1
|
Predicting Key Genes and Therapeutic Molecular Modelling to Explain the Association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s Disease (AD). Int J Mol Sci 2023; 24:ijms24065432. [PMID: 36982508 PMCID: PMC10049565 DOI: 10.3390/ijms24065432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s disease (AD) remains unclear. The major aim of this study was to elucidate the role of genes and molecular targets in P. gingivalis-associated AD. Two Gene Expression Omnibus (GEO) datasets, GSE5281 for AD (n = 84 Alzheimer’s, n = 74 control) and GSE9723 (n = 4 P. gingivalis, n = 4 control), were downloaded from the GEO database. Differentially expressed genes (DEGs) were obtained, and genes common to both diseases were drawn. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis was performed from the top 100 genes (50 upregulated and 50 downregulated genes). We then proceeded with CMap analysis to screen for possible small drug molecules targeting these genes. Subsequently, we performed molecular dynamics simulations. A total of 10 common genes (CALD1, HES1, ID3, PLK2, PPP2R2D, RASGRF1, SUN1, VPS33B, WTH3DI/RAB6A, and ZFP36L1) were identified with a p-value < 0.05. The PPI network of the top 100 genes showed UCHL1, SST, CHGB, CALY, and INA to be common in the MCC, DMNC, and MNC domains. Out of the 10 common genes identified, only 1 was mapped in CMap. We found three candidate small drug molecules to be a fit for PLK2, namely PubChem ID: 24971422, 11364421, and 49792852. We then performed molecular docking of PLK2 with PubChem ID: 24971422, 11364421, and 49792852. The best target, 11364421, was used to conduct the molecular dynamics simulations. The results of this study unravel novel genes to P. gingivalis-associated AD that warrant further validation.
Collapse
|
2
|
Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Alzheimers Dement 2022; 18:2637-2668. [PMID: 35852137 PMCID: PMC10083964 DOI: 10.1002/alz.12733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Hypoxia, that is, an inadequate oxygen supply, is linked to neurodegeneration and patients with cardiovascular disease are prone to Alzheimer's disease (AD). 2-Oxoglutarate and ferrous iron-dependent oxygenases (2OGDD) play a key role in the regulation of oxygen homeostasis by acting as hypoxia sensors. 2OGDD also have roles in collagen biosynthesis, lipid metabolism, nucleic acid repair, and the regulation of transcription and translation. Many biological processes in which the >60 human 2OGDD are involved are altered in AD patient brains, raising the question as to whether 2OGDD are involved in the transition from normal aging to AD. Here we give an overview of human 2OGDD and critically discuss their potential roles in AD, highlighting possible relationships with synapse dysfunction/loss. 2OGDD may regulate neuronal/glial differentiation through enzyme activity-dependent mechanisms and modulation of their activity has potential to protect against synapse loss. Work linking 2OGDD and AD is at an early stage, especially from a therapeutic perspective; we suggest integrated pathology and in vitro discovery research to explore their roles in AD is merited. We hope to help enable long-term research on the roles of 2OGDD and, more generally, oxygen/hypoxia in AD. We also suggest shorter term empirically guided clinical studies concerning the exploration of 2OGDD/oxygen modulators to help maintain synaptic viability are of interest for AD treatment.
Collapse
Affiliation(s)
- Haotian Liu
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yong Xie
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationDepartment of OrthopedicsGeneral Hospital of Chinese PLABeijingChina
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Martine I. Abboud
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Chao Ma
- Department of Human Anatomy, Histology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Christopher J. Schofield
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
4
|
Sundaramoorthy TH, Castanho I. The Neuroepigenetic Landscape of Vertebrate and Invertebrate Models of Neurodegenerative Diseases. Epigenet Insights 2022; 15:25168657221135848. [PMID: 36353727 PMCID: PMC9638687 DOI: 10.1177/25168657221135848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Vertebrate and invertebrate models of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, have been paramount to our understanding of the pathophysiology of these conditions; however, the brain epigenetic landscape is less well established in these disease models. DNA methylation, histone modifications, and microRNAs are among commonly studied mechanisms of epigenetic regulation. Genome-wide studies and candidate studies of specific methylation marks, histone marks, and microRNAs have demonstrated the dysregulation of these mechanisms in models of neurodegenerative diseases; however, the studies to date are scarce and inconclusive and the implications of many of these changes are still not fully understood. In this review, we summarize epigenetic changes reported to date in the brain of vertebrate and invertebrate models used to study neurodegenerative diseases, specifically diseases affecting the aging population. We also discuss caveats of epigenetic research so far and the use of disease models to understand neurodegenerative diseases, with the aim of improving the use of model organisms in this context in future studies.
Collapse
Affiliation(s)
| | - Isabel Castanho
- University of Exeter Medical School,
University of Exeter, Exeter, UK
- Beth Israel Deaconess Medical Center,
Boston, MA, USA
- Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
5
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
6
|
Nam H, Lee Y, Kim B, Lee JW, Hwang S, An HK, Chung KM, Park Y, Hong J, Kim K, Kim EK, Choe HK, Yu SW. Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα. Nat Commun 2022; 13:1972. [PMID: 35418126 PMCID: PMC9008044 DOI: 10.1038/s41467-022-29653-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα. Hyperimmunity is associated with Alzheimer disease. Here the authors show that the Presenilin 2 N141I mutation causes overproduction of clock-controlled cytokines and memory deficits through suppression of REV-ERBα gene by hypermethylation.
Collapse
Affiliation(s)
- Hyeri Nam
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Younghwan Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Boil Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ji-Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seohyeon Hwang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngjin Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jihyun Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.,Neurometabolomics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
7
|
Persico G, Casciaro F, Amatori S, Rusin M, Cantatore F, Perna A, Auber LA, Fanelli M, Giorgio M. Histone H3 Lysine 4 and 27 Trimethylation Landscape of Human Alzheimer's Disease. Cells 2022; 11:734. [PMID: 35203383 PMCID: PMC8870338 DOI: 10.3390/cells11040734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenetic remodeling is emerging as a critical process for both the onset and progression of Alzheimer's disease (AD), the most common form of neurodegenerative dementia. However, it is not clear to what extent the distribution of histone modifications is involved in AD. METHODS To investigate histone H3 modifications in AD, we compared the genome-wide distributions of H3K4me3 and H3K27me3 in entorhinal cortices from severe sporadic AD patients and from age-matched healthy individuals of both sexes. RESULTS AD samples were characterized by typical average levels and distributions of the H3K4me3 and H3K27me3 signals. However, AD patients showed a lower H3K4me3 and higher H3K27me3 signal, particularly in males. Interestingly, the genomic sites found differentially trimethylated at the H3K4 between healthy and AD samples involve promoter regions of genes belonging to AD-related pathways such as glutamate receptor signaling. CONCLUSIONS The signatures of H3K4me3 and H3K27me3 identified in AD patients validate the role of epigenetic chromatin remodeling in neurodegenerative disease and shed light on the genomic adaptive mechanisms involved in AD.
