1
|
Friedrich VK, Hoke MK, Schurr TG. Conducting Human Biology Research Using Invasive Clinical Samples: Methods, Strengths, and Limitations. Am J Hum Biol 2025; 37:e24170. [PMID: 39462972 DOI: 10.1002/ajhb.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/14/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
Invasive biological samples collected during clinical care represent a valuable yet underutilized source of information about human biology. However, the challenges of working with clinical personnel and the invasive nature of sample collection in biomedical studies can hinder the acquisition of sufficiently large sample sizes for robust statistical analyses. In addition, the incorporation of demographic data from participants is crucial for ensuring the inclusiveness of representative populations, identifying at-risk groups, and addressing healthcare disparities. Drawing on both research experiences and the existing literature, this article provides recommendations for researchers aiming to undertake efficient and impactful projects involving invasive human samples. The suggested strategies include: (1) establishing productive collaborations with clinicians; (2) optimizing sample quality through meticulous collection and handling procedures; and (3) strategically implementing a retrospective model to capitalize on existing invasive sample repositories. When established, cooperative work between clinical health care workers and biological anthropologists can yield insights into human biology that have the potential to improve human health and wellbeing.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Morgan K Hoke
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thedore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ferreira RC, Alves GV, Ramon M, Antoneli F, Briones MRS. Reconstructing Prehistoric Viral Genomes from Neanderthal Sequencing Data. Viruses 2024; 16:856. [PMID: 38932149 PMCID: PMC11209150 DOI: 10.3390/v16060856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.
Collapse
Affiliation(s)
- Renata C. Ferreira
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
- Epigene LLC, São Paulo, SP 04537-080, Brazil
| | - Gustavo V. Alves
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | | | - Fernando Antoneli
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| |
Collapse
|
3
|
Voinescu CD, Mozere M, Genovese G, Downie ML, Gupta S, Gale DP, Bockenhauer D, Kleta R, Arcos-Burgos M, Stanescu HC. A Neanderthal haplotype introgressed into the human genome confers protection against membranous nephropathy. Kidney Int 2024; 105:791-798. [PMID: 38367960 DOI: 10.1016/j.kint.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene. We reconstructed the phylogeny of Neanderthal and modern haplotypes in this region and calculated the probability of the observed clustering being the result of introgression or common descent. We imputed variants for the participants in our previous genome-wide association study and we compared the distribution of Neanderthal variants between MN cases and controls. The region associated with the lead MN risk locus in the PLA2R1 gene was confirmed and showed that, within a 507 kb region enriched in introgressed sequence, a stringently defined 105 kb haplotype, intersecting the coding regions for PLA2R1 and ITGB6, is inherited from Neanderthals. Thus, introgressed Neanderthal haplotypes overlapping PLA2R1 are differentially represented in MN cases and controls, with enrichment In controls suggesting a protective effect.
Collapse
Affiliation(s)
- Cătălin D Voinescu
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Monika Mozere
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mallory L Downie
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Sanjana Gupta
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Daniel P Gale
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Robert Kleta
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Horia C Stanescu
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK.
| |
Collapse
|
4
|
Lee OYC, Wu HHT, Besra GS, Minnikin DE, Jaeger HY, Maixner F, Zink A, Gasparik M, Pap I, Bereczki Z, Pálfi G. Sensitive lipid biomarker detection for tuberculosis in late Neanderthal skeletons from Subalyuk Cave, Hungary. Tuberculosis (Edinb) 2023; 143S:102420. [PMID: 38012927 DOI: 10.1016/j.tube.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Skeletal remains of two Neanderthal individuals, a 25-35 year-old woman and a 3-4 year-old child, were discovered in a Subalyuk Cave in North-Eastern Hungary. Radiocarbon dating of the female and child remains revealed an age of 39,732-39,076 and 36,117-35,387 cal BP, respectively. Paleopathological studies of these Neanderthal remains revealed probable evidence of skeletal mycobacterial infection, including in the sacrum of the adult specimen and the endocranial surface of the child's skull. Application of PCR amplification to the juvenile cranium and a vertebra gave a positive result (IS6110) for tuberculosis, backed up by spoligotyping. Lipid biomarker analyses of the same two specimens revealed definitive signals for C32 mycoserosates, a very characteristic component of the Mycobacterium tuberculosis complex (MTBC). A vertebra from the adult provided weak evidence for mycocerosate biomarkers. The correlation of probable skeletal lesions with characteristic amplified DNA fragments and a proven lipid biomarker points to the presence of tuberculosis in these Neanderthals. In particular, the closely similar biomarker profiles, for two distinct juvenile cranial and vertebral bones, strengthen this diagnosis.
Collapse
Affiliation(s)
- Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK.
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Heidi Y Jaeger
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Mihály Gasparik
- Department of Palaeontology and Geology, Hungarian Natural History Museum, Hungary
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, Hungary; Department of Anthropology, Eötvös Loránd University, Budapest, Hungary; Department of Biological Anthropology, University of Szeged, Hungary
| | - Zsolt Bereczki
- Department of Biological Anthropology, University of Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Hungary
| |
Collapse
|
5
|
Dutour O. The paleopathology and paleoepidemiology of Upper paleolithic tuberculosis: Review of evidence and hypotheses. Tuberculosis (Edinb) 2023; 143S:102348. [PMID: 38012915 DOI: 10.1016/j.tube.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 11/29/2023]
Abstract
Molecular phylogeny work has shown that tuberculosis is ancient human-adapted infection predating the Neolithic period. They also show that the Upper Paleolithic is a key period of emergence of the MTB complex strains, contemporary with the exit of modern man from Africa. Despite the richness of Upper Paleolithic sites in Eurasia and the relative abundance of human remains, the only proven case of Paleolithic tuberculosis has been described so far date from the Azilian, a culture of the European Final Paleolithic, which is more recent than the ancient Neolithic sites of the Near East, area that currently hold the record for the oldest paleopathological evidence of tuberculosis. The purpose of this review is to present evidence for the existence of tuberculosis in the Paleolithic and to list hypotheses explaining the weak demonstrative contribution of paleopathology for pre-Neolithic periods.
