1
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
2
|
Okubo S, Mano T, Sudo A, Goto R, Yano S, Hara M, Ishiura H, Satake W, Yanagimoto S, Ogata H, Toda T. Anti-neurofascin 155 Antibody-positive Neuropathy in a Human Immunodeficiency Virus-infected Patient. Intern Med 2024; 63:565-569. [PMID: 37380455 PMCID: PMC10937119 DOI: 10.2169/internalmedicine.1919-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated neuropathy is a common complication of HIV infection and has several clinical subtypes. HIV-associated chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a demyelinating neuropathy whose clinical features are known to differ from those of CIDP in the HIV-uninfected population. We herein report a case of CIDP in an HIV-infected patient who was finally diagnosed with anti-neurofascin 155 (NF155) antibody-positive neuropathy. The clinical features, including clinical findings and therapeutic responses, were typical of paranodal antibody-mediated neuropathy. To our knowledge, this is the first case of anti-NF155 antibody-associated neuropathy in an HIV-infected patient.
Collapse
Affiliation(s)
- So Okubo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Atsushi Sudo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Ryoji Goto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoka Yano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Manato Hara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shintaro Yanagimoto
- Department of Infectious Disease, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hidenori Ogata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
3
|
Boegle AK, Narayanaswami P. Infectious Neuropathies. Continuum (Minneap Minn) 2023; 29:1418-1443. [PMID: 37851037 DOI: 10.1212/con.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article discusses the clinical manifestations and management of infectious peripheral neuropathies. LATEST DEVELOPMENTS Several infectious etiologies of peripheral neuropathy are well-recognized and their treatments are firmly established. The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with several central and peripheral nervous system manifestations, including peripheral neuropathies. Additionally, some COVID-19 vaccines have been associated with Guillain-Barré syndrome. These disorders are an active area of surveillance and research. Recent evidence-based guidelines have provided updated recommendations for the diagnosis and treatment of Lyme disease. ESSENTIAL POINTS Infectious agents of many types (primarily bacteria and viruses) can affect the peripheral nerves, resulting in various clinical syndromes such as mononeuropathy or mononeuropathy multiplex, distal symmetric polyneuropathy, radiculopathy, inflammatory demyelinating polyradiculoneuropathy, and motor neuronopathy. Knowledge of these infections and the spectrum of peripheral nervous system disorders associated with them is essential because many have curative treatments. Furthermore, understanding the neuropathic presentations of these disorders may assist in diagnosing the underlying infection.
Collapse
|
4
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 PMCID: PMC11410024 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
6
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
7
|
Kwon PM, Lawrence S, Figueroa A, Robinson-Papp J. Autonomic Neuropathy as a Predictor of Morbidity and Mortality in People Living With HIV: A Retrospective, Longitudinal Cohort Study. Neurol Clin Pract 2023; 13:e200141. [PMID: 37066108 PMCID: PMC10092299 DOI: 10.1212/cpj.0000000000200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/09/2022] [Indexed: 03/29/2023]
Abstract
Background and Objectives HIV-associated autonomic neuropathy (HIV-AN) is common; however, its clinical effect is unclear. Previously, it was shown that the composite autonomic severity score is associated with markers of morbidity such as the Veterans Affair Cohort Study index. In addition, it is known that cardiovascular autonomic neuropathy due to diabetes is associated with poor cardiovascular outcomes. This study aimed to evaluate whether HIV-AN is predictive of important adverse clinical outcomes. Method The electronic medical records of HIV-infected participants who underwent autonomic function tests at the Mount Sinai Hospital between April 2011 and August 2012 were reviewed. The cohort was stratified into those who had no or mild autonomic neuropathy (HIV-AN [-], CASS ≤3) and those with moderate or severe autonomic neuropathy (HIV-AN [+], CASS >3). The primary outcome was a composite of the incidence of death from any cause, new major cardiovascular or cerebrovascular event, or development of severe renal or hepatic disease. Time-to-event analysis was performed using Kaplan-Meier analysis and multivariate Cox proportional hazards regression models. Results One hundred eleven of 114 participants had follow-up data (median follow-up for HIV-AN (-) was 94.00 months, and HIV-AN (+) was 81.29 months) and were included in the analysis. Participants were followed until March 1, 2020. The HIV-AN (+) group (N = 42) was significantly associated with the presence of hypertension, higher HIV-1 viral load, and more abnormal liver function. Seventeen (40.48%) events occurred in the HIV-AN (+) group, and 11 (15.94%) occurred in the HIV-AN (-) group. Six (14.29%) cardiac events occurred in the HIV-AN (+) group, whereas 1 (1.45%) occurred in the HIV-AN (-) group. The other subgroups of the composite outcome had a similar trend. The adjusted Cox proportional hazards model showed that the presence of HIV-AN predicted our composite outcome (HR 3.85, CI 1.61-9.20). Discussion These findings suggest that HIV-AN is associated with the development of severe morbidity and mortality in people living with HIV. People living with HIV with autonomic neuropathy may benefit from closer cardiac, renal, and hepatic surveillance.
Collapse
Affiliation(s)
- Patrick M Kwon
- Department of Neurology (PMK), NYU Grossman School of Medicine, Brooklyn; Vilcek Institute at NYU Grossman School of Medicine (SL), New York, NY; University of Texas at Southwestern Medical School (AF), Dallas, TX; and Department of Neurology (JR-P), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Lawrence
- Department of Neurology (PMK), NYU Grossman School of Medicine, Brooklyn; Vilcek Institute at NYU Grossman School of Medicine (SL), New York, NY; University of Texas at Southwestern Medical School (AF), Dallas, TX; and Department of Neurology (JR-P), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Figueroa
- Department of Neurology (PMK), NYU Grossman School of Medicine, Brooklyn; Vilcek Institute at NYU Grossman School of Medicine (SL), New York, NY; University of Texas at Southwestern Medical School (AF), Dallas, TX; and Department of Neurology (JR-P), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica Robinson-Papp
- Department of Neurology (PMK), NYU Grossman School of Medicine, Brooklyn; Vilcek Institute at NYU Grossman School of Medicine (SL), New York, NY; University of Texas at Southwestern Medical School (AF), Dallas, TX; and Department of Neurology (JR-P), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
9
|
Wang Y, Yang J, Wen Y. The Peculiarity of Infection and Immunity Correlated with Guillain-Barré Syndrome in the HIV-Infected Population. J Clin Med 2023; 12:907. [PMID: 36769555 PMCID: PMC9917483 DOI: 10.3390/jcm12030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Guillain-Barré syndrome (GBS) can occur at all stages of human immunodeficiency virus (HIV) infection. HIV, cytomegalovirus (CMV), and varicella zoster virus (VZV) are the main infectious agents in HIV-positive GBS cases. These cases include acute and chronic HIV infection, immune reconstitution inflammatory syndrome (IRIS) shortly after anti-retroviral therapy (ART), those with ART interruption, or those with cerebrospinal fluids (CSF) HIV escape. The mechanisms are involved in both humoral and cellular immunities. Demyelinating and axonal neuropathies are the main pathological mechanisms in GBS. Presentation and prognosis are identical to those in patients without HIV infection. Typical or atypical clinical manifestations, CSF analysis, electrophysiological and pathological examination, and antiganglioside antibody detection can help diagnose GBS and classify its various subtypes. Intravenous immunoglobulin and plasma exchange have been used to treat GBS in HIV-positive patients with a necessary ART, while ganciclovir or foscarnet sodium should be used to treat ongoing CMV- or VZV-associated GBS. Steroids may be beneficial for patients with IRIS-related GBS. We reviewed HIV-positive cases with GBS published since 2000 and summarized their features to highlight the necessity of HIV testing among patients with GBS. Moreover, the establishment of a multidisciplinary team will guarantee diagnostic and therapeutic advantages.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jun Yang
- Neurology Department, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Wen
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
11
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
12
|
Motwani L, Asif N, Patel A, Vedantam D, Poman DS. Neuropathy in Human Immunodeficiency Virus: A Review of the Underlying Pathogenesis and Treatment. Cureus 2022; 14:e25905. [PMID: 35844323 PMCID: PMC9278792 DOI: 10.7759/cureus.25905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
This article explores the various causes of the human immunodeficiency virus (HIV), and its associated neuropathy, including the effects of HIV on the nervous system and the long-standing therapy that is often provided to patients with HIV. Several studies regarding the neurotoxic effects of combined antiretroviral therapy (cART) and HIV were reviewed and various hypotheses were discussed. Furthermore, we present the nature of HIV-sensory neuropathy (HIV-SN) among different demographic populations and their subsequent risk factors predisposing them to this condition. It was observed that the incidence of the disease increases in increased survival of the patients as well as in males. Finally, the current approach to HIV-SN and its overlapping features with other causes of peripheral neuropathy have been discussed which demonstrates that a clinical examination is the most important clue for a healthcare professional to suspect the disease. Our main aim was to study the current perspectives and guidelines for diagnosing and managing a patient with HIV-SN to reduce disease prevalence and bring about a more aware frame of mind when following up with an HIV patient.
