consequence, an ectopic deposition of lipids frequently occurs, which usually leads to insulin resistance, atherogenic dyslipidemia, and hepatic steatosis. These disorders include certain accelerated aging syndromes or progeroid syndromes. Even though each of them has unique clinical features, most show common clinical characteristics that affect growth, skin and appendages, adipose tissue, muscle, and bone and, in some of them, life expectancy is reduced. Although the molecular bases of these Mendelian disorders are very diverse and not well known, genomic instability is frequent as a consequence of impairment of nuclear organization, chromatin structure, and DNA repair, as well as epigenetic dysregulation and mitochondrial dysfunction. In this review, the main clinical features of the lipodystrophy-associated progeroid syndromes will be described along with their causes and pathogenic mechanisms, and an attempt will be made to identify which of López-Otín's hallmarks of aging are present.
Collapse
Affiliation(s)
- David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Busschers E, Ahmad N, Sun L, Iben JR, Walkey CJ, Rusin A, Yuen T, Rosen CJ, Willis IM, Zaidi M, Johnson DL. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass. eLife 2022; 11:74740. [PMID: 35611941 PMCID: PMC9212997 DOI: 10.7554/elife.74740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
MAF1, a key repressor of RNA polymerase (pol) III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in regulating osteoblast differentiation and bone mass. Global deletion of MAF1 (Maf1-/- mice) produced a high bone mass phenotype. However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the phenotype of mice overexpressing MAF1 in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from these mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to confounding effects from the global absence of MAF1. MAF1 overexpression promoted osteoblast differentiation of ST2 cells while MAF1 downregulation inhibited differentiation, indicating MAF1 enhances osteoblast formation. However, other perturbations used to repress RNA pol III transcription, inhibited osteoblast differentiation. However, decreasing RNA pol III transcription through these perturbations enhanced adipogenesis in ST2 cells. RNA-seq analyzed the basis for these opposing actions on osteoblast differentiation. The different modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination, differentiation, and bone mass regulation.
Collapse
Affiliation(s)
- Ellen Busschers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Naseer Ahmad
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - Li Sun
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - James R Iben
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Tony Yuen
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, United States
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Mone Zaidi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
9
|
Perrier S, Gauquelin L, Wambach JA, Bernard G. Distinguishing severe phenotypes associated with pathogenic variants in POLR3A. Am J Med Genet A 2022; 188:708-712. [PMID: 34773388 PMCID: PMC8758552 DOI: 10.1002/ajmg.a.62553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
A recent report by Majethia and Girisha described a patient with
biallelic pathogenic variants in POLR3A and
Wiedemann-Rautenstrauch syndrome. In this correspondence, we compare the
features of this patient to that of a cohort of patients with severe
POLR3-related leukodystrophy and a similar genotype and clinical course. We
comment on the phenotyping and classification of POLR3-related disorders.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill
University, Montréal, Québec, Canada.,Child Health and Human Development Program, Research
Institute of the McGill University Health Centre, Montréal, Québec,
Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics,
CHUL et Centre mère-enfant Soleil du CHU de Québec - Université
Laval, Québec City, Québec, Canada
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt
Department of Pediatrics, Washington University School of Medicine, Saint Louis
Children’s Hospital, Saint Louis, Missouri, USA
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill
University, Montréal, Québec, Canada.,Child Health and Human Development Program, Research
Institute of the McGill University Health Centre, Montréal, Québec,
Canada.,Department of Pediatrics and Department of Human Genetics,
McGill University, Montréal, Québec, Canada.,Department of Specialized Medicine, Division of Medical
Genetics, Montreal Children’s Hospital and McGill University Health Centre,
Montréal, Québec, Canada
| |
Collapse
|
10
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
11
|
Lessel D, Rading K, Campbell SE, Thiele H, Altmüller J, Gordon LB, Kubisch C. A novel homozygous synonymous variant further expands the phenotypic spectrum of POLR3A-related pathologies. Am J Med Genet A 2021; 188:216-223. [PMID: 34611991 DOI: 10.1002/ajmg.a.62525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Pathogenic biallelic variants in POL3RA have been associated with different disorders characterized by progressive neurological deterioration. These include the 4H leukodystrophy syndrome (hypomyelination, hypogonadotropic hypogonadism, and hypodontia) and adolescent-onset progressive spastic ataxia, as well as Wiedemann-Rautenstrauch syndrome (WRS), a recognizable neonatal progeroid syndrome. The phenotypic differences between these disorders are thought to occur mainly due to different functional effects of underlying POLR3A variants. Here we present the detailed clinical course of a 37-year-old woman in whom we identified a homozygous synonymous POLR3A variant c.3336G>A resulting in leaky splicing r.[3336ins192, =, 3243_3336del94]. She presented at birth with intrauterine growth retardation, lipodystrophy, muscular hypotonia, and several WRS-like facial features, albeit without sparse hair and prominent scalp veins. She had no signs of developmental delay or intellectual disability. Over the years, above characteristic facial features, she showed severe postnatal growth retardation, global lipodystrophy, joint contractures, thoracic hypoplasia, scoliosis, anodontia, spastic quadriplegia, bilateral hearing loss, aphonia, hypogonadotropic hypogonadism, and cerebellar peduncles hyperintensities in brain imaging. These manifestations partially overlap the clinical features of the previously reported POLR3A-associated disorders, mostly mimicking the WRS. Thus, our study expands the POLR3A-mediated phenotypic spectrum and suggests existence of a phenotypic continuum underlying biallelic POLR3A variants.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Rading
