1
|
Lopriore P, Palermo G, Meli A, Bellini G, Benevento E, Montano V, Siciliano G, Mancuso M, Ceravolo R. Mitochondrial Parkinsonism: A Practical Guide to Genes and Clinical Diagnosis. Mov Disord Clin Pract 2024; 11:948-965. [PMID: 38943319 PMCID: PMC11329577 DOI: 10.1002/mdc3.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMDs) are the most common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. They can result from mutations in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). These disorders are multisystemic and mainly affect high energy-demanding tissues, such as muscle and the central nervous system (CNS). Among many clinical features of CNS involvement, parkinsonism is one of the most common movement disorders in PMDs. METHODS This review provides a pragmatic educational overview of the most recent advances in the field of mitochondrial parkinsonism, from pathophysiology and genetic etiologies to phenotype and diagnosis. RESULTS mtDNA maintenance and mitochondrial dynamics alterations represent the principal mechanisms underlying mitochondrial parkinsonism. It can be present in isolation, alongside other movement disorders or, more commonly, as part of a multisystemic phenotype. Mutations in several nuclear-encoded genes (ie, POLG, TWNK, SPG7, and OPA1) and, more rarely, mtDNA mutations, are responsible for mitochondrial parkinsonism. Progressive external opthalmoplegia and optic atrophy may guide genetic etiology identification. CONCLUSION A comprehensive deep-phenotyping approach is needed to reach a diagnosis of mitochondrial parkinsonism, which lacks distinctive clinical features and exemplifies the intricate genotype-phenotype interplay of PMDs.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Adriana Meli
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Elena Benevento
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Vincenzo Montano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| |
Collapse
|
2
|
NCS1 overexpression restored mitochondrial activity and behavioral alterations in a zebrafish model of Wolfram syndrome. Mol Ther Methods Clin Dev 2022; 27:295-308. [PMID: 36320410 PMCID: PMC9594121 DOI: 10.1016/j.omtm.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.
Collapse
|
3
|
Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov 2021; 7:151. [PMID: 34226525 PMCID: PMC8257685 DOI: 10.1038/s41420-021-00547-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.
Collapse
Affiliation(s)
- Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jasmin Hanke
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Subrahmanian N, LaVoie MJ. Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson's disease? A critical reappraisal. Brain Res 2021; 1767:147434. [PMID: 33745923 PMCID: PMC9520341 DOI: 10.1016/j.brainres.2021.147434] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease manifesting both motor and non-motor symptoms. The motor features are generally ascribed to the selective loss of dopamine neurons within the substantia nigra pars compacta. While the precise etiology of PD remains elusive, multiple genetic and environmental elements have emerged as contributing factors. The discovery of MPTP-induced parkinsonism directed intense inquiry towards mitochondrial pathways, with a specific focus on mitochondrial complex I. Consisting of more than 40 subunits, complex I is the first enzyme of the electron transport chain that is required for mitochondrial ATP production. In this review, we present a critical analysis of studies assessing the prevalence and specificity of mitochondrial complex I deficiency in PD. In addition, we take the novel view of incorporating the features of genetically-defined bona fide complex I disorders and the prevalence of nigral involvement in such cases. Through this innovative bi-directional view, we consider both complex I changes in a disease of the substantia nigra and nigral changes in diseases of complex I. We assess the strength of association between nigral cell loss and complex I deficits, as well as the oft under-appreciated heterogeneity of complex I deficiency disorders and the variability of the PD data.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Giannopoulos S, Samardzic K, Raymond BBA, Djordjevic SP, Rodgers KJ. L-DOPA causes mitochondrial dysfunction in vitro: A novel mechanism of L-DOPA toxicity uncovered. Int J Biochem Cell Biol 2019; 117:105624. [PMID: 31654750 DOI: 10.1016/j.biocel.2019.105624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/31/2023]
Abstract
In Parkinson's disease (PD), as in many other neurodegenerative disorders, mitochondrial dysfunction, protein misfolding, and proteotoxic stress underly the disease process. For decades, the primary symptomatic treatment for PD has been the dopamine precursor L-DOPA (Levodopa). L-DOPA however can initiate protein misfolding through its ability to mimic the protein amino acid L-tyrosine, resulting in random errors in aminoacylation and L-DOPA becoming mistakenly inserted into the polypeptide chain of proteins in place of L-tyrosine. In the present study we examined the impact that the generation of DOPA-containing proteins had on human neuroblastoma cell (SH-SY5Y) function in vitro. We showed that even in the presence of antioxidants there was a significant accumulation of cytosolic ubiquitin in DOPA-treated cells, an upregulation in the endosomal-lysosomal degradation system, deleterious changes to mitochondrial morphology and a marked decline in mitochondrial function.The effects of L-DOPA on mitochondrial function were not observed with D-DOPA, the stereoisomer of L-DOPA that cannot be inserted into proteins so did not result from oxidative stress. We could fully protect against these effects by co-treatment with L-tyrosine, supporting the view that misincorporation of L-DOPA into proteins contributed to these cytotoxic effects, leading us to suggest that co-treatment with L-tyrosine could be beneficial therapeutically.
Collapse
Affiliation(s)
- Steven Giannopoulos
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kate Samardzic
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Benjamin B A Raymond
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Steven P Djordjevic
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia.
| |
Collapse
|
6
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
7
|
Miranda Mendonça AP, Hoppe LY, Gaviraghi A, Araújo-Jorge TCD, de Oliveira GM, Felippe RM, Oliveira MF, da Silva Fragoso VM. Highly aggressive behavior induced by social stress is associated to reduced cytochrome c oxidase activity in mice brain cortex. Neurochem Int 2019; 126:210-217. [PMID: 30922923 DOI: 10.1016/j.neuint.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
Violence and aggression represent severe social problems, with profound impacts on public health. Despite the development of experimental models to study aggressive behavior is highly appreciated, the underlying mechanisms remain poorly understood. Given the key contribution of mitochondria to central nervous system bioenergetics, we hypothesized that mitochondrial function in brain would be altered by social stress. Using a model of spontaneous aggression, we investigated here the effects of social stress on brain mitochondrial function in prefrontal cortex of Swiss mice. Animals were categorized as highly aggressive, subordinate and non-aggressive (harmonic) after stress induced by regrouping and compared them with non-regrouped animals. Despite social stress did not affect brain cortex oxygen consumption rates and NADH:cytochrome c oxidoreductase activity, cytochrome c oxidase expression and activity were significantly lower in highly aggressive animals compared to non-regrouped ones. These changes were not observed in ATP synthase and adenine nucleotide translocator content suggesting a selective effect of social stress on cytochrome c oxidase. Therefore, aggressive behavior generated upon social stress associates to selective reduction in cytochrome c oxidase activity, with potential detrimental effects on brain bioenergetics and function.
