1
|
Huang K, Bashian EE, Zong G, Nycholat CM, McBride R, Gomozkova M, Wang S, Huang C, Chapla DG, Schmidt EN, Macauley M, Moremen KW, Paulson JC, Wang LX. Chemoenzymatic Synthesis of Sulfated N-Glycans Recognized by Siglecs and Other Glycan-Binding Proteins. JACS AU 2024; 4:2966-2978. [PMID: 39211606 PMCID: PMC11350573 DOI: 10.1021/jacsau.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Sulfated N-glycans are present in many glycoproteins, which are implicated in playing important roles in biological recognition processes. Here, we report the systematic chemoenzymatic synthesis of a library of sulfated and sialylated biantennary N-glycans and assess their binding to Siglecs and glycan-specific antibodies that recognize them as glycan ligands. The combined use of three human sulfotransferases, GlcNAc-6-O-sulfotransferase (CHST2), Gal-3-O-sulfotransferase (Gal3ST1), and keratan sulfate Gal-6-O-sulfotransferase (CHST1), resulted in asymmetric and symmetric branch-selective sulfation of the GlcNAc and/or Gal moieties of N-glycans. The extension of the sugar chain using α-2,3- and α-2,6-sialyltransferases afforded the sulfated and sialylated N-glycans. These synthetic glycans with different patterns of sulfation and sialylation were evaluated for binding to selected Siglecs and sulfoglycan-specific antibodies using glycan microarrays. The results confirm previously documented glycan-recognizing properties and further reveal novel specificities for these glycan-binding proteins, demonstrating the utility of the library for assessing the specificity of glycan-binding proteins recognizing sulfated and sialylated glycans.
Collapse
Affiliation(s)
- Kun Huang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Eleanor E. Bashian
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Guanghui Zong
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan McBride
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margaryta Gomozkova
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Shengyang Wang
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Edward N. Schmidt
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Matthew Macauley
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Zou M, Liu Y, Man L, Lan Y, Wei Q, Jin W, Chen Q, Jia Y, Yao X, Lu Y, Huang L, Wang Z, Wang C. Comprehensive Comparison of Bioactive N-Glycans among Seven Species of Livestock and Poultry Plasma Using a Relative Quantification Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19088-19100. [PMID: 37972931 DOI: 10.1021/acs.jafc.3c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glycans have been proven to play special roles in keeping human health as a class of nutritional and bioactive ingredients in many food materials. However, their broad use in the food industry is hindered by the lack of comprehensive analytical methods for high-quality food glycomics studies and large-quantity raw materials for their production. This study focuses on structural identification and quantitative comparison of bioactive N-glycans in seven species of livestock and poultry plasma as potential natural glycan resources by a novel comprehensive relative quantification strategy based on stable isotope labeling with nondeuterated and deuterated 4-methyl-1-(2-hydrazino-2-oxoethyl)-pyridinium bromide (d0/d7-HMP) in combination with linkage-specific derivatization of sialic acid residues. Methodological validation of the method in terms of detection sensitivity, signal resolution, quantification linearity, precision, and accuracy on model neutral and complicated sialylated glycans demonstrated its advantages over the existing methods. Based on this method, a series of bioactive N-glycans were found in seven species of livestock and poultry plasma, and their differences in structure, abundance percentages, and relative contents of N-glycans were revealed, demonstrating their excellent applicability for comprehensive food glycomics analysis and great exploitation potential of these plasma samples as large-quantity raw materials in producing bioactive N-glycans for application in food and pharmaceutical industries.
Collapse
|
3
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
4
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Rivollier P, Samain E, Armand S, Jeacomine I, Richard E, Fort S. Synthesis of Neuraminidase-Resistant Sialyllactose Mimetics from N-Acyl Mannosamines using Metabolically Engineered Escherichia coli. Chemistry 2023; 29:e202301555. [PMID: 37294058 DOI: 10.1002/chem.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.