Collapse
Affiliation(s)
- Olivier Dutour
- Ecole Pratique des Haute Etudes, PSL University Paris, France; UMR 5199 PACEA (Université de Bordeaux-Centre National de la Recherche Scientifique), France.
| |
Collapse
|
6
|
Houldcroft CJ, Underdown S. Infectious disease in the Pleistocene: Old friends or old foes? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:513-531. [PMID: 38006200 DOI: 10.1002/ajpa.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 11/26/2023]
Abstract
The impact of endemic and epidemic disease on humans has traditionally been seen as a comparatively recent historical phenomenon associated with the Neolithisation of human groups, an increase in population size led by sedentarism, and increasing contact with domesticated animals as well as species occupying opportunistic symbiotic and ectosymbiotic relationships with humans. The orthodox approach is that Neolithisation created the conditions for increasing population size able to support a reservoir of infectious disease sufficient to act as selective pressure. This orthodoxy is the result of an overly simplistic reliance on skeletal data assuming that no skeletal lesions equated to a healthy individual, underpinned by the assumption that hunter-gatherer groups were inherently healthy while agricultural groups acted as infectious disease reservoirs. The work of van Blerkom, Am. J. Phys. Anthropol., vol. suppl 37 (2003), Wolfe et al., Nature, vol. 447 (2007) and Houldcroft and Underdown, Am. J. Phys. Anthropol., vol. 160, (2016) has changed this landscape by arguing that humans and pathogens have long been fellow travelers. The package of infectious diseases experienced by our ancient ancestors may not be as dissimilar to modern infectious diseases as was once believed. The importance of DNA, from ancient and modern sources, to the study of the antiquity of infectious disease, and its role as a selective pressure cannot be overstated. Here we consider evidence of ancient epidemic and endemic infectious diseases with inferences from modern and ancient human and hominin DNA, and from circulating and extinct pathogen genomes. We argue that the pandemics of the past are a vital tool to unlock the weapons needed to fight pandemics of the future.
Collapse
Affiliation(s)
| | - Simon Underdown
- Human Origins and Palaeoenvironmental Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
8
|
Turner MD. Possible Causes of Hypertrophic Osteoarthropathy in the La Ferrassie 1 Neanderthal. Cureus 2023; 15:e35721. [PMID: 37016656 PMCID: PMC10066876 DOI: 10.7759/cureus.35721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
For over a century, researchers have been perplexed by the unique osteological findings on La Ferrassie 1 (LF1), one of the most complete Neanderthal remains ever found. In 1997, Fennel and Trinkaus proposed that LF1 suffered from hypertrophic osteoarthropathy (HOA), likely secondary to chronic thoracic infection or pulmonary malignancy. This disease process can have many etiologies, and no study has fully explored the possible origin of LF1's HOA. Ultimately, it is most likely that LF1's HOA etiology arose from one of the many infectious diseases that prehistoric Neanderthals were exposed to, specifically a chronic pulmonary RNA virus.
Collapse
|
9
|
Khan T, Rahman M, Ahmed I, Al Ali F, Jithesh PV, Marr N. Human leukocyte antigen class II gene diversity tunes antibody repertoires to common pathogens. Front Immunol 2022; 13:856497. [PMID: 36003377 PMCID: PMC9393332 DOI: 10.3389/fimmu.2022.856497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allelic diversity of human leukocyte antigen (HLA) class II genes may help maintain humoral immunity against infectious diseases. In this study, we investigated germline genetic variation in classical HLA class II genes and employed a systematic, unbiased approach to explore the relative contribution of this genetic variation in the antibody repertoire to various common pathogens. We leveraged a well-defined cohort of 800 adults representing the general Arab population in which genetic material is shared because of the high frequency of consanguineous unions. By applying a high-throughput method for large-scale antibody profiling to this well-defined cohort, we were able to dissect the overall effect of zygosity for classical HLA class II genes, as well as the effects associated with specific HLA class II alleles, haplotypes and genotypes, on the antimicrobial antibody repertoire breadth and antibody specificity with unprecedented resolution. Our population genetic studies revealed that zygosity of the classical HLA class II genes is a strong predictor of antibody responses to common human pathogens, suggesting that classical HLA class II gene heterozygosity confers a selective advantage. Moreover, we demonstrated that multiple HLA class II alleles can have additive effects on the antibody repertoire to common pathogens. We also identified associations of HLA-DRB1 genotypes with specific antigens. Our findings suggest that HLA class II gene polymorphisms confer specific humoral immunity against common pathogens, which may have contributed to the genetic diversity of HLA class II loci during hominine evolution.