Collapse
Affiliation(s)
- Ana Paula Miranda Mendonça
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Bauhínia 400, 21941-590, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Luanda Yanaan Hoppe
- Laboratory of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Alessandro Gaviraghi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Bauhínia 400, 21941-590, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Tânia Cremonini de Araújo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Gabriel Melo de Oliveira
- Laboratory of Cell Biology, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Renata Machado Felippe
- Laboratory of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Bauhínia 400, 21941-590, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil.
| | - Viviane Muniz da Silva Fragoso
- Laboratory of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 2019; 129:34-45. [PMID: 30601141 DOI: 10.1172/jci120848] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory deficiencies have been observed in numerous neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. For decades, these reductions in oxidative phosphorylation (OxPhos) have been presumed to trigger an overall bioenergetic crisis in the neuron, resulting in cell death. While the connection between respiratory defects and neuronal death has never been proven, this hypothesis has been supported by the detection of nonspecific mitochondrial DNA mutations in these disorders. These findings led to the notion that mitochondrial respiratory defects could be initiators of these common neurodegenerative disorders, instead of being consequences of a prior insult, a theory we believe to be misconstrued. Herein, we review the roots of this mitochondrial hypothesis and offer a new perspective wherein mitochondria are analyzed not only from the OxPhos point of view, but also as a complex organelle residing at the epicenter of many metabolic pathways.
Collapse
Affiliation(s)
| | | | - Eric A Schon
- Department of Neurology.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
9
|
Choi H, Koh SH. Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson’s disease. Expert Opin Drug Metab Toxicol 2017; 14:83-90. [DOI: 10.1080/17425255.2018.1417387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Ben-Shachar D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res 2017; 187:3-10. [PMID: 27802911 DOI: 10.1016/j.schres.2016.10.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are key players in various essential cellular processes beyond being the main energy supplier of the cell. Accordingly, they are involved in neuronal synaptic transmission, neuronal growth and sprouting and consequently neuronal plasticity and connectivity. In addition, mitochondria participate in the modulation of gene transcription and inflammation as well in physiological responses in health and disease. Schizophrenia is currently regarded as a neurodevelopmental disorder associated with impaired immune system, aberrant neuronal differentiation and abnormalities in various neurotransmitter systems mainly the dopaminergic, glutaminergic and GABAergic. Ample evidence has been accumulated over the last decade indicating a multifaceted dysfunction of mitochondria in schizophrenia. Indeed, mitochondrial deficit can be of relevance for the majority of the pathologies observed in this disease. In the present article, we overview specific deficits of the mitochondria in schizophrenia, with a focus on the first complex (complex I) of the mitochondrial electron transport chain (ETC). We argue that complex I, being a major factor in the regulation of mitochondrial ETC, is a possible key modulator of various functions of the mitochondria. We review biochemical, molecular, cellular and functional evidence for mitochondrial impairments and their possible convergence to impact in-vitro neuronal differentiation efficiency in schizophrenia. Mitochondrial function in schizophrenia may advance our knowledge of the disease pathophysiology and open the road for new treatment targets for the benefit of the patients.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion-IIT, Haifa, Israel.
| |
Collapse
|
11
|
Protective Effect of Bicyclol on Anti-Tuberculosis Drug Induced Liver Injury in Rats. Molecules 2017; 22:molecules22040524. [PMID: 28387740 PMCID: PMC6153934 DOI: 10.3390/molecules22040524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
The present study was performed to investigate the effect of bicyclol, a synthetic anti-hepatitis drug with anti-oxidative and anti-inflammatory properties, on anti-tuberculosis (anti-TB) drug-induced liver injury and related mechanisms in rats. Bicyclol was given to rats by gavage 2 h before the oral administration of an anti-TB drug once a day for 30 days. Liver injury was evaluated by biochemical and histopathological examinations. Lipid peroxidation, mitochondrial function, and the activity of antioxidants were measured by spectrophotometric methods. Cytokines expression and CYP2E1 activity were determined by ELISA assay and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. The expressions of hepatic CYP2E1 and hepatocyte growth factor (HGF) were assessed by Western blotting. As a result, bicyclol significantly protected against anti-TB drug-induced liver injury by reducing the elevated serum aminotransferases levels and accumulation of hepatic lipids. Meanwhile, the histopathological changes were also attenuated in rats. The protective effect of bicyclol on anti-TB drug-induced hepatotoxicity was mainly due to its ability to attenuate oxidative stress, suppress the inflammatory cytokines and CYP2E1 expression, up-regulate the expression of HGF, and improve mitochondrial function. Furthermore, administration of bicyclol had no significant effect on the plasma pharmacokinetics of the anti-TB drug in rats.
Collapse
|
12
|
Bergman O, Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:457-69. [PMID: 27412728 PMCID: PMC4959648 DOI: 10.1177/0706743716648290] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| |
Collapse
|
13
|
The combination of oral L-DOPA/rimonabant for effective dyskinesia treatment and cytological preservation in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia. Behav Pharmacol 2014; 24:640-52. [PMID: 24196024 DOI: 10.1097/fbp.0000000000000004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease in the world. Its treatment is limited so far to the management of parkinsonian symptoms with L-DOPA (LD). The long-term use of LD is limited by the development of L-DOPA-induced dyskinesias and dystonia. However, recent studies have suggested that pharmacological targeting of the endocannabinoid system may potentially provide a valuable therapeutic tool to suppress these motor alterations. In the present study, we have explored the behavioral (L-DOPA-induced dyskinesias severity) and cytological (substantia nigra compacta neurons and striatum neuropil preservation) effects of the oral coadministration of LD and rimonabant, a selective antagonist of CB1 receptors, in the 6-hydroxydopamine rat model of Parkinson's disease. Oral coadministration of LD (30 mg/kg) and rimonabant (1 mg/kg) significantly decreased abnormal involuntary movements and dystonia, possibly through the conservation of some functional tyrosine hydroxylase-immunoreactive dopaminergic cells, which in turn translates into a well-preserved neuropil of a less denervated striatum. Our results provide anatomical evidence that long-term coadministration of LD with cannabinoid antagonist-based therapy may not only alleviate specific motor symptoms but also delay/arrest the degeneration of striatal and substantia nigra compacta cells.
Collapse
|
14
|
Mushtaq MN, Sunohara Y, Matsumoto H. Allelochemical L-DOPA induces quinoprotein adducts and inhibits NADH dehydrogenase activity and root growth of cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:374-8. [PMID: 23831820 DOI: 10.1016/j.plaphy.2013.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 05/09/2023]
Abstract
Allelochemical L-DOPA (l-3,4-dihydroxyphenylalanine) inhibits growth of several plant species. However, its mode of action is not well clarified in plants. The present studies were conducted to explore the action mechanism of L-DOPA in cucumber roots. The results revealed that L-DOPA suppressed the root growth of cucumber and induced quinoprotein and melanin formation in the roots. Moreover, L-DOPA not only decreased mitochondrial viability and NADH dehydrogenase (complex I) activity but also increased quinoprotein formation in vitro in isolated mitochondria from cucumber roots. Strong correlations were observed between quinoprotein formation and root growth inhibition, quinoprotein formation and NADH dehydrogenase activity, after L-DOPA treatment. The results suggest that quinoprotein formation and mitochondrial impairment might be involved in growth-inhibition mechanism of L-DOPA in cucumber roots.