Collapse
Affiliation(s)
- Paul Rivollier
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Eric Samain
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
6
|
Canales A, Sastre J, Orduña JM, Spruit CM, Pérez-Castells J, Domínguez G, Bouwman KM, van der Woude R, Cañada FJ, Nycholat CM, Paulson JC, Boons GJ, Jiménez-Barbero J, de Vries RP. Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans. JACS AU 2023; 3:868-878. [PMID: 37006776 PMCID: PMC10052259 DOI: 10.1021/jacsau.2c00664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Influenza virus infection remains a threat to human health since viral hemagglutinins are constantly drifting, escaping infection and vaccine-induced antibody responses. Viral hemagglutinins from different viruses display variability in glycan recognition. In this context, recent H3N2 viruses have specificity for α2,6 sialylated branched N-glycans with at least three N-acetyllactosamine units (tri-LacNAc). In this work, we combined glycan arrays and tissue binding analyses with nuclear magnetic resonance experiments to characterize the glycan specificity of a family of H1 variants, including the one responsible for the 2009 pandemic outbreak. We also analyzed one engineered H6N1 mutant to understand if the preference for tri-LacNAc motifs could be a general trend in human-type receptor-adapted viruses. In addition, we developed a new NMR approach to perform competition experiments between glycans with similar compositions and different lengths. Our results point out that pandemic H1 viruses differ from previous seasonal H1 viruses by a strict preference for a minimum of di-LacNAc structural motifs.
Collapse
Affiliation(s)
- Angeles Canales
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avd. Complutense s/n, Madrid 28040, Spain
| | - Javier Sastre
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, C/Ramiro de Maetzu 9, Madrid 28040, Spain
| | - Jose M. Orduña
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Cindy M. Spruit
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Javier Pérez-Castells
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Gema Domínguez
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Kim M. Bouwman
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Francisco Javier Cañada
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, C/Ramiro de Maetzu 9, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón
11, Madrid 28029, Spain
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Geert-Jan Boons
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Jesús Jiménez-Barbero
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón
11, Madrid 28029, Spain
- CIC
bioGUNE, Bizkaia Science and Technology
Park, Bilbao 48160, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, Leioa 48940, Spain
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
7
|
Praena B, Wan XF. Influenza Virus Infections in Polarized Cells. Viruses 2022; 14:1307. [PMID: 35746778 PMCID: PMC9231244 DOI: 10.3390/v14061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.
Collapse
Affiliation(s)
- Beatriz Praena
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
8
|
|
9
|
Klamer Z, Haab B. Combined Analysis of Multiple Glycan-Array Datasets: New Explorations of Protein-Glycan Interactions. Anal Chem 2021; 93:10925-10933. [PMID: 34319080 DOI: 10.1021/acs.analchem.1c01739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycan arrays are indispensable for learning about the specificities of glycan-binding proteins. Despite the abundance of available data, the current analysis methods do not have the ability to interpret and use the variety of data types and to integrate information across datasets. Here, we evaluated whether a novel, automated algorithm for glycan-array analysis could meet that need. We developed a regression-tree algorithm with simultaneous motif optimization and packaged it in software called MotifFinder. We applied the software to analyze data from eight different glycan-array platforms with widely divergent characteristics and observed an accurate analysis of each dataset. We then evaluated the feasibility and value of the combined analyses of multiple datasets. In an integrated analysis of datasets covering multiple lectin concentrations, the software determined approximate binding constants for distinct motifs and identified major differences between the motifs that were not apparent from single-concentration analyses. Furthermore, an integrated analysis of data sources with complementary sets of glycans produced broader views of lectin specificity than produced by the analysis of just one data source. MotifFinder, therefore, enables the optimal use of the expanding resource of the glycan-array data and promises to advance the studies of protein-glycan interactions.
