1
|
Figus C, Carlson KJ, Bortolini E, Saers J, Seghi F, Sorrentino R, Bernardini F, Vazzana A, Erjavec I, Novak M, Tuniz C, Belcastro MG, Stock J, Ryan TM, Benazzi S. The Ontogeny of the Human Calcaneus: Insights From Morphological and Trabecular Changes During Postnatal Growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70007. [PMID: 39936218 DOI: 10.1002/ajpa.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To investigate the developmental changes in the human calcaneal internal and external morphology linked to the acquisition of mature bipedal locomotion. METHODS Seventy seven micro-CT scans of modern juvenile calcanei (from perinates to 15 years old) are employed. The chronological period spans from the Middle/Late Neolithic (4800-4500 BCE) to the 20th century. Through a comprehensive approach that comprises geometric morphometric methods and whole-bone trabecular analysis, the calcaneal growing morphology has been explored. RESULTS Morphological changes reflect the development of bipedal locomotion, showing its potential when tracking the major locomotor milestones. The calcaneal shape is immature and almost featureless during the first year of life. The internal architecture is dense and isotropic with numerous thin trabeculae closely packed together. The internal architecture changes to better adapt to variations in load stimulated by a more mature gait by increasing bone mass and alignment, with fewer and thicker struts. The external morphology shows its plasticity by increasing the surface area where greater strain is expected and changing the orientation of the articular facets. CONCLUSIONS Analysis of morphological changes in the growing calcaneus highlights the importance of an integrative methodology when exploring developmental bone plasticity. The changes in calcaneal internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from a more generalized morphology to a more adult-like one, reflecting major locomotor achievement. Our research shows that although initially genetically driven, calcaneal plasticity may display mechanical influences and provide precious information on tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Jaap Saers
- Naturalis Biodiversity Center, Leiden, CR, the Netherlands
| | - Francesca Seghi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences-Bigea, University of Bologna, Bologna, Italy
| | - Federico Bernardini
- Department of Humanistic Studies, Università Ca' Foscari, Venezia, Italy
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
- Multidisciplinary Laboratory, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Igor Erjavec
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Claudio Tuniz
- Department of Humanistic Studies, Università Ca' Foscari, Venezia, Italy
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences-Bigea, University of Bologna, Bologna, Italy
| | - Jay Stock
- Department of Anthropology, Western University, London, Ontario, Canada
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
2
|
Lukova A, Dunmore CJ, Bachmann S, Synek A, Pahr DH, Kivell TL, Skinner MM. Trabecular architecture of the distal femur in extant hominids. J Anat 2024; 245:156-180. [PMID: 38381116 PMCID: PMC11161831 DOI: 10.1111/joa.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Christopher J. Dunmore
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Alexander Synek
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
- Department of Anatomy and Biomechanics, Division BiomechanicsKarl Landsteiner University of Health SciencesKremsAustria
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Matthew M. Skinner
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
3
|
Barak MM. Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia. Bioengineering (Basel) 2024; 11:514. [PMID: 38790379 PMCID: PMC11118124 DOI: 10.3390/bioengineering11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Bone modeling involves the addition of bone material through osteoblast-mediated deposition or the removal of bone material via osteoclast-mediated resorption in response to perceived changes in loads by osteocytes. This process is characterized by the independent occurrence of deposition and resorption, which can take place simultaneously at different locations within the bone due to variations in stress levels across its different regions. The principle of bone functional adaptation states that cortical and trabecular bone tissues will respond to mechanical stimuli by adjusting (i.e., bone modeling) their morphology and architecture to mechanically improve their mechanical function in line with the habitual in vivo loading direction. This principle is relevant to various research areas, such as the development of improved orthopedic implants, preventative medicine for osteopenic elderly patients, and the investigation of locomotion behavior in extinct species. In the present review, the mammalian tibia is used as an example to explore cortical and trabecular bone modeling and to examine its implications for the functional adaptation of bones. Following a short introduction and an exposition on characteristics of mechanical stimuli that influence bone modeling, a detailed critical appraisal of the literature on cortical and trabecular bone modeling and bone functional adaptation is given. By synthesizing key findings from studies involving small mammals (rodents), large mammals, and humans, it is shown that examining both cortical and trabecular bone structures is essential for understanding bone functional adaptation. A combined approach can provide a more comprehensive understanding of this significant physiological phenomenon, as each structure contributes uniquely to the phenomenon.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