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan E Campbell
- Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island, USA
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,The Genomics unit, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leslie B Gordon
- Department of Pediatrics, Division of Genetics, Hasbro Children's Hospital, Providence, Rhode Island, USA.,Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Generalized lipoatrophy syndromes. Presse Med 2021; 50:104075. [PMID: 34562560 DOI: 10.1016/j.lpm.2021.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Generalized lipodystrophy (GL) syndromes are a group of rare heterogenous disorders, characterized by total subcutaneous fat loss. The frequency of GL is currently assessed as approximately 0,23 cases per million of the population, in Europe - as 0,96 cases per million of the population. They can be congenital (CGL) or acquired (AGL) depending on the etiology and the time of the onset of fat loss. Both CGL and AGL are often associated with different metabolic complications, such as hypertriglyceridemia, insulin resistance and lipoatrophic diabetes mellitus, metabolically associated FLD, arterial hypertension, proteinuria, reproductive system disorders. In this review we aimed to summarize the information on all forms of generalized lipodystrophy, especially the ones of genetic etiology, their clinical manifestations and complications, the perspectives for diagnostics, treatment and further research.
Collapse
|
13
|
Wu SW, Li L, Feng F, Wang L, Kong YY, Liu XW, Yin C. Whole-exome sequencing reveals POLR3B variants associated with progeria-related Wiedemann-Rautenstrauch syndrome. Ital J Pediatr 2021; 47:160. [PMID: 34289880 PMCID: PMC8296688 DOI: 10.1186/s13052-021-01112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wiedemann-Rautenstrauch syndrome (WRS) is a rare autosomal recessive neonatal progeroid disorder characterized by prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, and mental impairment. Case presentation A 6-year-old patient, who initially presented with multiple postnatal abnormalities, facial dysplasia, micrognathia, skull appearance, hallux valgus, and congenital dislocation of the hip, was recruited in this study. The patient was initially diagnosed with progeria. The mother of the patient had abnormal fetal development during her second pregnancy check-up, and the clinical phenotype of the fetus was similar to that of the patient. Whole-exome sequencing (WES) of the patient was performed, and POLR3B compound heterozygous variants—c.2191G > C:p.E731Q and c.3046G > A:p.V1016M—were identified in the patient. Using Sanger sequencing, we found that the phenotypes and genotypes were segregated within the pedigree. These two variants are novel and not found in the gnomAD and 1000 Genomes databases. The two mutation sites are highly conserved between humans and zebrafish. Conclusions Our study not only identified a novel WRS-associated gene, POLR3B, but also broadened the mutational and phenotypic spectra of POLR3B. Furthermore, WES may be useful for identifying rare disease-related genetic variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13052-021-01112-6.
Collapse
Affiliation(s)
- Shao-Wen Wu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China.,Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China
| | - Lin Li
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Fan Feng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Haidian, Beijing, 100084, China
| | - Li Wang
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Yuan-Yuan Kong
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Department of Newborn Screening, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Xiao-Wei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China. .,Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.
| | - Chenghong Yin
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China. .,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China.
| |
Collapse
|
14
|
Fellner A, Lossos A, Kogan E, Argov Z, Gonzaga-Jauregui C, Shuldiner AR, Darawshe M, Bazak L, Lidzbarsky G, Shomron N, Basel-Salmon L, Goldberg Y. Two intronic cis-acting variants in both alleles of the POLR3A gene cause progressive spastic ataxia with hypodontia. Clin Genet 2021; 99:713-718. [PMID: 33491183 DOI: 10.1111/cge.13929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
POLR3A encodes the largest subunit of the DNA-dependent RNA polymerase III. Pathogenic variants in this gene are associated with dysregulation of tRNA production and other non-coding RNAs. POLR3A-related disorders include variable phenotypes. The genotype-phenotype correlation is still unclear. Phenotypic analysis and exome sequencing were performed in four affected siblings diagnosed clinically with hereditary spastic ataxia, two healthy siblings and their unaffected mother. All four affected siblings (ages 46-55) had similar clinical features of early childhood-onset hypodontia and adolescent-onset progressive spastic ataxia. None had progeria, gonadal dysfunction or dysmorphism. All affected individuals had biallelic POLR3A pathogenic variants composed by two cis-acting intronic splicing-altering variants, c.1909 + 22G > A and c.3337-11 T > C. The two healthy siblings had wild-type alleles. The mother and another unaffected sibling were heterozygous for the allele containing both variants. This is the first report addressing the clinical consequence associated with homozygosity for a unique pathogenic intronic allele in the POLR3A gene. This allele was previously reported in compound heterozygous combinations in patients with Wiedemann-Rautenstrauch syndrome, a severe progeroid POLR3A-associated phenotype. We show that homozygosity for this allele is associated with spastic ataxia with hypodontia, and not with progeroid features. These findings contribute to the characterization of genotype-phenotype correlation in POLR3A-related disorders.