Collapse
Affiliation(s)
- Zachary Klamer
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| | - Brian Haab
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
10
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Huang YT, Su YC, Wu HR, Huang HH, Lin EC, Tsai TW, Tseng HW, Fang JL, Yu CC. Sulfo-Fluorous Tagging Strategy for Site-Selective Enzymatic Glycosylation of para-Human Milk Oligosaccharides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Chia Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center at National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
12
|
Okda FA, Griffith E, Sakr A, Nelson E, Webby R. New Diagnostic Assays for Differential Diagnosis Between the Two Distinct Lineages of Bovine Influenza D Viruses and Human Influenza C Viruses. Front Vet Sci 2020; 7:605704. [PMID: 33363244 PMCID: PMC7759653 DOI: 10.3389/fvets.2020.605704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza D virus (IDV), a novel orthomyxovirus, is currently emerging in cattle worldwide. It shares >50% sequence similarity with the human influenza C virus (HICV). Two clades of IDV are currently co-circulating in cattle herds in the U.S. New assays specific for each lineage are needed for accurate surveillance. Also, differential diagnosis between zoonotic human influenza C virus and the two clades of IDV are important to assess the zoonotic potential of IDV. We developed an enzyme-linked immunosorbent assay (ELISA) based on two different epitopes HEF and NP and four peptides, and fluorescent focus neutralization assay to differentiate between IDV bovine and swine clades. Calf sera were obtained, and bovine samples underwent surveillance. Our results highlight the importance of position 215 with 212 in determining the heterogeneity between the two lineages. We needed IFA and FFN for tissue culture-based analysis and a BSL2 facility for analyzing virus interactions. Unfortunately, these are not available in many veterinary centers. Hence, our second aim was to develop an iELISA using specific epitopes to detect two lineages of IDVs simultaneously. Epitope-iELISA accurately detects neutralizing and non-neutralizing antibodies against the IDV in non-BSL2 laboratories and veterinary clinics and is cost-effective and sensitive. To differentiate between IDVs and HICVs, whole antigen blocking, polypeptides, and single-peptide ELISAs were developed. A panel of ferret sera against both viruses was used. Results suggested that both IDV and ICV had a common ancestor, and IDV poses a zoonotic risk to individuals with prior or current exposure to cattle. IDV peptides IANAGVK (286-292 aa), KTDSGR (423-428 aa), and RTLTPAT (448-455 aa) could differentiate between the two viruses, whereas peptide AESSVNPGAKPQV (203-215 aa) detected the presence of IDV in human sera but could not deny that it could be ICV, because the only two conserved influenza C peptides shared 52% sequence similarity with IDV and cross-reacted with IDV. However, blocking ELISAs differentiated between the two viruses. Diagnostic tools and assays to differentiate between ICV and IDV are required for serological and epidemiological analysis to clarify the complexity and evolution and eliminate misdiagnosis between ICV and IDV in human samples.
Collapse
Affiliation(s)
- Faten A Okda
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States.,Veterinary Division, National Research Center, Cairo, Egypt
| | - Elizabeth Griffith
- Department of Chemical and Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Sakr
- Department of Business Administration and Management, Dakota State University, Madison, SD, United States
| | - Eric Nelson
- Veterinary & Biomedical Sciences Department, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
13
|
Pawar S, Hsu L, Narendar Reddy T, Ravinder M, Ren CT, Lin YW, Cheng YY, Lin TW, Hsu TL, Wang SK, Wong CH, Wu CY. Synthesis of Asymmetric N-Glycans as Common Core Substrates for Structural Diversification through Selective Enzymatic Glycosylation. ACS Chem Biol 2020; 15:2382-2394. [PMID: 32830946 DOI: 10.1021/acschembio.0c00359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-glycans on the cell surface provide distinct signatures that are recognized by different glycan-binding proteins (GBPs) and pathogens. Most glycans in humans are asymmetric and isomeric, yet their biological functions are not well understood due to their lack of availability for studies. In this work, we have developed an improved strategy for asymmetric N-glycan assembly and diversification using designed common core substrates prepared chemically for selective enzymatic fucosylation and sialylation. The resulting 26 well-defined glycans that carry the sialic acid residue on different antennae were used in a microarray as a representative application to profile the binding specificity of hemagglutinin (HA) from the avian influenza virus (H5N2). We found distinct binding affinity for the Neu5Ac-Gal epitope linked to the N-acetylglucosamine (GlcNAc) of different branches and only a minor effect in binding for the terminal galactose on different branches. Overall, the microarray analysis showed branch-biased and context-based recognition patterns.
