1
|
Traiffort E, Kassoussi A, Zahaf A. Revisiting the role of sexual hormones in the demyelinated central nervous system. Front Neuroendocrinol 2025; 76:101172. [PMID: 39694337 DOI: 10.1016/j.yfrne.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease. The present review is an update of our current knowledge about progestagens, androgens and estrogens in the context of CNS demyelination including their synthesis, the impact of their dysregulation, the preclinical and clinical data presently available, the main molecular dimorphisms related to these hormones and their age-related changes and relationship with failure of spontaneous remyelination, likely impacting the inexorable progression of multiple sclerosis towards irreversible disabilities.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Anwar S, Lin PCP, Pacheco L, Imai K, Tan Z, Song Z, Wakamatsu Y, Minamiya Y, Cheng J, Ko C, Inoue M. Decreased lymph node estrogen levels cause nonremitting progressive experimental autoimmune encephalomyelitis disease. PNAS NEXUS 2025; 4:pgaf010. [PMID: 39871825 PMCID: PMC11770340 DOI: 10.1093/pnasnexus/pgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP). RFP was detected in the high endothelial venules of all morphologically identifiable LNs, indicating aromatase activity within these tissues. We discovered that LNs actively synthesize 17β-estradiol, but this activity declines with age. Targeted delivery of an aromatase inhibitor specifically to LNs induced an interferon-β-resistant experimental autoimmune encephalomyelitis (EAE) phenotype. This phenotype was accompanied by significant gray matter atrophy in the spinal cord. These findings underscore LNs as crucial sites of de novo 17β-estradiol production, potentially contributing to nonremitting EAE phenotypes. The observed decline in 17β-estradiol likely exacerbates MS pathogenesis in aging mice. Importantly, aromatase expression in human cervical LNs suggests that these sites may similarly contribute to estrogen synthesis in humans, potentially opening new avenues for understanding and treating MS.
Collapse
Affiliation(s)
- Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
- Faculty of Veterinary Medicine, Department of Pathology, Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Lazaro Pacheco
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Zhengzhong Tan
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Ziyuan Song
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Yuki Wakamatsu
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - CheMyong Ko
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
3
|
Nesbitt C, Van Der Walt A, Butzkueven H, Cheung AS, Jokubaitis VG. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 2025; 21:48-62. [PMID: 39658653 DOI: 10.1038/s41582-024-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ada S Cheung
- Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
El Ayoubi NK, Ismail A, Fahd F, Younes L, Chakra NA, Khoury SJ. Retinal optical coherence tomography measures in multiple sclerosis: a systematic review and meta-analysis. Ann Clin Transl Neurol 2024; 11:2236-2253. [PMID: 39073308 PMCID: PMC11537126 DOI: 10.1002/acn3.52165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Spectral domain-optical coherence tomography plays a crucial role in the early detection and monitoring of multiple sclerosis (MS) pathophysiology. We aimed to quantify differences in retinal layer measures among different groups of MS and explored different variables that correlate with retinal measures. This study was reported according PRISMA guidelines. A comprehensive search was done across PubMed, Embase, and Google Scholar. The mean difference in thickness of retinal layers and macular volume was assessed. Meta-regression was done to assess the sources of heterogeneity. A total of 100 articles were included in the meta-analyses. The peripapillary retinal nerve fiber layer (pRNFL) thickness significantly decreased in the MSON (MD: -16.44, P < 0.001), MSNON (MD: -6.97, P < 0.001), and PMS (MD: -11.35, P < 0.001) versus HC. The macular RNFL was lower among the MSON (MD: -6.24, P = 0.013) and MSNON (MD: -3.84, P <0.001) versus HC. Macular ganglion cell layer and inner plexiform layer (GCIPL) was thinner among MSON (MD: -14.83, P <0.001), MSNON (MD: -6.38, P < 0.001), and PMS (MD: -11.52, P < 0.001) compared with control eyes. Inner nuclear layer (INL) was higher in the MSON (MD: 0.49, P < 0.001) versus HC. Outer nuclear layer (ONL) thickness significantly lower in the MSNON (MD: -1.15, P = 0.019) versus HC. Meta-regression showed that disease duration, age, EDSS score, and percentage of patients taking DMT are all negatively correlated with pRNFL and GCIPL thickness; however, female gender was correlated with less atrophy. As conclusion, the study highlights substantial thinning in the pRNFL and macular GCIPL between MS versus controls. INL as valuable parameter for capturing inflammatory disease activity.
Collapse
Affiliation(s)
- Nabil K. El Ayoubi
- Nehme and Therese Tohme Multiple Sclerosis Center, Department of NeurologyAmerican University of BeirutBeirutLebanon
| | - Ali Ismail
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityBeirutLebanon
| | - Fares Fahd
- Nehme and Therese Tohme Multiple Sclerosis Center, Department of NeurologyAmerican University of BeirutBeirutLebanon
| | - Lama Younes
- Nehme and Therese Tohme Multiple Sclerosis Center, Department of NeurologyAmerican University of BeirutBeirutLebanon
| | - Nour A. Chakra
- Nehme and Therese Tohme Multiple Sclerosis Center, Department of NeurologyAmerican University of BeirutBeirutLebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Department of NeurologyAmerican University of BeirutBeirutLebanon
| |
Collapse
|
5
|
Juutinen L, Ahinko K, Hagman S, Basnyat P, Jääskeläinen O, Herukka SK, Sumelahti ML. The association of menopausal hormone levels with progression-related biomarkers in multiple sclerosis. Mult Scler Relat Disord 2024; 85:105517. [PMID: 38442501 DOI: 10.1016/j.msard.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) progression coincides temporally with menopause. However, it remains unclear whether the changes in disease course are related to the changes in reproductive hormone concentrations. We assessed the association of menopausal hormonal levels with progression-related biomarkers of MS and evaluated the changes in serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels during menopausal hormone therapy (MHT) in a prospective baseline-controlled design. METHODS The baseline serum estradiol, follicle stimulating hormone, and luteinizing hormone levels were measured from menopausal women with MS (n = 16) and healthy controls (HC, n = 15). SNfL and sGFAP were measured by single-molecule array. The associations of hormone levels with sNfL and sGFAP, and with Expanded Disability Status Scale (EDSS) and lesion load and whole brain volumes (WBV) in MRI were analyzed with Spearman's rank correlation and age-adjusted linear regression model. Changes in sNfL and sGFAP during one-year treatment with estradiol hemihydrate combined with cyclic dydrogesterone were assessed with Wilcoxon Signed Ranks Test. RESULTS In MS group, baseline estradiol had a positive correlation with WBV in MRI and an inverse correlation with lesion load, sNfL and sGFAP, but no correlation with EDSS. The associations of low estradiol with high sGFAP and low WBV were independent of age. During MHT, there was no significant change in sNfL and sGFAP levels in MS group while in HC, sGFAP slightly decreased at three months but returned to baseline at 12 months. CONCLUSION Our preliminary findings suggest that low estradiol in menopausal women with MS has an age-independent association with more pronounced brain atrophy and higher sGFAP and thus advanced astrogliosis which could partially explain the more rapid progression of MS after menopause. One year of MHT did not alter the sGFAP or sNfL levels in women with MS.
