1
|
Sehar U, Kopel J, Reddy PH. Alzheimer's disease and its related dementias in US Native Americans: A major public health concern. Ageing Res Rev 2023; 90:102027. [PMID: 37544432 PMCID: PMC10515314 DOI: 10.1016/j.arr.2023.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Alzheimer's disease (AD) and Alzheimer's related dementias (ADRD) are growing public health concerns in aged populations of all ethnic and racial groups. AD and ADRD are caused by multiple factors, such as genetic mutations, modifiable and non-modifiable risk factors, and lifestyle. Studies of postmortem brains have revealed multiple cellular changes implicated in AD and ADRD, including the accumulation of amyloid beta and phosphorylated tau, synaptic damage, inflammatory responses, hormonal imbalance, mitochondrial abnormalities, and neuronal loss. These changes occur in both early-onset familial and late-onset sporadic forms. Two-thirds of women and one-third of men are at life time risk for AD. A small proportion of total AD cases are caused by genetic mutations in amyloid precursor protein, presenilin 1, and presenilin 1 genes, and the APOE4 allele is a risk factor. Tremendous research on AD/ADRD, and other comorbidities such as diabetes, obesity, hypertension, and cancer has been done on almost all ethnic groups, however, very little biomedical research done on US Native Americans. AD/ADRD prevalence is high among all ethnic groups. In addition, US Native Americans have poorer access to healthcare and medical services and are less likely to receive a diagnosis once they begin to exhibit symptoms, which presents difficulties in treating Alzheimer's and other dementias. One in five US Native American people who are 45 years of age or older report having memory issues. Further, the impact of caregivers and other healthcare aspects on US Native Americans is not yet. In the current article, we discuss the history of Native Americans of United States (US) and health disparities, occurrence, and prevalence of AD/ADRD, and shedding light on the culturally sensitive caregiving practices in US Native Americans. This article is the first to discuss biomedical research and healthcare disparities in US Native Americans with a focus on AD and ADRD, we also discuss why US Native Americans are reluctant to participate in biomedical research.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Winstone JK, Pathak KV, Winslow W, Piras IS, White J, Sharma R, Huentelman MJ, Pirrotte P, Velazquez R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. J Neuroinflammation 2022; 19:193. [PMID: 35897073 PMCID: PMC9331154 DOI: 10.1186/s12974-022-02544-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. METHODS Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aβ40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. RESULTS Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aβ40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. CONCLUSIONS Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aβ, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.
Collapse
Affiliation(s)
- Joanna K Winstone
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ignazio S Piras
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jennifer White
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew J Huentelman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
5
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
6
|
Wu A, Wojtowicz K, Savary S, Hamon Y, Trombik T. Do ABC transporters regulate plasma membrane organization? Cell Mol Biol Lett 2020; 25:37. [PMID: 32647530 PMCID: PMC7336681 DOI: 10.1186/s11658-020-00224-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The plasma membrane (PM) spatiotemporal organization is one of the major factors controlling cell signaling and whole-cell homeostasis. The PM lipids, including cholesterol, determine the physicochemical properties of the membrane bilayer and thus play a crucial role in all membrane-dependent cellular processes. It is known that lipid content and distribution in the PM are not random, and their transversal and lateral organization is highly controlled. Mainly sphingolipid- and cholesterol-rich lipid nanodomains, historically referred to as rafts, are extremely dynamic “hot spots” of the PM controlling the function of many cell surface proteins and receptors. In the first part of this review, we will focus on the recent advances of PM investigation and the current PM concept. In the second part, we will discuss the importance of several classes of ABC transporters whose substrates are lipids for the PM organization and dynamics. Finally, we will briefly present the significance of lipid ABC transporters for immune responses.
