1
|
Wu Y, Mohamed MA, Yi T, Das A, Rumsey CL, Trebbin M, Breuer CK, Andreadis ST. Self-healing and cell-free vascular grafts. Biomaterials 2025; 318:123121. [PMID: 39889339 DOI: 10.1016/j.biomaterials.2025.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
We developed an innovative self-healing tissue engineering vessel (SH-TEV) that heals fast after repeated needle punctures, while maintaining artery like mechanical strength and toughness even under wet conditions. The SH-TEV is designed as a bilayer tube engineered by electrospinning an autonomous self-healing polyurethane, PU-DAA, around a tube of a native biomaterial, small intestinal submucosa (SIS), that can be functionalized with biomolecules to recruit host cells and promote endothelialization. The self-healing PU-DAA was designed to incorporate multi-strength H-bonds and reversible hydrazone bonds and exhibited high strength (3.95 ± 0.16 MPa), toughness (23.01 ± 2.37 MJ/m3), and fast autonomous self-healing (86.44 ± 6.65 % after 12 h) under physiological conditions. The self-healing layer supported attachment, spreading and proliferation of fibroblasts, indicating biocompatibility. When SH-TEVs were implanted as interpositional grafts into the rat aorta for 4 weeks, they remained patent without any thrombosis (100 % animal survival and 100 % graft patency), were endothelialized and developed a smooth muscle cell containing vascular wall. In addition, they showed excellent self-healing ability following needle puncture (hemostatic time <40 s) immediately after implantation and four weeks later. Collectively, these results demonstrate the potential of SH-TEVs as vascular access conduits for hemodialysis applications.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Tai Yi
- Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Clayton L Rumsey
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14263, USA; Center of Cell, Gene and Tissue Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
2
|
Lee MK, Kim MO, Lee T, Cho S, Kim D, Chang W, Kwon Y, Lee SM, Kim JK, Son BC. Epoxy-Based Vitrimers for Sustainable Infrastructure: Emphasizing Recycling and Self-Healing Properties. Polymers (Basel) 2025; 17:373. [PMID: 39940575 PMCID: PMC11820172 DOI: 10.3390/polym17030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Epoxy-based vitrimers represent a paradigm shift in material science, offering an unprecedented combination of mechanical robustness, environmental sustainability, and reconfigurability. These dynamic polymer systems utilize associative dynamic covalent bonds (DCBs) such as transesterification to blend the structural integrity of thermosets with the recyclability and self-healing properties of thermoplastics. This unique combination makes vitrimers ideal candidates for high-performance applications in industries such as civil engineering, where material durability, repairability, and environmental compatibility are critical. Epoxy-based vitrimers, in particular, exhibit exceptional self-healing capabilities, allowing them to autonomously repair microcracks and damage, restoring mechanical properties under appropriate stimuli such as heat or light. Their recyclability further aligns with global sustainability goals by reducing material waste and lifecycle costs. Recent advancements have also integrated bio-based feedstocks and scalable manufacturing methods, enhancing the feasibility of these materials for industrial applications. This review explores the underlying self-healing mechanisms, dynamic recycling processes, and the emerging role of epoxy-based vitrimers in civil engineering. Challenges related to scalability, mechanical optimization, and regulatory acceptance are also discussed, with a focus on their potential to drive sustainable innovation in infrastructure materials.
Collapse
Affiliation(s)
- Myung Kue Lee
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Min Ook Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Taehwi Lee
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Sanghwan Cho
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Dongchan Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; (T.L.); (S.C.); (D.K.)
| | - Wonghil Chang
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Yongseok Kwon
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea; (M.K.L.); (W.C.); (Y.K.)
| | - Seongkwan Mark Lee
- School of Liberal Studies, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Jeollabuk-do, Republic of Korea;
| | - Ju Kwang Kim
- IAN GEOTEC, 39 Nangsan Agricultural Complex-gil, Nangsan-myeon, Iksan-si 54521, Jeollabuk-do, Republic of Korea;
| | - Bong Cheol Son
- GROVES, 102-19, Sinbok-ro, Deokjin-gu, Jeonju-si 54842, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
3
|
Qin KP, Herzog-Arbeitman A, Zou W, Chakraborty S, Kristufek SL, Husted KEL, Joly GD, Craig SL, Olsen BD, Johnson JA. Toughening and Imparting Deconstructability to 3D-Printed Glassy Thermosets with "Transferinker" Additives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406600. [PMID: 39258368 DOI: 10.1002/adma.202406600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 09/12/2024]
Abstract
Thermoset toughness and deconstructability are often opposing features; simultaneously improving both without sacrificing other mechanical properties (e.g., stiffness and tensile strength) is difficult, but, if achieved, could enhance the usage lifetime and end-of-life options for these materials. Here, a strategy that addresses this challenge in the context of photopolymer resins commonly used for 3D printing of glassy, acrylic thermosets is introduced. It is shown that incorporating bis-acrylate "transferinkers," which are cross-linkers capable of undergoing degenerative chain transfer and new strand growth, as additives (5-25 mol%) into homemade or commercially available photopolymer resins leads to photopolymer thermosets with substantially improved tensile toughness and triggered chemical deconstructability with minimal impacts on Young's moduli, tensile strengths, and glass transition temperatures. These properties result from a transferinker-driven topological transition in network structure from the densely cross-linked long, heterogeneous primary strands of traditional photopolymer networks to more uniform, star-like networks with few dangling ends; the latter structure more effectively bear stress yet is also more easily depercolated via solvolysis. Thus, transferinkers represent a simple and effective strategy for improving the mechanical properties of photopolymer thermosets and providing a mechanism for their triggered deconstructability.