Collapse
Affiliation(s)
- Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Department of Neurology, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Alexander Lossos
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elena Kogan
- Department of Neurology, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Malak Darawshe
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lily Bazak
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Báez-Becerra CT, Valencia-Rincón E, Velásquez-Méndez K, Ramírez-Suárez NJ, Guevara C, Sandoval-Hernandez A, Arboleda-Bustos CE, Olivos-Cisneros L, Gutiérrez-Ospina G, Arboleda H, Arboleda G. Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mech Ageing Dev 2020; 192:111360. [PMID: 32976914 DOI: 10.1016/j.mad.2020.111360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.
Collapse
Affiliation(s)
- Cindy Tatiana Báez-Becerra
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Estefania Valencia-Rincón
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Karen Velásquez-Méndez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nelson J Ramírez-Suárez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia Guevara
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adrian Sandoval-Hernandez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonora Olivos-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Humberto Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
17
|
Pachajoa H, Claros-Hulbert A, García-Quintero X, Perafan L, Ramirez A, Zea-Vera AF. Hutchinson-Gilford Progeria Syndrome: Clinical and Molecular Characterization. Appl Clin Genet 2020; 13:159-164. [PMID: 32943904 PMCID: PMC7481268 DOI: 10.2147/tacg.s238715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare congenital disease caused by mutations in the LMNA gene. Children with HGPS are phenotypically characterized by lipodystrophy, short height, low body weight, scleroderma, reduced joint mobility, osteolysis, senile facial features, and cardiovascular compromise that usually lead to death. We aimed to describe the case of a patient who reached above-average age expectancy for children with HGPS in Latin America and describe the clinical and molecular characteristics of the patient. A 14-year-old female patient was presented with progeria-compatible phenotypic characteristics. HGPS was confirmed via LMNA gene sequencing that detected a heterozygous c.1824C>T (p.Gly608Gly) mutation. The primary aim is to describe the HGPS case, the molecular gene mutation finding, and make a short review of the limited available treatment options for children with HGPS. Such as the farnesyl transferase inhibitors in conjunction with other pharmacological therapies that have insinuated improvement in health, and survival rate.
Collapse
Affiliation(s)
- Harry Pachajoa
- Faculty of Health Sciences, Congenital Anomalies and Rare Diseases Investigation Center (CIACER), Universidad Icesi, Cali, Colombia.,Genetic Department, Fundacion Valle del Lili, Cali, Colombia
| | - Angelica Claros-Hulbert
- Pediatric Palliative Care Department, Fundacion Valle del Lili, Cali, Colombia.,Clinical Investigation Center (CIC), Fundacion Valle del Lili, Cali, Colombia
| | - Ximena García-Quintero
- Pediatric Palliative Care Department, Fundacion Valle del Lili, Cali, Colombia.,Clinical Investigation Center (CIC), Fundacion Valle del Lili, Cali, Colombia
| | - Lina Perafan
- Faculty of Health Sciences, Congenital Anomalies and Rare Diseases Investigation Center (CIACER), Universidad Icesi, Cali, Colombia
| | - Andres Ramirez
- Faculty of Health Sciences, Praxis Jessen² + Kollegen, Berlin, Germany
| | | |
Collapse
|
18
|
Hennekam RCM. Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. Eur J Med Genet 2020; 63:104028. [PMID: 32791128 DOI: 10.1016/j.ejmg.2020.104028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Aging is a physiological process that is in part genetically determined. Some of the signs and symptoms of aging also occur prematurely in Mendelian disorders. Such disorders are excellent sources of information of underlying mechanisms for these components of aging, and studying these may allow detection of pathways that have not yet considered in detail in physiological aging. Here I define the clinical characteristics that constitute aging and propose that at least 40% of aging signs and symptoms should be present before an entity should be tagged as progeroid. A literature search using these characteristics yields 17 entities that fulfill this definition: Hutchinson-Gilford progeria, mandibulo-acral dysplasia, Nestor-Guillermo progeria, Werner syndrome, Cockayne syndrome, cutis laxa progeroid, Penttinen progeroid syndrome, Mandibular underdevelopment, Deafness, Progeroid features, Lipodystrophy, Fontaine progeroid syndrome, SHORT syndrome, Wiedemann-Rautenstrauch syndrome, Mulvihill-Smith syndrome, dyskeratosis congenita, Marfan syndrome lipodystrophy type, Warburg-Cinotti syndrome, Lessel syndrome and Bloom syndrome. The presenting and main characteristics of these entities are indicated briefly. Their pathophysiology is not complete pathophysiology is reviewed but only the pathophysiology of the premature aging characteristics of this series of entities is compared to the known mechanisms ("Hallmarks") of physiological aging as summarized in the review paper by Lopez-Otin and colleagues. Although many causative genes have not been studied fully for all known aging mechanisms the comparison demonstrates that additional mechanisms must play a role to explain the aging characteristic in some of the progeroid entities of the progeroid entities, and possibly also in physiological aging.