Collapse
Affiliation(s)
- Ambroise Wu
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Stephane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, Dijon, France
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Tomasz Trombik
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
7
|
Jha NK, Kar R, Niranjan R. ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics. Curr Top Med Chem 2019; 19:795-811. [PMID: 30977450 DOI: 10.2174/1568026619666190412121811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a distinguishing feature of many age related disorders and other vector borne neuroinflammatory diseases. There are a number of factors that can modulate the pathology of these disorders. ATP-binding cassette (ABC) transporters are primarily involved in the maintenance of normal brain homeostasis by eliminating toxic peptides and compounds from the brain. Also, ABC transporters protect the brain from the unwanted effects of endogenous and exogenous toxins that can enter the brain parenchyma. Therefore, these transporters have the ability to determine the pathological outcomes of several neurological disorders. For instance, ABC transporters like P-glycoprotein (ABCB1), and BCRP (ABCG2) have been reported to facilitate the clearance of peptides such as amyloid-β (Aβ) that accumulate in the brain during Alzheimer's disease (AD) progression. Other members such as ABCA1, ABCA2, ABCC8, ABCC9, ABCG1 and ABCG4 also have been reported to be involved in the progression of various brain disorders such as HIV-associated dementia, Multiple sclerosis (MS), Ischemic stroke, Japanese encephalitis (JE) and Epilepsy. However, these defective transporters can be targeted by numerous botanical compounds such as Verapamil, Berberine and Fascalpsyn as a therapeutic target to treat these neurological outcomes. These compounds are already reported to modulate ABC transporter activity in the CNS. Nonetheless, the exact mechanisms involving the ABC transporters role in normal brain functioning, their role in neuronal dysfunction and how these botanical compounds ensure and facilitate their therapeutic action in association with defective transporters still remain elusive. This review therefore, summarizes the role of ABC transporters in neurological disorders, with a special emphasis on its role in AD brains. The prospect of using botanical/natural compounds as modulators of ABC transporters in neurological disorders is discussed in the latter half of the article.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry-605006, India
| |
Collapse
|
8
|
Treadmill exercise inhibits amyloid-β generation in the hippocampus of APP/PS1 transgenic mice by reducing cholesterol-mediated lipid raft formation. Neuroreport 2019; 30:498-503. [DOI: 10.1097/wnr.0000000000001230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Inflammation as a Possible Link Between Dyslipidemia and Alzheimer’s Disease. Neuroscience 2018; 376:127-141. [PMID: 29454102 DOI: 10.1016/j.neuroscience.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
|
10
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Hu W, Lin X, Zhang H, Zhao N. ATP Binding Cassette Subfamily A Member 2 (ABCA2) Expression and Methylation are Associated with Alzheimer's Disease. Med Sci Monit 2017; 23:5851-5861. [PMID: 29224028 PMCID: PMC5733562 DOI: 10.12659/msm.905524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background ABCA2 has been genetically linked to Alzheimer’s disease (AD) risk, but its mRNA expression and epigenetics in AD have not been investigated. Material/Method To explore the diagnosis value of ABCA2 mRNA expression in AD, 2 datasets GES15222 and GSE33000 containing expression profile of brain cortex tissues and 2 datasets GSE63063 (Cohort 1) and GSE63063 (Cohort 2) containing expression profile of blood were downloaded from the NCBI GEO database and analyzed by receiver operating characteristic curve (ROC) analyses and logistic regression. The ABCA2 co-expressed genes were also analyzed by GO annotation to investigate the potential molecular mechanisms. Results The analyses results suggested ABCA2 mRNA expression was upregulated significantly in AD compared with controls in all datasets. ROC analysis suggested that ABCA2 was associated with AD in all datasets, which were also proved by univariate and multivariate analyses. Next, the dataset GSE80970 containing methylation profiles of prefrontal cortex tissues from AD patients were downloaded and analyzed. Methylation of 2 of 36 CpG islands in ABCA2 gene with high diagnostic accuracy of AD from controls in ROC analyses were found to be negatively associated with AD risk in univariate analysis. One was still associated with AD risk after adjustment of confounding factors. Additional analyses indicated that ACBA2 mRNA expression could be used to diagnose mild cognitive impairment (MCI) and Huntington’s disease (HD) from controls and to distinguish HD from AD, but not AD from MCI. Furthermore, the genes involved in AD during ABCA2 alteration were analyzed by GO analysis. Conclusions ABCA2 mRNA expression and methylation is associated AD risk. ABCA2 may be used as a biomarker for AD diagnosis and may be a potential therapeutic target of AD.
Collapse
Affiliation(s)
- Wanhua Hu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China (mainland)
| | - Xiaodong Lin
- Department of Traditional Chinese Internal Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Huihe Zhang
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China (mainland)
| | - Na Zhao
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
12
|
Davis W, Tew KD. ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochem Pharmacol 2017; 151:188-200. [PMID: 29223352 DOI: 10.1016/j.bcp.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022]
Abstract
The ATP binding cassette transporter ABCA2 is primarily an endolysosomal membrane protein that demonstrates pleiotropic functionalities, coalescing around the maintenance of homeostasis of sterols, sphingolipids and cholesterol. It is most highly expressed in brain tissue and ABCA2 knockout mice express neurological defects consistent with aberrant myelination. Increased expression of the transporter has been linked with resistance to cancer drugs, particularly those possessing a steroid backbone and gene expression (in concert with other genes involved in cholesterol metabolism) was found to be regulated by sterols. Moreover, in macrophages ABCA2 is influenced by sterols and has a role in regulating cholesterol sequestration, potentially important in cardiovascular disease. Accumulating data indicate the critical importance of ABCA2 in mediating movement of sphingolipids within cellular compartments and these have been implicated in various aspects of cholesterol trafficking. Perhaps because the functions of ABCA2 are linked with membrane building blocks, there are reports linking it with human pathologies, including, cholesterolemias and cardiovascular disease, Alzheimer's and cancer. The present review addresses whether there is now sufficient information to consider ABCA2 as a plausible therapeutic target.