Collapse
Affiliation(s)
- K Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Abraham Herzog-Arbeitman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Weizhong Zou
- Department of Chemical, Biological and Materials Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guy D Joly
- 3 M Company, 3 M Center, St. Paul, MN, 55144, USA
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Wang C, Qiao L, Li S, Duan P, Fu X, Duan Y, Cheng HB, Liu J, Zhang L. Innovative Synthesis of Photo-Responsive, Self-Healing Silicone Elastomers with Enhanced Mechanical Properties and Thermal Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403941. [PMID: 39058224 DOI: 10.1002/smll.202403941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Photo-responsive materials have garnered significant interest for their ability to react to non-contact stimuli, though achieving self-healing under gentle conditions remains an elusive goal. In this research, an innovative and straightforward approach for synthesizing silicone elastomers is proposed that not only self-heal at room temperature but also possess unique photochromic properties and adjustable mechanical strength, along with being both transparent and reprocessable. Initially, aldehyde-bifunctional dithiophene-ethylene molecules with dialdehyde groups (DTEM) and isocyanurate (IPDI) is introduced into the aminopropyl-terminated polydimethylsiloxane (H2N-PDMS-NH2) matrix. Subsequently, palladium is incorporated to enhance coordination within the matrix. These silicone elastomers transition to a blue state under 254 nm UV light and revert to transparency under 580 nm light. Remarkably, they demonstrate excellent thermal stability at temperatures up to 100 °C and show superior fatigue resistance. The optical switching capabilities of the silicone elastomers significantly affect both their mechanical characteristics and self-healing abilities. Notably, the PDMS-DTEM-IPDI-@Pd silicone elastomer, featuring closed-loop photo-switching molecules, exhibits a fracture toughness that is 1.3 times greater and a room temperature self-healing efficiency 1.4 times higher than its open-loop counterparts. This novel photo-responsive silicone elastomer offers promising potential for applications in data writing and erasure, UV protective coatings, and micro-trace development.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Lili Qiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Pengwei Duan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xuewei Fu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yatong Duan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Shagufta A, Wang L, Fang S, Kong Q, Zhang H. Endowing rubber with intrinsic self-healing properties using thiourea-based polymer. RSC Adv 2024; 14:26198-26207. [PMID: 39161452 PMCID: PMC11332185 DOI: 10.1039/d4ra03808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Self-healing polymers are extensively researched for the sustainability of materials. The introduction of dynamic networks instead of traditional cross-linkers for an autonomous healing mechanism in elastomers is a promising strategy for improving rubber properties. However, exchangeable covalent bonds in a dynamic network generally rely on external stimulants and fillers, which can compromise the material's performance. Herein, we introduce a mechanically strong yet resilient and independent self-healing polymeric network by dual cross-linking of bonds based on covalent and non-covalent dual interaction. The thiourea-based polymer polyether thiourea ethylene glycol (PTUEG) was blended with natural rubber (NR) and epoxidized natural rubber (ENR) to strengthen the mechanical characteristics of the material NR-ENR-PTUEG3. In the material, the thermoplastic polymer PTUEG3 applied the thiourea linkage as a hydrogen bonding and dynamic covalent motif together to enhance mechanical adaptability in a self-healing polymer network exhibiting stiffness, toughness, and resilience, thereby extending its longevity. The resulting mechanical characteristics of the NR-ENR-PTUEG3 with 25 phr PTUEG3 exhibited tensile stress 4.8 ± 0.3 MPa and high elongation at break 833 ± 0.1%, demonstrating far better performance than that of pristine NR, and 85% recovery of its original strength at ambient temperature. The healing behaviour is strongly influenced by thiourea-based polymer contents, enabling autonomous self-healing at ambient temperature, exhibiting in situ load-bearing efficiency in the repaired material, and maintaining their mechanical characteristics.