Collapse
Affiliation(s)
- Sujeet Pawar
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
| | - Li Hsu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| | - Thatikonda Narendar Reddy
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Mettu Ravinder
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Yu-Wei Lin
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Tzu-Wen Lin
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Broszeit F, Tzarum N, Zhu X, Nemanichvili N, Eggink D, Leenders T, Li Z, Liu L, Wolfert MA, Papanikolaou A, Martínez-Romero C, Gagarinov IA, Yu W, García-Sastre A, Wennekes T, Okamatsu M, Verheije MH, Wilson IA, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Rep 2020; 27:3284-3294.e6. [PMID: 31189111 PMCID: PMC6750725 DOI: 10.1016/j.celrep.2019.05.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 12/05/2022] Open
Abstract
A species barrier for the influenza A virus is the differential expression of sialic acid, which can either be α2,3-linked for avians or α2,6-linked for human viruses. The influenza A virus hosts also express other species-specific sialic acid derivatives. One major modification at C-5 is N-glycolyl (NeuGc), instead of N-acetyl (NeuAc). N-glycolyl is mammalian specific and expressed in pigs and horses, but not in humans, ferrets, seals, or dogs. Hemagglutinin (HA) adaptation to either N-acetyl or N-glycolyl is analyzed on a sialoside microarray containing both α2,3- and α2,6-linkage modifications on biologically relevant N-glycans. Binding studies reveal that avian, human, and equine HAs bind either N-glycolyl or N-acetyl. Structural data on N-glycolyl binding HA proteins of both H5 and H7 origin describe this specificity. Neuraminidases can cleave N-glycolyl efficiently, and tissue-binding studies reveal strict species specificity. The exclusive manner in which influenza A viruses differentiate between N-glycolyl and N-acetyl is indicative of selection. Broszeit and colleagues demonstrate that influenza A viruses recognize either N-acetyl or N-glycolyl neuraminic acid, and they explain these specificities using X-ray structures. NeuGc-binding viruses are perfectly viable, and neuraminidases can cleave NeuGc-containing receptor structures. There is an apparent selection now for NeuAc, as no known NeuGc-binding virus currently circulates.
Collapse
Affiliation(s)
- Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikoloz Nemanichvili
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Dirk Eggink
- Department of Experimental Virology, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Tim Leenders
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Andreas Papanikolaou
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan A Gagarinov
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tom Wennekes
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Monique H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
15
|
Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN, Lobby JL, Kohlmeier JE, Steinhauer DA, Cummings RD. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza A Virus. Sci Rep 2020; 10:5320. [PMID: 32210305 PMCID: PMC7093477 DOI: 10.1038/s41598-020-62074-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Glycans within human lungs are recognized by many pathogens such as influenza A virus (IAV), yet little is known about their structures. Here we present the first analysis of the N- and O- and glycosphingolipid-glycans from total human lungs, along with histological analyses of IAV binding. The N-glycome of human lung contains extremely large complex-type N-glycans with linear poly-N-acetyllactosamine (PL) [-3Galβ1-4GlcNAcβ1-]n extensions, which are predominantly terminated in α2,3-linked sialic acid. By contrast, smaller N-glycans lack PL and are enriched in α2,6-linked sialic acids. In addition, we observed large glycosphingolipid (GSL)-glycans, which also consists of linear PL, terminating in mainly α2,3-linked sialic acid. Histological staining revealed that IAV binds to sialylated and non-sialylated glycans and binding is not concordant with respect to binding by sialic acid-specific lectins. These results extend our understanding of the types of glycans that may serve as binding sites for human lung pathogens.