4
|
Cartwright C, Ragni A, Hublin JJ, Chirchir H. Trabecular bone volume fraction in Holocene and Late Pleistocene humans. J Hum Evol 2024; 190:103499. [PMID: 38569444 DOI: 10.1016/j.jhevol.2024.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/05/2024]
Abstract
Research suggests that recent modern humans have gracile skeletons in having low trabecular bone volume fraction (BV/TV) and that gracilization of the skeleton occurred in the last 10,000 years. This has been attributed to a reduction in physical activity in the Holocene. However, there has been no thorough sampling of BV/TV in Pleistocene humans due to limited access to high resolution images of fossil specimens. Therefore, our study investigates the gracilization of BV/TV in Late Pleistocene humans and recent (Holocene) modern humans to improve our understanding of the emergence of gracility. We used microcomputed tomography to measure BV/TV in the femora, humeri and metacarpals of a sample of Late Pleistocene humans from Dolní Věstonice (Czech Republic, ∼26 ka, n = 6) and Ohalo II (Israel, ∼19 ka, n = 1), and a sample of recent humans including farming groups (n = 39) and hunter-gatherers (n = 6). We predicted that 1) Late Pleistocene humans would exhibit greater femoral and humeral head BV/TV compared with recent humans and 2) among recent humans, metacarpal head BV/TV would be greater in hunter-gatherers compared with farmers. Late Pleistocene humans had higher BV/TV compared with recent humans in both the femur and humerus, supporting our first prediction, and consistent with previous findings that Late Pleistocene humans are robust as compared to recent humans. However, among recent humans, there was no significant difference in BV/TV in the metacarpals between the two subsistence groups. The results highlight the similarity in BV/TV in the hand of two human groups from different geographic locales and subsistence patterns and raise questions about assumptions of activity levels in archaeological populations and their relationships to trabecular BV/TV.
Collapse
Affiliation(s)
- Caroline Cartwright
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Anna Ragni
- Department of Biology, University of Tampa, 401 W. Kennedy Boulevard, Tampa, FL 33606, USA
| | - Jean-Jacques Hublin
- Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, 11 Place Marcelin-Berthelot, 75231, Paris Cedex 05, France; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Habiba Chirchir
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, P.O Box 37012, Room 153, MRC 010, Washington, DC 20013, USA.
| |
Collapse
|
5
|
Kikyo N. Circadian Regulation of Bone Remodeling. Int J Mol Sci 2024; 25:4717. [PMID: 38731934 PMCID: PMC11083221 DOI: 10.3390/ijms25094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Aramendi J, Mabulla A, Baquedano E, Domínguez-Rodrigo M. Biomechanical and taxonomic diversity in the Early Pleistocene in East Africa: Structural analysis of a recently discovered femur shaft from Olduvai Gorge (bed I). J Hum Evol 2024; 186:103469. [PMID: 38071888 DOI: 10.1016/j.jhevol.2023.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Recent Plio-Pleistocene hominin findings have revealed the complexity of human evolutionary history and the difficulties involved in its interpretation. Moreover, the study of hominin long bone remains is particularly problematic, since it commonly depends on the analysis of fragmentary skeletal elements that in many cases are merely represented by small diaphyseal portions and appear in an isolated fashion in the fossil record. Nevertheless, the study of the postcranial skeleton is particularly important to ascertain locomotor patterns. Here we report on the discovery of a robust hominin femoral fragment (OH 84) at the site of Amin Mturi Korongo dated to 1.84 Ma (Olduvai Bed I). External anatomy and internal bone structure of OH 84 were analyzed and compared with previously published data for modern humans and chimpanzees, as well as for Australopithecus, Paranthropus and Homo specimens ranging from the Late Pliocene to Late Pleistocene. Biomechanical analyses based on transverse cross-sections and the comparison of OH 84 with another robust Olduvai specimen (OH 80) suggest that OH 84 might be tentatively allocated to Paranthropus boisei. More importantly, the identification of a unique combination of traits in OH 84 could indicate both terrestrial bipedalism and an arboreal component in the locomotor repertoire of this individual. If interpreted correctly, OH 84 could thus add to the already mounting evidence of substantial locomotor diversity among Early Pleistocene hominins. Likewise, our results also highlight the difficulties in accurately interpreting the link between form and function in the human fossil record based on fragmentary remains, and ultimately in distinguishing between coeval hominin groups due to the heterogeneous pattern of inter- and intraspecific morphological variability detected among fossil femora.