Collapse
Affiliation(s)
- Afreen Shagufta
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Senbiao Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Qingshan Kong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| |
Collapse
|
6
|
Li S, van der Ven LGJ, Garcia SJ, Esteves ACC. Healable Supracolloidal Nanocomposite Water-Borne Coatings. ACS APPLIED POLYMER MATERIALS 2024; 6:8830-8841. [PMID: 39144275 PMCID: PMC11320382 DOI: 10.1021/acsapm.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Water-borne coatings often contain nanofillers to enhance their mechanical or optical properties. The aggregation of these fillers may, however, lead to undesired effects such as brittle and opaque coatings, reducing their performance and lifetime. By controlling the distribution and structural arrangement of the nanofillers in the coatings and inserting reversible chemical bonds, both the elasticity and strength of the coatings may be effectively improved, while healing properties, via the reversible chemistry, extend the coating's lifetime. Aqueous dispersions of polymer-core/silica-corona supracolloidal particles were used to prepare water-borne coatings. Polymer and silica nanoparticles were prefunctionalized with thiol/disulfide groups during the supracolloid assembly. Disulfide bridges were further established between a cross-linker and the supracolloids during drying and coating formation. The supracolloidal nanocomposite coatings were submitted to intentional (physical) damages, i.e., blunt and sharp surface scratches or cut through into two pieces, and subsequently UV irradiated to induce the recovery of the damage(s). The viscoelasticity and healing properties of the coatings were examined by dynamic, static, and surface mechanical analyses. The nanocomposite coatings showed a great extent of interfacial restoration of cut damage and surface scratches. The healing properties are strongly related to the coating's viscoelasticity and interfacial (re)activation of the disulfide bridges. Nanocomposite coatings with silica concentrations below their critical volume fraction show higher in situ healing efficiency, as compared to coatings with higher silica concentration. This work provides insights into the control of nanofillers distribution in water-borne coatings and strategies to increase the coating lifetime via mechanical damage recovery.
Collapse
Affiliation(s)
- Siyu Li
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Leendert G. J. van der Ven
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Santiago J. Garcia
- Aerospace
Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg1, Delft 2629 HS, The Netherlands
| | - A. Catarina C. Esteves
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
7
|
Park JM, Park CS, Kwak SK, Sun JY. Glass transition temperature as a unified parameter to design self-healable elastomers. SCIENCE ADVANCES 2024; 10:eadp0729. [PMID: 38985860 PMCID: PMC11235161 DOI: 10.1126/sciadv.adp0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Self-healing ability of materials, particularly polymers, improves their functional stabilities and lifespan. To date, the designs for self-healable polymers have relied on specific intermolecular interactions or chemistries. We report a design methodology for self-healable polymers based on glass transition. Statistical copolymer series of two monomers with different glass transition temperatures (Tg) were synthesized, and their self-healing tendency depends on the Tg of the copolymers and the constituents. Self-healing occurs more efficiently when the difference in Tg between two monomer units is larger, within a narrow Tg range of the copolymers, irrespective of their functional groups. The self-healable copolymers are elastomeric and nonpolar. The strategy to graft glass transition onto self-healing would expand the scope of polymer design.
Collapse
Affiliation(s)
- Jae-Man Park
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Seo Park
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Wei S, Smith-Jones J, Lalisse RF, Hestenes JC, Chen D, Danielsen SPO, Bell RC, Churchill EM, Munich NA, Marbella LE, Gutierrez O, Rubinstein M, Nelson A, Campos LM. Light-Induced Living Polymer Networks with Adaptive Functional Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313961. [PMID: 38593210 PMCID: PMC11209791 DOI: 10.1002/adma.202313961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Indexed: 04/11/2024]
Abstract
The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart "living" characteristics to CANs, especially in opaque systems. Here, the use of carbazole-based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner.
Collapse
Affiliation(s)
- Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Julian Smith-Jones
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Julia C Hestenes
- Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Danyang Chen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Scott P O Danielsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Rowina C Bell
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naiara A Munich
- Department of Chemistry, Barnard College, New York, NY, 10027, USA
| | - Lauren E Marbella
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Departments of Chemistry, Biomedical Engineering, and Physics, Duke University, Durham, NC, 27708, USA
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
10
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
11
|
Paez-Amieva Y, Martín-Martínez JM. Dynamic Non-Covalent Exchange Intrinsic Self-Healing at 20 °C Mechanism of Polyurethane Induced by Interactions among Polycarbonate Soft Segments. Polymers (Basel) 2024; 16:924. [PMID: 38611182 PMCID: PMC11013852 DOI: 10.3390/polym16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Two polyurethanes (PUs) were similarly synthesized by reacting a cycloaliphatic isocyanate with 1,4-butanediol and two polyols of different nature (polyester, polycarbonate diol) with molecular weights of 1000 Da. Only the PU synthesized with polycarbonate diol polyol (YCD) showed intrinsic self-healing at 20 °C. For assessing the mechanism of intrinsic self-healing of YCD, a structural characterization by molecular weights determination, infrared and X-ray photoelectronic spectroscopies, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, and dynamic mechanical thermal analysis was carried out. The experimental evidence concluded that the self-healing at 20 °C of YCD was due to dynamic non-covalent exchange interactions among the polycarbonate soft segments. Therefore, the chemical nature of the polyol played a key role in developing PUs with intrinsic self-healing at 20 °C.