Collapse
Affiliation(s)
| | | | | | | | - Puthen Veettil Jithesh
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Nico Marr,
| |
Collapse
|
10
|
Different content biases affect fidelity of disease transmission along experimental diffusion chains. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Silva RH, Moura JMB, Ferreira Júnior WS, Nascimento ALB, Albuquerque UP. Previous Experiences and Regularity of Occurrence in Evolutionary Time Affect the Recall of Ancestral and Modern Diseases. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00325-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Transmission of Zoonotic Diseases in the Daily Life of Ancient Pompeii and Herculaneum (79 CE, Italy): A Review of Animal-Human-Environment Interactions through Biological, Historical and Archaeological Sources. Animals (Basel) 2022; 12:ani12020213. [PMID: 35049834 PMCID: PMC8773449 DOI: 10.3390/ani12020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
There is no doubt that the cultural and urban environments contributed to the animal-human interaction in the daily life of the ancient Roman world. The singularity of the circumstances of the burial of Pompeii and Herculaneum, together with literary sources and the extraordinary state of preservation of the archaeological and biological material found, has provided researchers with an opportunity, unique in its kind, to reconstruct the life and ways of living of its inhabitants. This study illustrates the main drivers and mechanisms for the distribution and transmission of zoonotic diseases in these ancient Roman populations, such as (i) the large number and role that different animal species played in the ancient Roman world; (ii) the environmental conditions for the survival of parasites, pathogens and vectors; (iii) the great variety and intensity of commercial activities and occupations that presented certain risks of infections; (iv) the absence of adequate safety controls during processing, distribution and preservation of foodstuffs in unsuitable environments and some culinary habits; (v) the inadequate mechanisms of the disposal of human waste and the biotic contamination of watercourses and reservoirs; and finally (vi) the use of animals related to religious and cultural practices.
Collapse
|
13
|
Thannesberger J, Rascovan N, Eisenmann A, Klymiuk I, Zittra C, Fuehrer HP, Scantlebury-Manning T, Gittens-St Hilaire M, Austin S, Landis RC, Steininger C. Viral metagenomics reveals the presence of novel Zika virus variants in Aedes mosquitoes from Barbados. Parasit Vectors 2021; 14:343. [PMID: 34187544 PMCID: PMC8244189 DOI: 10.1186/s13071-021-04840-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background The Zika virus (ZIKV) epidemic of 2015/2016 spread throughout numerous countries. It emerged in mainland Latin America and spread to neighboring islands, including the Caribbean island of Barbados. Recent studies have indicated that the virus must have already been circulating in local mosquito populations in Brazil for almost 2 years before it was identified by the World Health Organization in 2015. Metagenomic detection assays have the potential to detect emerging pathogens without prior knowledge of their genomic nucleic acid sequence. Yet their applicability as vector surveillance tools has been widely limited by the complexity of DNA populations from field-collected mosquito preparations. The aim of this study was to investigate local vector biology and characterize metagenomic arbovirus diversity in Aedes mosquitoes during the ongoing 2015/2016 ZIKV epidemic. Methods We performed a short-term vector screening study on the island of Barbados during the ongoing 2015/2016 ZIKV epidemic, where we sampled local Aedes mosquitoes. We reanalyzed mosquito viral microbiome data derived from standard Illumina MiSeq sequencing to detect arbovirus sequences. Additionally, we employed deep sequencing techniques (Illumina HiSeq) and designed a novel bait capture enrichment assay to increase sequencing efficiency for arbovirus sequences from complex DNA samples. Results We found that Aedes aegypti seemed to be the most likely vector of ZIKV, although it prevailed at a low density during the observed time period. The number of detected viruses increased with sequencing depth. Arbovirus sequence enrichment of metagenomic DNA preparations allowed the detection of arbovirus sequences of two different ZIKV genotypes, including a novel one. To our knowledge, this is the first report of the S3116W mutation in the NS5 gene region of ZIKV polyprotein. Conclusions The metagenomic arbovirus detection approach presented here may serve as a useful tool for the identification of epidemic-causing arboviruses with the additional benefit of enabling the collection of phylogenetic information on the source. Apart from detecting more than 88 viruses using this approach, we also found evidence of novel ZIKV variants circulating in the local mosquito population during the observed time period. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04840-0.
Collapse
Affiliation(s)
- J Thannesberger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - N Rascovan
- Department of Genomes & Genetics, Institut Pasteur, Paris, France
| | - A Eisenmann
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - I Klymiuk
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - C Zittra
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - H P Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - T Scantlebury-Manning
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | | | - S Austin
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Cave Hill, Barbados
| | - R C Landis
- Edmund Cohen Laboratory for Vascular Research, George Alleyne Chronic Disease Research Centre, The University of the West Indies, Bridgetown, Barbados
| | - C Steininger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Yarzábal LA, Salazar LMB, Batista-García RA. Climate change, melting cryosphere and frozen pathogens: Should we worry…? ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:489-501. [PMID: 38624658 PMCID: PMC8164958 DOI: 10.1007/s42398-021-00184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Permanently frozen environments (glaciers, permafrost) are considered as natural reservoirs of huge amounts of microorganisms, mostly dormant, including human pathogens. Due to global warming, which increases the rate of ice-melting, approximately 4 × 1021 of these microorganisms are released annually from their frozen confinement and enter natural ecosystems, in close proximity to human settlements. Some years ago, the hypothesis was put forward that this massive release of potentially-pathogenic microbes-many of which disappeared from the face of the Earth thousands and even millions of years ago-could give rise to epidemics. The recent anthrax outbreaks that occurred in Siberia, and the presence of bacterial and viral pathogens in glaciers worldwide, seem to confirm this hypothesis. In that context, the present review summarizes the currently available scientific evidence that allows us to imagine a near future in which epidemic outbreaks, similar to the abovementioned, could occur as a consequence of the resurrection and release of microbes from glaciers and permafrost. Supplementary Information The online version of this article (10.1007/s42398-021-00184-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Campus Miracielos, Ricaurte, Ecuador
| | - Lenys M. Buela Salazar
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| |
Collapse
|
15
|
An emerging consensus in palaeoanthropology: demography was the main factor responsible for the disappearance of Neanderthals. Sci Rep 2021; 11:4925. [PMID: 33649483 PMCID: PMC7921565 DOI: 10.1038/s41598-021-84410-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The causes of Neanderthal disappearance about 40,000 years ago remain highly contested. Over a dozen serious hypotheses are currently endorsed to explain this enigmatic event. Given the relatively large number of contending explanations and the relatively large number of participants in the debate, it is unclear how strongly each contender is supported by the research community. What does the community actually believe about the demise of Neanderthals? To address this question, we conducted a survey among practicing palaeo-anthropologists (total number of respondents = 216). It appears that received wisdom is that demography was the principal cause of the demise of Neanderthals. In contrast, there is no received wisdom about the role that environmental factors and competition with modern humans played in the extinction process; the research community is deeply divided about these issues. Finally, we tested the hypothesis that palaeo-anthropologists' stand in the debate co-varies with their socio-political views and attitudes. We found no evidence for such a correlation.