Collapse
Affiliation(s)
- Giuseppe Persico
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Stefano Amatori
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Martina Rusin
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Francesco Cantatore
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Amalia Perna
- Department of Pathology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Lavinia Alberi Auber
- Swiss Integrative Center of Human Health, Pass. du Cardinal 13, 1700 Fribourg, Switzerland;
- Department of Medicine, University of Fribourg, Chem. du Musée, 1700 Fribourg, Switzerland
| | - Mirco Fanelli
- Molecular Pathology Laboratory “PaoLa”, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Arco d’Augusto 2, 61032 Fano (PU), Italy; (S.A.); (F.C.)
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy; (G.P.); (M.R.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| |
Collapse
|
8
|
Aliferi A, Sundaram S, Ballard D, Freire-Aradas A, Phillips C, Lareu MV, Court DS. Combining current knowledge on DNA methylation-based age estimation towards the development of a superior forensic DNA intelligence tool. Forensic Sci Int Genet 2021; 57:102637. [PMID: 34852982 DOI: 10.1016/j.fsigen.2021.102637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023]
Abstract
The estimation of chronological age from biological fluids has been an important quest for forensic scientists worldwide, with recent approaches exploiting the variability of DNA methylation patterns with age in order to develop the next generation of forensic 'DNA intelligence' tools for this application. Drawing from the conclusions of previous work utilising massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-based age estimation method for blood that exhibits the best combination of prediction accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using microarray data from over 4000 individuals, followed by validation using in-house generated MPS data, revealed a final set of 11 markers with the greatest potential for accurate age estimation from minimal DNA material. Utilising an algorithm based on support vector machines, the proposed model achieved an average error (MAE) of 3.3 years, with this level of accuracy retained down to 5 ng of starting DNA input (~ 1 ng PCR input). The accuracy of the model was retained (MAE = 3.8 years) in a separate test set of 88 samples of Spanish origin, while predictions for donors of greater forensic interest (< 55 years of age) displayed even higher accuracy (MAE = 2.6 years). Finally, no sex-related bias was observed for this model, while there were also no signs of variation observed between control and disease-associated populations for schizophrenia, rheumatoid arthritis, frontal temporal dementia and progressive supranuclear palsy in microarray data relating to the 11 markers.
Collapse
Affiliation(s)
- Anastasia Aliferi
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sudha Sundaram
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Ballard
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Galicia, Spain
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Galicia, Spain
| | - Maria Victoria Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Galicia, Spain
| | - Denise Syndercombe Court
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
10
|
Quan Y, Zhang X, Butler W, Du Z, Wang M, Liu Y, Ping H. The role of N-cadherin/c-Jun/NDRG1 axis in the progression of prostate cancer. Int J Biol Sci 2021; 17:3288-3304. [PMID: 34512147 PMCID: PMC8416735 DOI: 10.7150/ijbs.63300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023] Open
Abstract
The dysregulation of androgen receptor (AR) signaling is a critical event in the progression of prostate cancer (PCa) and hormone therapy consisting of androgen deprivation (ADT) or AR inhibition is therefore used to treat advanced cases. It is known that N-cadherin becomes upregulated following ADT and can directly induce PCa transformation to the castration-resistant stage (CRPC). However, the relationship between AR and N-cadherin is unclear and may promote better understanding of CRPC pathogenesis and progression. Here, we demonstrate a new axis of N-cadherin/c-Jun/N-myc downstream regulated gene 1 (NDRG1) that N-cadherin promotes c-Jun expression and suppresses NDRG1 to promote invasion and migration of PCa cells through epithelial to mesenchymal transition (EMT). Targeting N-cadherin in combination with enzalutamide (ENZ) treatment synergistically suppressed PC3 cell proliferation in vivo and in vitro. Further studies showed that compared to lower Gleason score (GS) (GS < 7) cases, high GS (GS > 7) cases exhibited elevated N-cadherin expression and reduced NDRG1 expression, corroborating our in vitro observations. We further demonstrate that c-Jun, AR, and DNA methyltransferase-1 (DNMT1) form a complex in the 12-O-tetradecanoyl phorbol-13-acetate (TPA) response elements (TREs) region of the NDRG1 promoter, which suppresses NDRG1 transcription through DNA hypermethylation. In conclusion, we demonstrate an underlying mechanism for how N-cadherin collaborates with AR and NDRG1 to promote CRPC progression. Controlling N-cadherin/c-Jun/NDRG1 axis may help to overcome resistance to commonly used hormone therapy to improve long-term patient outcomes.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - William Butler
- Department of Pathology, Duke University School of Medicine, Durham NC 27710, USA
| | - Zhen Du
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yuexin Liu
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
11
|
Ikram MF, Farhat SM, Mahboob A, Baig S, Yaqinuddin A, Ahmed T. Expression of DnMTs and MBDs in AlCl 3-Induced Neurotoxicity Mouse Model. Biol Trace Elem Res 2021; 199:3433-3444. [PMID: 33174148 DOI: 10.1007/s12011-020-02474-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Alteration in DNA methylation after aluminum exposure has been shown to contribute in pathogenesis of Alzheimer's disease (AD). This study is aimed to determine the effect of Al exposure (42 and 60 days) on learning and memory and the expression of proteins involved in DNA methylation (MBD1, MBD2, MBD3, MeCP2 (methyl CpG binding protein 2), DnMT1 and DnMT3a). Male BALB/c mice were treated with AlCl3 for either 42 days or 60 days. After treatment completion, learning and memory were compared to the control group using novel object recognition test, elevated plus maze test, open field test, and Morris water maze test. The treated animals and their respective controls were sacrificed after cognitive testing and samples from their whole cortex and hippocampus were harvested for gene expression analysis. Mice treated with AlCl3 showed significant cognitive deficit with impaired short-term memory, elevated anxiety, and deterioration in spatial and reference memory. The AlCl3 treatment showed significant reduction in the expression of MBDs in the whole cortex at 60 days of treatment as compared to control. AlCl3-treated animals showed decreased expression of MBDs and DnMT3a in the hippocampus for longer treated animals but strikingly, MBD2 showed significantly increased expression in AlCl3-treated animals at 60 days p ≤ 0.001. In conclusion, this study showed that AlCl3-treated animals showed significant memory and cognitive deficits and it is associated with significant changes in the expression of proteins involved in DNA methylation mechanism. Moreover, different Al exposure duration had slightly different effects.