Collapse
|
13
|
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa. Front Immunol 2022; 12:803475. [PMID: 35095888 PMCID: PMC8792387 DOI: 10.3389/fimmu.2021.803475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders related to neuroinfections are highly prevalent in Sub-Saharan Africa (SSA), constituting a major cause of disability and economic burden for patients and society. These include epilepsy, dementia, motor neuron diseases, headache disorders, sleep disorders, and peripheral neuropathy. The highest prevalence of human immunodeficiency virus (HIV) is in SSA. Consequently, there is a high prevalence of neurological disorders associated with HIV infection such as HIV-associated neurocognitive disorders, motor disorders, chronic headaches, and peripheral neuropathy in the region. The pathogenesis of these neurological disorders involves the direct role of the virus, some antiretroviral treatments, and the dysregulated immune system. Furthermore, the high prevalence of epilepsy in SSA (mainly due to perinatal causes) is exacerbated by infections such as toxoplasmosis, neurocysticercosis, onchocerciasis, malaria, bacterial meningitis, tuberculosis, and the immune reactions they elicit. Sleep disorders are another common problem in the region and have been associated with infectious diseases such as human African trypanosomiasis and HIV and involve the activation of the immune system. While most headache disorders are due to benign primary headaches, some secondary headaches are caused by infections (meningitis, encephalitis, brain abscess). HIV and neurosyphilis, both common in SSA, can trigger long-standing immune activation in the central nervous system (CNS) potentially resulting in dementia. Despite the progress achieved in preventing diseases from the poliovirus and retroviruses, these microbes may cause motor neuron diseases in SSA. The immune mechanisms involved in these neurological disorders include increased cytokine levels, immune cells infiltration into the CNS, and autoantibodies. This review focuses on the major neurological disorders relevant to Africa and neuroinfections highly prevalent in SSA, describes the interplay between neuroinfections, immune system, neuroinflammation, and neurological disorders, and how understanding this can be exploited for the development of novel diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Joseph Nelson Siewe Fodjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Esraa Aly
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
14
|
Baka P, Escolano-Lozano F, Birklein F. Systemic inflammatory biomarkers in painful diabetic neuropathy. J Diabetes Complications 2021; 35:108017. [PMID: 34389235 DOI: 10.1016/j.jdiacomp.2021.108017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We conducted a systematic review of the literature with meta-analysis to determine whether painful diabetic neuropathy is associated with a specific inflammatory profile. METHODS The study is based on the PRISMA statement for systematic reviews. We performed a search of published studies up until January 2021 in MEDLINE and Web of Science based on heading and free text terms. The search strategy included the phrases: diabetic peripheral neuropathy, painful peripheral neuropathy individually and in combination with the terms: inflammation and inflammatory biomarkers. We screened titles and abstracts and performed data extraction. We also manually searched the article titles in the reference lists of key studies and reviews published in the last 20 years. DATA EXTRACTION Data extracted from the studies included study design, inclusion and exclusion criteria, sample type including serum and plasma, source of the sample including patients with peripheral diabetic neuropathy or patients with painful and painless neuropathy of any etiology. Blood concentrations of all measured cytokines were recorded. Whenever possible we calculated the effect size and confidence interval. Non-human studies were excluded from the meta-analysis. RESULTS Thirteen studies were included in this meta-analysis. The study design was cross-sectional, case control or cohort type studies. Specific inflammatory mediators are significantly higher in painful than in painless diabetic neuropathy as well as in painful neuropathies of any etiology. Markers of inflammation are also increased in those patients with diabetes mellitus, who suffer from peripheral neuropathy in comparison to patients with diabetes mellitus but no signs of peripheral neuropathy. A proinflammatory state may be the common denominator of pain and peripheral neuropathy in patients with diabetes mellitus but the inflammatory profiles seem to differ.
Collapse
Affiliation(s)
- Panoraia Baka
- University Hospital Mainz, Neurology Department, Mainz, Germany.
| | | | - Frank Birklein
- University Hospital Mainz, Neurology Department, Mainz, Germany
| |
Collapse
|
15
|
Roda RH, Bargiela D, Chen W, Perry K, Ellis RJ, Clifford DB, Bharti A, Kallianpur AR, Oliveira MF, Diaz MM, Rubin LH, Gavegnano C, McArthur JC, Hoke A, Polydefkis M. Large Mitochondrial DNA Deletions in HIV Sensory Neuropathy. Neurology 2021; 97:e156-e165. [PMID: 33947785 PMCID: PMC8279564 DOI: 10.1212/wnl.0000000000012142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The primary objective of this study was to evaluate the correlation of large mitochondrial DNA (mtDNA) deletions in skin samples of people with HIV (PWH) with measures of neuropathy and prior exposure to therapy. We hypothesized that deletions would be associated with neuropathy. As secondary objectives, we determined the correlation of deletion burden with demographic data and neuropathy measures. METHODS In this retrospective cohort study, we measured the accumulation of large mtDNA deletions in skin biopsies from PWH recruited as part of the AIDS Clinical Trials Group (ACTG). Our cohort includes individuals with and without sensory neuropathy, as well as individuals with normal or abnormal skin biopsies. Skin biopsies, sural and peroneal nerve conduction studies, total neuropathy score, and deletion burden scores were measured, along with baseline demographic data such as age, CD4+ cell count, viral counts, and prior nucleoside reverse transcriptase inhibitor exposures. RESULTS Sixty-seven PWH were enrolled in the study. The mean age of the cohort (n = 67) was 44 years (SD 6.8, range 32-65 years), and 9 participants were female. The mean CD4+ T-cell count was 168 cells/mm3 (SD 97 cells/mm3, range 1-416 cells/mm3) and mean viral load was 51,129 copies/mL (SD 114,586 copies/mL, range 147-657,775 copies/mL). We determined that there was a correlation between the total mtDNA deletion and intraepidermal nerve fiber density (IENFD) (r = -0.344, p = 0.04) and sural nerve amplitude (r = -0.359, p = 0.004). CONCLUSIONS Both IENFD and sural nerve amplitude statistically correlate with mitochondrial mutation burden in PWH, specifically in those with HIV-associated sensory neuropathy as assessed by skin biopsy.