Collapse
Affiliation(s)
- Raoul C M Hennekam
- Department of Paediatrics, Room H7-236, Amsterdam UMC - location AMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Garg A, El-Shanti H, Xing C, Zhou Z, Abujbara M, Al-Rashed K, El-Khateeb M, Ajlouni K, Agarwal AK. A Novel Syndrome With Short Stature, Mandibular Hypoplasia, and Osteoporosis May Be Associated With a PRRT3 Variant. J Endocr Soc 2020; 4:bvaa088. [PMID: 32803092 PMCID: PMC7417871 DOI: 10.1210/jendso/bvaa088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
CONTEXT Despite considerable progress in elucidating the molecular basis of various progeroid syndromes, some rare patients remain unexplained. OBJECTIVE To elucidate molecular genetic basis of a novel autosomal recessive progeroid syndrome. PARTICIPANTS A 24-year-old male and his 18-year-old sister with short stature, mandibular hypoplasia, pointed nose, shrill voice, severe osteoporosis, and short eyebrows and their unaffected siblings and parents belonging to a consanguineous Arab family. RESULTS Using exome and Sanger sequencing, we report a novel homozygous p.Glu394Lys disease-causing variant in proline-rich transmembrane protein 3 (PRRT3). PRRT3 belongs to the family of proline-rich proteins containing several repeats of a short proline-rich sequence, but its function remains to be determined. Preliminary observations showing colocalization of Prrt3 and synaptophysin support its role in vesicle exocytosis. Consistent with the highest messenger ribonucleic acid expression of PRRT3 in the pituitary, both the patients had mild growth hormone deficiency but had near normal reproductive development. CONCLUSIONS We conclude that the homozygous p.Glu394Lys variant in PRRT3 may be associated with a novel autosomal recessive, progeroid syndrome with short stature, mandibular hypoplasia, osteoporosis, short eyebrows, and mild growth hormone (GH) deficiency. Our findings extend the spectrum of progeroid syndromes and elucidate important functions of PRRT3 in human biology, including secretion of GH from the pituitary.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hatem El-Shanti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- The National Center for Diabetes, Endocrinology and Genetics, and School of Medicine, University of Jordan, Amman, Jordan
| | - Chao Xing
- McDermott Center for Human Growth and Development, Department of Population and Data Sciences, and Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Mousa Abujbara
- The National Center for Diabetes, Endocrinology and Genetics, and School of Medicine, University of Jordan, Amman, Jordan
| | - Khadeja Al-Rashed
- The National Center for Diabetes, Endocrinology and Genetics, and School of Medicine, University of Jordan, Amman, Jordan
| | - Mohammed El-Khateeb
- The National Center for Diabetes, Endocrinology and Genetics, and School of Medicine, University of Jordan, Amman, Jordan
| | - Kamel Ajlouni
- The National Center for Diabetes, Endocrinology and Genetics, and School of Medicine, University of Jordan, Amman, Jordan
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Lessel D, Kubisch C. Hereditary Syndromes with Signs of Premature Aging. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:489-496. [PMID: 31452499 DOI: 10.3238/arztebl.2019.0489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Segmental progeroid syndromes (SPS) are rare hereditary diseases in which the affected individuals show signs of premature aging in more than one organ or type of tissue. We review the clinical and genetic features of some of these syndromes and discuss the extent to which their study affords a complementary opportunity to study aging processes in general. METHODS This review is based on publications retrieved by a selective search in PubMed. RESULTS Segmental progeroid syndromes are a clinically and genetically heterogeneous group of hereditary diseases. They can be categorized, for example, by the age of onset of manifestations (congenital vs. infantile vs. juvenile/adult forms). They are diagnosed on clinical grounds supplemented by genetic testing on the basis of next-generation sequencing, which is of central importance in view of the marked heterogeneity and complexity of their overlapping clinical features. The elucidation of the genetic and molecular causes of these diseases can lead to causally directed treatment, as shown by the initial clinical trials in Hutchinson- Gilford progeria syndrome. The molecular features of SPS are identical in many ways to those of "physiological" aging. Thus, studying the molecular mechanisms of SPS may be helpful for the development of molecularly defined treatment approaches for age-associated diseases in general. CONCLUSION Segmental progeroid syndromes are a complex group of diseases with overlapping clinical features. Current research efforts focus on the elucidation of the molecular mechanisms of these diseases, most of which are very rare. This should enable the development of treatments that might be applicable to general processes of aging as well.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg
| | | |
Collapse
|
21
|
Temel SG, Ergoren MC, Manara E, Paolacci S, Tuncel G, Gul S, Bertelli M. Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann-Rautenstrauch syndrome. Eur J Hum Genet 2020; 28:1675-1680. [PMID: 32555393 DOI: 10.1038/s41431-020-0673-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 11/10/2022] Open
Abstract
Neonatal progeroid syndrome or Wiedemann-Rautenstrauch syndrome (WRS; MIM 264090) is a rare genetic disorder that has clinical symptoms including premature aging, lipodystrophy, and variable mental impairment. Until recently genetic background of the disease was unclear. However, recent studies have indicated that WRS patients have compound heterozygote variations in the POLR3A (RNA polymerase III subunit 3A; MIM 614258) gene that might be responsible for the disease phenotype. In this study we report a WRS patient that has compound heterozygote variations in the POLR3A gene. One of the reported variations in our patient, c.3568C>T, p.(Gln1190Ter), is a novel variation that was not reported before. The other variant, c.3337-11T>C, was previously shown in WRS patients in trans with other variations.
Collapse
Affiliation(s)
- Sehime Gulsun Temel
- Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey. .,Bursa Uludag University, Faculty of Medicine, Department of Histology and Embryology, Bursa, Turkey. .,Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey.
| | - Mahmut Cerkez Ergoren
- Near East University, Faculty of Medicine, Department of Medical Biology, 99138, Nicosia, Cyprus.,Near East University, DESAM Insitute, 99138, Nicosia, Cyprus
| | | | | | - Gulten Tuncel
- Near East University, Faculty of Medicine, Department of Medical Biology, 99138, Nicosia, Cyprus.,Near East University, DESAM Insitute, 99138, Nicosia, Cyprus
| | - Seref Gul
- Koc University, Faculty of Engineering, Department of Chemical and Biological Engineering, Istanbul, Turkey
| | | |
Collapse
|
22
|
Araújo-Vilar D, Fernández-Pombo A, Rodríguez-Carnero G, Martínez-Olmos MÁ, Cantón A, Villar-Taibo R, Hermida-Ameijeiras Á, Santamaría-Nieto A, Díaz-Ortega C, Martínez-Rey C, Antela A, Losada E, Muy-Pérez AE, González-Méndez B, Sánchez-Iglesias S. LipoDDx: a mobile application for identification of rare lipodystrophy syndromes. Orphanet J Rare Dis 2020; 15:81. [PMID: 32241282 PMCID: PMC7118879 DOI: 10.1186/s13023-020-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lipodystrophy syndromes are a group of disorders characterized by a loss of adipose tissue once other situations of nutritional deprivation or exacerbated catabolism have been ruled out. With the exception of the HIV-associated lipodystrophy, they have a very low prevalence, which together with their large phenotypic heterogeneity makes their identification difficult, even for endocrinologists and pediatricians. This leads to significant delays in diagnosis or even to misdiagnosis. Our group has developed an algorithm that identifies the more than 40 rare lipodystrophy subtypes described to date. This algorithm has been implemented in a free mobile application, LipoDDx®. Our aim was to establish the effectiveness of LipoDDx®. Forty clinical records of patients with a diagnosis of certainty of most lipodystrophy subtypes were analyzed, including subjects without lipodystrophy. The medical records, blinded for diagnosis, were evaluated by 13 physicians, 1 biochemist and 1 dentist. Each evaluator first gave his/her results based on his/her own criteria. Then, a second diagnosis was given using LipoDDx®. The results were analysed based on a score table according to the complexity of each case and the prevalence of the disease. RESULTS LipoDDx® provides a user-friendly environment, based on usually dichotomous questions or choice of clinical signs from drop-down menus. The final result provided by this app for a particular case can be a low/high probability of suffering a particular lipodystrophy subtype. Without using LipoDDx® the success rate was 17 ± 20%, while with LipoDDx® the success rate was 79 ± 20% (p < 0.01). CONCLUSIONS LipoDDx® is a free app that enables the identification of subtypes of rare lipodystrophies, which in this small cohort has around 80% effectiveness, which will be of help to doctors who are not experts in this field. However, it will be necessary to analyze more cases in order to obtain a more accurate efficiency value.