Collapse
|
16
|
Cullen VL, Smith VC, Tushabramishvili N, Mallol C, Dee M, Wilkinson KN, Adler DS. A revised AMS and tephra chronology for the Late Middle to Early Upper Paleolithic occupations of Ortvale Klde, Republic of Georgia. J Hum Evol 2020; 151:102908. [PMID: 33370643 DOI: 10.1016/j.jhevol.2020.102908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The nature and timing of the shift from the Late Middle Paleolithic (LMP) to the Early Upper Paleolithic (EUP) varied geographically, temporally, and substantively across the Near East and Eurasia; however, the result of this process was the archaeological disappearance of Middle Paleolithic technologies across the length and breadth of their geographic distribution. Ortvale Klde rockshelter (Republic of Georgia) contains the most detailed LMP-EUP archaeological sequence in the Caucasus, an environmentally and topographically diverse region situated between southwest Asia and Europe. Tephrochronological investigations at the site reveal volcanic ash (tephra) from various volcanic sources and provide a tephrostratigraphy for the site that will facilitate future correlations in the region. We correlate one of the cryptotephra layers to the large, caldera-forming Nemrut Formation eruption (30,000 years ago) from Nemrut volcano in Turkey. We integrate this tephrochronological constraint with new radiocarbon dates and published ages in an OxCal Bayesian age model to produce a revised chronology for the site. This model increases the ages for the end of the LMP (∼47.5-44.2 ka cal BP) and appearance of the EUP (∼46.7-43.6 ka cal BP) at Ortvale Klde, which are earlier than those currently reported for other sites in the Caucasus but similar to estimates for specific sites in southwest Asia and eastern Europe. These data, coupled with archaeological, stratigraphic, and taphonomic observations, suggest that at Ortvale Klde, (1) the appearance of EUP technologies of bone and stone has no technological roots in the preceding LMP, (2) a LMP population vacuum likely preceded the appearance of these EUP technologies, and (3) the systematic combination of tephra correlations and absolute dating chronologies promises to substantially improve our inter-regional understanding of this critical time interval of human evolution and the potential interconnectedness of hominins at different sites.
Collapse
Affiliation(s)
- Victoria L Cullen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom
| | - Victoria C Smith
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom
| | | | - Carolina Mallol
- Archaeological Micromorphology and Biomarker Research Lab, Instituto Universitario de Bio-Orgánica Antonio González, Tenerife, Spain; Departamento de Geografía e Historia, Universidad de La Laguna Campus de Guajara, Tenerife, Spain
| | - Michael Dee
- Centre for Isotope Research, ESRIG, University of Groningen, Groningen, the Netherlands
| | - Keith N Wilkinson
- Department of Anthropology and Archaeology, University of Winchester, United Kingdom
| | - Daniel S Adler
- Department of Anthropology, University of Connecticut, CT, USA.
| |
Collapse
|
17
|
Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139275. [PMID: 32480145 DOI: 10.1016/j.scitotenv.2020.139275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Hayat
- Institute of Microbial Technology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, China
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL. USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
18
|
Jones JH, Hazel A, Almquist Z. Transmission-dynamics models for the SARS Coronavirus-2. Am J Hum Biol 2020; 32:e23512. [PMID: 32978876 PMCID: PMC7536961 DOI: 10.1002/ajhb.23512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Ashley Hazel
- Department of Earth System ScienceStanford UniversityStanfordCaliforniaUSA
| | - Zack Almquist
- Department of SociologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
19
|
Mathieson I. Human adaptation over the past 40,000 years. Curr Opin Genet Dev 2020; 62:97-104. [PMID: 32745952 PMCID: PMC7484260 DOI: 10.1016/j.gde.2020.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Over the past few years several methodological and data-driven advances have greatly improved our ability to robustly detect genomic signatures of selection in humans. New methods applied to large samples of present-day genomes provide increased power, while ancient DNA allows precise estimation of timing and tempo. However, despite these advances, we are still limited in our ability to translate these signatures into understanding about which traits were actually under selection, and why. Combining information from different populations and timescales may allow interpretation of selective sweeps. Other modes of selection have proved more difficult to detect. In particular, despite strong evidence of the polygenicity of most human traits, evidence for polygenic selection is weak, and its importance in recent human evolution remains unclear. Balancing selection and archaic introgression seem important for the maintenance of potentially adaptive immune diversity, but perhaps less so for other traits.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
20
|
|
21
|
Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nat Commun 2019; 10:5003. [PMID: 31676766 PMCID: PMC6825168 DOI: 10.1038/s41467-019-12862-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Neanderthals and modern humans both occupied the Levant for tens of thousands of years prior to the spread of modern humans into the rest of Eurasia and their replacement of the Neanderthals. That the inter-species boundary remained geographically localized for so long is a puzzle, particularly in light of the rapidity of its subsequent movement. Here, we propose that infectious-disease dynamics can explain the localization and persistence of the inter-species boundary. We further propose, and support with dynamical-systems models, that introgression-based transmission of alleles related to the immune system would have gradually diminished this barrier to pervasive inter-species interaction, leading to the eventual release of the inter-species boundary from its geographic localization. Asymmetries between the species in the characteristics of their associated ‘pathogen packages’ could have generated feedback that allowed modern humans to overcome disease burden earlier than Neanderthals, giving them an advantage in their subsequent spread into Eurasia. Modern humans and Neanderthals coexisted in the Levant for tens of thousands of years before modern humans spread and replaced Neanderthals. Here, Greenbaum et al. develop a model showing that transmission of disease and genes can explain the maintenance and then collapse of this contact zone.