Collapse
Affiliation(s)
- Julia Aramendi
- McDonald Institute for Archaeological Research, University of Cambridge, CB2 1TN, UK.
| | - Audax Mabulla
- Department of Archaeology and Heritage Studies, University of Dar Es Salaam, P.O. Box 35050, Dar Es Salaam, Tanzania
| | - Enrique Baquedano
- Archaeological and Paleontological Museum of the Community of Madrid, Plaza de Las Bernardas s/n, 28801, Alcalá de Henares, Spain; Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain
| | - Manuel Domínguez-Rodrigo
- Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain; University of Alcalá, Department of History and Philosophy, Area of Prehistory, C/Colegios 2, 28801, Alcalá de Henares, Spain; Rice University, Department of Anthropology, 6100 Main St., Houston, TX, 77005 1827, USA
| |
Collapse
|
7
|
Barak MM. The trabecular architecture of the popliteal sesamoid bone (cyamella) from a New Zealand white rabbit (Oryctolagus cuniculus). J Morphol 2024; 285:e21660. [PMID: 38100742 DOI: 10.1002/jmor.21660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sesamoid bones are ossified structures that are embedded in tendons near articulation. They consist of an inner trabecular bone architecture surrounded by a thin cortical shell. While the formation of sesamoid bones is probably mainly controlled by genetic factors, the proper development and mineralization of a sesamoid bone depends also on mechanical stimulation. While most sesamoid bones are not loaded directly by other bones during locomotion, they still experience forces directed from the tendon in which they are embedded. In cases when the sesamoid bone is experiencing forces only from a single tendon, such as the cyamella in the rabbit, this may give us a tool to study bone functional adaptation in a relatively simple loading setting. This study investigates the internal trabecular architecture of the popliteal sesamoid bone (cyamellae) in New Zealand white (NZW) rabbits (Oryctolagus cuniculus). Five hind limbs of NZW rabbits were micro-computed tomography scanned and the cortical and trabecular architectures of the cyamellae were evaluated. The results revealed that similar to the patella, the cyamella has a thin cortex and a high trabecular bone volume fraction (BV/TV), which is derived mostly from the high trabecular thickness (Tb.Th). Trabecular BV/TV and Tb.Th were not distributed homogeneously, but they were lower at the periphery and higher closer to the proximal and middle of the cyamella, near the musculotendinous junction. The results also demonstrated that trabeculae tend to align along two recognizable orientations, one with the direction of tensile stresses, in line with the popliteal tendon, and the second bridging the narrow space between the cranial and caudal cortical faces of the bone.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| |
Collapse
|
8
|
López-Rey JM, Cambra-Moo Ó, González Martín A, Candelas González N, Sánchez-Andrés Á, Tawane M, Cazenave M, Williams SA, Bastir M, García-Martínez D. Covariation between the shape and mineralized tissues of the rib cross section in Homo sapiens, Pan troglodytes and Sts 14. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:157-164. [PMID: 37724468 DOI: 10.1002/ajpa.24844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES Studying rib torsion is crucial for understanding the evolution of the hominid ribcage. Interestingly, there are variables of the rib cross section that could be associated with rib torsion and, consequently, with the morphology of the thorax. The aim of this research is to conduct a comparative study of the shape and mineralized tissues of the rib cross section in different hominids to test for significant differences and, if possible, associate them to different thoracic morphotypes. MATERIALS AND METHODS The sample consists of the rib cross sections at the midshaft taken from 10 Homo sapiens and 10 Pan troglodytes adult individuals, as well as from A. africanus Sts 14. The shape of these rib cross sections was quantified using geometric morphometrics, while the mineralized tissues were evaluated using the compartmentalization index. Subsequently, covariation between both parameters was tested by a Spearman's ρ test, a permutation