Collapse
Affiliation(s)
- David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, Avda. de Barcelona 3, 15706, Santiago de Compostela, Spain. .,Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain.
| | - Antía Fernández-Pombo
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, Avda. de Barcelona 3, 15706, Santiago de Compostela, Spain.,Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Miguel Ángel Martínez-Olmos
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Ana Cantón
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Rocío Villar-Taibo
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of Pediatrics, Complexo Hospitalario Universitario, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alicia Santamaría-Nieto
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Carmen Díaz-Ortega
- Endocrinology and Nutrition Division, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Carmen Martínez-Rey
- Internal Medicine Division, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Antonio Antela
- Infectious Diseases Unit, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Elena Losada
- Infectious Diseases Unit, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Andrés E Muy-Pérez
- Paediatrics Division. Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Blanca González-Méndez
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, Avda. de Barcelona 3, 15706, Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, Avda. de Barcelona 3, 15706, Santiago de Compostela, Spain
| |
Collapse
|
23
|
POLR3A variants with striatal involvement and extrapyramidal movement disorder. Neurogenetics 2020; 21:121-133. [PMID: 31940116 PMCID: PMC7064625 DOI: 10.1007/s10048-019-00602-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Biallelic variants in POLR3A cause 4H leukodystrophy, characterized by hypomyelination in combination with cerebellar and pyramidal signs and variable non-neurological manifestations. Basal ganglia are spared in 4H leukodystrophy, and dystonia is not prominent. Three patients with variants in POLR3A, an atypical presentation with dystonia, and MR involvement of putamen and caudate nucleus (striatum) and red nucleus have previously been reported. Genetic, clinical findings and 18 MRI scans from nine patients with homozygous or compound heterozygous POLR3A variants and predominant striatal changes were retrospectively reviewed in order to characterize the striatal variant of POLR3A-associated disease. Prominent extrapyramidal involvement was the predominant clinical sign in all patients. The three youngest children were severely affected with muscle hypotonia, impaired head control, and choreic movements. Presentation of the six older patients was milder. Two brothers diagnosed with juvenile parkinsonism were homozygous for the c.1771-6C > G variant in POLR3A; the other seven either carried c.1771-6C > G (n = 1) or c.1771-7C > G (n = 7) together with another variant (missense, synonymous, or intronic). Striatal T2-hyperintensity and atrophy together with involvement of the superior cerebellar peduncles were characteristic. Additional MRI findings were involvement of dentate nuclei, hila, or peridentate white matter (3, 6, and 4/9), inferior cerebellar peduncles (6/9), red nuclei (2/9), and abnormal myelination of pyramidal and visual tracts (6/9) but no frank hypomyelination. Clinical and MRI findings in patients with a striatal variant of POLR3A-related disease are distinct from 4H leukodystrophy and associated with one of two intronic variants, c.1771-6C > G or c.1771-7C > G, in combination with another POLR3A variant.
Collapse
|
24
|
Beauregard-Lacroix E, Salian S, Kim H, Ehresmann S, DʹAmours G, Gauthier J, Saillour V, Bernard G, Mitchell GA, Soucy JF, Michaud JL, Campeau PM. A variant of neonatal progeroid syndrome, or Wiedemann-Rautenstrauch syndrome, is associated with a nonsense variant in POLR3GL. Eur J Hum Genet 2019; 28:461-468. [PMID: 31695177 DOI: 10.1038/s41431-019-0539-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
Neonatal progeroid syndrome, also known as Wiedemann-Rautenstrauch syndrome, is a rare condition characterized by severe growth retardation, apparent macrocephaly with prominent scalp veins, and lipodystrophy. It is caused by biallelic variants in POLR3A, a gene encoding for a subunit of RNA polymerase III. All variants reported in the literature lead to at least a partial loss-of-function (when considering both alleles together). Here, we describe an individual with several clinical features of neonatal progeroid syndrome in whom exome sequencing revealed a homozygous nonsense variant in POLR3GL (NM_032305.2:c.358C>T; p.(Arg120Ter)). POLR3GL also encodes a subunit of RNA polymerase III and has recently been associated with endosteal hyperostosis and oligodontia in three patients with a phenotype distinct from the patient described here. Given the important role of POLR3GL in the same complex as the protein implicated in neonatal progeroid syndrome, the nature of the variant identified, our RNA studies suggesting nonsense-mediated decay, and the clinical overlap, we propose POLR3GL as a gene causing a variant of neonatal progeroid syndrome and therefore expand the phenotype associated with POLR3GL variants.