Collapse
Affiliation(s)
- Muhammad Naeem Mushtaq
- Doctoral Program in Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
15
|
de Araújo DP, De Sousa CNS, Araújo PVP, Menezes CEDS, Sousa Rodrigues FT, Escudeiro SS, Lima NBC, Patrocínio MCA, Aguiar LMV, Viana GSDB, Vasconcelos SMM. Behavioral and neurochemical effects of alpha-lipoic Acid in the model of Parkinson's disease induced by unilateral stereotaxic injection of 6-ohda in rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:571378. [PMID: 24023579 PMCID: PMC3760123 DOI: 10.1155/2013/571378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate behavioral and neurochemical effects of α -lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α -Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α -lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α -lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α -lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment.
Collapse
Affiliation(s)
- Dayane Pessoa de Araújo
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Caren Nádia Soares De Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Paulo Victor Pontes Araújo
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Carlos Eduardo de Souza Menezes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Francisca Taciana Sousa Rodrigues
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Sarah Souza Escudeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | | | | | - Lissiana Magna Vasconcelos Aguiar
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| |
Collapse
|
16
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Shimizu M, Tanaka KI, Ogawa N. Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generatedin vitro. Neurol Res 2013; 27:533-9. [PMID: 15978181 DOI: 10.1179/016164105x22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES AND METHODS To clarify the effects of a non-ergot dopamine agonist pramipexole on levodopa-induced abnormal dopamine metabolism in the parkinsonian model, we examined striatal changes in dopamine and its metabolites after repeated administration of pramipexole and/or levodopa using 6-hydroxydopamine-lesioned hemi-parkinsonian mice. Moreover, the effects of pramipexole on dopamine-semiquinones were also accessed using an in vitro dopamine-semiquinone generating system to elucidate its neuroprotective property against dopamine quinone-induced neurotoxicity that appears as dopamine neuron-specific oxidative stress. RESULTS Combined administration of pramipexole (0.5 or 1 mg/kg/day, 7 days) selectively suppressed the levodopa-induced (50 mg/kg/day) increase of striatal dopamine turnover in the parkinsonian side, but not in the non-lesioned side. In addition to the antioxidant properties previously reported, it was clarified that pramipexole scavenged dopamine-semiquinones generated in a dose-dependent manner either in simultaneous incubation or post-incubation. DISCUSSION The neurotoxicity of dopamine quinones that appear as dopaminergic neuron-specific oxidative stress has recently been known to play a role in the pathogenesis of Parkinson's disease and neurotoxin-induced parkinsonism. Therefore, the present results revealed that pramipexole possesses neuroprotective effects against abnormal dopamine metabolism in excessively levodopa-administered parkinsonian brains and against cytotoxic dopamine quinones generated from excess dopamine, preventing consequently dopaminergic neuronal damage induced by excess dopamine or levodopa.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Feier G, Valvassori SS, Varela RB, Resende WR, Bavaresco DV, Morais MO, Scaini G, Andersen ML, Streck EL, Quevedo J. Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 2013; 103:589-96. [DOI: 10.1016/j.pbb.2012.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/24/2022]
|
18
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
19
|
Tamoxifen effects on respiratory chain complexes and creatine kinase activities in an animal model of mania. Pharmacol Biochem Behav 2011; 98:304-10. [DOI: 10.1016/j.pbb.2011.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/27/2010] [Accepted: 01/23/2011] [Indexed: 12/27/2022]
|
20
|
Finsterer J. Parkinson's syndrome and Parkinson's disease in mitochondrial disorders. Mov Disord 2011; 26:784-91. [PMID: 21384429 DOI: 10.1002/mds.23651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 02/04/2023] Open
Abstract
In the majority of cases, mitochondrial disorders are multisystem conditions that most frequently affect the skeletal muscle, followed by the central nervous system. One of the clinical manifestations of central nervous system involvement is Parkinson's syndrome (PS). Evidence for an association of mitochondrial defects with PS comes from mitochondrial disorder patients who have developed Parkinson's syndrome and from Parkinson's syndrome patients who have developed a mitochondrial disorder. In addition, there are a number of patients with Parkinson's syndrome or Parkinson's disease (PD) who later develop subclinical immunohistological or biochemical indications of mitochondrial defects or accumulates mitochondrial DNA mutations within various cerebral regions. There are also Parkinson's syndrome patients who present with elevated cerebrospinal-fluid lactate by magnetic resonance spectroscopy. Furthermore, it has been shown that mutations in genes causing PD, such as PINK1, parkin, DJ1, alpha-synuclein, and LRRK2, also cause mitochondrial dysfunction, which is one of the reasons why they are called mitochondrial nigropathies. Parkinson's syndrome in patients with a mitochondrial disorder may also result from oxidative stress or exogenous toxins. Treatment of mitochondrial Parkinson's syndrome is not at variance with the treatment of Parkinson's syndrome due to other causes, but because of the multisystem nature of mitochondrial disorders, mitochondrial Parkinson's syndrome requires additional therapeutic support.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Danube University, Krems, Austria.
| |
Collapse
|
21
|
BN82451 attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson's disease. Neuropharmacology 2010; 60:692-700. [PMID: 21129389 DOI: 10.1016/j.neuropharm.2010.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/20/2022]
Abstract
The development of L-dopa-induced dyskinesia (LID) remains a major problem in the long-term treatment of Parkinson's disease (PD). This study aimed to assess the effect of the multitargeting molecule BN82451 on LID and to measure striatal mRNA expression of several genes in a rat model of PD. Rats were administered two unilateral injections of 6-OHDA in the striatum. After four weeks, the animals started a chronic daily treatment with increasing doses of L-dopa over a further four-week period. Over the course of L-dopa treatment, the rats developed abnormal involuntary movements (AIMs) classified as locomotive, axial, orolingual and forelimb dyskinesia. In animals rendered dyskinetic by L-dopa, administration of BN82451 at doses ranging from 1 to 10 mg/kg p.o. attenuated the severity of fully-established AIMs in a dose-related manner. This anti-dyskinetic effect could be achieved with lower doses of BN82451 administered sub chronically vs. acute single treatment. The improvement of AIMs is not due to a reduction in the general motor activity of dyskinetic rats. BN82451 treatment significantly reversed the overexpression of c-Fos, FosB and Arc mRNA associated with the dyskinesiogenic action of L-dopa. A significant correlation between the degree of overexpression of c-Fos, FosB and Arc mRNA and the dyskinesiogenic action of L-dopa was observed. The data demonstrate that BN82451 effectively attenuates LID and the associated molecular alterations in an animal model of PD and may represent a treatment option for managing dyskinesia.