test and a linear regression. RESULTS Generally, P. troglodytes individuals exhibit rib cross sections that are rounder and more mineralized compared to those of H. sapiens. However, the covariation between both parameters was only observed in typical ribs (levels 3-10). Although covariation was not found in the rib cross sections of Sts 14, their parameters are closer to P. troglodytes. DISCUSSION On the one hand, the differences observed in the rib cross sections between H. sapiens and P. troglodytes might be related to different degrees of rib torsion and, consequently, to different thoracic 3D configurations. These findings can be functionally explained by considering their distinct modes of breathing and locomotion. On the other hand, although the rib cross sections belonging to Sts 14 are more similar to those of P. troglodytes, previous publications determined that their overall morphology is closer to modern humans. This discrepancy could reflect a diversity of post-cranial adaptations in Australopithecus.
Collapse
Affiliation(s)
- José M López-Rey
- Laboratorio de Poblaciones del Pasado (LAPP), Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Óscar Cambra-Moo
- Laboratorio de Poblaciones del Pasado (LAPP), Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Armando González Martín
- Laboratorio de Poblaciones del Pasado (LAPP), Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nieves Candelas González
- Laboratorio de Poblaciones del Pasado (LAPP), Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Mirriam Tawane
- Department of Paleontology, Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, New York, USA
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Scott A Williams
- Center for the Study of Human Origins (CSHO), Department of Anthropology, New York University (NYU), New York, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Daniel García-Martínez
- Physical Anthropology Unit, Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Division of Paleobiology, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Laboratory of Forensic Anthropology, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Wiromrat P, Namphaisan P, Wongsurawat N, Panamonta O, Nasomyont N. Elevated bone turnover markers predict bone mineral density accrual in adolescents with 21-hydroxylase deficiency. Clin Endocrinol (Oxf) 2023; 99:462-469. [PMID: 35941818 DOI: 10.1111/cen.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
CONTEXT Prognostic biomarkers for monitoring bone health in adolescents with 21-hydroxylase deficiency (21OHD) are needed. OBJECTIVES To assess associations between concentrations of baseline bone turnover markers (BTMs) including osteocalcin (OC) and type-I collagen C-terminal telopeptide (CTX) and changes in lumbar spine bone mineral density (LSBMD) in adolescents with classic 21OHD. DESIGNS AND PATIENTS A retrospective-prospective study of 33 adolescents with classic 21OHD who had baseline data for LSBMD, bone age (BA), and BTM concentrations. METHODS BTM concentrations were converted into z-scores according to BA. We measured LSBMD at the follow-up study visit and calculated the annual percentage change in LSBMD (%∆LSBMD). RESULTS At baseline, participants (55% female, 79% Tanner 5) had mean (±SD) age of 14.6 ± 3.6 years, BA 16.7 ± 2.9 years, and average glucocorticoid (GC) dose 17.3 ± 5.6 mg/m2 /day of hydrocortisone equivalent. The mean follow-up duration was 14.4 ± 5.6 months. Median (Q1-Q3) %∆LSBMD was 3.6% (0-8.5)/year. %∆LSBMD was similar among genders or 21OHD subtypes. Prednisolone versus hydrocortisone replacement resulted in lower %∆LSBMD (p = .004). %∆LSBMD was increased across tertiles of CTX z-score (p = .014). %∆LSBMD correlated negatively with GC dose (p = .01) and positively with CTX and OC z-scores (p < .01). In regression analyses, only CTX z-score positively associated with %∆LSBMD (p = .003), adjusting for sex, BA, body mass index, testosterone, 25-hydroxyvitamin D, and GC type and dose. CONCLUSIONS Higher GC dose and the use of prednisolone were associated with decreased LSBMD accrual in adolescents with 21OHD. CTX z-score independently associated with LSBMD accrual, suggesting its potential for prognostic bone biomarker.