Collapse
Affiliation(s)
- Eliane Beauregard-Lacroix
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Smrithi Salian
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Hyunyun Kim
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Sophie Ehresmann
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Guylaine DʹAmours
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Julie Gauthier
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Medical Biological Unit, Molecular Diagnostic Laboratory, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,Integrated Centre for Pediatric Clinical Genomics, Génome Québec and Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Virginie Saillour
- Medical Biological Unit, Molecular Diagnostic Laboratory, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,Integrated Centre for Pediatric Clinical Genomics, Génome Québec and Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada.,Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Center, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Grant A Mitchell
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Integrated Centre for Pediatric Clinical Genomics, Génome Québec and Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Jean-François Soucy
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,Medical Biological Unit, Molecular Diagnostic Laboratory, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,Integrated Centre for Pediatric Clinical Genomics, Génome Québec and Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Jacques L Michaud
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada.,CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Integrated Centre for Pediatric Clinical Genomics, Génome Québec and Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Philippe M Campeau
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada. .,CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
25
|
Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: a step-by-step approach. J Endocrinol Invest 2019; 42:61-73. [PMID: 29704234 PMCID: PMC6304182 DOI: 10.1007/s40618-018-0887-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
AIM Lipodystrophy syndromes are rare heterogeneous disorders characterized by deficiency of adipose tissue, usually a decrease in leptin levels and, frequently, severe metabolic abnormalities including diabetes mellitus and dyslipidemia. PURPOSE To describe the clinical presentation of known types of lipodystrophy, and suggest specific steps to recognize, diagnose and treat lipodystrophy in the clinical setting. METHODS Based on literature and in our own experience, we propose a stepwise approach for diagnosis of the different subtypes of rare lipodystrophy syndromes, describing its more frequent co-morbidities and establishing the therapeutical approach. RESULTS Lipodystrophy is classified as genetic or acquired and by the distribution of fat loss, which can be generalized or partial. Genes associated with many congenital forms of lipodystrophy have been identified that may assist in diagnosis. Because of its rarity and heterogeneity, lipodystrophy may frequently be unrecognized or misdiagnosed, which is concerning because it is progressive and its complications are potentially life threatening. A basic diagnostic algorithm is proposed. Effective management of lipodystrophy includes lifestyle changes and aggressive, evidence-based treatment of comorbidities. Leptin replacement therapy (metreleptin) has been found to improve metabolic parameters in many patients with lipodystrophy. Metreleptin is approved in the United States as replacement therapy to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy and has been submitted for approval in Europe. CONCLUSIONS Here, we describe the clinical presentation of known types of lipodystrophy, present an algorithm for differential diagnosis of lipodystrophy, and suggest specific steps to recognize and diagnose lipodystrophy in the clinical setting.
Collapse
Affiliation(s)
- D Araújo-Vilar
- UETeM-Molecular Pathology Group, Institute of Biomedical Research (CIMUS), School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - F Santini
- Endocrinology Unit, Obesity Center, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Wambach JA, Wegner DJ, Patni N, Kircher M, Willing MC, Baldridge D, Xing C, Agarwal AK, Vergano SAS, Patel C, Grange DK, Kenney A, Najaf T, Nickerson DA, Bamshad MJ, Cole FS, Garg A. Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. Am J Hum Genet 2018; 103:968-975. [PMID: 30414627 PMCID: PMC6288318 DOI: 10.1016/j.ajhg.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.