Collapse
|
12
|
Kudo R, Samitsu S, Mori H. Self-healing amino acid-bearing acrylamides/ n-butyl acrylate copolymers via multiple noncovalent bonds. RSC Adv 2024; 14:7850-7857. [PMID: 38449826 PMCID: PMC10915467 DOI: 10.1039/d4ra00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Four amino acid-bearing acrylamides, N-acryloyl-l-threonine (AThrOH), N-acryloyl-l-glutamic acid (AGluOH), N-acryloyl-l-phenylalanine (APheOH), and N-acryloyl-l, l-diphenylalanine (APhePheOH), were selected for copolymerization with n-butyl acrylate (nBA) to develop amino acid-based self-healable copolymers. A series of copolymers comprising amino acid-bearing acrylamides and nBA with tunable comonomer compositions and molecular weights were synthesized by free radical and reversible addition-fragmentation chain-transfer copolymerization. Self-healing and mechanical properties originated from the noncovalent bonds between the carboxyl, hydroxyl, and amide groups, and π-π stacking interactions among the amino acid residues in the side chains were evaluated. Among these copolymers, P(nBA-co-AGluOH) with suitable comonomer compositions and molecular weights (nBA : AGluOH = 82 : 18, Mn = 18 300, Mw/Mn = 2.58) exhibited good mechanical properties (modulus of toughness = 17.3 MJ m-3) and self-healing under ambient conditions. The multiple noncovalent bonds of P(nBA-co-AGluOH)s were also efficient in improving the optical properties with an enhanced refractive index and good transparency.
Collapse
Affiliation(s)
- Ryo Kudo
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| | - Sadaki Samitsu
- National Institute for Materials Science 1-2-1, Sengen Tsukuba 305-0047 Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| |
Collapse
|
13
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
14
|
Korotkov R, Shutov V, Orlov A, Bornosuz N, Kulemza D, Onuchin D, Shcherbina A, Gorbunova I, Sirotin I. The Kinetic Study of the Influence of Common Modifiers on the Curing Process of Epoxy Vitrimers. Polymers (Basel) 2024; 16:392. [PMID: 38337281 DOI: 10.3390/polym16030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
An analysis of the influence of common modifiers on the kinetics of the curing process of epoxy-anhydride vitrimers was carried out. As common modifiers to enhance the "vitrimeric" nature of the material, zinc acetylacetonate as a transesterification catalyst and glycerol as a modifier of hydroxyl group content were chosen. The curing process of all obtained compositions was studied by differential scanning calorimetry (DSC) followed by the application of the isoconversional approach. It was shown that additives significantly affect the curing process. The resulting cured polymers were shown to be chemically recyclable by dissolution in the mixture of ethylene glycol and N-methylpirrolidone in a volume ratio of nine to one. The introduction of both zinc acethylacetonate and glycerol to the neat formulation led to a decrease in the dissolution time by 85.7% (from 35 h for the neat epoxy-anhydride formulation to 5 h for the modified formulation). In order to show the opportunity of the secondary use of recyclates, the mixtures based on the basic composition containing 10 wt. % of secondary polymers were also studied. The introduction of a recycled material to neat composition led to the same curing behavior as glycerol-containing systems.
Collapse
Affiliation(s)
- Roman Korotkov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
- Polymer Competence Center Leoben GmbH, 8700 Leoben, Austria
| | - Vyacheslav Shutov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Alexey Orlov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Natalia Bornosuz
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Daria Kulemza
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Denis Onuchin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Anna Shcherbina
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Irina Gorbunova
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Igor Sirotin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| |
Collapse
|
15
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
16
|
Wu Z, Boyer C. Near-Infrared Light-Induced Reversible Deactivation Radical Polymerization: Expanding Frontiers in Photopolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304942. [PMID: 37750445 PMCID: PMC10667859 DOI: 10.1002/advs.202304942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Photoinduced reversible deactivation radical polymerization (photo-RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400-700 nm) are extensively employed in photo-RDRP, the utilization of near-infrared (NIR) wavelengths (λ = 700-2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo-RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light-induced RDRP (NIR-RDRP) systems into four mechanism-based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two-photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR-RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR-RDRP and offers guidance for developing high-performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
17
|
Zhao Y, Wu H, Yin R, Yu C, Matyjaszewski K, Bockstaller MR. Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6990-6997. [PMID: 37719032 PMCID: PMC10501442 DOI: 10.1021/acs.chemmater.3c01234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Slobodinyuk D, Slobodinyuk A, Strelnikov V, Kiselkov D. Simple and Efficient Synthesis of Oligoetherdiamines: Hardeners of Epoxyurethane Oligomers for Obtaining Coatings with Shape Memory Effect. Polymers (Basel) 2023; 15:polym15112450. [PMID: 37299247 DOI: 10.3390/polym15112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, new polymers with a shape memory effect for self-healing coatings based on oligomers with terminal epoxy groups, synthesized from oligotetramethylene oxide dioles of various molecular weights, were developed. For this purpose, a simple and efficient method for the synthesis of oligoetherdiamines with a high yield of the product, close to 94%, was developed. Oligodiol was treated with acrylic acid in the presence of a catalyst, followed by the reaction of the reaction product with aminoethylpiperazine. This synthetic route can easily be upscaled. The resulting products can be used as hardeners for oligomers with terminal epoxy groups synthesized from cyclic and cycloaliphatic diisocyanates. The effect of the molecular weight of newly synthesized diamines on the thermal and mechanical properties of urethane-containing polymers has been studied. Elastomers synthesized from isophorone diisocyanate showed excellent shape fixity and shape recovery ratios of >95% and >94%, respectively.