Collapse
Affiliation(s)
- Pattara Wiromrat
- Section of Endocrinology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phanpaphorn Namphaisan
- Section of Endocrinology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nantaporn Wongsurawat
- Section of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ouyporn Panamonta
- Section of Endocrinology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nat Nasomyont
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Higgins OA, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Festa A, Hajdu T, Mateovics‐László O, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Morphologies in-between: The impact of the first steps on the human talus. Anat Rec (Hoboken) 2023; 306:124-142. [PMID: 35656925 PMCID: PMC10083965 DOI: 10.1002/ar.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)IMF, CSI0CBarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Owen A. Higgins
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Ildiko Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
12
|
Sarringhaus L, Lewton KL, Iqbal S, Carlson KJ. Ape femoral-humeral rigidities and arboreal locomotion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:624-639. [PMID: 36790629 PMCID: PMC9828227 DOI: 10.1002/ajpa.24632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study investigates patterns of bone functional adaptations in extant apes through comparing hindlimb to forelimb bone rigidity ratios in groups with varying levels of arboreality. MATERIALS AND METHODS Using CT scans, bone rigidity (J) was calculated at three regions of interest (ROI) along femoral and humeral diaphyses in Homo, Pongo, Pan, and Gorilla with further comparisons made between species and subspecies divisions within Pan and Gorilla. RESULTS Consistent with previous work on extant hominoids, species exhibited differences in midshaft femoral to humeral (F/H) rigidity ratios. Results of the present study confirm that these midshaft differences extend to 35% and 65% diaphyseal ROIs. Modern humans, exhibiting larger ratios, and orangutans, exhibiting smaller ratios, bracketed the intermediate African apes in comparisons. Within some African apes, limb rigidity ratios varied significantly between taxonomic groups. Eastern gorillas exhibited the highest mean ratios and chimpanzees the lowest at all three ROIs. In posthoc comparisons, chimpanzees and bonobos did not differ in relative limb rigidity ratios at any of the three ROIs. However, western gorillas were more similar to bonobos than eastern gorillas at 50% and 35% ROIs, but not at the 65% ROI. CONCLUSION Species, and to a lesser extent subspecies, can be distinguished by F/H limb rigidity ratios according to broad positional behavior patterns at multiple regions of interest along the diaphyses. Similarity of bonobos and western gorillas is in line with behavioral data of bonobos being the most terrestrial of Pan species, and western gorillas the most arboreal of the Gorilla groups.
Collapse
Affiliation(s)
- Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kristi L Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Safiyyah Iqbal
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Guerriere KI, Castellani CM, Popp KL, Bouxsein ML, Hughes JM. Unraveling the physiologic paradoxes that underlie exercise prescription for stress fracture prevention. Exp Biol Med (Maywood) 2022; 247:1833-1839. [PMID: 35983839 PMCID: PMC9679355 DOI: 10.1177/15353702221112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of exercise on stress fracture risk are paradoxical. Exercise can promote both bone formation and resorption, which in turn, can reduce and increase risk of stress fractures, respectively. We review classic and current literature that suggests that the processes that underlie these responses to exercise are distinct. Bone remodeling involves osteoclastic resorption of fatigue-damaged bone, coupled with subsequent bone deposition to replace the damaged tissue. Bone modeling involves the independent action of osteoblasts and osteoclasts forming or resorbing bone, respectively, on a surface. In the formation mode, modeling results in increased bone stiffness, strength, and resistance to fatigue. Both the remodeling and modeling responses to exercise require significant time for newly deposited bone to fully mineralize. We propose that recognizing these two distinct physiologic pathways and their related time courses reveals the theoretical basis to guide exercise prescription to promote bone health during periods of heightened stress fracture risk. Such guidance may include minimizing rapid increases in the duration of repetitive exercises that may cause fatigue damage accrual, such as long-distance running and marching. Rather, limiting initial exercise characteristics to those known to stimulate bone formation, such as short-duration, moderate-to-high impact, dynamic, and multidirectional activities with rest insertion, may increase the fatigue resistance of bone and consequently minimize stress fracture risk.