Collapse
Affiliation(s)
- Warren Davis
- Dept. of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB, MSC 509, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Dept. of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB, MSC 509, Charleston, SC 29425, United States.
| |
Collapse
|
13
|
McKenzie AT, Moyon S, Wang M, Katsyv I, Song WM, Zhou X, Dammer EB, Duong DM, Aaker J, Zhao Y, Beckmann N, Wang P, Zhu J, Lah JJ, Seyfried NT, Levey AI, Katsel P, Haroutunian V, Schadt EE, Popko B, Casaccia P, Zhang B. Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease. Mol Neurodegener 2017; 12:82. [PMID: 29110684 PMCID: PMC5674813 DOI: 10.1186/s13024-017-0219-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oligodendrocytes (OLs) and myelin are critical for normal brain function and have been implicated in neurodegeneration. Several lines of evidence including neuroimaging and neuropathological data suggest that Alzheimer's disease (AD) may be associated with dysmyelination and a breakdown of OL-axon communication. METHODS In order to understand this phenomenon on a molecular level, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic and proteomic data obtained from human AD postmortem brain samples. We then validated these networks using gene expression datasets generated from mice with ablation of major gene expression nodes identified in our AD-dysregulated networks. RESULTS The robust OL gene coexpression networks that we identified were highly enriched for genes associated with AD risk variants, such as BIN1 and demonstrated strong dysregulation in AD. We further corroborated the structure of the corresponding gene causal networks using datasets generated from the brain of mice with ablation of key network drivers, such as UGT8, CNP and PLP1, which were identified from human AD brain data. Further, we found that mice with genetic ablations of Cnp mimicked aspects of myelin and mitochondrial gene expression dysregulation seen in brain samples from patients with AD, including decreased protein expression of BIN1 and GOT2. CONCLUSIONS This study provides a molecular blueprint of the dysregulation of gene expression networks of OL in AD and identifies key OL- and myelination-related genes and networks that are highly associated with AD.
Collapse
Affiliation(s)
- Andrew T. McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Sarah Moyon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Neuroscience Initiative, The City University of New York, Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Eric B. Dammer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Joshua Aaker
- Department of Neurology, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Vahram Haroutunian
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Patrizia Casaccia
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Neuroscience Initiative, The City University of New York, Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
14
|
Mao CX, Yin JY, Zhang Y, Wang ZB, Yang ZQ, He ZW, Li XM, Mao XY, Cui RT, Li XJ, Li X, Zhang W, Zhou HH, Liu ZQ. The molecular classification of astrocytic tumors. Oncotarget 2017; 8:96340-96350. [PMID: 29221210 PMCID: PMC5707104 DOI: 10.18632/oncotarget.22047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aim This study will explore the genetic and epigenetic alterations in astrocytomas, and identify the critical molecular signatures and signaling pathways for prognosis assessment by multiplatform comprehensive analysis. Method We performed integration analyses of incorporating DNA methylation, mRNA expression, microRNA expression, and long non-coding RNA (lncRNA) expression in 33 astrocytic tumor tissues and 9 non-tumor brain tissues. Result We observed that 11,795 DNA methylation sites, 3,627 genes, 136 microRNAs, and 3,334 lncRNAs were significantly differential between tumors and non-tumor brain tissues, and the filtered signatures through comprehensive analysis were significantly enriched in calcium signaling pathway. Furthermore, four signatures involved in calcium signaling pathway and age could contribute to predicting the patients’ overall survival. Additionally, we identified differentially expressed signatures between IDH-mutated and IDH wild-type astrocytic tumors, and complement and coagulation cascades pathway was the most significant pathway in functional enrichment analysis using multiplatform data. The IDH wild-type astrocytomas were divided into two subtypes by Cluster of Cluster (CoC) analysis, one of which was enriched for astrocytomas overexpressed in chemokine signaling pathway. Conclusion The calcium signaling pathway played a key role in astrocytoma tumorigenesis and prognosis. IDH mutation was a vital biomarker, and resulted in the change of expression level in complement and coagulation cascades pathway. The chemokine signaling pathway could characterize subtypes of IDH wild-type astrocytomas.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ying Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Quan Yang
- Department Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zheng-Wen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410014, P. R. China
| | - Xiang-Min Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ru-Tao Cui
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xue-Jun Li
- Department Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
15
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
16
|
Davis W. The ATP-Binding Cassette Transporter-2 (ABCA2) Overexpression Modulates Sphingosine Levels and Transcription of the Amyloid Precursor Protein (APP) Gene. Curr Alzheimer Res 2016; 12:847-59. [PMID: 26510981 DOI: 10.2174/156720501209151019105834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/06/2015] [Accepted: 06/17/2015] [Indexed: 01/04/2023]
Abstract
The ATP-binding cassette transporter-2 (ABCA2) is a member of a family of multipass transmembrane proteins that use the energy of ATP hydrolysis to transport substrates across membrane bilayers. ABCA2 has also been genetically linked with Alzheimer's disease but the molecular mechanisms are unknown. In this report, we hypothesized that ABCA2 modulation of sphingolipid metabolism activates a signaling pathway that regulates amyloid precursor protein transcription. We found that ABCA2 overexpression in N2a cells was associated with increased mass of the sphingolipid sphingosine, derived from the catabolism of ceramide. ABCA2 overexpression increased in vitro alkaline and acid ceramidase activity. Sphingosine is a physiological inhibitor of protein kinase C (PKC) activity. Pharmacological inhibition of ceramidase activity or activation PKC activity with 12-myristate 13-acetate (PMA) or diacylglycerol (DAG) decreased endogenous APP mRNA levels in ABCA2 overexpressing cells. Treatment with PMA also decreased the expression of a transfected human APP promoter reporter construct, while treatment with a general PKC inhibitor, GF109203x, increased APP promoter activity. In N2a cells, chromatin immunoprecipitation experiments revealed that a repressive complex forms at the AP-1 site in the human APP promoter, consisting of c-jun, c-jun dimerization protein 2 (JDP2) and HDAC3 and this complex was reduced in ABCA2 overexpressing cells. Activation of the human APP promoter in A2 cells was directed by the upstream stimulatory factors USF-1 and USF-2 that bound to an E-box element in vivo. These findings indicate that ABCA2 overexpression modulates sphingosine levels and regulates transcription of the endogenous APP gene.