Collapse
Affiliation(s)
- Muhammad Faisal Ikram
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Medical College, Ziauddin University, Karachi, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Ahmed Yaqinuddin
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
12
|
Wu C, Bradley J, Li Y, Wu L, Deng HW. A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. Bioinformatics 2021; 37:1933–1940. [PMID: 33523132 PMCID: PMC8337007 DOI: 10.1093/bioinformatics/btab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Transcriptome-wide association studies (TWAS) have successfully facilitated the discovery of novel genetic risk loci for many complex traits, including late-onset Alzheimer's disease (AD). However, most existing TWAS methods rely only on gene expression and ignore epigenetic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer-promoter interactions), both of which contribute significantly to the genetic basis of AD. RESULTS We develop a novel gene-level association testing method that integrates genetically regulated DNA methylation and enhancer-target gene pairs with genome-wide association study (GWAS) summary results. Through simulations, we show that our approach, referred to as the CMO (cross methylome omnibus) test, yielded well controlled type I error rates and achieved much higher statistical power than competing methods under a wide range of scenarios. Furthermore, compared with TWAS, CMO identified an average of 124% more associations when analyzing several brain imaging-related GWAS results. By analyzing to date the largest AD GWAS of 71,880 cases and 383,378 controls, CMO identified six novel loci for AD, which have been ignored by competing methods. AVAILABILITY Software: https://github.com/ChongWuLab/CMO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chong Wu
- Department of Statistics, Florida State University
| | | | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer center
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
13
|
Hampel H, Nisticò R, Seyfried NT, Levey AI, Modeste E, Lemercier P, Baldacci F, Toschi N, Garaci F, Perry G, Emanuele E, Valenzuela PL, Lucia A, Urbani A, Sancesario GM, Mapstone M, Corbo M, Vergallo A, Lista S. Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Res Rev 2021; 69:101346. [PMID: 33915266 DOI: 10.1016/j.arr.2021.101346] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in biological alterations and disease spatial-temporal progression. Human in-vivo and post-mortem studies point out a failure of multi-level biological networks underlying AD pathophysiology, including proteostasis (amyloid-β and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, oxidative stress. Therefore, a holistic, systems-level approach is needed to fully capture AD multi-faceted pathophysiology. Omics sciences - genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics - embedded in the systems biology (SB) theoretical and computational framework can generate explainable readouts describing the entire biological continuum of a disease. Such path in Neurology is encouraged by the promising results of omics sciences and SB approaches in Oncology, where stage-driven pathway-based therapies have been developed in line with the precision medicine paradigm. Multi-omics data integrated in SB network approaches will help detect and chart AD upstream pathomechanistic alterations and downstream molecular effects occurring in preclinical stages. Finally, integrating omics and neuroimaging data - i.e., neuroimaging-omics - will identify multi-dimensional biological signatures essential to track the clinical-biological trajectories, at the subpopulation or even individual level.
Collapse
|
14
|
Smith AR, Smith RG, Macdonald R, Marzi SJ, Burrage J, Troakes C, Al-Sarraj S, Mill J, Lunnon K. The histone modification H3K4me3 is altered at the ANK1 locus in Alzheimer's disease brain. Future Sci OA 2021; 7:FSO665. [PMID: 33815817 PMCID: PMC8015672 DOI: 10.2144/fsoa-2020-0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Several epigenome-wide association studies of DNA methylation have highlighted altered DNA methylation in the ANK1 gene in Alzheimer's disease (AD) brain samples. However, no study has specifically examined ANK1 histone modifications in the disease. We use chromatin immunoprecipitation-qPCR to quantify tri-methylation at histone 3 lysine 4 (H3K4me3) and 27 (H3K27me3) in the ANK1 gene in entorhinal cortex from donors with high (n = 59) or low (n = 29) Alzheimer's disease pathology. We demonstrate decreased levels of H3K4me3, a marker of active gene transcription, with no change in H3K27me3, a marker of inactive genes. H3K4me3 is negatively correlated with DNA methylation in specific regions of the ANK1 gene. Our study suggests that the ANK1 gene shows altered epigenetic marks indicative of reduced gene activation in Alzheimer's disease.
Collapse
Affiliation(s)
- Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Sarah J Marzi
- The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
15
|
Wei X, Cai M, Jin L. The Function of the Metals in Regulating Epigenetics During Parkinson's Disease. Front Genet 2021; 11:616083. [PMID: 33603768 PMCID: PMC7884633 DOI: 10.3389/fgene.2020.616083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson's means Parkinson's disease, a chronic degenerative disease of central nervous system. The main area which is affected by this disease is motor system. Since it firstly founded by James Parkinson in his 1817 publication, nowadays, people still have lots of questions about this disease. This review mainly summarizes the epigenetics of Parkinson's. DNA methylation is one of the epigenetic mechanisms of Parkinson's. During the development of disease, global hypomethylation, and hypermethylation happen in different areas of patients. Another epigenetic mechanism is histone modification. People believe that some metals can induce Parkinson's disease by modulating epigenetic mechanisms. This review summarizes the relationships between different metals and Parkinson's disease. However, the specific roles of most metals in epigenetics are still unknown, which need further research.
Collapse
Affiliation(s)
- Xiangzhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Menghua Cai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lifang Jin
- Department of Biological Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
16
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
17
|
Mitsumori R, Sakaguchi K, Shigemizu D, Mori T, Akiyama S, Ozaki K, Niida S, Shimoda N. Lower DNA methylation levels in CpG island shores of CR1, CLU, and PICALM in the blood of Japanese Alzheimer's disease patients. PLoS One 2020; 15:e0239196. [PMID: 32991610 PMCID: PMC7523949 DOI: 10.1371/journal.pone.0239196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to (1) investigate the relationship between late-onset Alzheimer’s disease (AD) and DNA methylation levels in six of the top seven AD-associated genes identified through a meta-analysis of recent genome wide association studies, APOE, BIN1, PICALM, CR1, CLU, and ABCA7, in blood, and (2) examine its applicability to the diagnosis of AD. We examined methylation differences at CpG island shores in the six genes using Sanger sequencing, and one of two groups of 48 AD patients and 48 elderly controls was used for a test or replication analysis. We found that methylation levels in three out of the six genes, CR1, CLU, and PICALM, were significantly lower in AD subjects. The combination of CLU methylation levels and the APOE genotype classified AD patients with AUC = 0.84 and 0.80 in the test and replication analyses, respectively. Our study implicates methylation differences at the CpG island shores of AD-associated genes in the onset of AD and suggests their diagnostic value.