Collapse
Affiliation(s)
- Ricardo H Roda
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA.
| | - David Bargiela
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Weiran Chen
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Ken Perry
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Ronald J Ellis
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - David B Clifford
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Ajay Bharti
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Asha R Kallianpur
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Michelli F Oliveira
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Monica M Diaz
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Leah H Rubin
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Christina Gavegnano
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Justin C McArthur
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Ahmet Hoke
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Michael Polydefkis
- From the Department of Neurology (R.H.R., W.C., K.P., L.H.R., J.C.M., A.H., M.P.) and Department of Psychiatry (L.H.R.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine (D.B.), Brigham and Women's Hospital, Boston, MA; Departments of Neurosciences and Psychiatry (R.J.E., M.M.D.) and Department of Medicine (A.B., M.F.O.), University of California, San Diego; Department of Neurology (D.B.C.), Washington University School of Medicine, St. Louis, MO; Departments of Genomic Medicine, Medicine, and Pediatrics (A.R.K.), Cleveland Clinic/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH; and Department of Pathology and Laboratory Medicine (C.G.), Joint Appointment in Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
16
|
Peng L, Wu B, Shi L, Zou L, Li L, Yang R, Xu X, Li G, Liu S, Zhang C, Liang S. Long Non-coding RNA Uc.48+ Small Interfering RNA Alleviates Neuroinflammatory Hyperalgesia in Gp120-Treated Rats via the P2Y12 Receptor. Front Neurosci 2021; 15:663962. [PMID: 34326715 PMCID: PMC8315484 DOI: 10.3389/fnins.2021.663962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus envelope glycoprotein 120 (gp120) leads to hyperalgesia. Long non-coding RNAs are characterized by the lack of a protein-coding sequence and may contribute to the development and maintenance of inflammatory and neuroinflammatory pain. Rats with neuroinflammatory pain were established by gp120 treatment, which is featured by intensified pain behaviors. Long non-coding RNA uc.48+ was increased in the dorsal root ganglia of gp120-treated rats, and small interfering RNA that targets uc.48+ markedly alleviated hyperalgesia in gp120-treated rats. Notably, uc.48+ overexpression increased P2Y12 expression in control rats dorsal root ganglia and induced hyperalgesia. Uc.48+ small interfering RNA inhibited P2Y12 expression in gp120-treated rats. Uc.48+ potentiated P2Y12 receptor functions in the neurons and heterologous cells. Therefore, uc.48+ siRNA treatment reduced the upregulation of P2Y12 expression and function in DRG neurons, and, hence, alleviated hyperalgesia in gp120-treated rats.
Collapse
Affiliation(s)
- Lichao Peng
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Wu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, China.,Department of Cell Biology, Medical School of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Kleckner IR, Jusko TA, Culakova E, Chung K, Kleckner AS, Asare M, Inglis JE, Loh KP, Peppone LJ, Miller J, Melnik M, Kasbari S, Ossip D, Mustian KM. Longitudinal study of inflammatory, behavioral, clinical, and psychosocial risk factors for chemotherapy-induced peripheral neuropathy. Breast Cancer Res Treat 2021; 189:521-532. [PMID: 34191201 PMCID: PMC8668235 DOI: 10.1007/s10549-021-06304-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of taxane and platinum chemotherapy for breast cancer. Clinicians cannot accurately predict CIPN severity partly because its pathophysiology is poorly understood. Although inflammation may play a role in CIPN, there are limited human studies. Here, we identified the strongest predictors of CIPN using variables measured before taxane- or platinum-based chemotherapy, including serum inflammatory markers. METHODS 116 sedentary women with breast cancer (mean age 55 years) rated (1) numbness and tingling and (2) hot/coldness in hands/feet on 0-10 scales before and after 6 weeks of taxane- or platinum-based chemotherapy. A sub-study was added to collect cytokine data in the final 55 patients. We examined all linear models to predict CIPN severity at 6 weeks using pre-chemotherapy assessments of inflammatory, behavioral, clinical, and psychosocial factors. The final model was selected via goodness of fit. RESULTS The strongest pre-chemotherapy predictors of numbness and tingling were worse fatigue/anxiety/depression (explaining 27% of variance), older age (9%), and baseline neuropathy (5%). The strongest predictors of hot/coldness in hands/feet were worse baseline neuropathy (11%) and fatigue/anxiety/depression (6%). Inflammation was a risk for CIPN, per more pro-inflammatory IFN-γ (12%) and IL-1β (6%) and less anti-inflammatory IL-10 (6%) predicting numbness/tingling and more IFN-γ (17%) and less IL-10 (9%) predicting hot/coldness in hands/feet. CONCLUSIONS The strongest pre-chemotherapy predictors of CIPN included worse fatigue/anxiety/depression and baseline neuropathy. A pro-inflammatory state also predicted CIPN. Because this is an exploratory study, these results suggest specific outcomes (e.g., IL-1β) and effect size estimates for designing replication and extension studies. CLINICAL TRIAL REGISTRATION NCT00924651.
Collapse
Affiliation(s)
- Ian R Kleckner
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA. .,Department of Neuroscience, University of Rochester, Rochester, NY, USA.
| | - Todd A Jusko
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva Culakova
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Kaitlin Chung
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Amber S Kleckner
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Matthew Asare
- Department of Public Health, Baylor University, Waco, TX, USA
| | - Julia E Inglis
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Kah Poh Loh
- Division of Hematology/Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Luke J Peppone
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Jessica Miller
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Marianne Melnik
- Cancer Research Consortium of West Michigan NCORP, Grand Rapids, MI, USA
| | - Samer Kasbari
- Southeast Clinical Oncology Research Consortium (SCOR), Winston Salem, NC, USA
| | - Deborah Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen M Mustian
- Department of Surgery, Wilmot Cancer Institute, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| |
Collapse
|
18
|
Han MM, Frizzi KE, Ellis RJ, Calcutt NA, Fields JA. Prevention of HIV-1 TAT Protein-Induced Peripheral Neuropathy and Mitochondrial Disruption by the Antimuscarinic Pirenzepine. Front Neurol 2021; 12:663373. [PMID: 34211430 PMCID: PMC8239242 DOI: 10.3389/fneur.2021.663373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.
Collapse
Affiliation(s)
- May Madi Han
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Katie E Frizzi
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Ronald J Ellis
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Abstract
The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to chronic widespread pain are not well understood, hindering the development and application of pharmacological and nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with HIV and identifies potential biomarkers and therapeutic targets to mitigate it.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Lu HJ, Fu YY, Wei QQ, Zhang ZJ. Neuroinflammation in HIV-Related Neuropathic Pain. Front Pharmacol 2021; 12:653852. [PMID: 33959022 PMCID: PMC8093869 DOI: 10.3389/fphar.2021.653852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Yuan-Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
21
|
Review of the neurological aspects of HIV infection. J Neurol Sci 2021; 425:117453. [PMID: 33895464 DOI: 10.1016/j.jns.2021.117453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
There are almost 40 million people in the world who live with the human immunodeficiency virus (HIV). The neurological manifestations associated with HIV contribute to significant morbidity and mortality despite the advances made with anti-retroviral therapy (ART). This review presents an approach to classification of neurological disorders in HIV, differentiating diseases due to the virus itself and those due to opportunistic infection. The effects of antiretroviral therapy are also discussed. The emphasis is on the developing world where advanced complications of HIV itself and infections such as tuberculosis (TB), toxoplasmosis and cryptococcal meningitis remain prevalent.