Collapse
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Nivedita Patni
- Department of Pediatrics and Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marcia C Willing
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, Department of Bioinformatics and Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anil K Agarwal
- Division of Nutrition Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
| | - Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Amy Kenney
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Tasnim Najaf
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA; Fetal Care Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Abhimanyu Garg
- Division of Nutrition Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Lessel D, Ozel AB, Campbell SE, Saadi A, Arlt MF, McSweeney KM, Plaiasu V, Szakszon K, Szőllős A, Rusu C, Rojas AJ, Lopez-Valdez J, Thiele H, Nürnberg P, Nickerson DA, Bamshad MJ, Li JZ, Kubisch C, Glover TW, Gordon LB. Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations. Hum Genet 2018; 137:921-939. [PMID: 30450527 PMCID: PMC6652186 DOI: 10.1007/s00439-018-1957-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Juvenile segmental progeroid syndromes are rare, heterogeneous disorders characterized by signs of premature aging affecting more than one tissue or organ starting in childhood. Hutchinson-Gilford progeria syndrome (HGPS), caused by a recurrent de novo synonymous LMNA mutation resulting in aberrant splicing and generation of a mutant product called progerin, is a prototypical example of such disorders. Here, we performed a joint collaborative study using massively parallel sequencing and targeted Sanger sequencing, aimed at delineating the underlying genetic cause of 14 previously undiagnosed, clinically heterogeneous, non-LMNA-associated juvenile progeroid patients. The molecular diagnosis was achieved in 11 of 14 cases (~ 79%). Furthermore, we firmly establish biallelic mutations in POLR3A as the genetic cause of a recognizable, neonatal, Wiedemann-Rautenstrauch-like progeroid syndrome. Thus, we suggest that POLR3A mutations are causal for a portion of under-diagnosed early-onset segmental progeroid syndromes. We additionally expand the clinical spectrum associated with PYCR1 mutations by showing that they can somewhat resemble HGPS in the first year of life. Moreover, our results lead to clinical reclassification in one single case. Our data emphasize the complex genetic and clinical heterogeneity underlying progeroid disorders.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Campbell
- Center for Gerontology and Healthcare Research, Brown University, Providence, RI, USA
| | - Abdelkrim Saadi
- Service de neurologie, CHU Ben Aknoun Alger, 2 route des deux Bassins, BenAknoun,, Algers, Algeria
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Keisha Melodi McSweeney
- Oak Ridge Institute for Science and Education, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, 20993, Silver Spring, MD, USA
| | - Vasilica Plaiasu
- Regional Center of Medical Genetics, Alessandrescu-Rusescu INSMC, Bucharest, Romania
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anna Szőllős
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Cristina Rusu
- Department of Genetics, University Hospital Iasi, Iasi, Romania
| | - Armando J Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jaime Lopez-Valdez
- Department of Genetics, Centenario Hospital Miguel Hidalgo, Aguascalientes, Mexico
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Leslie B Gordon
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Division of Genetics, Hasbro Children's Hospital, Providence, RI, USA
| |
Collapse
|
28
|
Paolacci S, Li Y, Agolini E, Bellacchio E, Arboleda-Bustos CE, Carrero D, Bertola D, Al-Gazali L, Alders M, Altmüller J, Arboleda G, Beleggia F, Bruselles A, Ciolfi A, Gillessen-Kaesbach G, Krieg T, Mohammed S, Müller C, Novelli A, Ortega J, Sandoval A, Velasco G, Yigit G, Arboleda H, Lopez-Otin C, Wollnik B, Tartaglia M, Hennekam RC. Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. J Med Genet 2018; 55:837-846. [PMID: 30323018 DOI: 10.1136/jmedgenet-2018-105528] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Wiedemann-Rautenstrauch syndrome (WRS) is a form of segmental progeria presenting neonatally, characterised by growth retardation, sparse scalp hair, generalised lipodystrophy with characteristic local fatty tissue accumulations and unusual face. We aimed to understand its molecular cause. METHODS We performed exome sequencing in two families, targeted sequencing in 10 other families and performed in silico modelling studies and transcript processing analyses to explore the structural and functional consequences of the identified variants. RESULTS Biallelic POLR3A variants were identified in eight affected individuals and monoallelic variants of the same gene in four other individuals. In the latter, lack of genetic material precluded further analyses. Multiple variants were found to affect POLR3A transcript processing and were mostly located in deep intronic regions, making clinical suspicion fundamental to detection. While biallelic POLR3A variants have been previously reported in 4H syndrome and adolescent-onset progressive spastic ataxia, recurrent haplotypes specifically occurring in individuals with WRS were detected. All WRS-associated POLR3A amino acid changes were predicted to perturb substantially POLR3A structure/function. CONCLUSION Biallelic mutations in POLR3A, which encodes for the largest subunit of the DNA-dependent RNA polymerase III, underlie WRS. No isolated functional sites in POLR3A explain the phenotype variability in POLR3A-related disorders. We suggest that specific combinations of compound heterozygous variants must be present to cause the WRS phenotype. Our findings expand the molecular mechanisms contributing to progeroid disorders.
Collapse
Affiliation(s)
- Stefano Paolacci
- Department of Experimental Medicine, Sapienza "University of Rome", Rome, Italy
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Emanuele Agolini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Carlos E Arboleda-Bustos
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, and Centro de Investigación Biomédica en Red de Cáncer, Oviedo, Spain
| | - Debora Bertola
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, e Centro de Estudos sobre o Genoma Humano e Células-Tronco do Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil
| | - Lihadh Al-Gazali
- Department of Paediatric, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariel Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine Altmüller
- Cologne Centre for Genomics and Centre for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Gonzalo Arboleda
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Filippo Beleggia
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Alessandro Bruselles
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | - Thomas Krieg
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | | | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Jenny Ortega
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Adrian Sandoval
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Gloria Velasco
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, and Centro de Investigación Biomédica en Red de Cáncer, Oviedo, Spain
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Humberto Arboleda
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, and Centro de Investigación Biomédica en Red de Cáncer, Oviedo, Spain
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Raoul C Hennekam
- Department of Paediatrics, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|