Collapse
Affiliation(s)
- Warren Davis
- Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 505, Charleston, SC, 29403, USA.
| |
Collapse
|
17
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
18
|
Davis W. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:168-79. [PMID: 24201375 DOI: 10.1016/j.bbalip.2013.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/09/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
The ATP-binding cassette transporters are a large family (~48 genes divided into seven families A-G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC "A" subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.
Collapse
Affiliation(s)
- Warren Davis
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29403, USA.
| |
Collapse
|
19
|
Xu X, Wang Y, Wang L, Liao Q, Chang L, Xu L, Huang Y, Ye H, Xu L, Chen C, Shen X, Zhang F, Ye M, Wang Q, Duan S. Meta-analyses of 8 polymorphisms associated with the risk of the Alzheimer's disease. PLoS One 2013; 8:e73129. [PMID: 24039871 PMCID: PMC3769354 DOI: 10.1371/journal.pone.0073129] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Aims The aim of this study was to evaluate the combined contribution of 8 polymorphisms to the risk of Alzheimer's disease (AD). Methods Through a comprehensive literature search for genetic variants involved in the AD association study, we harvested a total of 6 genes (8 polymorphisms) for the current meta-analyses. These genes consisted of A2M (5bp I/D and V1000I), ABCA2 (rs908832), CHAT (1882G >A, 2384G >A), COMT (Val158Met), HTR6 (267C >T) and LPL (Ser447Ter). Results A total of 33 studies among 9,453 cases and 10,833 controls were retrieved for the meta-analyses of 8 genetic variants. It was showed that A2M V1000I (odd ratio (OR) = 1.26, 95% confidence interval (CI) = 1.07–1.49, P = 0.007), rs908832 allele of ABCA2 (OR = 1.55, 95% CI = 1.12–2.16, P = 0.009), 2384G >A of CHAT (OR = 1.22, 95% CI = 1.00–1.49, P = 0.05) and Ser447Ter of LPL in the Northern-American population (OR = 0.56, 95% CI = 0.35–0.91, P = 0.02) were significantly associated with the risk of AD. No association was found between the rest of the 5 polymorphisms and the risk of AD. Conclusion Our results showed that A2M V1000I polymorphism in German, Korean, Chinese, Spanish, Italian and Polish populations, rs90883 of ABCA2 gene in French, American, Swiss, Greek and Japanese populations, 2384G >A of CHAT gene in British and Korean populations and LPL Ser447Ter in the Northern-American population were associated with the risk of AD.
Collapse
Affiliation(s)
- Xuting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yunliang Wang
- The Neurology Department of the 148th Hospital of PLA, Zibo, Shandong, China
- * E-mail: (QW); (YW); (SD); (MY)
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Qi Liao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lan Chang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Leiting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Limin Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaowei Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Fuqiang Zhang
- Ningbo Institute of Microcirculation and Henbane, Ningbo, Zhejiang, China
| | - Meng Ye
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (YW); (SD); (MY)
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (YW); (SD); (MY)
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (QW); (YW); (SD); (MY)
| |
Collapse
|
20
|
Pahnke J, Fröhlich C, Krohn M, Schumacher T, Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech Ageing Dev 2013; 134:506-15. [PMID: 24012632 DOI: 10.1016/j.mad.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/21/2013] [Accepted: 08/24/2013] [Indexed: 01/07/2023]
Abstract
Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.