Collapse
Affiliation(s)
- Risa Mitsumori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kazuya Sakaguchi
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taiki Mori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Nobuyoshi Shimoda
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
18
|
van den Hove DLA, Riemens RJM, Koulousakis P, Pishva E. Epigenome-wide association studies in Alzheimer's disease; achievements and challenges. Brain Pathol 2020; 30:978-983. [PMID: 32654262 PMCID: PMC8018126 DOI: 10.1111/bpa.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) represents a devastating progressive neurodegenerative disease with a complex pathophysiology, affecting millions of people worldwide. Recent epigenome-wide association studies suggest a key role for epigenetic mechanisms in its development and course. Despite the fact that current evidence on the role of epigenetic dysregulation in aging and AD is convincing, the pioneering field of neuroepigenetics is still facing many challenges that need to be addressed to fundamentally increase our understanding about the underlying mechanisms of this neurodegenerative disorder. This perspective paper describes the current state of play for epigenetic research into AD and discusses how new methodological advances in the field of epigenetics and related data science disciplines could further spur the development of novel therapeutic agents and biomarker assays.
Collapse
Affiliation(s)
- Daniel L. A. van den Hove
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs)Maastricht UniversityMaastrichtthe Netherlands
- Division of Molecular PsychiatryLaboratory of Translational NeuroscienceCenter of Mental HealthDepartment of PsychiatryUniversity of WürzburgWürzburgGermany
| | - Renzo J. M. Riemens
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs)Maastricht UniversityMaastrichtthe Netherlands
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Philippos Koulousakis
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs)Maastricht UniversityMaastrichtthe Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs)Maastricht UniversityMaastrichtthe Netherlands
- College of Medicine and HealthUniversity of Exeter Medical SchoolExeter UniversityExeterUK
| |
Collapse
|
19
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
20
|
Lardenoije R, Roubroeks JAY, Pishva E, Leber M, Wagner H, Iatrou A, Smith AR, Smith RG, Eijssen LMT, Kleineidam L, Kawalia A, Hoffmann P, Luck T, Riedel-Heller S, Jessen F, Maier W, Wagner M, Hurlemann R, Kenis G, Ali M, del Sol A, Mastroeni D, Delvaux E, Coleman PD, Mill J, Rutten BPF, Lunnon K, Ramirez A, van den Hove DLA. Alzheimer's disease-associated (hydroxy)methylomic changes in the brain and blood. Clin Epigenetics 2019; 11:164. [PMID: 31775875 PMCID: PMC6880587 DOI: 10.1186/s13148-019-0755-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is a complex multifactorial affliction, the pathogenesis of which is thought to involve gene-environment interactions that might be captured in the epigenome. The present study investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD. RESULTS We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35) in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (- 3.76% 5mC, pŠidák = 1.07E-06), CHRNB1 (+ 1.46% 5hmC, pŠidák = 4.01E-04), RHBDF2 (- 3.45% UC, pŠidák = 4.85E-06), and C3 (- 1.20% UC, pŠidák = 1.57E-03). In parallel, in an independent cohort, we compared the blood methylome of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pŠidák = 7.14E-04). CONCLUSIONS The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Janou A. Y. Roubroeks
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Markus Leber
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Holger Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Adam R. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Rebecca G. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lars M. T. Eijssen
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Bioinformatics—BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Amit Kawalia
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Tobias Luck
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Wolfgang Maier
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Muhammad Ali
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russian Federation
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Dolgoprudny Bilbao, Spain
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Elaine Delvaux
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Paul D. Coleman
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Institute of Psychiatry, King’s College London, London, UK
| | - Bart P. F. Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Daniël L. A. van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
22
|
Masoud AM, Bihaqi SW, Alansi B, Dash M, Subaiea GM, Renehan WE, Zawia NH. Altered microRNA, mRNA, and Protein Expression of Neurodegeneration-Related Biomarkers and Their Transcriptional and Epigenetic Modifiers in a Human Tau Transgenic Mouse Model in Response to Developmental Lead Exposure. J Alzheimers Dis 2019; 63:273-282. [PMID: 29614648 DOI: 10.3233/jad-170824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid deposits originating from the amyloid-β protein precursor (AβPP) and aggregates of the microtubule associated protein tau (MAPT) are the hallmarks of Alzheimer's disease (AD). Animal studies have demonstrated a link between early life exposure to lead (Pb) and latent overexpression of the AβPP and MAPT genes and their products via epigenetic reprogramming. The present study monitored APP gene and epigenetic mediators and transcription factors known to regulate it. Western blot analysis and quantitative polymerase chain reaction (qPCR) were used to study the mRNA, miRNA, and proteins levels of AβPP, specificity protein 1 (SP1; a transcriptional regulator of amyloid and tau pathway), and epigenetic intermediates namely: DNA methyltransferase (DNMT) 1, DNMT3a and Methyl- CpG protein binding 2 (MeCP2) in the cerebral cortex of transgenic mice (Knock-in for human MAPT). These transgenic mice were developmentally exposed to Pb and the impact on mRNA, miRNA, and protein levels was scrutinized on postnatal days (PND) 20 and 50. The data revealed a consistent inverse relationship between miRNA and protein levels for SP1 and AβPP both in the basal and exposed conditions, which may influence the levels of their corresponding proteins. On the other hand, the relationship between miRNA and protein levels was not correlative for DNMT1 and DNMT3a. MeCP2 miRNA protein levels corresponded only following environmental exposure. These results suggest that developmental exposure to Pb and subsequent AβPP protein levels may be controlled through transcriptional regulators and epigenetic mechanisms that mainly involve miRNA regulation.