Collapse
Affiliation(s)
- Laura Juutinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland; Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, FI, 33521, Tampere, Finland.
| | - Katja Ahinko
- Department of Obstetrics and Gynecology, Tampere University Hospital, P.O. Box 2000, FI, 33521 Tampere, Finland
| | - Sanna Hagman
- Neuroimmunology Research Group, Faculty of Medicine and Health Technology, Tampere University, FI, 33014 Tampere University, Finland
| | - Pabitra Basnyat
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1711, 70211, Kuopio, Finland
| | - Marja-Liisa Sumelahti
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland
| |
Collapse
|
6
|
Martinelli S, Nannini G, Cianchi F, Coratti F, Amedei A. The Impact of Microbiota-Immunity-Hormone Interactions on Autoimmune Diseases and Infection. Biomedicines 2024; 12:616. [PMID: 38540229 PMCID: PMC10967803 DOI: 10.3390/biomedicines12030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 02/07/2025] Open
Abstract
Autoimmune diseases are complex multifactorial disorders, and a mixture of genetic and environmental factors play a role in their onset. In recent years, the microbiota has gained attention as it helps to maintain host health and immune homeostasis and is a relevant player in the interaction between our body and the outside world. Alterations (dysbiosis) in its composition or function have been linked to different pathologies, including autoimmune diseases. Among the different microbiota functions, there is the activation/modulation of immune cells that can protect against infections. However, if dysbiosis occurs, it can compromise the host's ability to protect against pathogens, contributing to the development and progression of autoimmune diseases. In some cases, infections can trigger autoimmune diseases by several mechanisms, including the alteration of gut permeability and the activation of innate immune cells to produce pro-inflammatory cytokines that recruit autoreactive T and B cells. In this complex scenario, we cannot neglect critical hormones' roles in regulating immune responses. Different hormones, especially estrogens, have been shown to influence the development and progression of autoimmune diseases by modulating the activity and function of the immune system in different ways. In this review, we summarized the main mechanisms of connection between infections, microbiota, immunity, and hormones in autoimmune diseases' onset and progression given the influence of some infections and hormone levels on their pathogenesis. In detail, we focused on rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (S.M.); (G.N.); (F.C.); (F.C.)
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
7
|
Nekrasova I, Glebezdina N, Maslennikova I, Danchenko I, Shirshev S. Estriol and commensal microflora strains regulate innate lymphoid cells functional activity in multiple sclerosis. Mult Scler Relat Disord 2024; 83:105453. [PMID: 38277978 DOI: 10.1016/j.msard.2024.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease in which the immune system attacks myelin basic protein of nerve axons. Recently, there has been growing interest in studying the role of a newly described population of immunity cells - innate lymphoid cells (ILCs) in the pathogenesis of the disease. At the same time, it was found that during pregnancy there is a weakening of Th1-mediated autoimmune pathologies manifestations, including MS. In this work, we studied phenotypic characteristics of ILC in MS patients in comparison with healthy donors after 48 h incubation with pregnancy hormone estriol (E3) and commensal microflora cells. To activate ILC, strains of Ecsherichia coli K12 and Lactobacillus plantarum 8R-A3 were used. ILC phenotype was assessed by flow cytometry using monoclonal antibody staining. It has been established that E3 and bacterial factors are able to regulate the maturation of ILC subtypes and their cytokines in different ways. In general, the studied factors influence the phenotypic changes in ILC cells, leading to the transition from one type to another, both in healthy donors and in MS patients.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia.
| | - Natalia Glebezdina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| | - Irina Maslennikova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia; Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Irina Danchenko
- Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Sergei Shirshev
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| |
Collapse
|
8
|
Balshi A, Manning N, Dempsey J, Jun C, Baber U, Sloane JA. Clinical course of multiple sclerosis with comorbid endometriosis: A matched cohort study. Mult Scler Relat Disord 2024; 82:105377. [PMID: 38181694 DOI: 10.1016/j.msard.2023.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Endometriosis (EMS) is pain syndrome in which endometrial tissue grows outside the uterus. EMS is associated with an increased risk of multiple sclerosis (MS), a demyelinating disease of the central nervous system. OBJECTIVE To characterize clinical phenotypes of a cohort of patients with both EMS and MS compared to a cohort of matched controls with only MS. METHODS We retrospectively identified patients with EMS and MS at Beth Israel Deaconess Medical Center (BIDMC). We collected data on EMS treatments and analyzed differences in histories of gynecological cancer, smoking, fatigue, anxiety, depression, headache, and neuropathic pain compared to matched controls. We used Wilcoxon signed rank tests for paired samples to compare Expanded Disability Status Scores (EDSS) and timed 25-foot walk values (T25FW). RESULTS Using a case-control methodology, we found significantly increased EDSS (p < 0.001) and T25FW (p = 0.01) in the EMS-MS group compared to the MS group. More patients in the EMS-MS group had histories of smoking, anxiety, depression, and headaches, while more patients in the MS group had histories of fatigue and neuropathic pain. CONCLUSION When controlling for age, race, and MS therapy, those with EMS-MS experience more MS disability than controls, suggesting this population requires more monitoring and efficacious treatment.
Collapse
Affiliation(s)
- Alexandra Balshi
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nova Manning
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Dempsey
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claire Jun
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ursela Baber
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
9
|
Shayestehfar M, Salari M, Karimi S, Vosough M, Memari A, Nabavi SM. Sex hormone therapy in Multiple Sclerosis: A systematic review of randomized clinical trials. J Cent Nerv Syst Dis 2024; 16:11795735231223411. [PMID: 38188227 PMCID: PMC10768623 DOI: 10.1177/11795735231223411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background In spite of the observed immunomodulatory properties of different sex hormones on Multiple Sclerosis (MS) in different investigations, to date, there has been no study to systematically review the documents to add more powerful data to the field. Objectives Therefore, in this paper we aim to systematically review clinical and randomized controlled trials (RCT) assessing the effect of sex hormone therapies on individuals with MS. Design A comprehensive search of electronic databases including PubMed, EMBASE, and Scopus was conducted. Clinical trials and RCTs that assessed the impact of sex hormones on individuals with MS were selected and included in the systematic review. Data sources and methods In the final phase of the search strategy, 9 papers reached the criteria for entering in the systematic review. Two independent reviewers extracted the relevant data from each article according to the standardized data extraction form. Two reviewers also assessed the quality of each study independently using PEDro scale. Results We categorized three different classifications of outcomes including clinical, MRI, and immune system findings and put each measured outcome in the category which matched best. Conclusion In conclusion, the existed investigations on the effect of sex hormones on inflammatory and neurodegenerative components of MS are promising particularly in relapsing-remitting MS (RRMS).
Collapse
Affiliation(s)
- Monir Shayestehfar
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Salari
- Neuro Functional Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahedeh Karimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Amirhossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
10
|
Meyer CE, Smith AW, Padilla-Requerey AA, Farkhondeh V, Itoh N, Itoh Y, Gao JL, Herbig PD, Nguyen Q, Ngo KH, Oberoi MR, Siddarth P, Voskuhl RR, MacKenzie-Graham A. Neuroprotection in Cerebral Cortex Induced by the Pregnancy Hormone Estriol. J Transl Med 2023; 103:100189. [PMID: 37245852 PMCID: PMC11927460 DOI: 10.1016/j.labinv.2023.100189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Andrew W Smith
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Aitana A Padilla-Requerey
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Vista Farkhondeh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Josephine L Gao
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Patrick D Herbig
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Quynhanh Nguyen
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Katelyn H Ngo
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Mandavi R Oberoi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Prabha Siddarth
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Rhonda R Voskuhl
- UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Allan MacKenzie-Graham
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine at the University of California, Los Angeles, California; UCLA Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, California.
| |
Collapse
|
11
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
12
|
Bridge F, Butzkueven H, Van der Walt A, Jokubaitis VG. The impact of menopause on multiple sclerosis. Autoimmun Rev 2023; 22:103363. [PMID: 37230311 DOI: 10.1016/j.autrev.2023.103363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Menopause, defined as the permanent cessation of ovarian function, represents a period of significant fluctuation in sex hormone concentrations. Sex hormones including oestrogen, progesterone, testosterone and anti-Mullerian hormone are thought have neuroinflammatory effects and are implicated in both neuroprotection and neurodegeneration. Sex hormones are thought to have a role in modifying clinical trajectory in multiple sclerosis (MS) throughout the lifespan. Multiple sclerosis predominantly effects women and is typically diagnosed early in a woman's reproductive life. Most women with MS will undergo menopause. Despite this, the effect of menopause on MS disease course remains unclear. This review examines the relationship between sex hormones and MS disease activity and clinical course, particularly around the time of menopause. It will consider the role of interventions such as exogenous hormone replacement therapy in modulating clinical outcomes in this period. Understanding the impact of menopause on multiple sclerosis is fundamental for delivering optimal care to women with MS as they age and will inform treatment decisions with the aim of minimising relapses, disease accrual and improving quality of life.