Collapse
Affiliation(s)
- Jens Pahnke
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Liu SY, Zeng FF, Chen ZW, Wang CY, Zhao B, Li KS. Vascular endothelial growth factor gene promoter polymorphisms and Alzheimer's disease risk: a meta-analysis. CNS Neurosci Ther 2013; 19:469-76. [PMID: 23575378 DOI: 10.1111/cns.12093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 01/11/2023] Open
Abstract
AIM Conclusions on the association between polymorphisms in the vascular endothelial growth factor (VEGF) gene promoter and risk of Alzheimer's disease (AD) are ambiguous, and sufficient evaluation of the association is lacking. Therefore, we performed a meta-analysis of observational studies to explore the association between polymorphisms in the VEGF gene promoter and AD risk. METHODS Bibliographical searches were performed in the MEDLINE, EMBASE, and China National Knowledge Infrastructure (CNKI) databases without any language limitations. Three investigators independently assessed abstracts for relevant studies and independently reviewed all eligible studies. A meta-analysis was conducted using a fixed- or random-effects model. Odds ratios (ORs) and their 95% confidence intervals (CIs) were used to assess the strength of association. All statistical analyses were performed using Stata 11.0 software. RESULTS The meta-analysis of 2787 AD cases and 2841 controls from eight published case-control studies on the -2578C/A polymorphism and 1422 AD cases and 1063 controls from four studies on the -1154G/A polymorphism did not show any significant associations. However, in a subgroup analysis stratified by the presence of APOE є4, associations were observed with APOE ε4 (-) for -2578C/A (A vs. C: OR = 1.22, 95% CI = 1.04-1.43, P = 0.014; A/A vs. C/C: OR = 1.59, 95% CI = 1.11-2.27, P = 0.011 and A/A vs. A/C + C/C: OR = 1.46, 95% CI = 1.08-1.99, P = 0.015) and -1154G/A (A vs. G: OR = 0.74, 95% CI = 0.62-0.89, P = 0.001; A/A vs. G/G: OR = 0.57, 95% CI = 0.37-0.87, P = 0.009; A/G vs. G/G: OR = 0.69, 95% CI = 0.53-0.89, P = 0.004 and A/A + A/G vs. G/G: OR = 0.66, 95% CI = 0.52-0.85, P = 0.001). CONCLUSION This meta-analysis showed the risk role of the -2578 polymorphism and the protective role of the -1154 polymorphism when the APOE є4 status was negative, suggesting that the two polymorphisms in the VEGF promoter may have opposing effects on AD risk in an APOE є4-independent manner.
Collapse
Affiliation(s)
- Sheng-Yuan Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | | | | | | | | | | |
Collapse
|
22
|
Reitz C. Dyslipidemia and dementia: current epidemiology, genetic evidence, and mechanisms behind the associations. J Alzheimers Dis 2012; 30 Suppl 2:S127-45. [PMID: 21965313 DOI: 10.3233/jad-2011-110599] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of cholesterol in the etiology of Alzheimer's disease (AD) is still controversial. Some studies exploring the association between lipids and/or lipid lowering treatment and AD indicate a harmful effect of dyslipidemia and a beneficial effect of statin therapy on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E, apolipoprotein J, and the sortilin-related receptor. Functional cell biology studies support a critical involvement of lipid raft cholesterol in the modulation of amyloid-β protein precursor (AβPP) processing by β- and γ-secretase resulting in altered amyloid-β production. Contradictory evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk. Additionally, cell biology studies suggest that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits co-localization of BACE1 and AβPP in non-raft membrane domains, thereby increasing generation of plasmin, an amyloid-β-degrading enzyme. The aim of this review is to summarize the findings of epidemiological and cell biological studies to elucidate the role of cholesterol in AD etiology.
Collapse
Affiliation(s)
- Christiane Reitz
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and The Aging Brain New York, NY, USA.
| |
Collapse
|
23
|
Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem Neurosci 2012. [PMID: 23181169 DOI: 10.1021/cn300077c] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of age-related dementia that begins with memory loss and progresses to include severe cognitive impairment. A major pathological hallmark of AD is the accumulation of beta amyloid peptide (Aβ) in senile plaques in the brain of AD patients. The exact mechanism by which AD takes place remains unknown. However, an increasing number of studies suggests that ATP-binding cassette (ABC) transporters, which are localized on the surface of brain endothelial cells of the blood-brain barrier (BBB) and brain parenchyma, may contribute to the pathogenesis of AD. Recent studies have unraveled important roles of ABC transporters including ABCB1 (P-glycoprotein, P-gp), ABCG2 (breast cancer resistant protein, BCRP), ABCC1 (multidrug resistance protein 1, MRP1), and the cholesterol transporter ABCA1 in the pathogenesis of AD and Aβ peptides deposition inside the brain. Therefore, understanding the mechanisms by which these transporters contribute to Aβ deposition in the brain is important for the development of new therapeutic strategies against AD. This review summarizes and highlights the accumulating evidence in the literature which describe the role of altered function of various ABC transporters in the pathogenesis and progression of AD and the implications of modulating their functions for the treatment of AD.