Collapse
|
22
|
Houldcroft CJ, Rifkin RF, Underdown SJ. Human biology and ancient DNA: exploring disease, domestication and movement. Ann Hum Biol 2019; 46:95-98. [DOI: 10.1080/03014460.2019.1629536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Riaan F. Rifkin
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Human Origins and Palaeo-Environments Research Group, Department of Anthropology and Geography, Oxford Brookes University, Oxford, UK
| | - Simon J. Underdown
- Human Origins and Palaeo-Environments Research Group, Department of Anthropology and Geography, Oxford Brookes University, Oxford, UK
| |
Collapse
|
23
|
Enard D, Petrov DA. Evidence that RNA Viruses Drove Adaptive Introgression between Neanderthals and Modern Humans. Cell 2019; 175:360-371.e13. [PMID: 30290142 DOI: 10.1016/j.cell.2018.08.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023]
Abstract
Neanderthals and modern humans interbred at least twice in the past 100,000 years. While there is evidence that most introgressed DNA segments from Neanderthals to modern humans were removed by purifying selection, less is known about the adaptive nature of introgressed sequences that were retained. We hypothesized that interbreeding between Neanderthals and modern humans led to (1) the exposure of each species to novel viruses and (2) the exchange of adaptive alleles that provided resistance against these viruses. Here, we find that long, frequent-and more likely adaptive-segments of Neanderthal ancestry in modern humans are enriched for proteins that interact with viruses (VIPs). We found that VIPs that interact specifically with RNA viruses were more likely to belong to introgressed segments in modern Europeans. Our results show that retained segments of Neanderthal ancestry can be used to detect ancient epidemics.
Collapse
Affiliation(s)
- David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Degioanni A, Bonenfant C, Cabut S, Condemi S. Living on the edge: Was demographic weakness the cause of Neanderthal demise? PLoS One 2019; 14:e0216742. [PMID: 31141515 PMCID: PMC6541251 DOI: 10.1371/journal.pone.0216742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
The causes of disappearance of the Neanderthals, the only human population living in Europe before the arrival of Homo sapiens, have been debated for decades by the scientific community. Different hypotheses have been advanced to explain this demise, such as cognitive, adaptive and cultural inferiority of Neanderthals. Here, we investigate the disappearance of Neanderthals by examining the extent of demographic changes needed over a period of 10,000 years (yrs) to lead to their extinction. In regard to such fossil populations, we inferred demographic parameters from present day and past hunter-gatherer populations, and from bio-anthropological rules. We used demographic modeling and simulations to identify the set of plausible demographic parameters of the Neanderthal population compatible with the observed dynamics, and to explore the circumstances under which they might have led to the disappearance of Neanderthals. A slight (<4%) but continuous decrease in the fertility rate of younger Neanderthal women could have had a significant impact on these dynamics, and could have precipitated their demise. Our results open the way to non-catastrophic events as plausible explanations for Neanderthal extinction.
Collapse
Affiliation(s)
- Anna Degioanni
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
- * E-mail:
| | - Christophe Bonenfant
- UMR CNRS Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon Villeurbanne, Villeurbanne, France
| | - Sandrine Cabut
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
| | - Silvana Condemi
- Aix Marseille Université, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
25
|
Ríos L, Kivell TL, Lalueza-Fox C, Estalrrich A, García-Tabernero A, Huguet R, Quintino Y, de la Rasilla M, Rosas A. Skeletal Anomalies in The Neandertal Family of El Sidrón (Spain) Support A Role of Inbreeding in Neandertal Extinction. Sci Rep 2019; 9:1697. [PMID: 30737446 PMCID: PMC6368597 DOI: 10.1038/s41598-019-38571-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Neandertals disappeared from the fossil record around 40,000 bp, after a demographic history of small and isolated groups with high but variable levels of inbreeding, and episodes of interbreeding with other Paleolithic hominins. It is reasonable to expect that high levels of endogamy could be expressed in the skeleton of at least some Neandertal groups. Genetic studies indicate that the 13 individuals from the site of El Sidrón, Spain, dated around 49,000 bp, constituted a closely related kin group, making these Neandertals an appropriate case study for the observation of skeletal signs of inbreeding. We present the complete study of the 1674 identified skeletal specimens from El Sidrón. Altogether, 17 congenital anomalies were observed (narrowing of the internal nasal fossa, retained deciduous canine, clefts of the first cervical vertebra, unilateral hypoplasia of the second cervical vertebra, clefting of the twelfth thoracic vertebra, diminutive thoracic or lumbar rib, os centrale carpi and bipartite scaphoid, tripartite patella, left foot anomaly and cuboid-navicular coalition), with at least four individuals presenting congenital conditions (clefts of the first cervical vertebra). At 49,000 years ago, the Neandertals from El Sidrón, with genetic and skeletal evidence of inbreeding, could be representative of the beginning of the demographic collapse of this hominin phenotype.