Collapse
Affiliation(s)
- Francesca Bridge
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Zahaf A, Kassoussi A, Hutteau-Hamel T, Mellouk A, Marie C, Zoupi L, Tsouki F, Mattern C, Bobé P, Schumacher M, Williams A, Parras C, Traiffort E. Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nat Commun 2023; 14:1592. [PMID: 36949062 PMCID: PMC10033728 DOI: 10.1038/s41467-023-36846-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
Neuroprotective, anti-inflammatory, and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor (AR), have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.
Collapse
Affiliation(s)
- Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| | | | | | - Amine Mellouk
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Lida Zoupi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Pierre Bobé
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Carlos Parras
- Paris Brain Institute, Sorbonne University, Paris, France
| | | |
Collapse
|
14
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
15
|
Collorone S, Kodali S, Toosy AT. The protective role of breastfeeding in multiple sclerosis: Latest evidence and practical considerations. Front Neurol 2023; 13:1090133. [PMID: 36761920 PMCID: PMC9902945 DOI: 10.3389/fneur.2022.1090133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
The immunoprotective role of pregnancy in multiple sclerosis (MS) has been known for decades. Conversely, there has been rich debate on the topic of breastfeeding and disease activity in MS. In clinical practice, women are often offered to restart their disease-modifying drug (DMD) soon after delivery to maintain their relapse risk protection. Limited available information about peri-partum DMD safety can discourage women to choose breastfeeding, despite the World Health Organization's recommendation to breastfeed children for the first 6 months of life exclusively. New evidence is emerging about the protective role of exclusive breastfeeding on relapse rate. Research studies shed light on the hormonal and immunological mechanisms driving the risk of relapses during pregnancy and postpartum. Finally, case reports, real-world data, and clinical trials are increasing our knowledge of the safety of DMDs for the fetus and infant. While some DMDs must be avoided, others may be considered in highly active pregnant or lactating women with MS. This mini-review conveys recent evidence regarding the protective role of exclusive breastfeeding in MS and offers clinicians practical considerations for a patient-tailored approach.
Collapse
Affiliation(s)
- Sara Collorone
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | | |
Collapse
|
16
|
Anesi N, Miquel CH, Laffont S, Guéry JC. The Influence of Sex Hormones and X Chromosome in Immune Responses. Curr Top Microbiol Immunol 2023; 441:21-59. [PMID: 37695424 DOI: 10.1007/978-3-031-35139-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections and cancers. Cellular targets and molecular pathways underlying sexual dimorphism in immunity have started to emerge and appeared multifactorial. It became increasingly clear that sex-linked biological factors have important impact on the development, tissue maintenance and effector function acquisition of distinct immune cell populations, thereby regulating multiple layers of innate or adaptive immunity through distinct mechanisms. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in susceptibility to autoimmune diseases and allergies, and the sex-biased responses in natural immunity and cancer.
Collapse
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France.
- INSERM UMR1291, Centre Hospitalier Universitaire Purpan, Place du Dr. Baylac, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
17
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
18
|
White AA, Lin A, Bickendorf X, Cavve BS, Moore JK, Siafarikas A, Strickland DH, Leffler J. Potential immunological effects of gender-affirming hormone therapy in transgender people - an unexplored area of research. Ther Adv Endocrinol Metab 2022; 13:20420188221139612. [PMID: 36533187 PMCID: PMC9747891 DOI: 10.1177/20420188221139612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
There are well-described sex-based differences in how the immune system operates. In particular, cisgender (cis) females have a more easily activated immune system; associated with an increased prevalence of autoimmune diseases and adverse events following vaccinations. Conversely, cis males have a higher threshold for immune activation, and are more prone to certain infectious diseases, such as coronavirus disease (COVID-19). Oestrogen and testosterone have immune-modulatory properties, and it is likely that these contribute to the sexual dimorphism of the immune system. There are also important immune-related genes located on the X chromosome, such as toll-like receptor (TLR) 7/8; and the mosaic bi-allelic expression of such genes may contribute to the state of immune hyperactivation in cis females. The scientific literature strongly suggests that sex-based differences in the functioning of the immune system are related to both X-linked genes and immune modulation by sex hormones. However, it is currently not clear how this impacts transgender (trans) people receiving gender-affirming hormonal therapy. Moreover, it is estimated that in Australia, at least 2.3% of adolescents identify as trans and/or gender diverse, and referrals to specialist gender-affirming care are increasing each year. Despite the improving social awareness of trans people, they remain chronically underrepresented in the scientific literature. In addition, a small number of case studies describe new onset autoimmune disorders in adult trans females following oestrogen use. However, there is currently minimal long-term research with an immunological focus on trans people. Therefore, to ensure the positive health outcomes of trans people, it is crucial that the role of sex hormones in immune modulation is investigated further.
Collapse
Affiliation(s)
- Alice A. White
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Xander Bickendorf
- Telethon Kids Institute, University of Western Australia, WA, Australia
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
| | - Blake S. Cavve
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
| | - Julia K. Moore
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Nedlands, WA, Australia
| | - Aris Siafarikas
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
- Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | | | - Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, 15 Hospital Ave., Nedlands, WA 6009, Australia
| |
Collapse
|
19
|
Murgia F, Giagnoni F, Lorefice L, Caria P, Dettori T, D’Alterio MN, Angioni S, Hendren AJ, Caboni P, Pibiri M, Monni G, Cocco E, Atzori L. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022; 10:biomedicines10123107. [PMID: 36551863 PMCID: PMC9775368 DOI: 10.3390/biomedicines10123107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A variety of autoimmune diseases, including MS, amplify sex-based physiological differences in immunological responsiveness. Female MS patients experience pathophysiological changes during reproductive phases (pregnancy and menopause). Sex hormones can act on immune cells, potentially enabling them to modify MS risk, activity, and progression, and to play a role in treatment. METHODS Scientific papers (published between 1998 and 2021) were selected through PubMed, Google Scholar, and Web of Science literature repositories. The search was limited to publications analyzing the hormonal profile of male and female MS patients during different life phases, in particular focusing on sex hormone treatment. RESULTS Both men and women with MS have lower testosterone levels compared to healthy controls. The levels of estrogens and progesterone increase during pregnancy and then rapidly decrease after delivery, possibly mediating an immune-stabilizing process. The literature examined herein evidences the neuroprotective effect of testosterone and estrogens in MS, supporting further examinations of their potential therapeutic uses. CONCLUSIONS A correlation has been identified between sex hormones and MS clinical activity. The combination of disease-modifying therapies with estrogen or estrogen plus a progestin receptor modulator promoting myelin repair might represent an important strategy for MS treatment in the future.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Florianna Giagnoni
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, 09126 Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Maurizio N. D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Stefano Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Aran J. Hendren
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Monica Pibiri
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Monni
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital “A. Cao”, 09121 Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, Department of Medical Sciences and Public Health, University of Cagliari, 09126 Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
20
|
Negishi Y, Shima Y, Kato M, Ichikawa T, Ino H, Horii Y, Suzuki S, Morita R. Inflammation in preterm birth: Novel mechanism of preterm birth associated with innate and acquired immunity. J Reprod Immunol 2022; 154:103748. [PMID: 36126439 DOI: 10.1016/j.jri.2022.103748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Preterm birth (PB) is the most-frequent complication occurring during pregnancy, with a significant impact on neonatal morbidity and mortality. Chorioamnionitis (CAM), the neutrophil infiltration into chorioamniotic membranes, is a major cause of PB. However, several cases of PB have also been reported without apparent pathogenic infection or CAM. Such cases are now attributed to "sterile inflammation." The concept of sterile inflammation has already attracted attention in various diseases, like cardiovascular diseases, diabetes, and autoimmune diseases; recently been discussed for obstetric complications such as miscarriage, PB, gestational hypertension, and gestational diabetes. Sterile inflammation is induced by alarmins, such as high-mobility group box 1 (HMGB1), interleukins (IL-33 and IL-1α), and S100 proteins, that are released by cellular damage without apparent pathogenic infection. These antigens are recognized by pattern-recognition receptors, expressed mainly on antigen-presenting cells of decidua, placenta, amnion, and myometrium, which consequently trigger inflammation. In reproduction, these alarmins are associated with the development of various pregnancy complications, including PB. In this review, we have summarized the development of PB related to acute CAM, chronic CAM, and sterile inflammation as well as proposed a new mechanism for PB that involves innate immunity, acquired immunity, and sterile inflammation.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan.
| | - Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Tomoko Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Hajime Ino
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yumi Horii
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
21
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
22
|
Voskuhl R, Kuhle J, Siddarth P, Itoh N, Patel K, MacKenzie‐Graham A. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1316-1320. [PMID: 35770318 PMCID: PMC9380170 DOI: 10.1002/acn3.51622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogens have neuroprotective actions depending on estrogen type, dose, and timing in both preclinical models and in women during health and disease. Serum neurofilament light chain is a putative biomarker of neurodegeneration in multiple sclerosis, aging, and other neurodegenerative diseases. Here, oral treatment with an estrogen unique to pregnancy (estriol) using an 8 mg dose to induce a mid-pregnancy blood estriol level reduced serum neurofilament light chain in nonpregnant MS women at mean age of 37 years. This is consistent with estriol-mediated protection from neuro-axonal injury and supports the use of serum neurofilament light chain as a biomarker in MS.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Prabha Siddarth
- Jane and Terry Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Patel
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Allan MacKenzie‐Graham
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
23
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
24
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
25
|
McCombe PA. The role of sex and pregnancy in multiple sclerosis: what do we know and what should we do? Expert Rev Neurother 2022; 22:377-392. [PMID: 35354378 DOI: 10.1080/14737175.2022.2060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is more prevalent in women than in men. The sex of the patient, and pregnancy, are reported to be associated with the clinical features of MS. The mechanism of this is unclear. AREAS COVERED This review summarizes data about sex differences in MS and the role of pregnancy. Possible mechanisms for the effects of sex and pregnancy are summarized, and practical suggestions for addressing these issues are provided. EXPERT OPINION There is considerable interdependence of the variables that are associated with MS. Men have a worse outcome of MS, and this could be due to the same factors that lead to greater incidence of neurodegenerative disease in men. The possible role of parity on the long-term outcome of MS is of interest. Future studies that look at the mechanisms of the effects of the sex of the patient on the outcome of MS are required. However, there are some actions that can be taken without further research. We can concentrate on public health measures that address the modifiable risk factors for MS and ensure that disease is controlled in women who intend to become pregnant and use appropriate disease modifying agents during pregnancy.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
26
|
Biochanin A Improves Memory Decline and Brain Pathology in Cuprizone-Induced Mouse Model of Multiple Sclerosis. Behav Sci (Basel) 2022; 12:bs12030070. [PMID: 35323389 PMCID: PMC8945046 DOI: 10.3390/bs12030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system characterized by the demyelination of nerves, neural degeneration, and axonal loss. Cognitive impairment, including memory decline, is a significant feature in MS affecting up to 70% of patients. Thereby, it substantially impacts patients’ quality of life. Biochanin A (BCA) is an o-methylated isoflavone with a wide variety of pharmacological activities, including antioxidant, anti-inflammatory, and neuroprotective activities. Thus, this study aimed to investigate the possible protective effects of BCA on memory decline in the cuprizone (CPZ) model of MS. Thirty Swiss albino male mice (SWR/J) were randomly divided into three groups (n = 10): control (normal chow + i.p. 1:9 mixture of DMSO and PBS), CPZ (0.2% w/w of CPZ mixed into chow + i.p. 1:9 mixture of DMSO and PBS), and CPZ + BCA (0.2% w/w of CPZ mixed into chow + i.p. 40 mg/kg of BCA). At the last week of the study (week 5), a series of behavioral tasks were performed. A grip strength test was performed to assess muscle weakness while Y-maze, novel object recognition task (NORT), and novel arm discrimination task (NADT) were performed to assess memory. Additionally, histological examination of the hippocampus and the prefrontal cortex (PFC) were conducted. BCA administration caused a significant increase in the grip strength compared with the CPZ group. Additionally, BCA significantly improved the mice’s spatial memory in the Y-maze and recognition memory in the NORT and the NADT compared with the CPZ group. Moreover, BCA mitigated neuronal damage in the PFC and the hippocampus after five weeks of administration. In conclusion, our data demonstrates the possible protective effect of BCA against memory deterioration in mice fed with CPZ for five weeks.
Collapse
|
27
|
Leffler J, Trend S, Gorman S, Hart PH. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front Neurol 2022; 13:835162. [PMID: 35185777 PMCID: PMC8850837 DOI: 10.3389/fneur.2022.835162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
The immunological mechanisms that contribute to multiple sclerosis (MS) differ between males and females. Females are 2–3 times more likely to develop MS compared to males, however the reason for this discrepancy is unknown. Once MS is established, there is a more inflammatory yet milder form of disease in females whereas males generally suffer from more severe disease and faster progression, neural degradation, and disability. Some of these differences relate to genetics, including genetic control of immune regulatory genes on the X-chromosome, as well as immune modulatory properties of sex hormones. Differences in MS development may also relate to how sex interacts with environmental risk factors. There are several environmental risk factors for MS including late-onset Epstein Barr virus infection, low serum vitamin D levels, low UV radiation exposure, smoking, obesity, and lack of physical activity. Most of these risk factors impact males and females differently, either due to biological or immunological processes or through behavioral differences. In this review, we explore these differences further and focus on how the interaction of environmental risk factors with sex hormones may contribute to significantly different prevalence and pathology of MS in males and females.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Jonatan Leffler
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Prue H. Hart
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
28
|
Evaluation of Sex Hormone Levels in Patients with Pemphigus Vulgaris in Comparison to the Healthy Population. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9947706. [PMID: 34621900 PMCID: PMC8492234 DOI: 10.1155/2021/9947706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Materials and Methods This cross-sectional study was performed on patients with pemphigus vulgaris referred to Faghihi Hospital and Shiraz Dental Faculty in 2017-2018. The participants included 26 women with histopathologically confirmed pemphigus vulgaris and 26 healthy age-matched controls. The serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estrogen, progesterone, testosterone, prolactin, dehydroepiandrosterone (DHEA), and dihydrotestosterone (DHT) were evaluated in both groups. Independent t-test and two-way ANOVA were used for data analysis. Results The mean age of the patients was 49.88 ± 10.46 years and that of the control group was 49.92 ± 11.30 years. Unlike the case group, the DHEA serum level was significantly higher among nonmenopausal participants in the control group. Moreover, the levels of testosterone and DHEA were significantly lower in the case group in comparison to the control group (p = 0.015 and p = 0.026, respectively). Conclusion Considering the effects of age and menopause, the serum levels of testosterone and DHEA were significantly lower in the patients with pemphigus vulgaris than in the healthy controls. Hence, these hormones might have a role in the pathogenesis of pemphigus vulgaris.
Collapse
|
29
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
30
|
Papapavlou G, Hellberg S, Raffetseder J, Brynhildsen J, Gustafsson M, Jenmalm MC, Ernerudh J. Differential effects of estradiol and progesterone on human T cell activation in vitro. Eur J Immunol 2021; 51:2430-2440. [PMID: 34223649 DOI: 10.1002/eji.202049144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Estradiol (E2) and progesterone (P4) are steroid hormones important for the regulation of immune responses during pregnancy. Their increasing levels coincide with an improvement of T cell-mediated diseases such as multiple sclerosis (MS). Although immune-endocrine interactions are involved in this phenomenon, the relative contribution of hormones is not known. We here report a direct comparison of E2- and P4-mediated effects on human CD4+ T cells, key cells in immune regulation. T cells were stimulated to obtain different activation levels and exposed to a broad range of hormone concentrations. Activation level was assessed by CD69/CD25 expression by flow cytometry, and secreted proteins (n = 196) were measured in culture supernatants using proximity extension assay and electrochemiluminescence immunoassay. We found that in low activated cells, pregnancy-relevant E2 concentrations increased activation and the secretion of several immune- and inflammation-related proteins. P4, on the other hand, showed a biphasic pattern, where serum-related concentrations upregulated activation and protein secretion while placenta-relevant concentrations induced a prominent dampening irrespective of the initial activation level. Our results demonstrate the importance of P4 as a major hormone in the immune modulation of T cells during pregnancy and emphasize the need to further evaluate its potency in the treatment of diseases like MS.