Collapse
Affiliation(s)
- Anwar M Masoud
- Biochemical Technology Program, Faculty of Applied Science, Thamar University, Thamar, Yemen
| | - Syed W Bihaqi
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Bothaina Alansi
- Department of Biomedical and Pharmaceutical Science, University of Rhode Island, Kingston RI, USA
| | - Miriam Dash
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston RI, USA
| | - Gehad M Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - William E Renehan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Nasser H Zawia
- Department of Biomedical and Pharmaceutical Science, University of Rhode Island, Kingston RI, USA.,Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| |
Collapse
|
23
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
24
|
Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, Troakes C, Al-Sarraj S, Sloan C, Mill J, van den Hove DL, Lunnon K. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer's disease. Clin Epigenetics 2019; 11:52. [PMID: 30898171 PMCID: PMC6429761 DOI: 10.1186/s13148-019-0636-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disorder that is hypothesized to involve epigenetic dysfunction. Previous studies of DNA modifications in Alzheimer's disease have been unable to distinguish between DNA methylation and DNA hydroxymethylation. DNA hydroxymethylation has been shown to be enriched in the human brain, although its role in Alzheimer's disease has not yet been fully explored. Here, we utilize oxidative bisulfite conversion, in conjunction with the Illumina Infinium Human Methylation 450K microarray, to identify neuropathology-associated differential DNA methylation and DNA hydroxymethylation in the entorhinal cortex. RESULTS We identified one experiment-wide significant differentially methylated position residing in the WNT5B gene. Next, we investigated pathology-associated regions consisting of multiple adjacent loci. We identified one significant differentially hydroxymethylated region consisting of four probes spanning 104 bases in the FBXL16 gene. We also identified two significant differentially methylated regions: one consisting of two probes in a 93 base-pair region in the ANK1 gene and the other consisting of six probes in a 99-base pair region in the ARID5B gene. We also highlighted three regions that show alterations in unmodified cytosine: two probes in a 39-base pair region of ALLC, two probes in a 69-base pair region in JAG2, and the same six probes in ARID5B that were differentially methylated. Finally, we replicated significant ANK1 disease-associated hypermethylation and hypohydroxymethylation patterns across eight CpG sites in an extended 118-base pair region in an independent cohort using oxidative-bisulfite pyrosequencing. CONCLUSIONS Our study represents the first epigenome-wide association study of both DNA methylation and hydroxymethylation in Alzheimer's disease entorhinal cortex. We demonstrate that previous estimates of DNA hypermethylation in ANK1 in Alzheimer's disease were underestimates as it is confounded by hypohydroxymethylation.
Collapse
Affiliation(s)
- Adam R Smith
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Rebecca G Smith
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Ehsan Pishva
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eilis Hannon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Janou A Y Roubroeks
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joe Burrage
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, King's College London, London, UK
| | - Carolyn Sloan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katie Lunnon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
25
|
Zheng Y, Liu A, Wang ZJ, Cao Q, Wang W, Lin L, Ma K, Zhang F, Wei J, Matas E, Cheng J, Chen GJ, Wang X, Yan Z. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 2019; 142:787-807. [PMID: 30668640 PMCID: PMC6391616 DOI: 10.1093/brain/awy354] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation, which leads to the alteration of gene expression in the brain, is suggested as one of the key pathophysiological bases of ageing and neurodegeneration. Here we found that, in the late-stage familial Alzheimer's disease (FAD) mouse model, repressive histone H3 dimethylation at lysine 9 (H3K9me2) and euchromatic histone methyltransferases EHMT1 and EHMT2 were significantly elevated in the prefrontal cortex, a key cognitive region affected in Alzheimer's disease. Elevated levels of H3K9me2 were also detected in the prefrontal cortex region of post-mortem tissues from human patients with Alzheimer's disease. Concomitantly, H3K9me2 at glutamate receptors was increased in prefrontal cortex of aged FAD mice, which was linked to the diminished transcription, expression and function of AMPA and NMDA receptors. Treatment of FAD mice with specific EHMT1/2 inhibitors reversed histone hyper-methylation and led to the recovery of glutamate receptor expression and excitatory synaptic function in prefrontal cortex and hippocampus. Chromatin immunoprecipitation-sequencing (ChIP-seq) data indicated that FAD mice exhibited genome-wide increase of H3K9me2 enrichment at genes involved in neuronal signalling (including glutamate receptors), which was reversed by EHMT1/2 inhibition. Moreover, the impaired recognition memory, working memory, and spatial memory in aged FAD mice were rescued by the treatment with EHMT1/2 inhibitors. These results suggest that disrupted epigenetic regulation of glutamate receptor transcription underlies the synaptic and cognitive deficits in Alzheimer's disease, and targeting histone methylation enzymes may represent a novel therapeutic strategy for this prevalent neurodegenerative disorder.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Aiyi Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Qing Cao
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lin Lin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jia Cheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Xiaomin Wang
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
26
|
Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, Beck S, Newman S, Lunnon K, Schalkwyk LC, Mill J. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 2018; 21:1618-1627. [PMID: 30349106 DOI: 10.1038/s41593-018-0253-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer's disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease.
Collapse
Affiliation(s)
- Sarah J Marzi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Blizard Institute, Queen Mary University of London, London, UK
| | - Szi Kay Leung
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jeremie Poschmann
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Centre de Recherche en Transplantation et Immunologie, Inserm, Université de Nantes, Nantes, France
| | - Karen Moore
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, UK
| | | | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
27
|
Smith AR, Smith RG, Burrage J, Troakes C, Al-Sarraj S, Kalaria RN, Sloan C, Robinson AC, Mill J, Lunnon K. A cross-brain regions study of ANK1 DNA methylation in different neurodegenerative diseases. Neurobiol Aging 2018; 74:70-76. [PMID: 30439595 DOI: 10.1016/j.neurobiolaging.2018.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Recent epigenome-wide association studies in Alzheimer's disease have highlighted consistent robust neuropathology-associated DNA hypermethylation of the ankyrin 1 (ANK1) gene in the cortex. The extent to which altered ANK1 DNA methylation is also associated with other neurodegenerative diseases is not currently known. In the present study, we used bisulfite pyrosequencing to quantify DNA methylation across 8 CpG sites within a 118 bp region of the ANK1 gene across multiple brain regions in Alzheimer's disease, Vascular dementia, Dementia with Lewy bodies, Huntington's disease, and Parkinson's disease. We demonstrate disease-associated ANK1 hypermethylation in the entorhinal cortex in Alzheimer's disease, Huntington's disease, and Parkinson's disease, whereas in donors with Vascular dementia and Dementia with Lewy bodies, we observed elevated ANK1 DNA methylation only in individuals with coexisting Alzheimer's disease pathology. We did not observe any disease-associated differential ANK1 DNA methylation in the striatum in Huntington's disease or the substantia nigra in Parkinson's disease. Our data suggest that ANK1 is characterized by region and disease-specific differential DNA methylation in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Adam R Smith
- University of Exeter Medical School, University of Bristol, Exeter, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Bristol, Exeter, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Bristol, Exeter, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | | | - Carolyn Sloan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Bristol, Exeter, UK
| | - Katie Lunnon
- University of Exeter Medical School, University of Bristol, Exeter, UK.