Collapse
Affiliation(s)
- Alaa H. Abuznait
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
24
|
Cacabelos R, Martínez R, Fernández-Novoa L, Carril JC, Lombardi V, Carrera I, Corzo L, Tellado I, Leszek J, McKay A, Takeda M. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics. Int J Alzheimers Dis 2012; 2012:518901. [PMID: 22482072 PMCID: PMC3312254 DOI: 10.1155/2012/518901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/12/2011] [Indexed: 01/05/2023] Open
Abstract
Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Rocío Martínez
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lucía Fernández-Novoa
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Valter Lombardi
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Tellado
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Jerzy Leszek
- Department of Psychiatry, Medical University of Wroclaw, Pasteura 10, 50-229 Wroclaw, Poland
| | - Adam McKay
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Masatoshi Takeda
- Department of Psychiatry and Behavioral Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
26
|
Wolf A, Bauer B, Hartz AMS. ABC Transporters and the Alzheimer's Disease Enigma. Front Psychiatry 2012; 3:54. [PMID: 22675311 PMCID: PMC3366330 DOI: 10.3389/fpsyt.2012.00054] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, MN, USA
| | | | | |
Collapse
|
27
|
Davis W. The ATP-binding cassette transporter-2 (ABCA2) increases endogenous amyloid precursor protein expression and Aβ fragment generation. Curr Alzheimer Res 2011; 7:566-77. [PMID: 20704561 DOI: 10.2174/156720510793499002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/02/2010] [Indexed: 11/22/2022]
Abstract
The ATP binding cassette transporter-2 (ABCA2) has been genetically linked to Alzheimer's disease but the molecular mechanisms are unknown. In this study, the effects of expression of human ABCA2 on endogenous amyloid precursor protein (APP) expression, trafficking and processing were examined in mouse N2a neuronal cells. ABCA2 expression increased the steady-state APP mRNA levels through transcription. ABCA2 also induced increased synthesis of APP holoprotein and altered APP processing and metabolite generation. ABCA2 expression promoted b-secretase (BACE1) cleavage of APP not at the common Asp1 amino acid site (β-site) of Aβ in APP but at the Glu11 site (β'-site) to increase C89 carboxyl-terminal fragment levels (β'-CTF/C89). The levels of N-terminally truncated Aβ11-40 peptides were also increased by ABCA2 expression. The delivery of newly synthesized APP to the cell surface through the secretary pathway was not perturbed by ABCA2 expression; however, ABCA2 expression increased the amount of APP in early-endosomal compartments, which also contained the highest levels of β'-CTF/C89 and is likely the site of increased BACE1 processing of APP. This report identifies ABCA2 as a key regulator of endogenous APP expression and processing and suggests a possible biochemical mechanism linking ABCA2 expression, APP processing and Alzheimer's disease.
Collapse
Affiliation(s)
- W Davis
- Department of Biological Sciences/Pharmacology, Medical University of South Carolina, Charleston, SC 29403, USA.
| |
Collapse
|
28
|
Michaki V, Guix FX, Vennekens K, Munck S, Dingwall C, Davis JB, Townsend DM, Tew KD, Feiguin F, De Strooper B, Dotti CG, Wahle T. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J Biol Chem 2011; 287:1100-11. [PMID: 22086926 DOI: 10.1074/jbc.m111.288258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-β (Aβ) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aβ generation, without affecting Notch cleavage.
Collapse
Affiliation(s)
- Vasiliki Michaki
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1152-64. [PMID: 21810484 DOI: 10.1016/j.bbalip.2011.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/23/2022]
Abstract
The ATP-binding cassette transporter-2 (ABCA2) has been identified as a possible regulator of lipid metabolism. ABCA2 is most highly expressed in the brain but its effects on cholesterol homeostasis in neuronal-type cells have not been characterized. It is important to study the role of ABCA2 in regulating cholesterol homeostasis in neuronal-type cells because ABCA2 has been identified as a possible genetic risk factor for Alzheimer's disease. In this study, the effects of ABCA2 expression on cholesterol homeostasis were examined in mouse N2a neuroblastoma cells. ABCA2 reduced total, free- and esterified cholesterol levels as well as membrane cholesterol but did not perturb cholesterol distribution in organelle or lipid raft compartments. ABCA2 did not modulate de novo cholesterol biosynthesis from acetate. Cholesterol trafficking to the plasma membrane was not affected by ABCA2 but efflux to the physiological acceptor ApoE3 and mobilization of plasma membrane cholesterol to the endoplasmic reticulum for esterification were reduced by ABCA2. ABCA2 reduced esterification of serum and low-density lipoprotein-derived cholesterol but not 25-hydroxycholesterol. ABCA2 decreased low-density lipoprotein receptor (LDLR) mRNA and protein levels and increased its turnover rate. The surface expression of LDLR as well as the uptake of fluroresecent DiI-LDL was also reduced by ABCA2. Reduction of endogenous ABCA2 expression by RNAi treatment of N2a cells and rat primary cortical neurons produced the opposite effects of over-expression of ABCA2, increasing LDLR protein levels. This report identifies ABCA2 as a key regulator of cholesterol homeostasis and LDLR metabolism in neuronal cells.