Collapse
|
22
|
Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol 2021; 166:733-753. [PMID: 33502593 PMCID: PMC7838016 DOI: 10.1007/s00705-021-04959-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/26/2023]
Abstract
The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disorders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strategies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of evidence for the relationship between viral infection and neurological disorders such as Alzheimer's disease, Parkinson's disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Orthomyxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.
Collapse
Affiliation(s)
- Jéssica Wouk
- Post-Graduation Program of Pharmaceutical Science, Midwest State University, CEDETEG Campus, Guarapuava, Paraná Brazil
| | | | | | - Elisa Vicente Ribelato
- Department of Microbiology, Biological Science Center, Londrina State University, Londrina, Paraná Brazil
| | | |
Collapse
|
23
|
Bagdas D, Paris JJ, Carper M, Wodarski R, Rice AS, Knapp PE, Hauser KF, Damaj MI. Conditional expression of HIV-1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sex-dependent manner. Eur J Pain 2020; 24:1609-1623. [PMID: 32533878 PMCID: PMC7856573 DOI: 10.1002/ejp.1618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND At least one-third of HIV-1-afflicted individuals experience peripheral neuropathy. Although the underlying mechanisms are not known, they may involve neurotoxic HIV-1 proteins. METHODS We assessed the influence of the neurotoxic HIV-1 regulatory protein, Tat, on inflammatory and neuropathic nociceptive behaviours using transgenic male and female mice that conditionally expressed (or did not express) HIV-1 Tat1-86 in fibrillary acidic protein-expressing glia in the central and peripheral nervous systems. RESULTS Tat induction significantly attenuated the time spent paw-licking following formalin injection (2.5%, i.pl.) in both male and female mice. However, significant sex differences were observed in the onset and magnitude of inflammation and sensory sensitivity following complete Freund's adjuvant (CFA) injection (10%, i.pl.) after Tat activation. Unlike female mice, male mice showed a significant attenuation of paw swelling and an absence of mechanical/thermal hypersensitivity in response to CFA after Tat induction. Male Tat(+) mice also showed accelerated recovery from chronic constrictive nerve injury (CCI)-induced neuropathic mechanical and thermal hypersensitivity compared to female Tat(+) mice. Morphine (3.2 mg/kg) fully reversed CCI-induced mechanical hypersensitivity in female Tat(-) mice, but not in Tat(+) females. CONCLUSIONS The ability of Tat to decrease oedema, paw swelling, and limit allodynia suggests a sequel of events in which Tat-induced functional deficits precede the onset of mechanical hypersensitivity. Moreover, HIV-1 Tat attenuated responses to inflammatory and neuropathic insults in a sex-dependent manner. HIV-1 Tat appears to directly contribute to HIV sensory neuropathy and reveals sex differences in HIV responsiveness and/or the underlying peripheral neuroinflammatory and nociceptive mechanisms.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
| | - Jason J. Paris
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Rachel Wodarski
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
- Translational Research Initiative for Pain and Neuropathy at VCU, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
24
|
Basheer A, Kirubakaran R, Tan K, Vishnu VY, Fialho D. Disease-modifying therapy for HIV-related distal symmetrical polyneuropathy (including antiretroviral toxic neuropathy). Hippokratia 2020. [DOI: 10.1002/14651858.cd013716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aneesh Basheer
- Department of Medicine; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Richard Kirubakaran
- Cochrane South Asia, Prof. BV Moses Centre for Evidence-Informed Healthcare and Health Policy; Christian Medical College; Vellore India
| | - Kevin Tan
- National Neuroscience Institute; Singapore Singapore
| | - Venugopalan Y Vishnu
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Doreen Fialho
- Department of Clinical Neurophysiology; King's College Hospital; London UK
| |
Collapse
|
25
|
Shi Y, Yuan S, Tang SJ. Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain. J Neuroimmune Pharmacol 2020; 16:581-591. [PMID: 32827051 DOI: 10.1007/s11481-020-09951-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Many HIV patients develop chronic pain and use opioid-derived medicine as primary analgesics. Emerging clinical evidence suggests that chronic use of opioid analgesics paradoxically heightens pain states in patients. This side effect of opioid analgesics has a significant negative impact on clinical practice, but the underlying pathogenic mechanism remains elusive. Using a mouse model of HIV-associated pain, we simulated the development of morphine exacerbation on pain and investigated potential underlying cellular and molecular pathways. We found that repeated morphine treatment promoted astrocyte activation in the spinal dorsal horn (SDH) and up-regulation of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, we observed that morphine administration potentiated mitochondrial reactive oxygen species (ROS) in the SDH of the HIV pain model, especially on astrocytes. Systemic application of the ROS scavenger phenyl-N-t-butyl nitrone (PBN) not only blocked the enhancement of gp120-induced hyperalgesia by morphine but also astrocytic activation and cytokine up-regulation. These findings suggest a critical role of ROS in mediating the exacerbation of gp120-induced pain by morphine. Graphical abstract.
Collapse
Affiliation(s)
- Yuqiang Shi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Subo Yuan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
Ntogwa M, Imai S, Hiraiwa R, Koyanagi M, Matsumoto M, Ogihara T, Nakagawa S, Omura T, Yonezawa A, Nakagawa T, Matsubara K. Schwann cell-derived CXCL1 contributes to human immunodeficiency virus type 1 gp120-induced neuropathic pain by modulating macrophage infiltration in mice. Brain Behav Immun 2020; 88:325-339. [PMID: 32229220 DOI: 10.1016/j.bbi.2020.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 01/28/2023] Open
Abstract
The neuroinflammatory responses to human immunodeficiency virus type 1 (HIV-1) coat proteins, such as glycoprotein 120 (gp120), are considered to be responsible for the HIV-associated distal sensory neuropathy. Accumulating evidences suggest that T-cell line tropic X4 gp120 increases macrophage infiltration into the peripheral nerves, and thereby induces neuroinflammation leading to pain. However, the mechanisms underlying X4 gp120-induced macrophage recruitment to the peripheral nervous systems remain unclear. Here, we demonstrated that perineural application of X4 gp120 from HIV-1 strains IIIB and MN elicited mechanical hypersensitivity and spontaneous pain-like behaviors in mice. Furthermore, flow cytometry and immunohistochemical studies revealed increased infiltration of bone marrow-derived macrophages into the parenchyma of sciatic nerves and dorsal root ganglia (DRG) 7 days after gp120 IIIB or MN application. Chemical deletion of circulating macrophages using clodronate liposomes markedly suppressed gp120 IIIB-induced pain-like behaviors. In in vitro cell infiltration analysis, RAW 264.7 cell (a murine macrophage cell line) was chemoattracted to conditioned medium from gp120 IIIB- or MN-treated cultured Schwann cells, but not to conditioned medium from these gp120-treated DRG neurons, suggesting possible involvement of Schwann cell-derived soluble factors in macrophage infiltration. We identified using a gene expression array that CXCL1, a chemoattractant of macrophages and neutrophils, was increased in gp120 IIIB-treated cultured Schwann cells. Similar to gp120 IIIB or MN, perineural application of recombinant CXCL1 elicited pain-like behaviors accompanied by macrophage infiltration to the peripheral nerves. Furthermore, the repeated injection of CXCR2 (receptor for CXCL1) antagonist or CXCL1 neutralizing antibody prevented both pain-like behaviors and macrophage infiltration in gp120 IIIB-treated mice. Thus, the present study newly defines that Schwann cell-derived CXCL1, secreted in response to X4 gp120 exposure, is responsible for macrophage infiltration into peripheral nerves, and is thereby associated with pain-like behaviors in mice. We propose herein that communication between Schwann cells and macrophages may play a prominent role in the induction of X4 HIV-1-associated pain.