Collapse
Affiliation(s)
- Georgia Papapavlou
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Brynhildsen
- Department of Obstetrics and Gynecology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Obstetrics and Gynecology, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Mika Gustafsson
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Graham JJ, Longhi MS, Heneghan MA. T helper cell immunity in pregnancy and influence on autoimmune disease progression. J Autoimmun 2021; 121:102651. [PMID: 34020252 PMCID: PMC8221281 DOI: 10.1016/j.jaut.2021.102651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Pregnancy presents the maternal immune system with a unique immunological challenge since it has to defend against pathogens while tolerating paternal allo-antigens expressed by fetal tissues. T helper (Th) cells play a central role in modulating immune responses and recent advances have defined distinct contributions of various Th cell subsets throughout each phase of human pregnancy, while dysregulation in Th responses show association with multiple obstetrical complications. In addition to localized decidual mechanisms, modulation of Th cell immunity during gestation is mediated largely by oscillations in sex hormone concentrations. Aberrant Th cell responses also underlie several autoimmune disorders while pregnancy-induced changes in the balance of Th cell immunity has been shown to exert favorable outcomes in the progression Th1 and Th17 driven autoimmune conditions only to be followed by post-partal exacerbations in disease.
Collapse
Affiliation(s)
- Jonathon J Graham
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Michael A Heneghan
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| |
Collapse
|
32
|
Roeder HJ, Leira EC. Effects of the Menstrual Cycle on Neurological Disorders. Curr Neurol Neurosci Rep 2021; 21:34. [PMID: 33970361 DOI: 10.1007/s11910-021-01115-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The menstrual cycle involves recurrent fluctuations in hormone levels and temperature via neuroendocrine feedback loops. This paper reviews the impact of the menstrual cycle on several common neurological conditions, including migraine, seizures, multiple sclerosis, stroke, and Parkinson's disease. RECENT FINDINGS The ovarian steroid hormones, estrogen and progesterone, have protean effects on central nervous system functioning that can impact the likelihood, severity, and presentation of many neurological diseases. Hormonal therapies have been explored as a potential treatment for many neurological diseases with varying degrees of evidence and success. Neurological conditions also impact women's reproductive health, and the cessation of ovarian function with menopause may also alter the course of neurological diseases. Medication selection must consider hormonal effects on metabolism and the potential for adverse drug reactions related to menstruation, fertility, and pregnancy outcomes. Novel medications with selective affinity for hormonal receptors are desirable. Neurologists and gynecologists must collaborate to provide optimal care for women with neurological disorders.
Collapse
Affiliation(s)
- Hannah J Roeder
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Enrique C Leira
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA. .,Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA. .,Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
33
|
Breton JM, Long KLP, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021; 11:290. [PMID: 33669242 PMCID: PMC7919830 DOI: 10.3390/biom11020290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in myelin, the protective and insulating sheath surrounding axons, affect brain function, as is evident in demyelinating diseases where the loss of myelin leads to cognitive and motor dysfunction. Recent evidence suggests that changes in myelination, including both hyper- and hypo-myelination, may also play a role in numerous neurological and psychiatric diseases. Protecting myelin and promoting remyelination is thus crucial for a wide range of disorders. Oligodendrocytes (OLs) are the cells that generate myelin, and oligodendrogenesis, the creation of new OLs, continues throughout life and is necessary for myelin plasticity and remyelination. Understanding the regulation of oligodendrogenesis and myelin plasticity within disease contexts is, therefore, critical for the development of novel therapeutic targets. In our companion manuscript, we review literature demonstrating that multiple hormone classes are involved in the regulation of oligodendrogenesis under physiological conditions. The majority of hormones enhance oligodendrogenesis, increasing oligodendrocyte precursor cell differentiation and inducing maturation and myelin production in OLs. Thus, hormonal treatments present a promising route to promote remyelination. Here, we review the literature on hormonal regulation of oligodendrogenesis within the context of disorders. We focus on steroid hormones, including glucocorticoids and sex hormones, peptide hormones such as insulin-like growth factor 1, and thyroid hormones. For each hormone, we describe whether they aid in OL survival, differentiation, or remyelination, and we discuss their mechanisms of action, if known. Several of these hormones have yielded promising results in both animal models and in human conditions; however, a better understanding of hormonal effects, interactions, and their mechanisms will ultimately lead to more targeted therapeutics for myelin repair.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthew K Barraza
- Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Olga S Perloff
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
34
|
Søndergaard HB, Airas L, Christensen JR, Nielsen BR, Börnsen L, Oturai A, Sellebjerg F. Pregnancy-Induced Changes in microRNA Expression in Multiple Sclerosis. Front Immunol 2021; 11:552101. [PMID: 33584638 PMCID: PMC7876450 DOI: 10.3389/fimmu.2020.552101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pregnancy affects the disease course in multiple sclerosis (MS), particularly in the third trimester, where the relapse rate is reduced by as much as two thirds. This study aimed at identifying changes in microRNA (miRNA) and immune cell phenotypes in pregnant MS patients. Discovery and validation studies to detect differentially expressed miRNAs were performed with quantitative real-time PCR on peripheral blood mononuclear cells (PBMC). Flow cytometry analysis was performed on PBMC stained with antibodies directed against surface markers of antigen presenting cells (APCs), NK-cells, NKT cells, CD4+ and CD8+ T cells and subsets of these cell types, including PDL1 and PDL2 expressing subsets. RNA was extracted from whole blood, monocytes, and NK-cells to investigate expression and correlation between regulated miRNAs and mRNAs. In total, 15 miRNAs were validated to be differentially expressed between third trimester pregnant and postpartum MS patients (Benjamini-Hochberg false discovery rate from p = 0.03–0.00004). Of these, 12 miRNAs were downregulated in pregnancy and 6 of the 15 miRNAs were altered by more than ±2-fold (+2.99- to -6.38-fold). Pregnant MS patients had a highly significant increase in the percentage of monocytes and a decrease of NK-cells and myeloid dendritic cells compared to non-pregnant MS patients. We confirm previous reports of a relative increase in CD56-bright NK-cells and a decrease in CD56-dim NK-cells in third trimester of pregnancy and report an increase in non-committed follicular helper cells. PDL1 and PDL2 expression was increased in pregnant patients together with IL10. Also, in monocytes IL10, PDL1, and PDL2 were upregulated whereas miR-1, miR-20a, miR-28, miR-95, miR-146a, miR-335, and miR-625 were downregulated between pregnant and untreated MS patients. IL10, PDL1, and PDL2 were predicted targets of MS pregnancy-changed miRNAs, further supported by their negative correlations. Additionally, previously identified pregnancy-regulated mRNAs were identified as predicted targets of the miRNAs. PDL1 and PDL2 bind PD-1 expressed on T cells with an inhibitory effect on T-cell proliferation and increase in IL10 production. These results indicate that some of the effects behind the disease-ameliorating third trimester of pregnancy might be caused by changed expression of miRNAs and immunoregulatory molecules in monocytes.
Collapse
Affiliation(s)
- Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Laura Airas
- Department of Neurology, Turku University Hospital, Turku, Finland
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Romme Nielsen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lars Börnsen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Annette Oturai
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
35
|
Nekrasova I, Shirshev S. Estriol in regulation of cell-mediated immune reactions in multiple sclerosis. J Neuroimmunol 2020; 349:577421. [PMID: 33032016 DOI: 10.1016/j.jneuroim.2020.577421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
The effect of pregnancy hormone estriol (E3) on innate and adaptive immunity cells functions in patients with multiple sclerosis (MS) in comparison with healthy donors (HD) was studied. E3 inhibited phagocytic activity of neutrophils and enhanced monocytes IDO activity. Treg percentage increased and number of Th17 and iNKT cells decreased under E3 influence. At the same time, E3 stimulated production of IL-10 and inhibited secretion of IL-17. The hormonal effects were realized on the cells of both HD and MS patients. Thus, the MS amelioration during pregnancy may be related to E3 influence.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia.