Collapse
Affiliation(s)
- Daria Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Alexey Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Vladimir Strelnikov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| |
Collapse
|
19
|
Ma J, Wen S. Autonomous Healable Elastomers with High Elongation, Stiffness, and Fatigue Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4720-4729. [PMID: 36951244 DOI: 10.1021/acs.langmuir.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although self-healing elastomers have been developed in a great breakthrough, it is still a challenge to develop one kind of material that can respond to the fracture instantly even though this characteristic plays an essential role in emergency circumstances. Herein, we adopt free radical polymerization to construct one polymer network equipped with two weak interactions (dipole-dipole interaction and hydrogen bonding). The elastomer we synthesized has a high self-healing efficiency (100%) and a very short healing time (3 min) in an air atmosphere, and it can also self-heal in seawater, showing an ideal healing efficiency of >80%. Additionally, on account of its high elongation (>1000%) and antifatigue capacity (no rupture after loading-unloading 2000 times), the elastomer can be utilized in a wide range of applications, including e-skin and soft robot fields.
Collapse
Affiliation(s)
- Jiacheng Ma
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Shifeng Wen
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| |
Collapse
|
20
|
Rathore N, Panwar NL. Environmental impact and waste recycling technologies for modern wind turbines: An overview. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:744-759. [PMID: 36382768 PMCID: PMC10108337 DOI: 10.1177/0734242x221135527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Wind power is rapidly expanding worldwide, and so is the installation of wind turbines. The concept of wind power as a clean-energy alternative will be questioned if the waste from these turbines is not and adequately controlled. The goal of this review paper is to evaluate the various approaches for end-of-life management of wind turbine blades emphasizing on fibre recovery. Different methods for recovering carbon and glass fibres are described, including thermal treatment and chemical treatments and their economic and environmental comparisons. Life cycle assessment and comparative analysis of different recycling processes are also presented. Natural composites, modified thermoset composites, and thermoplastic composites are also covered as alternative environmentally friendly blade materials.
Collapse
Affiliation(s)
- Neelam Rathore
- Department of Renewable Energy Engineering, College
of Technology and Engineering, Maharana Pratap University of Agriculture and
Technology, Udaipur, Rajasthan, India
| | - N. L. Panwar
- Department of Renewable Energy Engineering, College
of Technology and Engineering, Maharana Pratap University of Agriculture and
Technology, Udaipur, Rajasthan, India
| |
Collapse
|
21
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
22
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
23
|
Photo- and electrochemical properties of di(cymantrenylalkyl) disulfides. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Polymers (Basel) 2022; 14:polym14194153. [PMID: 36236101 PMCID: PMC9570833 DOI: 10.3390/polym14194153] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Thermoset materials and their composites are characterized by a long life cycle with their main applications in aircrafts, wind turbines and constructions as insulating materials. Considering the importance of recovery and valorization of these materials at their end-of-life, avoiding landfilling, the interest concerning their recycling grows continuously. The thermoset materials and their composites, to be successfully recovered and valorized, must degrade their three-dimensional structures and recover the mono-oligomers and/or fillers. The thermoset materials could successfully degrade through thermal treatment at different temperatures (for example, above 1000 °C for incineration, ca. 500 °C for oxidation/combustion of organic constituents, etc.), chemical degradation by catalyst, irradiation with or without the presence of water, alcohol, etc., and mechanical recycling, obtaining fine particles that are useful as filler and/or reinforcement additives. Among these recycling methods, this mini-review focuses on the formulation and recovery method of innovative thermoset with in-build recyclability, i.e., materials having chemical links that could be degraded on-demand or containing dynamic covalent bonds to have re-processable and/or recyclable thermoset. This issue could be considered the future perspective in developing novel thermoset materials. The aim of this review is to get an overview of the state of the art in thermoset recycling and of the most commonly used thermoset composites, recovering valuable reinforcing fibers. Additionally, in this work, we also report not only known recycling routes for thermoset and thermoset-based composites, but also new and novel formulating strategies for producing thermosets with built-in recyclability, i.e., containing chemical-triggered on-demand links. This mini-review is also a valuable guide for educational purposes for students and specialized technicians in polymer production and recycling.