Collapse
Affiliation(s)
- Mpumelelo Ntogwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ren Hiraiwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Madoka Koyanagi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuna Matsumoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol 2019; 17:283-299. [PMID: 31320730 DOI: 10.1038/s41423-019-0260-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) envelope protein gp120 is the major contributor to the pathogenesis of HIV-associated neurocognitive disorder (HAND). Neuroinflammation plays a pivotal role in gp120-induced neuropathology, but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown. Here, we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy. Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1β production in microglia. Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury. Importantly, we showed that chronic administration of MCC950, a novel selective NLRP3 inhibitor, to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function. In conclusion, our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.
Collapse
|
29
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
30
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
31
|
Roda RH, Hoke A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:67-82. [PMID: 31208527 DOI: 10.1016/bs.irn.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria play an essential role in cellular energy production and calcium homeostasis. Abnormalities in mitochondrial homeostasis and function are seen in several acquired as well as genetic neuropathies, emphasizing their prominent role in neuronal cell activities. Chronic infection with HIV, even when appropriately treated, is a risk factor for developing peripheral neuropathy. In this chapter, we discuss the way in which HIV infection, the resultant toxic viral products that are generated, and some of the viral inhibitors used in its treatment may lead to abnormal mitochondrial function. Of importance are the effects on mitochondrial DNA replication and the neurotoxic effects of the viral gp120 protein. One aspect of mitochondrial dysfunction that remains unexplored is the role of the interaction between mitochondria and the endoplasmic reticulum as a possible target of disruption in HIV neuropathy.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ahmet Hoke
- Solomon H. Snyder Department of Neuroscience and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Santos J, Milthorpe BK, Padula MP. Proteomic Analysis of Cyclic Ketamine Compounds Ability to Induce Neural Differentiation in Human Adult Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030523. [PMID: 30691166 PMCID: PMC6387408 DOI: 10.3390/ijms20030523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Neural regeneration is of great interest due to its potential to treat traumatic brain injuries and diseases that impact quality of life. Growth factor mediated differentiation can take up to several weeks to months to produce the cell of interest whereas chemical stimulation may be as minimal as a few hours. The smaller time scale is of great clinical relevance. Adipose derived stem cells (ADSCs) were treated for up to 24 h with a novel differentiation media containing the cyclic ketamine compounds to direct neurogenic induction. The extent of differentiation was investigated by proteome changes occurring during the process. The treatments indicated the ADSCs responded favorably to the neurogenic induction media by presenting a number of morphological cues of neuronal phenotype previously seen and a higher cell population post induction compared to previous studies. Furthermore, approximately 3500 proteins were analyzed and identified by mass spectrometric iTRAQ analyses. The bioinformatics analyses revealed hundreds of proteins whose expression level changes were statistically significant and biologically relevant to neurogenesis and annotated as being involved in neurogenic development. Complementing this, the Bioplex cytokine assay profiles present evidence of decreased panel of stress response cytokines and a relative increase in those involved in neurogenesis.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- CIRIMAT, Paul Sabatier, University of Toulouse 3 (INPT), 118 Route de Narbonne, 31062 Toulouse, France.
| | - Bruce Kenneth Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| |
Collapse
|
33
|
Cerles O, Gonçalves TC, Chouzenoux S, Benoit E, Schmitt A, Bennett Saidu NE, Kavian N, Chéreau C, Gobeaux C, Weill B, Coriat R, Nicco C, Batteux F. Preventive action of benztropine on platinum-induced peripheral neuropathies and tumor growth. Acta Neuropathol Commun 2019; 7:9. [PMID: 30657060 PMCID: PMC6337872 DOI: 10.1186/s40478-019-0657-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous cholinergic system plays a key role in neuronal cells, by suppressing neurite outgrowth and myelination and, in some cancer cells, favoring tumor growth. Platinum compounds are widely used as part of first line conventional cancer chemotherapy; their efficacy is however limited by peripheral neuropathy as a major side-effect. In a multiple sclerosis mouse model, benztropine, that also acts as an anti-histamine and a dopamine re-uptake inhibitor, induced the differentiation of oligodendrocytes through M1 and M3 muscarinic receptors and enhanced re-myelination. We have evaluated whether benztropine can increase anti-tumoral efficacy of oxaliplatin, while preventing its neurotoxicity.We showed that benztropine improves acute and chronic clinical symptoms of oxaliplatin-induced peripheral neuropathies in mice. Sensory alterations detected by electrophysiology in oxaliplatin-treated mice were consistent with a decreased nerve conduction velocity and membrane hyperexcitability due to alterations in the density and/or functioning of both sodium and potassium channels, confirmed by action potential analysis from ex-vivo cultures of mouse dorsal root ganglion sensory neurons using whole-cell patch-clamp. These alterations were all prevented by benztropine. In oxaliplatin-treated mice, MBP expression, confocal and electronic microscopy of the sciatic nerves revealed a demyelination and confirmed the alteration of the myelinated axons morphology when compared to animals injected with oxaliplatin plus benztropine. Benztropine also prevented the decrease in neuronal density in the paws of mice injected with oxaliplatin. The neuroprotection conferred by benztropine against chemotherapeutic drugs was associated with a lower expression of inflammatory cytokines and extended to diabetic-induced peripheral neuropathy in mice.Mice receiving benztropine alone presented a lower tumor growth when compared to untreated animals and synergized the anti-tumoral effect of oxaliplatin, a phenomenon explained at least in part by benztropine-induced ROS imbalance in tumor cells.This report shows that blocking muscarinic receptors with benztropine prevents peripheral neuropathies and increases the therapeutic index of oxaliplatin. These results can be rapidly transposable to patients as benztropine is currently indicated in Parkinson's disease in the United States.
Collapse
|
34
|
Bomsel M, Lopalco L, Uberti-Foppa C, Siracusano G, Ganor Y. Short Communication: Decreased Plasma Calcitonin Gene-Related Peptide as a Novel Biomarker for HIV-1 Disease Progression. AIDS Res Hum Retroviruses 2019; 35:52-55. [PMID: 30489145 DOI: 10.1089/aid.2018.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 mucosal transmission in genital epithelia occurs through infection of Langerhans cells and subsequent transinfection of CD4+ T cells. We previously reported that the vasodilator neuropeptide calcitonin gene-related peptide (CGRP), secreted upon activation of sensory peripheral neurons that innervate all mucosal epithelia, significantly inhibits transinfection. To investigate the association between CGRP and HIV-1 during infection, we evaluated circulating CGRP levels in HIV-1-infected patients. Plasma was obtained from combination antiretroviral therapy (cART)-naive or cART-treated patients with primary/acute (PHI) or chronic (CHI) HIV-1 infection, as well as from individuals who naturally control HIV-1 infection, namely exposed seronegatives (ESNs), elite controllers (ECs), and long-term nonprogressors (LTNPs). CGRP plasma levels were measured using an enzyme immunoassay. Compared with healthy HIV-1-negative controls, CGRP plasma levels significantly decreased in PHI patients and even further in CHI patients, but remained unchanged in ESNs, ECs, and LTNPs. Moreover, CGRP plasma levels were restored to baseline upon cART in both PHI and CHI. Finally, CGRP plasma levels directly correlated with CD4+ T cell counts and inversely with viral loads. Altogether, CGRP could serve as a novel diagnostic plasma biomarker for progression of HIV-1 infection. Moreover, administration of CGRP to cART-naive HIV-1-infected patients, to compensate for CGRP decline, could help controlling on-going HIV-1 infection.