Collapse
Affiliation(s)
- L Ríos
- Department of Physical Anthropology, Aranzadi Zientzia Elkartea, Zorroagagaina 11, 20014, Donostia, Gipuzkoa, Basque Country, Spain.
| | - T L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, CT2 7NR, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - C Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - A Estalrrich
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria IIIPC (Universidad de Cantabria, Santander, Gobierno de Cantabria), Avda. de los Castros 52, 39005, Santander, Cantabria, Spain
| | - A García-Tabernero
- Paleoanthropology Group, Department of Paleobiology. Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - R Huguet
- IPHES, Institut Catala de Paleoecologia Humana i Evolució Social, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.,Area de Prehistoria, Universitat Rovira i Virgili, Avda. Catalunya 35, 43002, Tarragona, Spain.,Unidad asociada al CSIC, Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Y Quintino
- Laboratorio de Evolución Humana, Dpto. de Ciencias Históricas y Geografía, Universidad de Burgos, Edificio I+D+i, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M de la Rasilla
- Área de Prehistoria Departamento de Historia, Universidad de Oviedo, Calle Teniente Alfonso Martínez s/n, 33011, Oviedo, Spain
| | - A Rosas
- Paleoanthropology Group, Department of Paleobiology. Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
26
|
Reher D, Key FM, Andrés AM, Kelso J. Immune Gene Diversity in Archaic and Present-day Humans. Genome Biol Evol 2019; 11:232-241. [PMID: 30566634 PMCID: PMC6347564 DOI: 10.1093/gbe/evy271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Genome-wide analyses of two Neandertals and a Denisovan have shown that these archaic humans had lower genetic heterozygosity than present-day people. A similar reduction in genetic diversity of protein-coding genes (gene diversity) was found in exome sequences of three Neandertals. Reduced gene diversity, particularly in genes involved in immunity, may have important functional consequences. In fact, it has been suggested that reduced diversity in immune genes may have contributed to Neandertal extinction. We therefore explored gene diversity in different human groups, and at different time points on the Neandertal lineage, with a particular focus on the diversity of genes involved in innate immunity and genes of the Major Histocompatibility Complex (MHC). We find that the two Neandertals and a Denisovan have similar gene diversity, all significantly lower than any present-day human. This is true across gene categories, with no gene set showing an excess decrease in diversity compared with the genome-wide average. Innate immune-related genes show a similar reduction in diversity to other genes, both in present-day and archaic humans. There is also no observable decrease in gene diversity over time in Neandertals, suggesting that there may have been no ongoing reduction in gene diversity in later Neandertals, although this needs confirmation with a larger sample size. In both archaic and present-day humans, genes with the highest levels of diversity are enriched for MHC-related functions. In fact, in archaic humans the MHC genes show evidence of having retained more diversity than genes involved only in the innate immune system.
Collapse
Affiliation(s)
- David Reher
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
27
|
Charlier P, Coppens Y, Héry-Arnaud G, Hassin J. [A biological anthropology of the disappearance of the Neandertal Man: recent data]. Med Sci (Paris) 2018; 34:745-748. [PMID: 30230470 DOI: 10.1051/medsci/20183408024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
What could have been the causes of the disappearance of Neanderthals? We will try here to make a synthesis between one of the fundamental questions of biological anthropology relating to human evolution (hypotheses on the causes of the extinction of Neanderthals) and evolutionary bio-medical concepts, some of which have recently been reformulated thanks to the progress of paleogenomics (ancestral inheritance of the current human immune system, paleo-microbiology, host-pathogen relationship…).
Collapse
Affiliation(s)
- Philippe Charlier
- UFR des sciences de la santé, université de Versailles Saint-Quentin-en-Yvelines (UVSQ), EA 4498, laboratoire droit des affaires et nouvelles technologies (DANTE), 2, avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux, France - Centre d'accueil et de soins hospitaliers (CASH) et institut de la précarité et de l'exclusion sociale (IPES), 403, avenue de la République, 92000 Nanterre, France
| | - Yves Coppens
- Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Geneviève Héry-Arnaud
- Laboratoire universitaire de biodiversité et d'écologie microbienne (LUBEM)/bactériologie-virologie, faculté de médecine et des sciences et de la santé, 22, avenue Camille Desmoulins, 29238 Brest, France
| | - Jacques Hassin
- Centre d'accueil et de soins hospitaliers (CASH) et institut de la précarité et de l'exclusion sociale (IPES), 403, avenue de la République, 92000 Nanterre, France
| |
Collapse
|
28
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
29
|
Rifkin RF, Potgieter M, Ramond J, Cowan DA. Ancient oncogenesis, infection and human evolution. Evol Appl 2017; 10:949-964. [PMID: 29151852 PMCID: PMC5680625 DOI: 10.1111/eva.12497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The recent discovery that malignant neoplastic lesions date back nearly 2 million years ago not only highlights the antiquity of cancer in the human lineage, but also provides remarkable insight into ancestral hominin disease pathology. Using these Early Pleistocene examples as a point of departure, we emphasize the prominent role of viral and bacterial pathogens in oncogenesis and evaluate the impact of pathogens on human evolutionary processes in Africa. In the Shakespearean vernacular "what's past is prologue," we highlight the significance of novel information derived from ancient pathogenic DNA. In particular, and given the temporal depth of human occupation in sub-Saharan Africa, it is emphasized that the region is ideally positioned to play a strategic role in the discovery of ancient pathogenic drivers of not only human mortality, but also human evolution. Ancient African pathogen genome data can provide novel revelations concerning human-pathogen coevolutionary processes, and such knowledge is essential for forecasting the ways in which emerging zoonotic and increasingly transmissible diseases might influence human demography and longevity in the future.