Collapse
Affiliation(s)
- Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Colleen M Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Mary L Bouxsein
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02210, USA,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA,Julie M Hughes.
| |
Collapse
|
14
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Erjavec I, Festa A, Hajdu T, Mateovics‐László O, Novak M, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:211-228. [PMCID: PMC9804293 DOI: 10.1002/ajpa.24596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 08/11/2023]
Abstract
Objectives The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. Materials and Methods The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. Results During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. Discussion The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)BarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
15
|
Variation in cross-sectional indicator of femoral robusticity in Homo sapiens and Neandertals. Sci Rep 2022; 12:4739. [PMID: 35304879 PMCID: PMC8933494 DOI: 10.1038/s41598-022-08405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022] Open
Abstract
Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.
Collapse
|
16
|
Deckers K, Tsegai ZJ, Skinner MM, Zeininger A, Kivell TL. Ontogenetic changes to metacarpal trabecular bone structure in mountain and western lowland gorillas. J Anat 2022; 241:82-100. [PMID: 35122239 PMCID: PMC9178373 DOI: 10.1111/joa.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
The trabecular bone morphology of adult extant primates has been shown to reflect mechanical loading related to locomotion. However, ontogenetic studies of humans and other mammals suggest an adaptive lag between trabecular bone response and current mechanical loading patterns that could result in adult trabecular bone morphology reflecting juvenile behaviours. This study investigates ontogenetic changes in the trabecular bone structure of the third metacarpal of mountain gorillas (Gorilla beringei beringei; n = 26) and western lowland gorillas (Gorilla gorilla gorilla; n = 26) and its relationship to expected changes in locomotor loading patterns. Results show that trabecular bone reflects predicted mechanical loading throughout ontogeny. Bone volume fraction, trabecular thickness and trabecular number are low at birth and increase with age, although degree of anisotropy remains relatively stable throughout ontogeny. A high concentration of bone volume fraction can be observed in the distopalmar region of the third metacarpal epiphysis in early ontogeny, consistent with the high frequency of climbing, suspensory and other grasping behaviours in young gorillas. High trabecular bone concentration increases dorsally in the epiphysis during the juvenile period as terrestrial knuckle-walking becomes the primary form of locomotion. However, fusion of the epiphysis does not take place until 10-11 years of age, and overall trabecular structure does not fully reflect the adult pattern until 12 years of age, indicating a lag between adult-like behaviours and adult-like trabecular morphology. We found minimal differences in trabecular ontogeny between mountain and western lowland gorillas, despite presumed variation in the frequencies of arboreal locomotor behaviours. Altogether, ontogenetic changes in Gorilla metacarpal trabecular structure reflect overall genus-level changes in locomotor behaviours throughout development, but with some ontogenetic lag that should be considered when drawing functional conclusions from bone structure in extant or fossil adolescent specimens.