| |
Collapse
|
28
|
Zhu Y, Li Y, Lou D, Gao Y, Yu J, Kong D, Zhang Q, Jia Y, Zhang H, Wang Z. Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells. Toxicol Appl Pharmacol 2018; 357:70-79. [PMID: 30130555 DOI: 10.1016/j.taap.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023]
Abstract
Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yanqiang Li
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yang Gao
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jing Yu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dehui Kong
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China
| | - Qiang Zhang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Yankai Jia
- GENEWIZ Suzhou, 218 Xinghu Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Haimou Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China.
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China; Fengxian Central Hospital, 9588 Nanfeng Hwy, Fengxian District, Shanghai 201406, China.
| |
Collapse
|
29
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Eid A, Bihaqi SW, Hemme C, Gaspar JM, Hart RP, Zawia NH. Histone acetylation maps in aged mice developmentally exposed to lead: epigenetic drift and Alzheimer-related genes. Epigenomics 2018; 10:573-583. [PMID: 29722544 DOI: 10.2217/epi-2017-0143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Early life exposure to lead (Pb) has been shown to increase late life biomarkers involved in Alzheimer's disease (AD) pathology. Here, we tested the hypothesis that latent over expression of AD-related genes may be regulated through histone activation pathways. METHODS Chromatin immunoprecipitation sequencing was used to map the histone activation mark (H3K9Ac) to the mouse genome in developmentally Pb exposed mice on postnatal days 20, 270 and 700. RESULTS Exposure to Pb resulted in a global downregulation of H3K9Ac across the lifespan; except in genes associated with the Alzheimer pathway. DISCUSSION Early life exposure to Pb results in an epigenetic drift in H3K9Ac consistent with latent global gene repression. Alzheimer-related genes do not follow this trend.
Collapse
Affiliation(s)
- Aseel Eid
- Interdisciplinary Neurosciences Program, University of Rhode Island, Kingston, RI 02881, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Christopher Hemme
- Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - John M Gaspar
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Ronald P Hart
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nasser H Zawia
- Interdisciplinary Neurosciences Program, University of Rhode Island, Kingston, RI 02881, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
31
|
Hypermethylation of TRIM59 and KLF14 Influences Cell Death Signaling in Familial Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6918797. [PMID: 29849909 PMCID: PMC5904768 DOI: 10.1155/2018/6918797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/14/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms play an important role in the development and progression of various neurodegenerative diseases. Abnormal methylation of numerous genes responsible for regulation of transcription, DNA replication, and apoptosis has been linked to Alzheimer's disease (AD) pathology. We have recently performed whole transcriptome profiling of familial early-onset Alzheimer's disease (fEOAD) patient-derived fibroblasts. On this basis, we demonstrated a strong dysregulation of cell cycle checkpoints and DNA damage response (DDR) in both fibroblasts and reprogrammed neurons. Here, we show that the aging-correlated hypermethylation of KLF14 and TRIM59 genes associates with abnormalities in DNA repair and cell cycle control in fEOAD. Based on the resulting transcriptome networks, we found that the hypermethylation of KLF14 might be associated with epigenetic regulation of the chromatin organization and mRNA processing followed by hypermethylation of TRIM59 likely associated with the G2/M cell cycle phase and p53 role in DNA repair with BRCA1 protein as the key player. We propose that the hypermethylation of KLF14 could constitute a superior epigenetic mechanism for TRIM59 hypermethylation. The methylation status of both genes affects genome stability and might contribute to proapoptotic signaling in AD. Since this study combines data obtained from various tissues from AD patients, it reinforces the view that the genetic methylation status in the blood may be a valuable predictor of molecular processes occurring in affected tissues. Further research is necessary to define a detailed role of TRIM59 and KLF4 in neurodegeneration of neurons.
Collapse
|
32
|
Smith RG, Hannon E, De Jager PL, Chibnik L, Lott SJ, Condliffe D, Smith AR, Haroutunian V, Troakes C, Al-Sarraj S, Bennett DA, Powell J, Lovestone S, Schalkwyk L, Mill J, Lunnon K. Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer's disease neuropathology. Alzheimers Dement 2018; 14:1580-1588. [PMID: 29550519 PMCID: PMC6438205 DOI: 10.1016/j.jalz.2018.01.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/07/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023]
Abstract
Introduction: Alzheimer’s disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. Methods: We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). Results: We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10−18). Discussion: We present robust evidence for elevated DNA methylation associated with Alzheimer’s disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer’s disease, implicating the HOX gene family as a target for future investigation.
Collapse
Affiliation(s)
- Rebecca G Smith
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital Campus, Exeter, Devon, UK
| | - Eilis Hannon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital Campus, Exeter, Devon, UK
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Lori Chibnik
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Simon J Lott
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Adam R Smith
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital Campus, Exeter, Devon, UK
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; JJ Peters VA Medical Center, Bronx, NY, USA
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - John Powell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | - Jonathan Mill
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital Campus, Exeter, Devon, UK.
| | - Katie Lunnon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital Campus, Exeter, Devon, UK.