Collapse
Affiliation(s)
- Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR8104, Paris, France
- INSERM U1016, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Rodríguez Y, Rojas M, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Monsalve DM, Gershwin ME, Anaya JM. Guillain-Barré syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol 2018; 15:547-562. [PMID: 29375121 PMCID: PMC6079071 DOI: 10.1038/cmi.2017.142] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Guillain-Barré syndrome (GBS) and transverse myelitis (TM) both represent immunologically mediated polyneuropathies of major clinical importance. Both are thought to have a genetic predisposition, but as of yet no specific genetic risk loci have been clearly defined. Both are considered autoimmune, but again the etiologies remain enigmatic. Both may be induced via molecular mimicry, particularly from infectious agents and vaccines, but clearly host factor and co-founding host responses will modulate disease susceptibility and natural history. GBS is an acute inflammatory immune-mediated polyradiculoneuropathy characterized by tingling, progressive weakness, autonomic dysfunction, and pain. Immune injury specifically takes place at the myelin sheath and related Schwann-cell components in acute inflammatory demyelinating polyneuropathy, whereas in acute motor axonal neuropathy membranes on the nerve axon (the axolemma) are the primary target for immune-related injury. Outbreaks of GBS have been reported, most frequently related to Campylobacter jejuni infection, however, other agents such as Zika Virus have been strongly associated. Patients with GBS related to infections frequently produce antibodies against human peripheral nerve gangliosides. In contrast, TM is an inflammatory disorder characterized by acute or subacute motor, sensory, and autonomic spinal cord dysfunction. There is interruption of ascending and descending neuroanatomical pathways on the transverse plane of the spinal cord similar to GBS. It has been suggested to be triggered by infectious agents and molecular mimicry. In this review, we will focus on the putative role of infectious agents as triggering factors of GBS and TM.
Collapse
Affiliation(s)
- Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, USA, CA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
36
|
Ex-vivo expression of chemokine receptors on cells surrounding cutaneous nerves in patients with HIV-associated sensory neuropathy. AIDS 2018; 32:431-441. [PMID: 29239897 DOI: 10.1097/qad.0000000000001714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE HIV-associated sensory neuropathy (HIV-SN) remains common in HIV+ individuals receiving antiretroviral therapy (ART), even though neurotoxic antiretroviral drugs (e.g. stavudine) have been phased out of use. Accumulating evidence indicates that the neuropathy is immune-mediated. We hypothesize that chemokines produced locally in the skin promote migration of macrophages and T cells into the tissue, damaging cutaneous nerves causing HIV-SN. DESIGN We assessed chemokine receptor expression on infiltrating CD14 and CD3 cells around cutaneous nerves in standardized skin biopsies from HIV-SN+ patients (n = 5), HIV-SN- patients (n = 9) and healthy controls (n = 4). METHODS The AIDS Clinical Trials Group Brief Peripheral Neuropathy Screen was used to assess Indonesian HIV+ patients receiving ART without stavudine (case definition: bilateral presence of at least one symptom and at least one sign of neuropathy). Distal leg skin biopsies were stained to visualize chemokine receptors (CCR2, CCR5, CXCR3, CXCR4, CX3CR1), infiltrating CD3 and CD14 cells, and protein-gene-product 9.5 on nerves, using immunohistochemistry and 4-colour confocal microscopy. RESULTS Intraepidermal nerve fibre density was variable in patients without HIV-SN and generally lower in those with HIV-SN. CX3CR1 was more evident on CD14 cells whereas CCR2, CCR5, CXCR3 and CXCR4 were more common on CD3 cells. Expression of CX3CR1, CCR2 and CCR5 was more common in HIV-SN+ patients than those without HIV-SN. CXCR3 and CXCR4 were upregulated in all HIV+ patients, compared with healthy controls. CONCLUSION Inflammatory macrophages expressing CX3CR1 and T cells expressing CCR2 and CCR5 may participate in peripheral nerve damage leading to HIV-SN in HIV+ patients treated without stavudine. Further characterization of these cells is warranted.
Collapse
|
37
|
Abstract
With the introduction of combination antiretroviral therapy, human immunodeficiency virus (HIV)-infected individuals are living longer, and are commonly confronted with chronic neuromuscular complications. The spectrum of neuromuscular disorders in patients living with HIV infection is wide, and is caused by HIV per se and its products, particular antiretroviral drugs, or a combination of both. The purpose of this chapter is to review peripheral nervous system disorders in the setting of HIV infection, and to provide a general approach to diagnosis and management of these disorders. The early identification of these conditions may help with early intervention and management, allow prevention of morbidities associated with these disorders, and contribute to future research efforts in the field of HIV.
Collapse
Affiliation(s)
- Michelle Kaku
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - David M Simpson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
38
|
Kaku M, Simpson DM. HIV, antiretrovirals, and peripheral neuropathy: A moving target. Muscle Nerve 2017; 57:347-349. [PMID: 29053881 DOI: 10.1002/mus.25990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Michelle Kaku
- Boston University School of Medicine, Department of Neurology, Boston, Massachusetts, USA
| | - David M Simpson
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, New York, USA
| |
Collapse
|
39
|
Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies. J Neurosci 2017; 38:555-574. [PMID: 29196315 DOI: 10.1523/jneurosci.3647-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW HIV-sensory neuropathy (HIV-SN) remains a common complication of HIV infection and may be associated with significant morbidity due to neuropathic pain. The overall purpose of this review is to discuss trends in the changing epidemiology in HIV-SN, new data regarding the pathophysiology of the condition, and discuss approaches to management. RECENT FINDINGS While HIV-SN has been historically considered the most common neurological complication of HIV infection, improved accessibility to effective combination antiretroviral therapy (cART), use of less neurotoxic antiretroviral medication regimens, and trends towards earlier introduction of treatment have impacted the condition: overall incident HIV-SN is likely decreased compared to prior rates and patients afflicted by HIV-SN may more frequently have asymptomatic or subclinical disease. Traditional predictors of HIV-SN have also changed, as traditional indices of severe immune deficiency such as low CD4 count and high viral load no longer predict HIV-SN. Emerging evidence supports the contention that both peripheral and central mechanisms underlying the generation as well as persistence of neuropathic pain in HIV-SN exist. It is important to recognize that even mild neuropathic pain in this clinical population is associated with meaningful impairment in quality of life and function, which emphasizes the clinical importance of recognizing and treating the condition. The general approach to management of neuropathic pain in HIV-SN is the introduction of symptomatic analgesic therapy. There exist, however, few evidence-based analgesic options for HIV-SN based on available clinical data. Symptomatic treatment trials are increasingly recognized to have been potentially confounded by more robust placebo response than that observed in other neuropathic pain conditions. In the authors' experience, use of analgesic therapies with proven efficacy in other neuropathic pain conditions is appropriate, bearing in consideration potential pharmacokinetic interactions with the cART regimen. Combination analgesic regimens may also achieve meaningful analgesic responses, particularly when drugs with differing mechanisms of action are utilized. It is paramount that the patient is appropriately counseled regarding expectations and the anticipated benefit of analgesic therapy, as pain relief is often incomplete but clinically meaningful improvement in pain and function can be achieved.