Collapse
Affiliation(s)
- Kim Deckers
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Zewdi J Tsegai
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
17
|
Bird EE, Kivell TL, Skinner MM. Patterns of internal bone structure and functional adaptation in the hominoid scaphoid, lunate, and triquetrum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emma E. Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
18
|
Berthaume MA, Kramer PA. Anthroengineering: an independent interdisciplinary field. Interface Focus 2021; 11:20200056. [PMID: 34938428 PMCID: PMC8361575 DOI: 10.1098/rsfs.2020.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
In recent decades, funding agencies, institutes and professional bodies have recognized the profound benefits of transdisciplinarity in tackling targeted research questions. However, once questions are answered, the previously abundant support often dissolves. As such, the long-term benefits of these transdisciplinary approaches are never fully achieved. Over the last several decades, the integration of anthropology and engineering through inter- and multidisciplinary work has led to advances in fields such as design, human evolution and medical technologies. The lack of formal recognition, however, of this transdisciplinary approach as a unique entity rather than a useful tool or a subfield makes it difficult for researchers to establish laboratories, secure permanent jobs, fund long-term research programmes and train students in this approach. To facilitate the growth and development and witness the long-term benefits of this approach, we propose the integration of anthropology and engineering be recognized as a new, independent field known as anthroengineering. We present a working definition for anthroengineering and examples of how anthroengineering has been used. We discuss the necessity of recognizing anthroengineering as a unique field and explore potential novel applications. Finally, we discuss the future of anthroengineering, highlighting avenues for moving the field forward.
Collapse
Affiliation(s)
- Michael A. Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, London SE1 0AA, UK
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Seattle, WA 98195-3100, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195-3100, USA
| |
Collapse
|
19
|
Andronowski JM, Cole ME, Hieronymus TL, Davis RA, Usher LR, Cooper LN. Intraskeletal consistency in patterns of vascularity within bat limb bones. Anat Rec (Hoboken) 2021; 305:462-476. [PMID: 34101383 DOI: 10.1002/ar.24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Bats are the only mammals to have achieved powered flight. A key innovation allowing for bats to conquer the skies was a forelimb modified into a flexible wing. The wing bones of bats are exceptionally long and dynamically bend with wingbeats. Bone microarchitectural features supporting these novel performance attributes are still largely unknown. The humeri and femora of bats are typically avascular, except for large-bodied taxa (e.g., pteropodid flying foxes). No thorough investigation of vascular canal regionalization and morphology has been undertaken as historically it has been difficult to reconstruct the 3D architecture of these canals. This study augments our understanding of the vascular networks supporting the bone matrix of a sample of bats (n = 24) of variable body mass, representing three families (Pteropodidae [large-bodied, species = 6], Phyllostomidae [medium-bodied, species = 2], and Molossidae [medium-bodied, species = 1]). We employed Synchrotron Radiation-based micro-Computed Tomography (SRμCT) to allow for a detailed comparison of canal morphology within humeri and femora. Results indicate that across selected bats, canal number per unit volume is similar independent of body size. Differences in canal morphometry based on body size and bone type appear primarily related to a broader distribution of the canal network as cortical volume increases. Heavier bats display a relatively rich vascular network of mostly longitudinally-oriented canals that are localized mainly to the mid-cortical and endosteal bone envelopes. Taken together, our results suggest that relative vascularity of the limb bones of heavier bats forms support for nutrient exchange in a regional pattern.