| |
Collapse
|
33
|
Karlsson IK, Ploner A, Wang Y, Gatz M, Pedersen NL, Hägg S. Apolipoprotein E DNA methylation and late-life disease. Int J Epidemiol 2018; 47:899-907. [PMID: 29509901 PMCID: PMC7263750 DOI: 10.1093/ije/dyy025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study aims to investigate if DNA methylation of the apolipoprotein E (APOE) locus affects the risks of dementia, Alzheimeŕs disease (AD) or cardiovascular disease (CVD). Methods DNA methylation across theAPOE gene has previously been categorized into three distinct regions: a hypermethylated region in the promoter, a hypomethylated region in the first two introns and exons and a hypermethylated region in the 3′exon that also harbours theAPOE ε2 and ε4 alleles. DNA methylation levels in leukocytes were measured using the Illumina 450K array in 447 Swedish twins (mean age 78.1 years). We used logistic regression to investigate whether methylation levels in those regions affect the odds of disease. Results We found that methylation levels in the promoter region were associated with dementia and AD after adjusting for sex, age at blood draw, education, smoking and relatedness among twins [odds ratio (OR) 1.32 per standard deviation increase in methylation levels, 95% confidence interval (CI) 1.08–1.62 for dementia; OR 1.38, 95% CI 1.07–1.78 for AD). We did not detect any difference in methylation levels between CVD cases and controls. Results were similar when comparing within discordant twin pairs, and did not differ as a function ofAPOE genotype. Conclusions We found that higher DNA methylation levels in the promoter region ofAPOE increase the odds of dementia and AD, but not CVD. The effect was independent ofAPOE genotype, indicating that allelic variation and methylation variation inAPOE may act independently to increase the risk of dementia.
Collapse
Affiliation(s)
- Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Gatz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Lardenoije R, van den Hove DLA, Havermans M, van Casteren A, Le KX, Palmour R, Lemere CA, Rutten BPF. Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease. Mol Cell Neurosci 2018; 86:1-15. [PMID: 29113959 PMCID: PMC6863355 DOI: 10.1016/j.mcn.2017.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Both aging and Alzheimer's disease (AD) are associated with widespread epigenetic changes, with most evidence suggesting global hypomethylation in AD. It is, however, unclear how these age-related epigenetic changes are linked to molecular aberrations as expressed in animal models of AD. Here, we investigated age-related changes of epigenetic markers of DNA methylation and hydroxymethylation in a range of animal models of AD, and their correlations with amyloid plaque load. Three transgenic mouse models, including the J20, APP/PS1dE9 and 3xTg-AD models, as well as Caribbean vervets (a non-transgenic non-human primate model of AD) were investigated. In the J20 mouse model, an age-related decrease in DNA methylation was found in the dentate gyrus (DG) and a decrease in the ratio between DNA methylation and hydroxymethylation was found in the DG and cornu ammonis (CA) 3. In the 3xTg-AD mice, an age-related increase in DNA methylation was found in the DG and CA1-2. No significant age-related alterations were found in the APP/PS1dE9 mice and non-human primate model. In the J20 model, hippocampal plaque load showed a significant negative correlation with DNA methylation in the DG, and with the ratio a negative correlation in the DG and CA3. For the APP/PS1dE9 model a negative correlation between the ratio and plaque load was observed in the CA3, as well as a negative correlation between DNA methyltransferase 3A (DNMT3A) levels and plaque load in the DG and CA3. Thus, only the J20 model showed an age-related reduction in global DNA methylation, while DNA hypermethylation was observed in the 3xTg-AD model. Given these differences between animal models, future studies are needed to further elucidate the contribution of different AD-related genetic variation to age-related epigenetic changes.
Collapse
Affiliation(s)
- Roy Lardenoije
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA; School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands
| | - Daniël L A van den Hove
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Germany
| | - Monique Havermans
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands
| | - Anne van Casteren
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Roberta Palmour
- Behavioral Science Foundation, Eastern Caribbean, Saint Kitts and Nevis; McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands.
| |
Collapse
|
35
|
Liang R. Cross Talk Between Aluminum and Genetic Susceptibility and Epigenetic Modification in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:173-191. [DOI: 10.1007/978-981-13-1370-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Snijders C, Bassil KC, de Nijs L. Methodologies of Neuroepigenetic Research: Background, Challenges and Future Perspectives. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:15-27. [DOI: 10.1016/bs.pmbts.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Imm J, Kerrigan TL, Jeffries A, Lunnon K. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease. Epigenomics 2017; 9:1455-1468. [DOI: 10.2217/epi-2017-0076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.
Collapse
Affiliation(s)
- Jennifer Imm
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Talitha L Kerrigan
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Aaron Jeffries
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Katie Lunnon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| |
Collapse
|
38
|
Roubroeks JAY, Smith RG, van den Hove DLA, Lunnon K. Epigenetics and DNA methylomic profiling in Alzheimer's disease and other neurodegenerative diseases. J Neurochem 2017; 143:158-170. [PMID: 28805248 DOI: 10.1111/jnc.14148] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Recent studies have suggested a role for epigenetic mechanisms in the complex etiology of various neurodegenerative diseases. In this review, we discuss advances that have been made toward understanding the role of epigenetic processes in neurodegenerative disorders, with a particular focus on Alzheimer's disease, where the most extensive studies have been undertaken to date. We provide a brief overview of DNA modifications, followed by a summarization of studies of DNA modifications in Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Devon, UK
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands.,Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
39
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|
40
|
Devall M, Smith RG, Jeffries A, Hannon E, Davies MN, Schalkwyk L, Mill J, Weedon M, Lunnon K. Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue. Clin Epigenetics 2017; 9:47. [PMID: 28473874 PMCID: PMC5415779 DOI: 10.1186/s13148-017-0337-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. Results We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions (p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples (N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Conclusions Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.