Collapse
|
22
|
Dopamine modifies oxygen consumption and mitochondrial membrane potential in striatal mitochondria. Mol Cell Biochem 2010; 341:251-7. [DOI: 10.1007/s11010-010-0456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
23
|
Ben-Shachar D. The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm (Vienna) 2010; 116:1383-96. [PMID: 19784753 DOI: 10.1007/s00702-009-0319-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
Schizophrenia is currently believed to result from variations in multiple genes, each contributing a subtle effect, which combines with each other and with environmental stimuli to impact both early and late brain development. At present, schizophrenia clinical heterogeneity as well as the difficulties in relating cognitive, emotional and behavioral functions to brain substrates hinders the identification of a disease-specific anatomical, physiological, molecular or genetic abnormality. Mitochondria play a pivotal role in many essential processes, such as energy production, intracellular calcium buffering, transmission of neurotransmitters, apoptosis and ROS production, all either leading to cell death or playing a role in synaptic plasticity. These processes have been well established as underlying altered neuronal activity and thereby abnormal neuronal circuitry and plasticity, ultimately affecting behavioral outcomes. The present article reviews evidence supporting a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, impairments in the oxidative phosphorylation system (OXPHOS) as well as altered mitochondrial-related gene expression. Abnormalities in mitochondrial complex I, which plays a major role in controlling OXPHOS activity, are discussed. Among them are schizophrenia specific as well as disease-state-specific alterations in complex I activity in the peripheral tissue, which can be modulated by DA. In addition, CNS and peripheral abnormalities in the expression of three of complex I subunits, associated with parallel alterations in their transcription factor, specificity protein 1 (Sp1) are reviewed. Finally, this review discusses the question of disease specificity of mitochondrial pathologies and suggests that mitochondria dysfunction could cause or arise from anomalities in processes involved in brain connectivity.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center and Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion IIT, Haifa, Israel.
| |
Collapse
|
24
|
Ji B, La Y, Gao L, Zhu H, Tian N, Zhang M, Yang Y, Zhao X, Tang R, Ma G, Zhou J, Meng J, Ma J, Zhang Z, Li H, Feng G, Wang Y, He L, Wan C. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res 2009; 8:3633-41. [PMID: 19441803 DOI: 10.1021/pr800876z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An increasing number of experiments have found anomalies in mitochondria in the brains of psychotics, which suggests that mitochondrial dysfunction or abnormal cerebral energy metabolism might play an important role in the pathophysiology of schizophrenia (SCZ). We adopted a proteomic approach to identify the differential effects on the cerebral cortex and hippocampus mitochondrial protein expression of Sprague-Dawley (SD) rats by comparing exposure to typical and atypical antipsychotic medications. Differential mitochondrial protein expressions were assessed using two-dimensional (2D) gel electrophoresis for three groups with Chlorpromazine (CPZ), Clozapine (CLZ), quetiapine (QTP) and a control group. A total of 14 proteins, of which 6 belong to the respiratory electron transport chain (ETC) of oxidative phosphorylation (OXPHOS), showed significant changes in quantity including NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 10 (Ndufa10), NADH dehydrogenase (ubiquinone) flavoprotein 2 (Ndufv2), NADH dehydrogenase (ubiquinone) Fe-S protein 3 (Ndufs3), F1-ATPase beta subunit (Atp5b), ATPase, H+ transporting, lysosomal, beta 56/58 kDa, isoform 2 (Atp6v1b2) and ATPase, H+ transporting, V1 subunit A, isoform 1 (Atp6v1a1). The differential proteins subjected to 2D were assessed for levels of mRNA using quantitative real time PCR (Q-RT-PCR), and we also made partial use of Western blotting for assessing differential expression. The results of our study may help to explain variations in SD rats as well as in human response to antipsychotic drugs. In addition, they should improve our understanding of both the curative effects and side effects of antipsychotics and encourage new directions in SCZ research.
Collapse
Affiliation(s)
- Baohu Ji
- Bio-X Center, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Koh SH, Kim SH, Kim HT. Role of glycogen synthase kinase-3 inl-DOPA-induced neurotoxicity. Expert Opin Drug Metab Toxicol 2009; 5:1359-68. [DOI: 10.1517/17425250903170663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Protective effect of bicyclol on tetracycline-induced fatty liver in mice. Toxicology 2009; 261:112-8. [PMID: 19427351 DOI: 10.1016/j.tox.2009.04.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/10/2009] [Accepted: 04/29/2009] [Indexed: 01/10/2023]
Abstract
Peroxisome proliferators-activated receptor alpha (PPARalpha) and oxidative stress are two important pathological factors in non-alcoholic fatty liver disease (NAFLD). Tetracycline-induced fatty liver was partly due to the disturbance of mitochondrial fatty acids beta-oxidation regulated by PPARalpha. Bicyclol was found to protect against high fat diet-induced fatty liver through modulating PPARalpha and clearing reactive oxygen species (ROS). The present study was performed to further investigate the effect of bicyclol on tetracycline-induced fatty liver and related mechanism in mice. Bicyclol (75, 150, 300 mg/kg) was given orally three times in two consecutive days. Tetracycline (200 mg/kg) was injected intraperitoneally 1h after the last administration of bicyclol. Oxidative stress, mitochondrial function, PPARalpha and its target genes were evaluated by biochemical and RT-PCR analysis. The activity of CYP4A was assessed by liquid chromatography/mass spectrometry (LC/MS) method. Bicyclol significantly protected against tetracycline-induced fatty liver by reducing the accumulation of hepatic lipids and elevation of serum aminotransferase. In addition, bicyclol remarkably alleviated the over-production of thiobarbituric acid-reactive substance. The reduced activity of mitochondrial respiratory chain (MRC) complexes I and IV and mitochondrial permeability transition (MPT) were also improved by bicyclol. Furthermore, bicyclol inhibited the decrease of PPARalpha expression and its target genes, including long-chain acyl CoA dehydrogenase (LCAD), acetyl CoA oxidase (AOX) and CYP4A at mRNA and enzyme activity level. Bicyclol protected against tetracycline-induced fatty liver mainly through modulating the disturbance of PPARalpha pathway and ameliorating mitochondrial function.
Collapse
|
27
|
Brenner-Lavie H, Klein E, Ben-Shachar D. Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 2009; 78:85-95. [PMID: 19447227 DOI: 10.1016/j.bcp.2009.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/17/2022]
Abstract
Accumulating evidence suggests a role for mitochondria in synaptic potentiation and neurotransmission as well as in morphogenesis and plasticity of spines and synapses. However, studies investigating the ability of neurotransmitters to reciprocally affect mitochondrial function are sparse. In the present study we investigated whether dopamine can affect mitochondrial function in intact neuronal cells. We have shown that short- or long-term exposure of human neuroblastoma SH-SY5Y cells to dopamine (DA) inhibited mitochondrial respiration. This inhibition was associated with an increase in DA intracellular levels, and was prevented by the DA membrane transporter inhibitors, cocaine and GBR-12909. DA inhibited respiration driven through complex I but not through complexes II or III, in line with DA ability to specifically inhibit complex I activity in mitochondrial preparations. The effect of DA on complex I was not associated with altered expression of three subunits of complex I, which were formerly reported abnormal in DA-related pathologies. DA effects on respiration were not due to its ability to form reactive oxygen species. Antipsychotic drugs, which compete with DA on its receptors and inhibit complex I activity, also decreased complex I driven mitochondrial respiration. These findings may suggest that DA, which is taken up by neurons, can affect mitochondria and thereby neurotransmission and synaptic plasticity. Such a mechanism may be of relevance to DA-related non-degenerative pathologies such as schizophrenia.