Collapse
Affiliation(s)
- Janna M Andronowski
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mary E Cole
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Reed A Davis
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Logan R Usher
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
20
|
Bird EE, Kivell TL, Skinner MM. Cortical and trabecular bone structure of the hominoid capitate. J Anat 2021; 239:351-373. [PMID: 33942895 PMCID: PMC8273598 DOI: 10.1111/joa.13437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor activity due to its importance in movement and load transfer at the midcarpal joint proximally and carpometacarpal joints distally. Although the shape of bones and their articulations are linked to joint mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we apply a whole‐bone methodology to quantify the cortical and trabecular architecture (separately and combined) of the capitate across bipedal (modern Homo sapiens), knuckle‐walking (Pan paniscus, Pan troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n = 69). It is hypothesized that variation in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular and cortical architecture in the proximal and distal regions, as a result of being part of mechanically divergent joints proximally and distally, will differ across these portions of the capitate. Results indicate that the capitate of knuckle‐walking and suspensory hominoids is differentiated from bipedal Homo primarily by significantly thicker distal cortical bone. Knuckle‐walking taxa are further differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. An allometric analysis indicates that size is not a significant determinate of bone variation across hominoids, although sexual dimorphism may influence some parameters within Gorilla. Results suggest that internal trabecular and cortical bone is subjected to different forces and functional adaptation responses across the capitate (and possibly other short bones). Additionally, while separating trabecular and cortical bone is normal protocol of current whole‐bone methodologies, this study shows that when applied to carpals, removing or studying the cortical bone separately potentially obfuscates functionally relevant signals in bone structure.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
21
|
Alfieri F, Nyakatura JA, Amson E. Evolution of bone cortical compactness in slow arboreal mammals. Evolution 2020; 75:542-554. [PMID: 33314086 DOI: 10.1111/evo.14137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023]
Abstract
Convergent evolution is a major topic in evolutionary biology. Low bone cortical compactness (CC, a measure of porosity of cortical bone) in the extant genera of "tree sloths," has been linked to their convergent slow arboreal ecology. This proposed relationship of low CC with a slow arboreal lifestyle suggests potential convergent evolution of this trait in other slow arboreal mammals. Femoral and humeral CC were analyzed in "tree sloths," lorisids, koala, and extinct palaeopropithecids and Megaladapis, in comparison to closely related but ecologically distinct taxa, in a phylogenetic framework. Low CC in "tree sloths" is unparalleled by any analyzed clade and the high CC in extinct sloths suggests the recent convergence of low CC in "tree sloths." A tendency for low CC was found in Palaeopropithecus and Megaladapis. However, lorisids and the koala yielded unexpected CC patterns, preventing the recognition of a straightforward convergence of low CC in slow arboreal mammals. This study uncovers a complex relationship between CC and convergent evolution of slow arboreality, highlighting the multifactorial specificity of bone microstructure.
Collapse
Affiliation(s)
- Fabio Alfieri
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - John A Nyakatura
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eli Amson
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
22
|
Nguyen JT, Barak MM. Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer. J Exp Biol 2020; 223:jeb225482. [PMID: 32366689 PMCID: PMC7295587 DOI: 10.1242/jeb.225482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023]
Abstract
Cortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analysed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. As the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression versus tension) affect the osteoclasts and osteoblasts differently in the basic multicellular unit. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while the osteoid deposition and mineralization by osteoblasts is not affected by strain magnitude and sign.
Collapse
Affiliation(s)
- Jack T Nguyen
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
23
|
Cho JA, Baek SY, Cheong SH, Kim MR. Spirulina Enhances Bone Modeling in Growing Male Rats by Regulating Growth-Related Hormones. Nutrients 2020; 12:nu12041187. [PMID: 32344533 PMCID: PMC7231069 DOI: 10.3390/nu12041187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, growth hormone deficiency in children has been treated with hormone therapy despite the possible significant side effects. Therefore, it was deemed beneficial to develop functional foods or dietary supplements for safely improving children's growth. Spirulina platensis is known for its high antioxidant, anti-aging, anti-cancer, and immunity-enhancing properties, as well as its high digestibility and high protein content, but little has been reported about its influence on bone development in children with a normal supply of protein. In this study, we evaluated the effects of spirulina on the bone metabolism and antioxidant profiles of three-week-old growing male rats. The animals were divided into four groups (n = 17 per group) and were fed AIN93G diets with 0% (control), 30% (SP30), 50% (SP50), and 70% (SP70) of casein protein replaced by spirulina, respectively, for seven weeks. We observed that spirulina enhanced bone growth and bone strength by stimulating parathyroid hormone and growth hormone activities, as well its increased antioxidant activity. These results indicate that spirulina provides a suitable dietary supplement and alternative protein source with antioxidant benefits for growth improvement in early developmental stages.
Collapse
Affiliation(s)
- Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Seong Yeon Baek
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837
| |
Collapse
|