Collapse
|
30
|
Nagao K, Tomioka M, Ueda K. Function and regulation of ABCA1 - membrane meso-domain organization and reorganization. FEBS J 2011; 278:3190-203. [DOI: 10.1111/j.1742-4658.2011.08170.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Abstract
The blood-brain barrier (BBB) is a dynamic physical and biological barrier between blood circulation and the central nervous system (CNS). This unique feature of the BBB lies in the structure of the neurovascular unit and its cerebral micro-vascular endothelial cells. The BBB restricts the passage of blood-borne drugs, neurotoxic substances and peripheral immune cells from entering the brain, while selectively facilitating the transport of nutrients across the BBB into the brain. Thus, the integrity and proper function of the BBB is crucial to homeostasis and physiological function of the CNS. A number of transport and carrier systems are expressed and polarized on the luminal or abluminal surface of the BBB to realize these discrete functions. Among these systems, ABC transporters play a critical role in keeping drugs and neurotoxic substances from entering the brain and in transporting toxic metabolites out of the brain. A number of studies have demonstrated that ABCB1 and ABCG2 are critical to drug efflux at the BBB and that ABCC1 is essential for the blood-cerebral spinal fluid (CSF) barrier. The presence of these efflux ABC transporters also creates a major obstacle for drug delivery into the brain. We have comprehensively reviewed the literature on ABC transporters and drug efflux at the BBB. Understanding the molecular mechanisms of these transporters is important in the development of new drugs and new strategies for drug delivery into the brain.
Collapse
Affiliation(s)
- Shanshan Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | |
Collapse
|
32
|
Uehara Y, Yamada T, Baba Y, Miura SI, Abe S, Kitajima K, Higuchi MA, Iwamoto T, Saku K. ATP-binding cassette transporter G4 is highly expressed in microglia in Alzheimer's brain. Brain Res 2008; 1217:239-46. [DOI: 10.1016/j.brainres.2008.04.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/17/2008] [Accepted: 04/17/2008] [Indexed: 11/25/2022]
|
33
|
Mack JT, Brown CB, Tew KD. ABCA2 as a therapeutic target in cancer and nervous system disorders. Expert Opin Ther Targets 2008; 12:491-504. [PMID: 18348684 DOI: 10.1517/14728222.12.4.491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overexpression of ATP-binding cassette (ABC) transporters is a major adaptive advantage used by tumor cells to evade the accumulation of cytotoxic agents. ABCA2, a transporter highly expressed in the cells of the nervous and haematopoetic systems, is associated with lipid transport and drug resistance in cancer cells, including tumor stem cells. Recently, a single nucleotide polymorphism (SNP) in Abca2 was linked to early onset Alzheimer's disease (AD). The characterization of two independent knockout mouse models has shed light on putative in vivo functions of this transporter in the development and maintenance of myelin membrane lipids in the CNS. OBJECTIVE The objective of this review is to guide the reader through the existing scope of literature on the ABCA2 transporter, focusing on its potential as a future target in human pathologies, specifically cancer and neurological disease. METHODS An NCBI PubMed literature search was conducted to address the growing body of ABCA2 literature that, at the time of publication, included 39 reports. From these, we focused on papers that provided insight into the functional importance of this transporter in tumor stem cells, cancer, drug resistance, Alzheimer's disease and myelination. RESULTS/CONCLUSION These studies have implicated ABCA2 as a therapeutic target in modulating the drug resistance phenotype prevalent in human cancers and in the treatment of neuropathies, including Alzheimer's disease and myelin-related disorders.
Collapse
Affiliation(s)
- Jody T Mack
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology and Experimental Therapeutics, 173 Ashley Avenue, BSB 303, MSC 505, Charleston, South Carolina 29425-5050, USA
| | | | | |
Collapse
|
34
|
No association of DAPK1 and ABCA2 SNPs on chromosome 9 with Alzheimer's disease. Neurobiol Aging 2008; 30:1890-1. [PMID: 18336955 DOI: 10.1016/j.neurobiolaging.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 12/10/2007] [Accepted: 01/21/2008] [Indexed: 11/24/2022]
Abstract
Recently genetic variation in the DAPK1 and ABCA2 genes has been reported to be associated with late- and early-onset Alzheimer's disease (AD), respectively. We examined the most significant two single-nucleotide polymorphisms (SNPs) in DAPK1 in a large case-control cohort of late-onset subjects and matched controls and one of the most significant SNPs in ABCA2 in a small set of early-onset subjects as well. We did not detect associations with AD for any variation.