Collapse
Affiliation(s)
- Hanit Brenner-Lavie
- Research Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Bruce Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | | | | |
Collapse
|
28
|
Gołembiowska K, Dziubina A, Kowalska M, Kamińska K. Effect of adenosine A(2A) receptor antagonists on L-DOPA-induced hydroxyl radical formation in rat striatum. Neurotox Res 2009; 15:155-66. [PMID: 19384578 DOI: 10.1007/s12640-009-9016-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/20/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
Abstract
A(2A) adenosine receptor antagonists have been proposed as a new therapy for Parkinson's disease (PD). Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on L: -3,4-dihydroxyphenylalanine (L: -DOPA)-induced hydroxyl radical generation using in vivo microdialysis in the striatum of freely moving rats. L: -DOPA (100 mg/kg; in the presence of benserazide, 50 mg/kg) given acutely or repeatedly for 14 days generated a high level of hydroxyl radicals, measured by HPLC with electrochemical detection, as the product of their reaction with p-hydroxybenzoic acid (PBA). CSC (1 mg/kg) and ZM 241385 (3 mg/kg) decreased haloperidol (0.5 mg/kg)-induced catalepsy, while at low doses of 0.1 and 0.3 mg/kg, respectively, they did not display an effect. CSC (1 and 5 mg/kg) and ZM 241385 (3 and 9 mg/kg) given acutely, or CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly, increased the production of hydroxyl radicals in dialysates from rat striatum. Both acute and repeated administration of CSC (0.1 and 1 mg/kg) and ZM 241385 (3 mg/kg) decreased L: -DOPA-induced generation of hydroxyl radicals. However, a high single dose of either CSC (5 mg/kg) and ZM 241385 (9 mg/kg) markedly potentiated the effect of L: -DOPA on hydroxyl radical production. The increase in hydroxyl radical production by acute and chronic injection of CSC and ZM 241385 may be related to the increased release of dopamine (DA) and its metabolism in striatal dialysates. Similarly, increased DA release following a single high dose of CSC or ZM 241385 appears to be responsible for augmentation of L: -DOPA-induced hydroxyl radical formation. Conversely, the inhibition of L: -DOPA-induced production of hydroxyl radical by single and repeated low doses of CSC or repeated low doses of ZM 241385 may be related to reduced DA metabolism. Summing up, A(2A) antagonists, used as a supplement of L: -DOPA therapy, depending on the dose used, may have a beneficial or adverse effect on ongoing neurodegenerative processes and accompanying oxidative stress.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Kraków 31-343, Poland.
| | | | | | | |
Collapse
|
29
|
Banerjee R, Starkov AA, Beal MF, Thomas B. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2008; 1792:651-63. [PMID: 19059336 DOI: 10.1016/j.bbadis.2008.11.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
30
|
Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3:e3676. [PMID: 18989376 PMCID: PMC2579333 DOI: 10.1371/journal.pone.0003676] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/20/2008] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial dysfunction was reported in schizophrenia, bipolar disorderand major depression. The present study investigated whether mitochondrial complex I abnormalities show disease-specific characteristics. Methodology/Principal Findings mRNA and protein levels of complex I subunits NDUFV1, NDUFV2 and NADUFS1, were assessed in striatal and lateral cerebellar hemisphere postmortem specimens and analyzed together with our previous data from prefrontal and parieto-occipital cortices specimens of patients with schizophrenia, bipolar disorder, major depression and healthy subjects. A disease-specific anatomical pattern in complex I subunits alterations was found. Schizophrenia-specific reductions were observed in the prefrontal cortex and in the striatum. The depressed group showed consistent reductions in all three subunits in the cerebellum. The bipolar group, however, showed increased expression in the parieto-occipital cortex, similar to those observed in schizophrenia, and reductions in the cerebellum, yet less consistent than the depressed group. Conclusions/Significance These results suggest that the neuroanatomical pattern of complex I pathology parallels the diversity and similarities in clinical symptoms of these mental disorders.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry Rambam Medical Center and B. Rappaport Faculty of Medicine Technion, Haifa, Israel.
| | | |
Collapse
|
31
|
Bagh MB, Maiti AK, Jana S, Banerjee K, Roy A, Chakrabarti S. Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: implications in the neuroprotective therapy of Parkinson's disease. Free Radic Res 2008; 42:574-81. [PMID: 18569015 DOI: 10.1080/10715760802158430] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25-1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Maria B Bagh
- Department of Biochemistry, Institute of Post Graduate Medical Education & Research, Dr B. C. Roy Post Graduate Institute of Basic Medical Sciences, India
| | | | | | | | | | | |
Collapse
|
32
|
Brenner-Lavie H, Klein E, Zuk R, Gazawi H, Ljubuncic P, Ben-Shachar D. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:173-85. [PMID: 17996721 DOI: 10.1016/j.bbabio.2007.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 02/03/2023]
Abstract
Deleterious effects of dopamine (DA) involving mitochondrial dysfunction have an important role in DA-associated neuronal disorders, including schizophrenia and Parkinson's disease. DA detrimental effects have been attributed to its ability to be auto-oxidized to toxic reactive oxygen species. Since, unlike Parkinson's disease, schizophrenia does not involve neurodegenerative processes, we suggest a novel mechanism by which DA impairs mitochondrial function without affecting cell viability. DA significantly dissipated mitochondrial membrane potential (delta psi m) in SH-SY5Y cells. Bypassing complex I prevented the DA-induced depolarization. Moreover, DA inhibited complex I but not complex II activity in disrupted mitochondria, suggesting complex I participation in DA-induced mitochondrial dysfunction. We further demonstrated that intact mitochondria can accumulate DA in a saturated manner, with an apparent Km=122.1+/-28.6 nM and Vmax=1.41+/-0.15 pmol/mg protein/min, thereby enabling the interaction between DA and complex I. DA accumulation was an energy and Na+-dependent process. The pharmacological profile of mitochondrial DA uptake differed from that of other characterized DA transporters. Finally, relevance to schizophrenia is demonstrated by an abnormal interaction between DA and complex I in schizophrenic patients. These results suggest a non-lethal interaction between DA and mitochondria possibly via complex I, which can better explain DA-related pathological processes observed in non-degenerative disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Hanit Brenner-Lavie
- Research Lab of Psychobiology, Department of Psychiatry - Rambam Medical Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Di Stefano A, Sozio P, Cocco A, Iannitelli A, Santucci E, Costa M, Pecci L, Nasuti C, Cantalamessa F, Pinnen F. L-Dopa− and Dopamine−(R)-α-Lipoic Acid Conjugates as Multifunctional Codrugs with Antioxidant Properties. J Med Chem 2006; 49:1486-93. [PMID: 16480285 DOI: 10.1021/jm051145p] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-alpha-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)-H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the "in vivo" dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson's disease, characterized by an evident decrease of DA concentration in the brain.