Collapse
Affiliation(s)
- Riaan F. Rifkin
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Jean‐Baptiste Ramond
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
30
|
Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18:659-674. [PMID: 28890534 DOI: 10.1038/nrg.2017.65] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Charlier P, Claverie JM, Sansonetti P, Coppens Y, Augias A, Jacqueline S, Rengot F, Deo S. Re-emerging infectious diseases from the past: Hysteria or real risk? Eur J Intern Med 2017. [PMID: 28641809 DOI: 10.1016/j.ejim.2017.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Work on human remains and old biological samples is a potential source of contamination by conventional or atypical infectious agents. Similarly, current and future environmental changes are a source of resurgence of ancient epidemic diseases. To what extent are anthropologists sorcerer apprentices (especially those working on ancient samples, i.e. paleo-anthropologists)? Are ancient skeletons, palaeosols and museum objects with a biological component at risk for current populations? Unless there are unfounded fears and undue risk… What can be learned from the recent scientific literature and the common sense of the researchers? METHODS We have attempted to compile data from the literature and from our personal experience in the fields of anthropology, clinical medicine and epidemiology, in order to grasp the reality of the risk to the human population. RESULTS It appears that the risk is real, but extremely limited. Specific and simple protective measures must be taken in terms of overall and individual health, both in the field and in the laboratory. CONCLUSION These data are important for the internist, due to the possibility of atypical infections, both in specialized workers and in populations at risk (environmental context).
Collapse
Affiliation(s)
- Philippe Charlier
- Section of Medical and Forensic Anthropology (UVSQ & EA4569), UFR of Health Sciences, 2 Avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France; CASH & IPES, 403 Avenue de la République, 92000 Nanterre, France.
| | - Jean-Michel Claverie
- Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée, Aix-Marseille University & CNRS, Marseille, France; Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Philippe Sansonetti
- Chaire de Microbiologie, Collège de France, Place Marcelin Berthelot, 75005 Paris, France; Institut Pasteur, rue Vaugirard, 75014 Paris, France
| | - Yves Coppens
- Chaire de Paléo-anthropologie, Collège de France, Place Marcelin Berthelot, 75005 Paris, France
| | - Anaïs Augias
- Section of Medical and Forensic Anthropology (UVSQ & EA4569), UFR of Health Sciences, 2 Avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| | - Sophie Jacqueline
- Section of Medical and Forensic Anthropology (UVSQ & EA4569), UFR of Health Sciences, 2 Avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| | - Fanny Rengot
- Section of Medical and Forensic Anthropology (UVSQ & EA4569), UFR of Health Sciences, 2 Avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| | - Saudamini Deo
- Section of Medical and Forensic Anthropology (UVSQ & EA4569), UFR of Health Sciences, 2 Avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Djuke Veldhuis
- a Aarhus Institute of Advanced Studies , Aarhus University , Aarhus , Denmark
| | - Simon J Underdown
- b Human Origins and Palæo-Environments Research Group, Department of Social Sciences , Oxford Brookes University , Oxford , UK
| |
Collapse
|
34
|
Underdown SJ, Kumar K, Houldcroft C. Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data. Virus Evol 2017; 3:vex026. [PMID: 28979799 PMCID: PMC5617628 DOI: 10.1093/ve/vex026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei.
Collapse
Affiliation(s)
- Simon J. Underdown
- Human Origins and Palaeoenvironmental Research Group (HOPE), Department of Anthropology & Geography, Oxford Brookes University, Oxford OX3 0BP, UK
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - Krishna Kumar
- Computational Geomechanics, Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Charlotte Houldcroft
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| |
Collapse
|
35
|
Kessler SE, Bonnell TR, Byrne RW, Chapman CA. Selection to outsmart the germs: The evolution of disease recognition and social cognition. J Hum Evol 2017. [PMID: 28622934 DOI: 10.1016/j.jhevol.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emergence of providing care to diseased conspecifics must have been a turning point during the evolution of hominin sociality. On a population level, care may have minimized the costs of socially transmitted diseases at a time of increasing social complexity, although individual care-givers probably incurred increased transmission risks. We propose that care-giving likely originated within kin networks, where the costs may have been balanced by fitness increases obtained through caring for ill kin. We test a novel hypothesis of hominin cognitive evolution in which disease may have selected for the cognitive ability to recognize when a conspecific is infected. Because diseases may produce symptoms that are likely detectable via the perceptual-cognitive pathways integral to social cognition, we suggest that disease recognition and social cognition may have evolved together. Using agent-based modeling, we test 1) under what conditions disease can select for increasing disease recognition and care-giving among kin, 2) whether providing care produces greater selection for cognition than an avoidance strategy, and 3) whether care-giving alters the progression of the disease through the population. The greatest selection was produced by diseases with lower risks to the care-giver and prevalences low enough not to disrupt the kin networks. When care-giving and avoidance strategies were compared, only care-giving reduced the severity of the disease outbreaks and subsequent population crashes. The greatest selection for increased cognitive abilities occurred early in the model runs when the outbreaks and population crashes were most severe. Therefore, over the course of human evolution, repeated introductions of novel diseases into naïve populations could have produced sustained selection for increased disease recognition and care-giving behavior, leading to the evolution of increased cognition, social complexity, and, eventually, medical care in humans. Finally, we lay out predictions derived from our disease recognition hypothesis that we encourage paleoanthropologists, bioarchaeologists, primatologists, and paleogeneticists to test.