Collapse
|
35
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
37
|
Weiner MF, Hynan LS, Beekly D, Koepsell TD, Kukull WA. Comparison of Alzheimer's disease in American Indians, whites, and African Americans. Alzheimers Dement 2007; 3:211-6. [DOI: 10.1016/j.jalz.2007.04.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 02/12/2007] [Accepted: 04/24/2007] [Indexed: 11/28/2022]
Affiliation(s)
- Myron F. Weiner
- Department of Psychiatry and Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Linda S. Hynan
- Department of Clinical Sciences‐Biostatistics and Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Duane Beekly
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWAUSA
| | - Thomas D. Koepsell
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
38
|
Wang Z, Wang J, Tantoso E, Wang B, Tai AYP, Ooi LLPJ, Chong SS, Lee CGL. Signatures of recent positive selection at the ATP-binding cassette drug transporter superfamily gene loci. Hum Mol Genet 2007; 16:1367-80. [PMID: 17412754 DOI: 10.1093/hmg/ddm087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Members of the ATP-binding cassette (ABC) superfamily of transporters have been implicated as major players in drug response. Single nucleotide polymorphisms (SNPs) in the ABC transporter genes may account for variation in drug response between individuals. Given the abundance of SNPs within the human genome, identification of functionally important SNPs is difficult. Here, we utilized signatures of recent positive selection (RPS) to identify SNPs in ABC genes that have potential functional significance by using the long-range-haplotype test to search for signatures of RPS at 18 ABC genes involved in drug transport. From the genotype data of these 18 ABC genes in four populations extracted from the HapMap database, at least one SNP in each of these genes displayed genomic signatures of RPS in at least one population. However, only 13 SNPs in 10 ABC genes from three populations retained statistical significance after Type I error reduction. The functional significance of six of these RPS SNPs, including those that failed multiple testing correction (MTC), has been reported previously. We experimentally confirmed a functional effect for two SNPs, including one that failed to show evidence of RPS after MTC. These observations suggest that Type I error reduction may inadvertently increase Type II error. Although the remaining positively selected SNPs have yet to be functionally validated, our study illustrates the feasibility of using this strategy to identify SNPs within 'adaptive' genes that may confer functional effect, prior to testing their roles in individual/population drug response variation or in complex disease susceptibility.
Collapse
Affiliation(s)
- Zihua Wang
- Department of Biochemistry, Yong Loo LinSchool of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wollmer MA, Sleegers K, Ingelsson M, Zekanowski C, Brouwers N, Maruszak A, Brunner F, Huynh KD, Kilander L, Brundin RM, Hedlund M, Giedraitis V, Glaser A, Engelborghs S, De Deyn PP, Kapaki E, Tsolaki M, Daniilidou M, Molyva D, Paraskevas GP, Thal DR, Barcikowska M, Kuznicki J, Lannfelt L, Van Broeckhoven C, Nitsch RM, Hock C, Papassotiropoulos A. Association study of cholesterol-related genes in Alzheimer's disease. Neurogenetics 2007; 8:179-88. [PMID: 17387528 DOI: 10.1007/s10048-007-0087-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex disorder, and several genes related to cholesterol metabolism have been reported to contribute to AD risk. To identify further AD susceptibility genes, we have screened genes that map to chromosomal regions with high logarithm of the odds scores for AD in full genome scans and are related to cholesterol metabolism. In a European screening sample of 115 sporadic AD patients and 191 healthy control subjects, we analyzed single nucleotide polymorphisms in 28 cholesterol-related genes for association with AD. The genes HMGCS2, FDPS, RAFTLIN, ACAD8, NPC2, and ABCG1 were associated with AD at a significance level of P < or = 0.05 in this sample. Replication trials in five independent European samples detected associations of variants within HMGCS2, FDPS, NPC2, or ABCG1 with AD in some samples (P = 0.05 to P = 0.005). We did not identify a marker that was significantly associated with AD in the pooled sample (n = 2864). Stratification of this sample revealed an APOE-dependent association of HMGCS2 with AD (P = 0.004). We conclude that genetic variants investigated in this study may be associated with a moderate modification of the risk for AD in some samples.
Collapse
Affiliation(s)
- M Axel Wollmer
- Division of Psychiatry Research, University of Zürich, August Forel Str. 1, 8008 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mack JT, Beljanski V, Soulika AM, Townsend DM, Brown CB, Davis W, Tew KD. "Skittish" Abca2 knockout mice display tremor, hyperactivity, and abnormal myelin ultrastructure in the central nervous system. Mol Cell Biol 2006; 27:44-53. [PMID: 17060448 PMCID: PMC1800669 DOI: 10.1128/mcb.01824-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-binding cassette transporter 2 (ABCA2) is an endolysosomal protein most highly expressed in the central and peripheral nervous system tissues and macrophages. Previous studies indicated its role in cholesterol/steroid (estramustine, estradiol, and progesterone) trafficking/sequestration, oxidative stress response, and Alzheimer's disease. Developmental studies have shown its expression during macrophage and oligodendrocyte differentiation, processes requiring membrane growth. To determine the in vivo function(s) of this transporter, we generated a knockout mouse from a gene-targeted disruption of the murine ABCA2 gene. Knockout males and females are viable and fertile. However, a non-Mendelian inheritance pattern was shown among male progeny of heterozygous crosses. Compared to wild-type and heterozygous littermates, knockout mice displayed a tremor without ataxia, hyperactivity, and reduced body weight; the latter two phenotypes were more marked in females than in males. This sexual disparity suggests a role for ABCA2 in hormone-dependent neurological and/or developmental pathways. Myelin sheath thickness in the spinal cords of knockout mice was greatly increased compared to that in wild-type mice, while a significant reduction in myelin membrane periodicity (compaction) was observed in both spinal cords and cerebra of knockout mice. Loss of ABCA2 function in vivo resulted in abnormal myelin compaction in spinal cord and cerebrum, an ultrastructural defect that we propose to be the cause of the phenotypic tremor.
Collapse
Affiliation(s)
- Jody T Mack
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, P.O. Box 250505, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|