Collapse
Affiliation(s)
- Antonio Di Stefano
- Dipartimento di Scienze del Farmaco, Università G. D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gille G, Radad K, Reichmann H, Rausch WD. Synergistic effect of α-dihydroergocryptine and L-dopa or dopamine on dopaminergic neurons in primary culture. J Neural Transm (Vienna) 2005; 113:1107-18. [PMID: 16252065 DOI: 10.1007/s00702-005-0369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 08/28/2005] [Indexed: 11/26/2022]
Abstract
There is an ongoing controversy about potential toxicity of L-3,4-dihydroxyphenylalanine (L-dopa) to dopaminergic neurons in Parkinson's disease (PD). Neuroimaging data suggest that L-dopa accelerates the loss of dopamine nerve terminals, especially at higher doses. The disputed aspect of toxicity and the frequently observed motor complications accompanying L-dopa therapy have led to an increased use of dopamine agonists during the past two decades. Reports describing their neuroprotective potential to dopaminergic neurons have attracted much attention. Here, we describe the novel finding that the combination of a dopamine (DA) agonist, alpha-dihydroergocryptine (DHEC), with L-dopa or DA exerts a synergistic stimulatory effect on dopaminergic neurons in primary culture, while each substance alone had no or less effect. DA receptor stimulation plays a decisive role. The synergistic effect suggests that a combinatory therapy can be beneficial to slow the degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- G Gille
- Department of Neurology, Technical University, Dresden, Germany.
| | | | | | | |
Collapse
|
35
|
Abstract
Many of the motoric features that define Parkinson disease (PD) result primarily from the loss of the neuromelanin (NM)-containing dopamine (DA) neurons of the substantia nigra (SN), and to a lesser extent, other mostly catecholaminergic neurons, and are associated with cytoplasmic "Lewy body" inclusions in some of the surviving neurons. While there are uncommon instances of familial PD, and rare instances of known genetic causes, the etiology of the vast majority of PD cases remains unknown (i.e., idiopathic). Here we outline genetic and environmental findings related to PD epidemiology, suggestions that aberrant protein degradation may play a role in disease pathogenesis, and pathogenetic mechanisms including oxidative stress due to DA oxidation that could underlie the selectivity of neurodegeneration. We then outline potential approaches to neuroprotection for PD that are derived from current notions on disease pathogenesis.
Collapse
Affiliation(s)
- Stanley Fahn
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
36
|
Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2005; 1741:65-74. [PMID: 15925494 DOI: 10.1016/j.bbadis.2005.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/07/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Several studies on mitochondrial functions following brief exposure (5-15 min) to dopamine (DA) in vitro have produced extremely variable results. In contrast, this study demonstrates that a prolonged exposure (up to 2 h) of disrupted or lysed mitochondria to DA (0.1-0.4 mM) causes a remarkable and dose-dependent inhibition of complex I and complex IV activities. The inhibition of complex I and complex IV activities is not prevented by the antioxidant enzyme catalase (0.05 mg/ml) or the metal-chelator diethylenetriaminepentaacetic acid (0.1 mM) or the hydroxyl radical scavengers like mannitol (20 mM) and dimethyl sulphoxide (20 mM) indicating the non-involvement of *OH radicals and Fenton's chemistry in this process. However, reduced glutathione (5 mM), a quinone scavenger, almost completely abolishes the DA effect on mitochondrial complex I and complex IV activities, while tyrosinase (250 units/ml) which catalyses the conversion of DA to quinone products dramatically enhances the former effect. The results suggest the predominant involvement of quinone products instead of reactive oxygen radicals in long-term DA-mediated inactivation of complex I and complex IV. This is further indicated from the fact that significant amount of quinones and quinoprotein adducts (covalent adducts of reactive quinones with protein thiols) are formed during incubation of mitochondria with DA. Monoamine oxidase A (MAO-A) inhibitor clorgyline also provides variable but significant protection against DA induced inactivation of complex I and complex IV activities, presumably again through inhibition of quinoprotein formation. Mitochondrial ability to reduce tetrazolium dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) in presence of a respiratory substrate like succinate (10 mM) is also reduced by nearly 85% following 2 h incubation with 0.4 mM DA. This effect of DA on mitochondrial function is also dose-dependent and presumably mediated by quinone products of DA oxidation. The mitochondrial dysfunction induced by dopamine during extended periods of incubation as reported here have important implications in the context of dopaminergic neuronal death in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Firoj Hossain Khan
- Department of Biochemistry, Dr. B.C. Roy Post-graduate Institute of Basic Medical Sciences, 244B, Acharya J.C. Bose Road, Calcutta 700020, India
| | | | | | | | | | | |
Collapse
|
37
|
Gille G, Hung ST, Reichmann H, Rausch WD. Oxidative stress to dopaminergic neurons as models of Parkinson's disease. Ann N Y Acad Sci 2004; 1018:533-40. [PMID: 15240412 DOI: 10.1196/annals.1296.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of exogenous toxins (MPP(+), rotenone) and potentially neurotoxic properties of levodopa (L-DOPA) on the survival rate of dopaminergic neurons in dissociated primary culture are presented. Dopamine agonists show a capacity to counteract MPP(+)-toxicity. Moreover, a preserving potential of the antioxidant and bioenergetic coenzyme Q(10) (CoQ(10)) on the activities of tyrosine hydroxylase (TH), complexes I and II of the respiratory chain, and hexokinase activity in striatal slice cultures against MPP(+) is demonstrated.
Collapse
Affiliation(s)
- G Gille
- Institute of Medical Chemistry, Veterinary University of Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67:1965-74. [PMID: 15130772 DOI: 10.1016/j.bcp.2004.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 02/09/2004] [Indexed: 12/21/2022]
Abstract
Dopamine, which is suggested as a prominent etiological factor in several neuropsychiatric disorders such as Parkinson's disease and schizophrenia, demonstrates neurotoxic properties. In such dopamine-related diseases mitochondrial dysfunction has been reported. Dopamine oxidized metabolites were shown to inhibit the mitochondrial respiratory system both in vivo and in vitro. In the present study, we suggest an additional mechanism for dopamine toxicity, which involves mitochondrial complex I inhibition by dopamine. In human neuroblastoma SH-SY5Y cells dopamine induced a reduction in ATP concentrations, which was negatively correlated to intracellular dopamine levels (r = - 0.96, P = 0.012), and was already evident at non-toxic dopamine doses. In disrupted mitochondria dopamine inhibited complex I activity with IC50 = 11.87 +/- 1.45 microm or 8.12 +/- 0.75 microM in the presence of CoQ or ferricyanide, respectively, with no effect on complexes IV and V activities. The catechol moiety, but not the amine group, of dopamine is essential for complex I inhibition, as is indicated by comparing the inhibitory potential of functionally and structurally dopamine-related compounds. In line with the latter is the finding that chelatable FeCl2 prevented dopamine-induced inhibition of complex I. Monoamine oxidase A and B inhibitors, as well as the antioxidant butylated hydroxytoluene (BHT), did not prevent dopamine-induced inhibition, suggesting that dopamine oxidation was not involved in this process. The present study suggests that dopamine toxicity involves, or is initiated by, its interaction with the mitochondrial oxidative phosphorylation system. We further hypothesize that this interaction between dopamine and mitochondria is associated with mitochondrial dysfunction observed in dopamine-related neuropsychiatric disorders, such as schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- D Ben-Shachar
- Research Lab of Psychobiology, Department of Psychiatry, Bruce Rappaport Faculty of Medicine, Rambam Medical Center, Technion ITT, P.O. Box 9649, Haifa, Israel.