| | - Sergei Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia
| |
Collapse
|
36
|
Vukusic S, Ionescu I, Cornu C, Bossard N, Durand-Dubief F, Cotton F, Durelli L, Marignier R, Gignoux L, Laplaud DA, Moreau T, Clavelou P, De Seze J, Debouverie M, Brassat D, Pelletier J, Lebrun-Frenay C, Le Page E, Castelnovo G, Berger E, Hautecoeur P, Heinzlef O, Trojano M, Patti F, Baulieu EE, Remontet L, El-Etr M. Oral nomegestrol acetate and transdermal 17-beta-estradiol for preventing post-partum relapses in multiple sclerosis: The POPARTMUS study. Mult Scler 2020; 27:1458-1463. [DOI: 10.1177/1352458520978218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Sex steroids could explain the course of multiple sclerosis (MS) in pregnancy. Objective: To compare the annualized relapse rate (ARR) 12 weeks post-partum in women treated with nomegestrol acetate (NOMAc) and 17-beta-estradiol (E2) versus placebo. Methods: POPARTMUS is a randomized, proof-of-concept trial in women with MS, receiving oral NOMAc 10 mg/day and transdermal estradiol 75 µg/week, or placebo. Results: Recruitment was stopped prematurely due to slow inclusions ( n = 202). No treatment effect was observed on ARR after 12 weeks (sex steroids = 0.90 (0.58–1.39), placebo = 0.97 (0.63–1.50) ( p = 0.79)). Conclusion: POPARTMUS failed showing efficacy of a NOMAc–E2 combination in preventing post-partum relapses.
Collapse
Affiliation(s)
- Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron, France/Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Observatoire Français de la Sclérose en Plaques, Lyon, France/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Iuliana Ionescu
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron, France
| | - Catherine Cornu
- Centre d’Investigation Clinique INSERM1407, Hospices Civils de Lyon, Lyon, France/Service de Pharmaco-toxicologie, Lyon, France/UMR5558, Claude Bernard University, Lyon, France
| | - Nadine Bossard
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique–Bioinformatique, Lyon, France/Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
| | - Françoise Durand-Dubief
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron, France/CREATIS, UMR 5220 CNRS & U1044 Inserm, Université Claude Bernard Lyon1, Université de Lyon, Villeurbanne, France
| | - François Cotton
- CREATIS, UMR 5220 CNRS & U1044 Inserm, Université Claude Bernard Lyon1, Université de Lyon, Villeurbanne, France/Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Lyon, France
| | - Luca Durelli
- Clinical and Biological Sciences Department, University of Torino, Turin, Italy
| | - Romain Marignier
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron, France/Université Claude Bernard Lyon 1, Villeurbanne, France/Centre des Neurosciences de Lyon, INSERM 1028 et CNRS UMR5292, Fluid team, Lyon, France
| | - Laurence Gignoux
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron, France
| | - David-Axel Laplaud
- CHU de Nantes, Service de Neurologie & CIC015 INSERM, Nantes, France, INSERM CR1064, Nantes, France
| | - Thibault Moreau
- Department of Neurology, EA4184, University Hospital of Dijon, Dijon, France
| | - Pierre Clavelou
- Service de Neurologie, CHU Clermont-Ferrand, Clermont-Ferrand, France/Inserm U1107, Clermont Université, Université d’Auvergne, Neuro-Dol, Clermont-Ferrand, France
| | - Jérôme De Seze
- Department of Neurology and Clinical Investigation Center, CHU de Strasbourg, INSERM, Strasbourg, France
| | - Marc Debouverie
- EA 4360 Apemac, Lorraine University, Nancy, France/Department of Neurology, Nancy University Hospital, Nancy, France
| | - David Brassat
- Pôle Neurosciences, CHU Toulouse Purpan, Toulouse, France/INSERM U1043-CNRS UMR 5282, Université Toulouse III, Toulouse, France
| | - Jean Pelletier
- Aix Marseille Univ, APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | | | - Emmanuelle Le Page
- Clinical Neuroscience Centre, CIC-P 1414 INSERM, Rennes University Hospital, Rennes, France
| | | | - Eric Berger
- Department of Neurology, CHU Besançon, Besançon, France
| | - Patrick Hautecoeur
- Service de Neurologie, Groupe Hospitalier de l’Institut Catholique de Lille, Lille Cedex, France
| | - Olivier Heinzlef
- Neurology Department, Hospital of Poissy-St-Germain en Laye, Paris, France
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences, and Advanced Technologies, GF Ingrassia, Multiple Sclerosis Center, University of Catania, Catania, Italy
| | | | - Laurent Remontet
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique–Bioinformatique, Lyon, France/Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
| | | |
Collapse
|
37
|
Zeydan B, Atkinson EJ, Weis DM, Smith CY, Gazzuola Rocca L, Rocca WA, Keegan BM, Weinshenker BG, Kantarci K, Kantarci OH. Reproductive history and progressive multiple sclerosis risk in women. Brain Commun 2020; 2:fcaa185. [PMID: 33409489 PMCID: PMC7772117 DOI: 10.1093/braincomms/fcaa185] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Being a woman is one of the strongest risk factors for multiple sclerosis. The natural reproductive period from menarche to natural menopause corresponds to the active inflammatory disease period in multiple sclerosis. The fifth decade marks both the peri-menopausal transition in the reproductive aging and a transition from the relapsing-remitting to the progressive phase in multiple sclerosis. A short reproductive period with premature/early menopause and/or low number of pregnancies may be associated with an earlier onset of the progressive multiple sclerosis phase. A cross-sectional study of survey-based reproductive history in a multiple sclerosis clinical series enriched for patients with progressive disease, and a case–control study of multiple sclerosis and age/sex matched controls from a population-based cohort were conducted. Menarche age, number of complete/incomplete pregnancies, menopause type and menopause age were compared between 137 cases and 396 control females. Onset of relapsing-remitting phase of multiple sclerosis, progressive disease onset and reaching severe disability (expanded disability status scale 6) were studied as multiple sclerosis-related outcomes (n = 233). Menarche age was similar between multiple sclerosis and control females (P = 0.306). Females with multiple sclerosis had fewer full-term pregnancies than the controls (P < 0.001). Non-natural menopause was more common in multiple sclerosis (40.7%) than in controls (30.1%) (P = 0.030). Age at natural menopause was similar between multiple sclerosis (median, interquartile range: 50 years, 48–52) and controls (median, interquartile range: 51 years, 49–53) (P = 0.476). Nulliparous females had earlier age at progressive multiple sclerosis onset (mean ± standard deviation: 41.9 ± 12.5 years) than females with ≥1 full-term pregnancies (mean ± standard deviation: 47.1 ± 9.7 years) (P = 0.069) with a pregnancy-dose effect [para 0 (mean ± standard deviation: 41.9 ± 12.5 years), para 1–3 (mean ± standard deviation: 46.4 ± 9.2 years), para ≥4 (mean ± standard deviation: 52.6 ± 12.9 years) (P = 0.005)]. Menopause age was associated with progressive multiple sclerosis onset age (R2 = 0.359, P < 0.001). Duration from onset of relapses to onset of progressive multiple sclerosis was shorter for females with premature/early menopause (n = 26; mean ± standard deviation: 12.9 ± 9.0 years) than for females with normal menopause age (n = 39; mean ± standard deviation: 17.8 ± 10.3 years) but was longer than for males (mean ±standard deviation: 10.0 ± 9.4 years) (P = 0.005). There was a pregnancy-dose effect of age at expanded disability status scale 6 (para 0: 43.0 ± 13.2 years, para 1–3: 51.7 ± 11.3 years, para ≥4: 53.5 ± 4.9 years) (P = 0.013). Age at menopause was associated with age at expanded disability status scale 6 (R2 = 0.229, P < 0.003). Premature/early menopause or nulliparity was associated with earlier onset of progressive multiple sclerosis with a ‘dose effect’ of pregnancies on delaying progressive multiple sclerosis and severe disability. Although causality remains uncertain, our results suggest a beneficial impact of oestrogen in delaying progressive multiple sclerosis. If confirmed in prospective studies, our findings have implications for counselling women with multiple sclerosis about pregnancy, surgical menopause and menopausal hormone therapy.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Women's Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth J Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Delana M Weis
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Carin Y Smith
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liliana Gazzuola Rocca
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter A Rocca
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Women's Health Research Center, Mayo Clinic, Rochester, MN 55905, USA.,Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian G Weinshenker
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.,Women's Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Houtchens M, Bove R, Healy B, Houtchens S, Kaplan TB, Mahlanza T, Chitnis T, Bakshi R. MRI activity in MS and completed pregnancy: Data from a tertiary academic center. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e890. [PMID: 32917773 PMCID: PMC7643615 DOI: 10.1212/nxi.0000000000000890] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Objective To evaluate postpartum MRI activity in patients with MS and a completed
pregnancy and to compare these results to an age-matched untreated
nonpregnant MS cohort. Methods Patient with MS from a tertiary care MS center between 2006 and 2015, with
prepartum and postpartum neurologic follow-ups and MRI scans were analyzed.