Collapse
|
25
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
26
|
Miwa Y, Udagawa T, Kutsumizu S. Repulsive segregation of fluoroalkyl side chains turns a cohesive polymer into a mechanically tough, ultrafast self-healable, nonsticky elastomer. Sci Rep 2022; 12:12009. [PMID: 35879386 PMCID: PMC9314360 DOI: 10.1038/s41598-022-16156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic crosslinking of flexible polymer chains via attractive and reversible interactions is widely employed to obtain autonomously self-healable elastomers. However, this design leads to a trade-off relationship between the strength and self-healing speed of the material, i.e., strong crosslinks provide a mechanically strong elastomer with slow self-healing property. To address this issue, we report an "inversion" concept, in which attractive poly(ethyl acrylate-random-methyl acrylate) chains are dynamically crosslinked via repulsively segregated fluoroalkyl side chains attached along the main chain. The resulting elastomer self-heals rapidly (> 90% within 15 min) via weak but abundant van der Waals interactions among matrix polymers, while the dynamic crosslinking provides high fracture stress (≈2 MPa) and good toughness (≈17 MJ m-3). The elastomer has a nonsticky surface and selectively self-heals only at the damaged faces due to the surface segregation of the fluoroalkyl chains. Moreover, our elastomer strongly adheres to polytetrafluoroethylene plates (≈60 N cm-2) via hot pressing.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
27
|
Miwa Y, Hasegawa K, Udagawa T, Shinke Y, Kutsumizu S. Effect of alkali metal cations on network rearrangement in polyisoprene ionomers. Phys Chem Chem Phys 2022; 24:17042-17049. [PMID: 35796495 DOI: 10.1039/d2cp01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of cations, Li+, Na+, and Cs+, on the structure of ionic aggregates and network rearrangement in carboxylated polyisoprene (PI) ionomers were studied. We found that network rearrangement via interaggregate hopping of metal carboxylates is improved with a decrease in cation size, even though density functional theory (DFT) calculation indicated the increase in the attractive interaction between metal carboxylates. At the same time, we also found that as the size of the cation decreases, the inclusion of the PI segment in the ionic aggregate increases. The DFT calculation suggested the cation-π interaction between the cation and double bonds in the PI segment as the cause for the inclusion. The inclusion of the PI segment with a low glass transition temperature (Tg) plasticizes the ionic aggregate and would sterically hinder the attractive interaction between metal carboxylates. In fact, the electron spin resonance measurement revealed a decrease in the Tg of the ionic aggregate with a decrease in cation size. Based on our findings, we proposed that the inclusion of PI segments in the ionic aggregate is the possible cause for the enhancement of network rearrangement in the carboxylated PI ionomers with a decrease in the cation size.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan. .,PRESTO, Japan Science and Technology Agency, Japan
| | - Koki Hasegawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| | - Yu Shinke
- The Yokohama Rubber Co., Ltd, Hiratsuka, 254-8601, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
28
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
29
|
Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature. Polymers (Basel) 2022; 14:polym14122456. [PMID: 35746032 PMCID: PMC9229622 DOI: 10.3390/polym14122456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures.
Collapse
|
30
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
31
|
Abstract
:
Polymers have the property to convert the physical stress to covalent bond shuffling,
thereby acting as the healing agents. Polymeric coatings, paints, electronic devices, drug delivery,
and many other applications find self-healing materials as a smart technique to prolong the life cycle
of the end products. The idea behind these artificial materials is to make them behave like the human
body. It should sense the failure and repair it before it becomes worse or irreparable. Researchers
have explored several polymeric materials which can self-heal through intrinsic or extrinsic mechanisms.
This review specifically focuses on extrinsic routes governed by mechanical stress, temperature
change in a covalent bond, humidity, variation in pH, optical sensitivity, and electrochemical effects.
Each possible mechanism is further supported by the molecules or bonds which can undergo
the transformations under given conditions. On a broader scale, bonds that can self-repair by mechanical
force, thermal treatment, chemical modifications, UV irradiation, or electromagnetic phenomenon
are covered under this review. It brings into the notice the shortcomings or challenges in
adopting the technology to the commercial scale. The possible molecules or bonds which can undergo
self-healing under certain conditions have been distinctly presented in a well-segregated manner.
This review is envisaged to act as a guide for researchers working in this area.