| | | | | | | |
Collapse
|
39
|
Karry R, Klein E, Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 2004; 55:676-84. [PMID: 15038995 DOI: 10.1016/j.biopsych.2003.12.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 12/01/2003] [Accepted: 12/06/2003] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several independent lines of evidence indicate mitochondrial dysfunction in schizophrenia in the brain and periphery, including mitochondrial hypoplasia, dysfunction of the oxidative phosphorylation system, and altered mitochondrial-related gene expression. METHODS In this study, three subunits of mitochondrial complex I were analyzed at the level of mRNA and protein in postmortem brain specimens from the prefrontal and the ventral parietooccipital cortex of patients with schizophrenia, major depression, bipolar disorder, and normal control subjects. RESULTS Both mRNA and protein levels of the 24-kDa and 51-kDa subunits of complex I were significantly decreased in the prefrontal cortex, but increased in the ventral parietooccipital cortices of schizophrenia patients compared with normal control subjects. In the latter region, protein levels of both subunits were increased in bipolar patients as well, being in line with the significant overlap in clinical symptoms between schizophrenia and bipolar patients. No change was observed in the 75-kDa subunit expression in the prefrontal cortex. CONCLUSIONS The schizophrenia-specific reduction in complex I subunits in the prefrontal cortex is consistent with one of schizophrenia's most prominent deficits, namely, hypofrontality, thus further supporting the hypothesis of mitochondrial dysfunction in this disorder. The abnormal, bidirectional expression of complex I in various brain regions, rather than in a circumscribed area, supports the idea of impaired cerebral circuitry in schizophrenia.
Collapse
Affiliation(s)
- Rachel Karry
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
40
|
Pirtošek Z, Flisar D. Neuroprotection and Dopamine Agonists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004. [DOI: 10.1007/978-1-4419-8969-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Andrich J, Saft C, Gerlach M, Schneider B, Arz A, Kuhn W, Müller T. Coenzyme Q10 serum levels in Huntington's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2004:111-6. [PMID: 15354396 DOI: 10.1007/978-3-7091-0579-5_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction contributes to the neurodegenerative process in Huntington's disease (HD). Coenzyme Q10 (CoQ10) enhances mitochondrial complex I activity and may therefore provide a therapeutic benefit in HD. We compared serum CoQ10 levels of previously untreated-and treated HD patients with those of healthy controls. CoQ10 did not significantly (ANCOVA F(dF 2, dF 55) = 2.57; p=0.086) differ between all three groups. However, the post hoc analysis showed no significant (p = 0.4) difference between treated HD patients ([CoQ10]: 88.12 [mean]+/-24.44 [SD], [range] 48.75-146.32 [pg/million platelets]) and controls (93.71+/-20.72, 65.31-157.94), however previously untreated HD patients (70.10+/-21.12, 38.67-106.14) had marked (p = 0.051) lower CoQ10 results than treated HD patients and controls (p = 0.017). Our results support that CoQ10 supplementation in HD patients may reduce impaired mitochondrial function in HD.
Collapse
Affiliation(s)
- J Andrich
- Department of Neurology, St Josef Hospital, Ruhr University, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Schapira AHV, Olanow CW. Rationale for the use of dopamine agonists as neuroprotective agents in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S149-57; discussion S157-9. [PMID: 12666106 DOI: 10.1002/ana.10514] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anthony H V Schapira
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, UCL, Queen Square, London, United Kingdom.
| | | |
Collapse
|
43
|
Affiliation(s)
- L V P Korlipara
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, London, United Kingdom, NW3 2PF
| | | |
Collapse
|
44
|
DeFeudis FV. Effects ofGinkgo biloba extract (EGb 761) on gene expression: Possible relevance to neurological disorders and age-associated cognitive impairment. Drug Dev Res 2003. [DOI: 10.1002/ddr.10151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res 2003; 5:165-76. [PMID: 12835121 DOI: 10.1007/bf03033137] [Citation(s) in RCA: 385] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine (DA)- or L-dihydroxyphenylalanine-(L-DOPA-) induced neurotoxicity is thought to be involved not only in adverse reactions induced by long-term L-DOPA therapy but also in the pathogenesis of Parkinson's disease. Numerous in vitro and in vivo studies concerning DA- or L-DOPA-induced neurotoxicity have been reported in recent decades. The reactive oxygen or nitrogen species generated in the enzymatical oxidation or auto-oxidation of an excess amount of DA induce neuronal damage and/or apoptotic or non-apoptotic cell death; the DA-induced damage is prevented by various intrinsic and extrinsic antioxidants. DA and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells mainly due to the generation of highly reactive DA and DOPA quinones which are dopaminergic neuron-specific cytotoxic molecules. DA and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. For example, the formation of DA quinone-alpha-synuclein consequently increases cytotoxic protofibrils and the covalent modification of tyrosine hydroxylase by DA quinones. The melanin-synthetic enzyme tyrosinase in the brain may rapidly oxidize excess amounts of cytosolic DA and L-DOPA, thereby preventing slowly progressive cell damage by auto-oxidation of DA, thus maintainng DA levels. Since tyrosinase also possesses catecholamine-synthesizing activity in the absence of tyrosine hydroxylase (TH), the double-edged synthesizing and oxidizing functions of tyrosinase in the dopaminergic system suggest its potential for application in the synthesis of DA, instead of TH in the degeneration of dopaminergic neurons, and in the normalization of abnormal DA turnover in the long-term L-DOPA-treated Parkinson's disease patients.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
46
|
Abstract
Mitochondria are not only the principal source of high energy intermediates, but play an important role in intracellular calcium buffering, are main producers of reactive oxygen species, and are the source of pro- and antiapoptotic key factors. Moreover, the mitochondria are of a ubiquitous nature and the respiratory chain has a dual genetic basis, i.e. the mitochondrial and the nuclear DNAs. Thus mitochondrial impairment could provide an explanation for the tremendous heterogeneity of clinical and pathological manifestations in schizophrenia. This article reviews several independent lines of evidence that suggest an involvement of mitochondrial dysfunction in schizophrenia. Among them are altered cerebral energy metabolism, mitochondrial hypoplasia, dysfunction of the oxidative phosphorylation system and altered mitochondrial related gene expression. In addition, the interaction between dopamine, a predominant etiological factor in schizophrenia, and mitochondrial respiration is considered as a possible mechanism underlying the hyper- and hypo-activity cycling in schizophrenia. Understanding the role of mitochondria in schizophrenia may encourage novel treatment approaches, the identification of candidate genes and new insights into the pathophysiology and etiology of the disorder.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, The Department of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel.