Collapse
Affiliation(s)
- Sharon E Kessler
- Department of Anthropology, McGill University, Canada; Durham University, Department of Anthropology, UK.
| | | | - Richard W Byrne
- School of Psychology and Neuroscience, University of St. Andrews, UK
| | - Colin A Chapman
- Department of Anthropology, McGill University, Canada; Wildlife Conservation Society, New York, USA
| |
Collapse
|
36
|
Houldcroft CJ, Ramond JB, Rifkin RF, Underdown SJ. Migrating microbes: what pathogens can tell us about population movements and human evolution. Ann Hum Biol 2017; 44:397-407. [PMID: 28511559 DOI: 10.1080/03014460.2017.1325515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. METHODS This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. RESULTS Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. CONCLUSIONS Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- a Department of Archaeology and Anthropology, Division of Biological Anthropology , University of Cambridge , Cambridge , UK.,b McDonald Institute of Archaeological Research, University of Cambridge , Cambridge , UK
| | - Jean-Baptiste Ramond
- c Department of Genetics , Centre for Microbial Ecology and Genomics, Genomic Research Institute, University of Pretoria , Hatfield , South Africa
| | - Riaan F Rifkin
- c Department of Genetics , Centre for Microbial Ecology and Genomics, Genomic Research Institute, University of Pretoria , Hatfield , South Africa
| | - Simon J Underdown
- d Department of Anthropology & Geography, Human Origins and Palaeoenvironmental Research Group (HOPE) , Oxford Brookes University , Oxford , UK.,e Leverhulme Centre for Human Evolutionary Studies , Henry Wellcome Building , Cambridge , UK
| |
Collapse
|
37
|
Sullivan AP, de Manuel M, Marques-Bonet T, Perry GH. An evolutionary medicine perspective on Neandertal extinction. J Hum Evol 2017. [PMID: 28622932 DOI: 10.1016/j.jhevol.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Eurasian sympatry of Neandertals and anatomically modern humans - beginning at least 45,000 years ago and possibly lasting for more than 5000 years - has sparked immense anthropological interest into the factors that potentially contributed to Neandertal extinction. Among many different hypotheses, the "differential pathogen resistance" extinction model posits that Neandertals were disproportionately affected by exposure to novel infectious diseases that were transmitted during the period of spatiotemporal sympatry with modern humans. Comparisons of new archaic hominin paleogenome sequences with modern human genomes have confirmed a history of genetic admixture - and thus direct contact - between humans and Neandertals. Analyses of these data have also shown that Neandertal nuclear genome genetic diversity was likely considerably lower than that of the Eurasian anatomically modern humans with whom they came into contact, perhaps leaving Neandertal innate immune systems relatively more susceptible to novel pathogens. In this study, we compared levels of genetic diversity in genes for which genetic variation is hypothesized to benefit pathogen defense among Neandertals and African, European, and Asian modern humans, using available exome sequencing data (three individuals, or six chromosomes, per population). We observed that Neandertals had only 31-39% as many nonsynonymous (amino acid changing) polymorphisms across 73 innate immune system genes compared to modern human populations. We also found that Neandertal genetic diversity was relatively low in an unbiased set of balancing selection candidate genes for primates, those genes with the highest 1% genetic diversity genome-wide in non-human hominoids (apes). In contrast, Neandertals had similar or higher levels of genetic diversity than humans in 12 major histocompatibility complex (MHC) genes. Thus, while Neandertals may have been relatively more susceptible to some novel pathogens and differential pathogen resistance could be considered as one potential contributing factor in their extinction, the expectations of this model are not universally met.
Collapse
Affiliation(s)
- Alexis P Sullivan
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - George H Perry
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
38
|
Donoghue HD. Insights gained from ancient biomolecules into past and present tuberculosis—a personal perspective. Int J Infect Dis 2017; 56:176-180. [DOI: 10.1016/j.ijid.2016.11.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 01/24/2023] Open
|
39
|
Andam CP, Worby CJ, Chang Q, Campana MG. Microbial Genomics of Ancient Plagues and Outbreaks. Trends Microbiol 2016; 24:978-990. [PMID: 27618404 DOI: 10.1016/j.tim.2016.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023]
Abstract
The recent use of next-generation sequencing methods to investigate historical disease outbreaks has provided us with an unprecedented ability to address important and long-standing questions in epidemiology, pathogen evolution, and human history. In this review, we present major findings that illustrate how microbial genomics has provided new insights into the nature and etiology of infectious diseases of historical importance, such as plague, tuberculosis, and leprosy. Sequenced isolates collected from archaeological remains also provide evidence for the timing of historical evolutionary events as well as geographic spread of these pathogens. Elucidating the genomic basis of virulence in historical diseases can provide relevant information on how we can effectively understand the emergence and re-emergence of infectious diseases today and in the future.
Collapse
Affiliation(s)
- Cheryl P Andam
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA; University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH 03824, USA.
| | - Colin J Worby
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA
| | - Qiuzhi Chang
- Harvard T. H. Chan School of Public Health, Department of Epidemiology, Boston, MA 02115, USA
| | - Michael G Campana
- Smithsonian Conservation Biology Institute, Center for Conservation Genomics, 3001 Connecticut Avenue NW, Washington, DC 20008, USA.
| |
Collapse
|