Collapse
Affiliation(s)
- Nidhi Agrawal
- Department of Applied Sciences, The NorthCap University, Sector 23A, Gurugram, India
| | - Bharti Arora
- Department of Applied Sciences, The NorthCap University, Sector 23A, Gurugram, India
| |
Collapse
|
32
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
33
|
Albeshir EG, Alsahafi R, Albluwi R, Balhaddad AA, Mitwalli H, Oates TW, Hack GD, Sun J, Weir MD, Xu HHK. Low-Shrinkage Resin Matrices in Restorative Dentistry-Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2951. [PMID: 35454643 PMCID: PMC9029384 DOI: 10.3390/ma15082951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
Dimethacrylate-based resin composites restorations have become widely-used intraoral materials in daily dental practice. The increasing use of composites has greatly enhanced modern preventive and conservative dentistry. They have many superior features, especially esthetic properties, bondability, and elimination of mercury and galvanic currents. However, polymeric materials are highly susceptible to polymerization shrinkage and stresses that lead to microleakage, biofilm formation, secondary caries, and restoration loss. Several techniques have been investigated to minimize the side effects of these shrinkage stresses. The primary approach is through fabrications and modification of the resin matrices. Therefore, this review article focuses on the methods for testing the shrinkage, as well as formulations of resinous matrices available to reduce polymerization shrinkage and its associated stress. Furthermore, this article reviews recent cutting-edge developments on bioactive low-shrinkage-stress nanocomposites to effectively inhibit the growth and activities of cariogenic pathogens and enhance the remineralization process.
Collapse
Affiliation(s)
- Ebtehal G. Albeshir
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (E.G.A.); (R.A.)
- Department of Restorative Dentistry, King Abdul-Aziz Medical City, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia;
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rashed Alsahafi
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (E.G.A.); (R.A.)
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Reem Albluwi
- Department of Restorative Dentistry, King Abdul-Aziz Medical City, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia;
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Heba Mitwalli
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Gary D. Hack
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Jirun Sun
- The Forsyth Institute, A Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Hamzehlou S, Ruipérez F. Computational study of the transamination reaction in vinylogous acyls: Paving the way to design vitrimers with controlled exchange kinetics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shaghayegh Hamzehlou
- Polymat and Kimika Aplikatua Saila, Kimika Fakultatea University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
| | - Fernando Ruipérez
- Polymat and Physical Chemistry Department, Faculty of Pharmacy University of the Basque Country UPV/EHU Vitoria‐Gasteiz Spain
| |
Collapse
|
35
|
Pettazzoni L, Leonelli F, Martinelli A, Migneco LM, Alfano S, Di Luca D, Celio L, Di Lisio V. Transamidation‐based vitrimers from renewable sources. J Appl Polym Sci 2022. [DOI: 10.1002/app.52408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Sara Alfano
- Department of Chemistry Sapienza Università di Roma Rome
| | | | - Lorenzo Celio
- Department of Chemistry Sapienza Università di Roma Rome
| | | |
Collapse
|
36
|
Self-Healing Systems in Silicon Anodes for Li-Ion Batteries. MATERIALS 2022; 15:ma15072392. [PMID: 35407729 PMCID: PMC9000215 DOI: 10.3390/ma15072392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/17/2023]
Abstract
Self-healing is the capability of materials to repair themselves after the damage has occurred, usually through the interaction between molecules or chains. Physical and chemical processes are applied for the preparation of self-healing systems. There are different approaches for these systems, such as heterogeneous systems, shape memory effects, hydrogen bonding or covalent–bond interaction, diffusion, and flow dynamics. Self-healing mechanisms can occur in particular through heat and light exposure or through reconnection without a direct effect. The applications of these systems display an increasing trend in both the R&D and industry sectors. Moreover, self-healing systems and their energy storage applications are currently gaining great importance. This review aims to provide general information on recent developments in self-healing materials and their battery applications given the critical importance of self-healing systems for lithium-ion batteries (LIBs). In the first part of the review, an introduction about self-healing mechanisms and design strategies for self-healing materials is given. Then, selected important healing materials in the literature for the anodes of LIBs are mentioned in the second part. The results and future perspectives are stated in the conclusion section.
Collapse
|
37
|
A Photoinduced Dual‐Wavelength Approach for 3D Printing and Self‐Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Miao W, Yang B, Jin B, Ni C, Feng H, Xue Y, Zheng N, Zhao Q, Shen Y, Xie T. An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape- and Molecular Architecture Reconfiguration. Angew Chem Int Ed Engl 2022; 61:e202109941. [PMID: 34985780 DOI: 10.1002/anie.202109941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 12/11/2022]
Abstract
Bond exchange in a typical dynamic covalent polymer network allows access to macroscopic shape reconfigurability, but the network architecture is not altered. An alternative possibility is that the network architecture can be designed to switch to various topological states corresponding to different material properties. Achieving both in one network can expand the material scope, but their intrinsically conflicting mechanisms make it challenging. We design a dynamic covalent network that can undergo two orthogonal topological transformations, namely transesterification on the branched chains and olefin metathesis on the mainframe. This allows independent control of the macroscopic shape and molecular architecture. With this design, we illustrate a bottlebrush network with programmable shape and spatially definable mechanical properties. Our strategy paves a way to on-demand regulation of network polymers.