| |
Collapse
|
47
|
Gluck M, Ehrhart J, Jayatilleke E, Zeevalk GD. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides. J Neurochem 2002; 82:66-74. [PMID: 12091466 DOI: 10.1046/j.1471-4159.2002.00938.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Examination of the downstream mediators responsible for inhibition of mitochondrial respiration by dopamine (DA) was investigated. Consistent with findings reported by others, exposure of rat brain mitochondria to 0.5 mm DA for 15 min at 30 degrees C inhibited pyruvate/glutamate/malate-supported state-3 respiration by 20%. Inhibition was prevented in the presence of pargyline and clorgyline demonstrating that mitochondrial inhibition arose from products formed following MAO metabolism and could include hydrogen peroxide (H(2) O(2) ), hydroxyl radical, oxidized glutathione (GSSG) or glutathione-protein mixed disulfides (PrSSG). As with DA, direct incubation of intact mitochondria with H(2) O(2) (100 microm) significantly inhibited state-3 respiration. In contrast, incubation with GSSG (1 mm) had no effect on O(2) consumption. Exposure of mitochondria to 1 mm GSSG resulted in a 3.3-fold increase in PrSSG formation compared with 1.4- and 1.5-fold increases in the presence of 100 microm H(2) O(2) or 0.5 mm DA, respectively, suggesting a dissociation between PrSSG formation and effects on respiration. The lack of inhibition of respiration by GSSG could not be accounted for by inadequate delivery of GSSG into mitochondria as increases in PrSSG levels in both membrane-bound (2-fold) and intramatrix (3.5-fold) protein compartments were observed. Furthermore, GSSG was without effect on electron transport chain activities in freeze-thawed brain mitochondria or in pig heart electron transport particles (ETP). In contrast, H(2) O(2) showed differential effects on inhibition of respiration supported by different substrates with a sensitivity of succinate > pyruvate/malate > glutamate/malate. NADH oxidase and succinate oxidase activities in freeze-thawed mitochondria were inhibited with IC(50) approximately 2-3-fold higher than in intact mitochondria. ETPs, however, were relatively insensitive to H(2) O(2). Co-administration of desferrioxamine with H(2) O(2) had no effect on complex I-associated inhibition in intact mitochondria, but attenuated inhibition of rotenone-sensitive NADH oxidase activity by 70% in freeze-thawed mitochondria. The results show that DA-associated inhibition of respiration is dependent on MAO and that H(2) O(2) and its downstream hydroxyl radical rather than increased GSSG and subsequent PrSSG formation mediate the effects.
Collapse
Affiliation(s)
- Martin Gluck
- Department of Neurology, Bronx Veterans Affairs Medical Center, Bronx, NY, USA
| | | | | | | |
Collapse
|
48
|
Przedborski S, Jackson-Lewis V, Sulzer D, Naini A, Romero N, Chen C, Arias J. Transgenic superoxide dismutase overproducer: murine. Methods Enzymol 2002; 349:180-90. [PMID: 11912908 DOI: 10.1016/s0076-6879(02)49334-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Serge Przedborski
- Departments of Neurology and Pathology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Factor SA. Parkinson's Disease: Initial Treatment with Levodopa or Dopamine Agonists. Curr Treat Options Neurol 2001; 3:479-493. [PMID: 11581525 DOI: 10.1007/s11940-001-0011-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The question of whether to use levodopa (LD) or dopamine agonists as initial therapy in Parkinson's disease has been a controversy for nearly 20 years. There are several issues relating to this treatment regimen that may effect ones decision. Review of them results in the following conclusions: LD does not cause the onset of motor fluctuations and dyskinesia; it probably relates to disease progression. Tolerance does not develop with long-term LD therapy. LD is not toxic. LD decreases mortality in Parkinson's disease. Motor fluctuations can occur with dopamine-agonist monotherapy, but the actual frequency is as yet unknown. Dopamine agonists are not neuroprotective. Clinical trials have indicated that LD remains the most potent symptomatic therapeutic agent available. Dopamine agonists do provide some symptomatic relief when used alone in early Parkinson's disease. Standard preparations of LD have the same effect on early disease as controlled release preparations. Dopamine agonists cause less dyskinesia and fluctuations. These conclusions indicate that both drugs are effective symptomatic agents with their own positive and negative aspects. There is no incorrect choice. It is reasonable to start young onset patients (younger than 50 years of age) with an agonist, because they seem to be more prone to develop motor fluctuations and dyskinesia. However, if employment is in jeopardy then LD may be needed. Because agonists cause more hallucinations, freezing, and somnolence, problems of particular relevance to the elderly (older than 70 years), then LD would be the best agent for older onset patients. In general, but particularly for those falling in between these age groups, treatment should be individualized. In this time of cost effectiveness, LD remains the least expensive of these agents.
Collapse
Affiliation(s)
- Stewart A. Factor
- Parkinson's Disease and Movement Disorders Center, Albany Medical Center, 215 Washington Avenue Extension, Albany, NY 12203, USA.
| |
Collapse
|
50
|
Parra D, González A, Mugueta C, Martínez A, Monreal I. Laboratory approach to mitochondrial diseases. J Physiol Biochem 2001; 57:267-84. [PMID: 11800289 DOI: 10.1007/bf03179820] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dysfunction in mitochondrial processes has been related to several pathologies. In these disorders, the cell suffers oxidative imbalance that is mostly due to defects in pyruvate metabolism, mitochondrial fatty acids oxidation, the citric acid cycle or electron transport by the mitochondrial respiratory chain. These metabolic alterations produce mitochondrial diseases that have been related to inherited syndromes, such as MERRF or MELAS. The main affected organs are brain, skeletal muscle, kidney, heart and liver, because of the high energetic demand and the oxidative metabolism. Moreover, the relationship between mitochondrial dysfunction and neurodegenerative processes, such as Parkinson disease or Alzheimer disease, as well as ageing, has been shown. Because mitochondrias are the target of several xenobiotics, such as aspirin, AZT or alcohol consumption, mitochondrial impairment has also been proposed as a mechanism of toxicity. Most laboratory tests that are available in the diagnosis of mitochondrial illness are assayed in tissue biopsies and are usually difficult to interpret. Recently, it has been shown that non-invasive techniques, such as nuclear magnetic resonance or the 2-keto[1-(13)C]isocaproic acid breath test, may be useful to assess mitochondrial function. This article attempts to show the laboratory approach to mitochondrial diseases, reviewing new techniques that could be of great value in the research of mitochondrial function, such as the 2-keto[1-(13)C]isocaproic breath test.
Collapse
Affiliation(s)
- D Parra
- Department of Clinical Biochemistry, Clínica Universitaria de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|