Collapse
Affiliation(s)
- Matthew Devall
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Rebecca G Smith
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Aaron Jeffries
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Eilis Hannon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Matthew N Davies
- Department of Twin Research & Genetic Epidemiology, King's College London, Lambeth Palace Road, London, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Michael Weedon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Katie Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| |
Collapse
|
41
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
42
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
43
|
Yu Y, Mingjiao W, Yang X, Sui M, Zhang T, Liang J, Gu X, Wang X. Association between DNA methylation of SORL1 5′-flanking region and mild cognitive impairment in type 2 diabetes mellitus. ANNALES D'ENDOCRINOLOGIE 2016; 77:625-632. [DOI: 10.1016/j.ando.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
|
44
|
Allen M, Burgess JD, Ballard T, Serie D, Wang X, Younkin CS, Sun Z, Kouri N, Baheti S, Wang C, Carrasquillo MM, Nguyen T, Lincoln S, Malphrus K, Murray M, Golde TE, Price ND, Younkin SG, Schellenberg GD, Asmann Y, Ordog T, Crook J, Dickson D, Ertekin-Taner N. Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci. Acta Neuropathol 2016; 132:197-211. [PMID: 27115769 DOI: 10.1007/s00401-016-1576-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/12/2023]
Abstract
To determine the effects of single nucleotide polymorphisms (SNPs) identified in a genome-wide association study of progressive supranuclear palsy (PSP), we tested their association with brain gene expression, CpG methylation and neuropathology. In 175 autopsied PSP subjects, we performed associations between seven PSP risk variants and temporal cortex levels of 20 genes in-cis, within ±100 kb. Methylation measures were collected using reduced representation bisulfite sequencing in 43 PSP brains. To determine whether SNP/expression associations are due to epigenetic modifications, CpG methylation levels of associated genes were tested against relevant variants. Quantitative neuropathology endophenotypes were tested for SNP associations in 422 PSP subjects. Brain levels of LRRC37A4 and ARL17B were associated with rs8070723; MOBP with rs1768208 and both ARL17A and ARL17B with rs242557. Expression associations for LRRC37A4 and MOBP were available in an additional 100 PSP subjects. Meta-analysis revealed highly significant associations for PSP risk alleles of rs8070723 and rs1768208 with higher LRRC37A4 and MOBP brain levels, respectively. Methylation levels of one CpG in the 3' region of ARL17B associated with rs242557 and rs8070723. Additionally, methylation levels of an intronic ARL17A CpG associated with rs242557 and that of an intronic MOBP CpG with rs1768208. MAPT and MOBP region risk alleles also associated with higher levels of neuropathology. Strongest associations were observed for rs242557/coiled bodies and tufted astrocytes; and for rs1768208/coiled bodies and tau threads. These findings suggest that PSP variants at MAPT and MOBP loci may confer PSP risk via influencing gene expression and tau neuropathology. MOBP, LRRC37A4, ARL17A and ARL17B warrant further assessment as candidate PSP risk genes. Our findings have implications for the mechanism of action of variants at some of the top PSP risk loci.
Collapse
Affiliation(s)
- Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Travis Ballard
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Daniel Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Curtis S Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sarah Lincoln
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kimberly Malphrus
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Nathan D Price
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA, 98109, USA
| | - Steven G Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Gerard D Schellenberg
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julia Crook
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
45
|
Schneider E, Dittrich M, Böck J, Nanda I, Müller T, Seidmann L, Tralau T, Galetzka D, El Hajj N, Haaf T. CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development. Gene 2016; 592:110-118. [PMID: 27468947 DOI: 10.1016/j.gene.2016.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/28/2016] [Accepted: 07/23/2016] [Indexed: 01/03/2023]
Abstract
Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.
Collapse
Affiliation(s)
- Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Larissa Seidmann
- Department of Pathology, University Medical Center, 55131 Mainz, Germany
| | - Tim Tralau
- Department of Pathology, University Medical Center, 55131 Mainz, Germany; Rehabilitation Clinic for Children and Adolescents, 25980 Westerland/Sylt, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiotherapy, University Medical Center, 55131 Mainz, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.
| |
Collapse
|
46
|
Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model. Neurotoxicology 2016; 55:154-159. [PMID: 27293183 DOI: 10.1016/j.neuro.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/11/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregation of the tau protein in the human brain. The best known of these illnesses is Alzheimer's disease (AD); a disease where the microtubule associated protein tau (MAPT) becomes hyperphosphorylated (lowering its binding affinity to microtubules) and aggregates within neurons in the form of neurofibrillary tangles (NFTs). In this paper we examine whether environmental factors play a significant role in tau pathogenesis. Our studies were conducted in a double mutant mouse model that expressed the human tau gene and lacked the gene for murine tau. The human tau mouse model was tested for the transgene's ability to respond to an environmental toxicant. Pups were developmentally exposed to lead (Pb) from postnatal day (PND) 1-20 with 0.2% Pb acetate. Mice were then sacrificed at PND 20, 30, 40 and 60. Protein and mRNA levels for tau and CDK5 as well as tau phosphorylation at Ser396 were determined. In addition, the potential role of miRNA in tau expression was investigated by measuring levels of miR-34c, a miRNA that targets the mRNA for human tau, at PND20 and 50. The expression of the human tau transgene was altered by developmental exposure to Pb. This exposure also altered the expression of miR-34c. Our findings are the first of their kind to test the responsiveness of the human tau gene to an environmental toxicant and to examine an epigenetic mechanism that may be involved in the regulation of this gene's expression.
Collapse
|
47
|
Smith AR, Mill J, Smith RG, Lunnon K. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Masoud AM, Bihaqi SW, Machan JT, Zawia NH, Renehan WE. Early-Life Exposure to Lead (Pb) Alters the Expression of microRNA that Target Proteins Associated with Alzheimer’s Disease. J Alzheimers Dis 2016; 51:1257-64. [DOI: 10.3233/jad-151018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anwar M. Masoud
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- Biochemical Technology Program, Faculty of Applied Science, Thamar University, Thamar, Yemen
| | - Syed W. Bihaqi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Jason T. Machan
- Lifespan Biostatistics Core and Departments of Orthopaedics and Surgery, Warren Alpert Medical School, Brown University, Providence RI, USA
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E. Renehan
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
49
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
50
|
Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 2:123-31. [PMID: 27239543 PMCID: PMC4879653 DOI: 10.1016/j.dadm.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Early life lead (Pb) exposure results in a latent increase in Alzheimer's disease (AD)-related proteins, and cognitive deficits late in life in both rodents and primates. This study was conducted to investigate if these late life changes were accompanied by epigenetic alterations. METHODS Western blot analysis and RT-PCR were used to measure Deoxyribonucleic acid methylation regulators (DNMT1, DNMT3a, MeCP2, MAT2A) and histone proteins (H3K9Ac, H3K4me2, H3K27me3). RESULTS Cerebral levels of DNMT1 and MeCP2 were significantly reduced in mice exposed to Pb early in life, whereas the expression of DNMT3a was not altered. Levels of MAT2a were increased in the Pb-exposed mice across the lifespan. H3K9Ac and H3K4me2, involved in gene activation, were decreased, whereas the repressive mark H3K27me3 was elevated. DISCUSSION Epigenetic modifiers are affected by the developmental exposure to Pb and may play a role in mediating the latent increases in AD-related proteins in the brain.
Collapse
Affiliation(s)
- Aseel Eid
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Syed Waseem Bihaqi
- Department of Pharmacology and Toxicology, University of Hail, Hail, Kingdom of Saudi Arabia
| | - William E. Renehan
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Nasser H. Zawia
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| |
Collapse
|