Collapse
Affiliation(s)
- Wusha Miao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bo Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijun Feng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaoting Xue
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
39
|
|
40
|
|
41
|
Truong VX, Barner-Kowollik C. Photodynamic covalent bonds regulated by visible light for soft matter materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Zaborniak I, Chmielarz P, Wolski K, Grześ G, Wang Z, Górska A, Pielichowska K, Matyjaszewski K. Maltotriose-based star polymers as self-healing materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Cheng K, Chortos A, Lewis JA, Clarke DR. Photoswitchable Covalent Adaptive Networks Based on Thiol-Ene Elastomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4552-4561. [PMID: 35006669 DOI: 10.1021/acsami.1c22287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent adaptive networks combine the advantages of cross-linked elastomers and dynamic bonding in a single system. In this work, we demonstrate a simple one-pot method to prepare thiol-ene elastomers that exhibit reversible photoinduced switching from an elastomeric gel to fluid state. This behavior can be generalized to thiol-ene cross-linked elastomers composed of different backbone chemistries (e.g., polydimethylsiloxane, polyethylene glycol, and polyurethane) and vinyl groups (e.g., allyl, vinyl ether, and acrylate). Photoswitching from the gel to fluid state occurs in seconds upon exposure to UV light and can be repeated over at least 180 cycles. These thiol-ene elastomers also exhibit the ability to heal, remold, and serve as reversible adhesives.
Collapse
Affiliation(s)
- Kezi Cheng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alex Chortos
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David R Clarke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
44
|
Miao W, Yang B, Jin B, Ni C, Feng H, Xue Y, Zheng N, Zhao Q, Shen Y, Xie T. An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape‐ and Molecular Architecture Reconfiguration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wusha Miao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Bo Yang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Chujun Ni
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Haijun Feng
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Yaoting Xue
- Institute of Applied Mechanics Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
45
|
Cao J, Zhang D, Zhou Y, Zhang Q, Wu S. Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromol Rapid Commun 2022; 43:e2100703. [PMID: 35038195 DOI: 10.1002/marc.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Indexed: 11/08/2022]
Abstract
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free-radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
Collapse
Affiliation(s)
- Jingning Cao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
46
|
Shi X, Zhang J, Corrigan N, Boyer C. Controlling mechanical properties of 3D printed polymer composites through photoinduced reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has been exploited to design silica-nanoparticle-incorporated photocurable resins for 3D printing of materials with enhanced mechanical properties and complex structures.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
48
|
Fugolin AP, Pfeifer CS. Engineering a new generation of thermoset self-healing polymers based on intrinsic approaches. JADA FOUNDATIONAL SCIENCE 2022; 1:100014. [PMID: 36721425 PMCID: PMC9885846 DOI: 10.1016/j.jfscie.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives The development of thermosetting polymers with autonomic reparability has become an important research topic since it has the potential to benefit several fields such as biomaterials, tissue engineering, paint and coating technologies, electronics, and soft robotics. In dentistry, the development of restorative materials capable of inhibiting the propagation of microcracks caused by masticatory forces and thermal stress may represent a crucial expansion of the limited clinical lifespan of dental restorations, which is a pressing challenge. Biological systems have inspired the underlying concepts and designs of synthetic polymeric self-healing systems, and different strategies have been used to impart autonomous repair capability in polymers. In this review, the most relevant intrinsic strategies are categorized based on the reaction mechanisms. In general, these strategies rely on the incorporation of latent functionalities capable of undergoing reversible chemical bonds within the polymeric structure (chemically or compositionally tuned). Search Strategy The searches were conducted in the databases Scopus, PubMed, and Google Scholar and limited to articles that were written in English and published during the last ten years. A few additional articles were included by complementing the database searches with manual review of the reference lists. Overall Conclusions Although intrinsic approaches remain underexplored in dentistry, a wide variety of elegant chemistries with tremendous translational potential employed in other fields to promote autonomic repair are highlighted in this review.
Collapse
Affiliation(s)
- Ana P. Fugolin
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, Restorative Dentistry Department, Oregon Health & Science University, Portland, OR
| |
Collapse
|
49
|
An X, Li Y, Xu M, Xu Z, Ma W, Du R, Wan G, Yan H, Cao Y, Ma D, Zhang Q, Jia X. A reconfigurable crosslinking system via an asymmetric metal–ligand coordination strategy. Polym Chem 2022. [DOI: 10.1039/d2py00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an asymmetric metal–ligand coordination strategy for reconfigurable elastomers. EXAFS is first introduced to monitor the structure change in M–L crosslinked polymers during stretching at the molecular level.
Collapse
Affiliation(s)
- Xiaoming An
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China
| | - Ming Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhicheng Xu
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wencan Ma
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Gang Wan
- Department of Mechanical Engineering, Stanford University, CA 94350, USA
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, CA, 95403, USA
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qiuhong Zhang
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
50
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|