Clinical activity and inflammatory brain MRI activity (new T2-hyperintense
or gadolinium-enhancing [Gd+] lesions) were assessed peripartum. The
results were compared with untreated reproductive-age patients with MS from
the placebo arm of the clinical trials. Results A total of 123 pregnancies in 123 women (median Expanded Disability Status
Scale 1.0) were analyzed. Approximately 7.2% relapsed during pregnancy and
48.7% relapsed postpartum. Of pregnancies with prepartum and postpartum
gadolinium (Gd)-enhanced MRI (n = 112), 8% had Gd+ lesions
prepartum and 33% had new Gd+ lesions postpartum. Overall, 54.4% had
either new T2 or Gd+ lesions postpartum. Seventy-nine percent of
subjects with postpartum relapse had new MRI activity compared with 37.1%
without relapse (p < 0.001). Twenty-five percent had
both clinical and radiographic activity and only 24.9% maintained no
evidence of disease activity status postpartum. There was no association
between postpartum MRI activity and disease-modifying treatments (DMTs)
(p > 0.5). MRI and clinical outcomes were also
assessed for 126 nonpregnant untreated female patients with MS. Comparing
pregnancy and no pregnancy groups, there was no difference in MRI activity
at follow-up. Conclusions There was a high level of inflammatory radiographic disease activity which
was related to relapses in postpartum patients with MS. Further studies are
needed to determine whether hormonal fluctuations vs extended time off DMTs
may be the underlying cause of our observations.
Collapse
Affiliation(s)
- Maria Houtchens
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA.
| | - Riley Bove
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Brian Healy
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Stepan Houtchens
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Tamara Bockow Kaplan
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Tatenda Mahlanza
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Tanuja Chitnis
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| | - Rohit Bakshi
- From the Department of Neurology (M.H., B.H., T.B.K., T.M., T.C., R. Bakshi), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology (R. Bove), School of Medicine, University of California, San Francisco; and National Forensic Cybersecurity Alliance (S.H.), Pittsburgh, PA
| |
Collapse
|
39
|
Berhan Y. What immunological and hormonal protective factors lower the risk of COVID-19 related deaths in pregnant women? J Reprod Immunol 2020; 142:103180. [PMID: 32739645 PMCID: PMC7368414 DOI: 10.1016/j.jri.2020.103180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Despite anticipated increased risk of COVID-19 and increased expression of the SARS CoV-2 receptor (ACE2), the relatively low mortality of pregnant women with COVID-19 has been an area of wonder. The immunological changes predominantly inclining to anti-inflammatory state, which is augmented by placental hormones' immune modulating action, looks against with COVID-19 inflammatory reaction leading to cytokine storm and multiple organ failure. Unlike many other viral infections, the bilateral immune activation of COVID-19 may preferentially make pregnant women at low risk. Taking the physiological advantage of pregnant women, potential clinical trials are proposed. Quite a large number of epidemiological and obstetrics related studies have addressed the cases of women with COVID-19. However, to the best of the author's knowledge, little is done to explore the physiological internal milieu of pregnant women in relation to COVID-19. This review provides an insight into how the hormonal and immunological changes in pregnancy potentially reduce SARS-CoV-2-mediated inflammatory response.
Collapse
Affiliation(s)
- Yifru Berhan
- St. Paul's Hospital Millennium Medical College, Ethiopia.
| |
Collapse
|
40
|
Bozward AG, Wootton GE, Podstawka O, Oo YH. Autoimmune Hepatitis: Tolerogenic Immunological State During Pregnancy and Immune Escape in Post-partum. Front Immunol 2020; 11:591380. [PMID: 33072138 PMCID: PMC7541906 DOI: 10.3389/fimmu.2020.591380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The maternal immune system engages in a fine balancing act during pregnancy by simultaneously maintaining immune tolerance to the fetus and immune responses to protect against invading organisms. Pregnancy is an intricately orchestrated process where effector immune cells with fetal specificity are selectively silenced. This requires a sustained immune suppressive state not only by expansion of maternal Foxp3+ regulatory T cells (Tregs) but also by leaning the immune clock toward a Th2 dominant arm. The fetus, known as a semi-allograft or temporary-self, leads to remission of autoimmune hepatitis during pregnancy. However, this tolerogenic immune state reverts back to a Th1 dominant arm, resulting in post-partum flare of AIH. Various hormones play a significant role in endocrine-immune axis during pregnancy. The placenta functions as a barrier between the maternal immune system and the fetus also plays a pivotal role in creating a tolerogenic environment during pregnancy. We review the evidence of immune tolerance during pregnancy and immune escape at post-partum period, focusing on patients with autoimmune hepatitis.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom
| | - Grace E Wootton
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom
| | - Oskar Podstawka
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom.,Liver Transplant and Hepatology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
41
|
Lasrado N, Jia T, Massilamany C, Franco R, Illes Z, Reddy J. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ 2020; 11:50. [PMID: 32894183 PMCID: PMC7475723 DOI: 10.1186/s13293-020-00325-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sex-related differences in the occurrence of autoimmune diseases is well documented, with females showing a greater propensity to develop these diseases than their male counterparts. Sex hormones, namely dihydrotestosterone and estrogens, have been shown to ameliorate the severity of inflammatory diseases. Immunologically, the beneficial effects of sex hormones have been ascribed to the suppression of effector lymphocyte responses accompanied by immune deviation from pro-inflammatory to anti-inflammatory cytokine production. In this review, we present our view of the mechanisms of sex hormones that contribute to their ability to suppress autoimmune responses with an emphasis on the pathogenesis of experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Ting Jia
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
42
|
Gilli F, DiSano KD, Pachner AR. SeXX Matters in Multiple Sclerosis. Front Neurol 2020; 11:616. [PMID: 32719651 PMCID: PMC7347971 DOI: 10.3389/fneur.2020.00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | |
Collapse
|
43
|
Ganji R, Razavi S, Ghasemi N, Mardani M. Improvement of Remyelination in Demyelinated Corpus Callosum Using Human Adipose-Derived Stem Cells (hADSCs) and Pregnenolone in the Cuprizone Rat Model of Multiple Sclerosis. J Mol Neurosci 2020; 70:1088-1099. [PMID: 32314194 DOI: 10.1007/s12031-020-01515-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Adipose-derived stem cells (ASCs) have neuroprotective effects, and their repair ability has been approved in neurodegenerative studies. Pregnenolone as a neurosteroid plays significant roles in neurogenesis. We aimed to consider the effect of ADSCs and pregnenolone injection on the multiple sclerosis (MS) model created by cuprizone. Male Wistar rats (n = 36) were fed with an ordinary diet or a diet with cuprizone (0.6%) for 3 weeks. H-ADSCs were taken from patients with lipoaspirate surgery. The rats were divided into six groups (n = 6): healthy, MS, sham, pregnenolone injection, ADSCs injection, pregnenolone and ADSCs injection. Behavioral test, histological examination and TEM were conducted. The specific markers for myelin and cell differentiation were assessed using immunohistochemistry staining. Additionally, the measure of MBP and MOG gene expression and the amount of related proteins were determined using real-time RT-PCR and ELISA techniques, respectively. Histologic results showed that induced demyelination in corpus callosum fibers. TEM revealed an increased thickness of myelin in fibers in the treated groups (P < 0.05). Injection of hADSC and pregnenolone significantly increased the expression levels of MBP and MOG (P < 0.001). The mean percentage of MOG and MBP markers were significantly increased in the treated groups compared to MS and sham groups (P < 0.05). Moreover, the OD level of MBP and MOG proteins showed that their values in the ADSCs/pregnenolone group were close to those of the control group without a significant difference. Our data indicated the remyelination potency and cell differentiation can improve with ADSCs and pregnenolone treatments in the multiple sclerosis model which created by cuprizone in rats.