Collapse
Affiliation(s)
| | - Taylor B Harrison
- Department of Neurology, Emory University, Atlanta, GA, USA. .,Department of Neurology, Grady Memorial Hospital, Emory University School of Medicine, 80 Jesse Hill Jr., Drive Box 036, Atlanta, GA, 30303, USA.
| |
Collapse
|
41
|
Abstract
Effective combination antiretroviral therapy has transformed HIV infection into a chronic disease, with HIV-infected individuals living longer and reaching older age. Neurological disease remains common in treated HIV, however, due in part to ongoing inflammation and immune activation that persist in chronic infection. In this review, we highlight recent developments in our understanding of several clinically relevant neurologic complications that can occur in HIV infection despite treatment, including HIV-associated neurocognitive disorders, symptomatic CSF escape, cerebrovascular disease, and peripheral neuropathy.
Collapse
Affiliation(s)
- Nisha S Bhatia
- Department of Neurology, University of California, San Francisco, CA, USA.
| | - Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases), University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Berth SH, Mesnard-Hoaglin N, Wang B, Kim H, Song Y, Sapar M, Morfini G, Brady ST. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways. ASN Neuro 2016; 8:8/6/1759091416679073. [PMID: 27872270 PMCID: PMC5119683 DOI: 10.1177/1759091416679073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/24/2016] [Accepted: 10/02/2016] [Indexed: 01/24/2023] Open
Abstract
Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP.
Collapse
Affiliation(s)
- Sarah H Berth
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Bin Wang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA
| | - Hajwa Kim
- Center for Clinical and Translational Sciences, University of Illinois at Chicago, IL, USA
| | - Yuyu Song
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA USA
| | - Maria Sapar
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Biological Sciences, Howard Hughes Medical Institute, Hunter College, New York, NY, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, USA .,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
43
|
Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang Z, Yuan H. Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 2016; 13:13-26. [PMID: 27683228 DOI: 10.1007/s11302-016-9537-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
44
|
Neal JW, Gasque P. The role of primary infection of Schwann cells in the aetiology of infective inflammatory neuropathies. J Infect 2016; 73:402-418. [PMID: 27546064 DOI: 10.1016/j.jinf.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/08/2023]
Abstract
Numerous different pathogens are responsible for infective peripheral neuropathies and this is generally the result of the indirect effects of pathogen infection, namely anti pathogen antibodies cross reacting with epitopes on peripheral nerve, auto reactive T cells attacking myelin, circulating immune complexes and complement fixation. Primary infection of Schwann cells (SC) associated with peripheral nerve inflammation is rare requiring pathogens to cross the Blood Peripheral Nerve Barrier (BPNB) evade anti-pathogen innate immune pathways and invade the SC. Spirochetes Borrelia bourgdorferi and Trepomema pallidum are highly invasive, express surface lipo proteins, but despite this SC are rarely infected. However, Trypanosoma cruzi (Chaga's disease) and Mycobacterium leprae. Leprosy are two important causes of peripheral nerve infection and both demonstrate primary infection of SC. This is due to two novel strategies; T. cruzi express a trans-silalidase that mimics host neurotrophic factors and infects SC via tyrosine kinase receptors. M. leprae demonstrates multi receptor SC tropism and subsequent infection promotes nuclear reprogramming and dedifferentiation of host SC into progenitor stem like cells (pSLC) that are vulnerable to M. leprae infection. These two novel pathogen evasion strategies, involving stem cells and receptor mimicry, provide potential therapeutic targets relevant to the prevention of peripheral nerve inflammation by inhibiting primary SC infection.
Collapse
Affiliation(s)
- J W Neal
- Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff CF14 4XN, United Kingdom.
| | - P Gasque
- Laboratoire d'Immunologie Clinique et Expérimentale de l'OI (LICE-OI), Centre recherche Immuno-clinique des agents pathogènes de l'OI (CRIC-AP OI) Pôle Biologie Santé, Hôpital Félix Guyon, CHU de la Réunion, Reunion.
| |
Collapse
|
45
|
Sagen J, Castellanos DA, Hama AT. Antinociceptive effects of topical mepivacaine in a rat model of HIV-associated peripheral neuropathic pain. J Pain Res 2016; 9:361-71. [PMID: 27350758 PMCID: PMC4902250 DOI: 10.2147/jpr.s104397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background A consequence of HIV infection is sensory neuropathy, a debilitating condition that degrades the quality of life of HIV patients. Furthermore, life-extending antiretroviral treatment may exacerbate HIV sensory neuropathy. Analgesics that relieve other neuropathic pains show little or no efficacy in ameliorating HIV sensory neuropathy. Thus, there is a need for analgesics for people with this particular pain. While lidocaine is used in the management of painful peripheral neuropathies, another local anesthetic mepivacaine, with a potentially improved bioavailability, could be utilized for the management of HIV neuropathic pain. Methods The efficacy of topical anesthetics was evaluated in a preclinical rodent model of painful peripheral neuropathy induced by epineural administration of the HIV envelope protein gp120 delivered using saturated oxidized cellulose implanted around the sciatic nerve. Beginning at 2 weeks following gp120 administration, the effects of local anesthetics topically applied via gauze pads were tested on heat and mechanical hyperalgesia in the hind paw. Rats were tested using several concentrations of mepivacaine or lidocaine during the following 2 weeks. Results By 2 weeks following epineural gp120 implantation, the ipsilateral hind paw developed significant hypersensitivity to noxious pressure and heat hyperalgesia. A short-lasting, concentration-dependent amelioration of pressure and heat hyperalgesia was observed following topical application of mepivacaine to the ipsilateral plantar hind paw. By contrast, topical lidocaine ameliorated heat hyperalgesia in a concentration-dependent manner but not pressure hyperalgesia. Equipotent concentrations of mepivacaine and lidocaine applied topically to the tail of mice significantly increased tail withdrawal latencies in the tail flick test, demonstrating that both local anesthetics attenuate responding to a brief noxious stimulus. Conclusion These findings showed that mepivacaine, rather than lidocaine, consistently attenuated two distinct symptoms of neuropathic pain and suggest that topical formulations of this local anesthetic could have utility in the alleviation of clinical HIV neuropathic pain.
Collapse
Affiliation(s)
- Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Castellanos
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aldric T Hama
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Persistent Peripheral Nervous System Damage in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy. J Neuropathol Exp Neurol 2016; 74:1053-60. [PMID: 26426267 DOI: 10.1097/nen.0000000000000249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV)-induced peripheral neuropathy is the most common neurologic complication associated with HIV infection. In addition to virus-mediated injury of the peripheral nervous system (PNS), treatment of HIV infection with combination antiretroviral therapy (cART) may induce toxic neuropathy as a side effect. Antiretroviral toxic neuropathy is clinically indistinguishable from the sensory neuropathy induced by HIV; in some patients, these 2 processes are likely superimposed. To study these intercurrent PNS disease processes, we first established a simian immunodeficiency virus (SIV)/pigtailed macaque model in which more than 90% of animals developed PNS changes closely resembling those seen in HIV-infected individuals with distal sensory neuropathy. To determine whether cART alters the progression of SIV-induced PNS damage, dorsal root ganglia and epidermal nerve fibers were evaluated in SIV-infected macaques after long-term suppressive cART. Although cART effectively suppressed SIV replication and reduced macrophage activation in the dorsal root ganglia, PGP 9.5 immunostaining and measurements of epidermal nerve fibers in the plantar surface of the feet of treated SIV-infected macaques clearly showed that cART did not normalize epidermal nerve fiber density. These findings illustrate that significant PNS damage persists in SIV-infected macaques on suppressive cART.