Collapse
Affiliation(s)
- Rasoul Ganji
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| |
Collapse
|
44
|
Deems NP, Leuner B. Pregnancy, postpartum and parity: Resilience and vulnerability in brain health and disease. Front Neuroendocrinol 2020; 57:100820. [PMID: 31987814 PMCID: PMC7225072 DOI: 10.1016/j.yfrne.2020.100820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Risk and resilience in brain health and disease can be influenced by a variety of factors. While there is a growing appreciation to consider sex as one of these factors, far less attention has been paid to sex-specific variables that may differentially impact females such as pregnancy and reproductive history. In this review, we focus on nervous system disorders which show a female bias and for which there is data from basic research and clinical studies pointing to modification in disease risk and progression during pregnancy, postpartum and/or as a result of parity: multiple sclerosis (MS), depression, stroke, and Alzheimer's disease (AD). In doing so, we join others (Shors, 2016; Galea et al., 2018a) in aiming to illustrate the importance of looking beyond sex in neuroscience research.
Collapse
Affiliation(s)
- Nicholas P Deems
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA.
| |
Collapse
|
45
|
Levin S, Rimmer K, Vargas WS. Neuroimmunologic disorders in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 172:105-123. [PMID: 32768083 DOI: 10.1016/b978-0-444-64240-0.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pregnancy influences the course of neuroimmunologic conditions, which include multiple sclerosis (MS), neuromyelitis optica spectrum disorder, and autoimmune encephalitis. The outcomes differ significantly for each disorder, reflecting the impact of hormonal changes, T-cell subsets, and placental factors on disease pathogenesis. In recent years, numerous data have emerged regarding MS activity throughout pregnancy and postpartum. Historically, the misconception that pregnancy worsens MS outcomes led patients to abstain from childbearing. Now, more women with these disorders, empowered by up-to-date information and better baseline disease control, are choosing to conceive. Nevertheless, the management of MS and related disorders in the pregnancy and postpartum period is complicated and requires a nuanced approach. Since standardized treatment guidelines around pregnancy are currently lacking, neurologists, together with obstetricians, must engage patients in a shared decision-making process that weighs the benefits to the mother and risks to the fetus. This chapter outlines the pathophysiology of neuroimmunologic disorders during pregnancy and postpartum, the impact of these diseases on childbearing, including fertility, pregnancy, delivery, and peurperium, as well as existing recommendations for treatment.
Collapse
Affiliation(s)
- Seth Levin
- Department of Neurology, Columbia University Multiple Sclerosis Center, New York, NY, United States
| | - Kathryn Rimmer
- Department of Neurology, Columbia University Multiple Sclerosis Center, New York, NY, United States
| | - Wendy S Vargas
- Department of Neurology, Columbia University Multiple Sclerosis Center, New York, NY, United States; Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
46
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
47
|
Baroncini D, Annovazzi PO, De Rossi N, Mallucci G, Torri Clerici V, Tonietti S, Mantero V, Ferrò MT, Messina MJ, Barcella V, La Mantia L, Ronzoni M, Barrilà C, Clerici R, Susani EL, Fusco ML, Chiveri L, Abate L, Ferraro O, Capra R, Colombo E, Confalonieri P, Zaffaroni M. Impact of natural menopause on multiple sclerosis: a multicentre study. J Neurol Neurosurg Psychiatry 2019; 90:1201-1206. [PMID: 31189614 DOI: 10.1136/jnnp-2019-320587] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To study the effect of natural menopause on multiple sclerosis clinical course. METHODS This was an observational, retrospective, multicentre, cohort study. Menopause onset was defined by the final menstrual period (FMP) beyond which no menses occurred for 12 months. We included multiple sclerosis (MS) patients with FMP occurred after 2005 and a recorded follow-up of at least 2 years pre-FMP and post-FMP. We excluded patients with primary progressive course, iatrogenic menopause and with other confounders that could mask menopause onset. We compared relapse-rate and expanded disability status scale (EDSS) scores pre-FMP and post-FMP, searching for possible interactions with age, disease duration, cigarette smoking and nulliparity status. RESULTS 148 patients were included (mean observation: 3.5 years pre-FMP and post-FMP). Most patients (92%) received disease-modifying therapies, mainly first-lines. After menopause the annualised relapse rate (ARR) significantly decreased (from 0.21±0.31 to 0.13± 0.24; p=0.005), while disability worsened (increase of mean 0.4 vs 0.2 points after menopause; p<0.001). Older age and long-lasting disease were associated with ARR reduction (p=0.013), but not with disability worsening. Cigarette smokers showed a trend to a higher disability accumulation after menopause (p=0.059). CONCLUSION Natural menopause seems to be a turning point to a more progressive phase of MS. Relapse rate is also reduced after menopause, but this effect could be driven most by ageing and shifting to progressive phase in patients with long-lasting disease. Cigarette smoking could speed up disability progression after menopause.
Collapse
Affiliation(s)
- Damiano Baroncini
- Multiple Sclerosis Centre, Gallarate Hospital, ASST Valle Olona, Gallarate, Italy
| | | | - Nicola De Rossi
- Multiple Sclerosis Center, Spedali Civili di Brescia, presidio di Montichiari, Brescia, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Simone Tonietti
- Department of Neurology, ASST Santi Paolo e Carlo - PO San Carlo Borromeo, Milan, Italy
| | | | - Maria Teresa Ferrò
- Neuroimmunology, Multiple Sclerosis Center, Neurological Department, Ospedale Maggiore, Crema, Italy
| | - Maria Josè Messina
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese (MI), Milan, Italy
| | - Valeria Barcella
- USS Malattie Autoimmuni, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Loredana La Mantia
- Neurorehabilitation Unit, Fondazione IRCSS Santa Maria Nascente Don Gnocchi, Milano, Italy
| | - Marco Ronzoni
- Department of Neurology, ASST Rhodense, Ospedale "G. Salvini" - Garbagnate M.se, Garbagnate milanese (MI), Italy
| | - Caterina Barrilà
- Department of Neurology, ASST Rhodense, Ospedale "G. Salvini" - Garbagnate M.se, Garbagnate milanese (MI), Italy
| | | | - Emanuela Laura Susani
- Neurology and Neuroscience Department, ASST Grande ospedale metropolitano Niguarda, Milano, Italy
| | - Maria Letizia Fusco
- Department of Neurology, ASST Monza, Ospedale San Gerardo, Clinica Neurologica, Milan, Italy
| | - Luca Chiveri
- Dipartimento di neuroscienze, ASST ovest Milanese, ospedale di Legnano, Legnano, Italy
| | - Lucia Abate
- Neurological Unit, ASST Valtellina e Altolario, Sondrio, Italy
| | - Ottavia Ferraro
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Centre, Spedali Civili of Brescia, Presidio di Montichiari, Brescia, Italy
| | - Elena Colombo
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Confalonieri
- Multiple Sclerosis Center, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Mauro Zaffaroni
- Multiple Sclerosis Centre, Gallarate Hospital, ASST Valle Olona, Gallarate, Italy
| |
Collapse
|
48
|
Effect of hormonal changes on the neurological status in the menstrual cycle of patient with multiple sclerosis. Clin Neurol Neurosurg 2019; 186:105499. [DOI: 10.1016/j.clineuro.2019.105499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 11/18/2022]
|
49
|
Maglione A, Rolla S, Mercanti SFD, Cutrupi S, Clerico M. The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells 2019; 8:E1280. [PMID: 31635066 PMCID: PMC6829884 DOI: 10.3390/cells8101280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| |
Collapse
|
50
|
Natri H, Garcia AR, Buetow KH, Trumble BC, Wilson MA. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human Diseases. Trends Genet 2019; 35:478-488. [PMID: 31200807 PMCID: PMC6611699 DOI: 10.1016/j.tig.2019.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.
Collapse
Affiliation(s)
- Heini Natri
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Angela R Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|