Collapse
|
47
|
Lakritz JR, Robinson JA, Polydefkis MJ, Miller AD, Burdo TH. Loss of intraepidermal nerve fiber density during SIV peripheral neuropathy is mediated by monocyte activation and elevated monocyte chemotactic proteins. J Neuroinflammation 2015; 12:237. [PMID: 26683323 PMCID: PMC4683776 DOI: 10.1186/s12974-015-0456-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Background Peripheral neuropathy (PN) continues to be a major complication of human immunodeficiency virus (HIV) infection despite successful anti-retroviral therapy. Human HIV-PN can be recapitulated in a CD8-depleted, simian immunodeficiency virus (SIV)-infected rhesus macaque animal model, characterized by a loss of intraepidermal nerve fiber density (IENFD) and damage to the dorsal root ganglia (DRG). Increased monocyte traffic to the DRG has previously been associated with severe DRG pathology, as well as a loss in IENFD. Here, we sought to characterize the molecular signals associated with monocyte activation and trafficking to the DRGs. Methods Eleven SIV-infected CD8-depleted rhesus macaques were compared to four uninfected control animals. sCD14, sCD163, sCD137, regulated on activation normal T cell expressed and secreted (RANTES), and monocyte chemoattractant protein 1 (MCP-1) were measured in plasma and the latter three proteins were also quantified in DRG tissue lysates. All SIV-infected animals received serial skin biopsies to measure IENFD loss as well as BrdU inoculations to measure monocyte turnover during the course of infection. The number of BrdU+ and CD14+ CD16+ peripheral blood monocytes was determined by flow cytometry. The number of MAC387+, CCR2+, CCR5+, and CD137+ cells in DRG tissue was quantified by immunohistochemistry. Results sCD14, sCD163, MCP-1, and sCD137 increased significantly in plasma from pre-infection to necropsy. Plasma sCD163 and RANTES inversely correlated with IENFD. Additionally, sCD137 in DRG tissue lysate was elevated with severe DRG pathology and associated with the recruitment of MAC387+ cells to DRG. Elevated numbers of CCR5+ and CCR2+ satellite cells in the DRG were found, suggesting a chemotactic role of their ligands, RANTES, and MCP-1 in recruiting monocytes to the tissue. Conclusions We characterized the role of systemic (plasma) and tissue-specific (DRG) monocyte activation and associated cytokines in the pathogenesis of SIV-PN. We identified sCD163 and RANTES as potential biomarkers for HIV-PN, as these were associated with a loss of IENFD. Additionally, we identified CD137 signaling to play a role in MAC387+ cell traffic to DRG and possibly contribute to severe pathology. These studies highlight the role of monocyte activation and traffic in the pathogenesis of SIV-PN, while identifying specific signaling proteins for future pharmacological blockade.
Collapse
Affiliation(s)
- Jessica R Lakritz
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jake A Robinson
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
48
|
Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, Xu D, Ferreira SH, Alves-Filho JC, McInnes IB, Ryffel B, Quesniaux VFJ, Reverchon F, Mortaud S, Menuet A, Liew FY, Cunha FQ, Cunha TM, Verri WA. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J 2015; 30:54-65. [PMID: 26310268 DOI: 10.1096/fj.14-267146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022]
Abstract
Neuropathic pain from injury to the peripheral and CNS represents a major health care issue. We have investigated the role of IL-33/IL-33 receptor (ST2) signaling in experimental models of neuropathic pain in mice. Chronic constriction injury (CCI) of the sciatic nerve induced IL-33 production in the spinal cord. IL-33/citrine reporter mice revealed that oligodendrocytes are the main cells expressing IL-33 within the spinal cord together with a minor expression by neurons, microglia. and astrocytes. CCI-induced mechanical hyperalgesia was reduced in IL-33R (ST2)(-/ -) mice compared with wild-type (WT) mice. Intrathecal treatment of WT mice with soluble IL-33 receptor (IL-33 decoy receptor) markedly reduced CCI-induced hyperalgesia. Consistent with these observations, intrathecal injection of IL-33 enhanced CCI hyperalgesia and induced hyperalgesia in naive mice. IL-33-mediated hyperalgesia during CCI was dependent on a reciprocal relationship with TNF-α and IL-1β. IL-33-induced hyperalgesia was markedly attenuated by inhibitors of PI3K, mammalian target of rapamycin, MAPKs (p38, ERK, and JNK), NF-κB, and also by the inhibitors of glial cells (microglia and astrocytes). Furthermore, targeting these signaling pathways and cells inhibited IL-33-induced TNF-α and IL-1β production in the spinal cord. Our study, therefore, reveals an important role of oligodendrocyte-derived IL-33 in neuropathic pain.
Collapse
Affiliation(s)
- Ana C Zarpelon
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Francielle C Rodrigues
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Alexandre H Lopes
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Guilherme R Souza
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Thacyana T Carvalho
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Larissa G Pinto
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Damo Xu
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sergio H Ferreira
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jose C Alves-Filho
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Iain B McInnes
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Bernhard Ryffel
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Valérie F J Quesniaux
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Flora Reverchon
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Stéphane Mortaud
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Arnaud Menuet
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Foo Y Liew
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fernando Q Cunha
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Thiago M Cunha
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Waldiceu A Verri
- *Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom; Unités Mixtes de Recherche 7355, Centre National de la Recherche Scientifique Experimental and Molecular Immunology and Neurogenetics, Orléans, France; Immunologie et Neurogénétique Expérimentales et Moléculaires, University of Orléans, Orléans, France; and School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
49
|
Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 2015; 596:33-50. [PMID: 25617478 PMCID: PMC4428955 DOI: 10.1016/j.neulet.2015.01.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Christopher R Cashman
- Departments of Neuroscience and Neurology, USA; MSTP- MD/PhD Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Departments of Neuroscience and Neurology, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To present an overview of HIV-associated distal symmetric polyneuropathy (HIV-DSP) and other HIV-related peripheral neuropathies in the post-highly active retroviral therapy era. RECENT FINDINGS HIV-DSP has become the most common neurologic complication of HIV largely due to the prolonged survival of HIV-positive patients with the advent of highly active retroviral therapy. HIV-DSP can be attributed to the disease itself or to secondary effects of certain HAART agents, and often the two disease entities cannot be distinguished. HIV-DSP can lead to significant morbidity and interfere with daily activities. Diagnosis can be obtained from a detailed history and neurologic exam revealing absent ankle jerks and abnormal, vibratory perception or decreased pinprick or temperature. Supporting studies include nerve conduction studies and skin biopsy. Although there are no United States Food and Drug Administration-approved treatments for HIV-DSP, clinicians often use off-label medications, including antidepressants, anticonvulsants, topical agents and other analgesics. SUMMARY The prevalence of those affected by HIV-DSP will continue to grow with the aging population of HIV-infected individuals. Compared to the diabetic neuropathy drug trials, trials in both symptomatic and disease-modifying agents for HIV-DSP have had little success. Other forms of HIV-related peripheral neuropathies are discussed briefly, and include acute and chronic inflammatory demyelinating polyneuropathy, autonomic neuropathy, polyradiculopathy, mononeuropathies, mononeuritis multiplex, cranial neuropathies, and amyotrophic lateral sclerosis-like motor neuropathy.
Collapse
|