Collapse
Affiliation(s)
- Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Lauren Byrd-Leotis
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Yasuyuki Matsumoto
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| |
Collapse
|
16
|
Haab BB, Klamer Z. Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies. Mol Cell Proteomics 2020; 19:224-232. [PMID: 31848260 PMCID: PMC7000120 DOI: 10.1074/mcp.r119.001836] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Indexed: 01/17/2023] Open
Abstract
Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field.
Collapse
|
17
|
Byrd-Leotis L, Gao C, Jia N, Mehta AY, Trost J, Cummings SF, Heimburg-Molinaro J, Cummings RD, Steinhauer DA. Antigenic Pressure on H3N2 Influenza Virus Drift Strains Imposes Constraints on Binding to Sialylated Receptors but Not Phosphorylated Glycans. J Virol 2019; 93:e01178-19. [PMID: 31484755 PMCID: PMC6819937 DOI: 10.1128/jvi.01178-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022] Open
Abstract
H3N2 strains of influenza A virus emerged in humans in 1968 and have continued to circulate, evolving in response to human immune pressure. During this process of "antigenic drift," viruses have progressively lost the ability to agglutinate erythrocytes of various species and to replicate efficiently under the established conditions for amplifying clinical isolates and generating vaccine candidates. We have determined the glycome profiles of chicken and guinea pig erythrocytes to gain insights into reduced agglutination properties displayed by drifted strains and show that both chicken and guinea pig erythrocytes contain complex sialylated N-glycans but that they differ with respect to the extent of branching, core fucosylation, and the abundance of poly-N-acetyllactosamine (PL) [-3Galβ1-4GlcNAcβ1-]n structures. We also examined binding of the H3N2 viruses using three different glycan microarrays: the synthetic Consortium for Functional Glycomics array; the defined N-glycan array designed to reveal contributions to binding based on sialic acid linkage type, branched structures, and core modifications; and the human lung shotgun glycan microarray. The results demonstrate that H3N2 viruses have progressively lost their capacity to bind nearly all canonical sialylated receptors other than a selection of biantennary structures and PL structures with or without sialic acid. Significantly, all viruses displayed robust binding to nonsialylated high-mannose phosphorylated glycans, even as the recognition of sialylated structures is decreased through antigenic drift.IMPORTANCE Influenza subtype H3N2 viruses have circulated in humans for over 50 years, continuing to cause annual epidemics. Such viruses have undergone antigenic drift in response to immune pressure, reducing the protective effects of preexisting immunity to previously circulating H3N2 strains. The changes in hemagglutinin (HA) affiliated with drift have implications for the receptor binding properties of these viruses, affecting virus replication in the culture systems commonly used to generate and amplify vaccine strains. Therefore, the antigenic properties of the vaccines may not directly reflect those of the circulating strains from which they were derived, compromising vaccine efficacy. In order to reproducibly provide effective vaccines, it will be critical to understand the interrelationships between binding, antigenicity, and replication properties in different growth substrates.
Collapse
Affiliation(s)
- Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA CEIRS, Atlanta, Georgia, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA CEIRS, Atlanta, Georgia, USA
| | - Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Trost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA CEIRS, Atlanta, Georgia, USA
| | - Sandra F Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Heimburg-Molinaro
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, USA
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA CEIRS, Atlanta, Georgia, USA
| | - David A Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA CEIRS, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Jin W, Wang C, Yang M, Wei M, Huang L, Wang Z. Glycoqueuing: Isomer-Specific Quantification for Sialylation-Focused Glycomics. Anal Chem 2019; 91:10492-10500. [PMID: 31329418 DOI: 10.1021/acs.analchem.9b01393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Changes of α-2,3-/α-2,6-linked sialic acids (SAs) in sialylglycans have been found to be closely related with some diseases. However, accurate quantification of sialylglycans at the isomeric level remains challenging due to their instability, structural complexity, and low mass spectrometry (MS) detection sensitivity. Herein, we propose an analytical strategy named "glycoqueuing", which allows sequential chromatographic elution and high-sensitivity MS quantification of various sialylglycan isomers based on isotopic labeling followed by analysis via online reversed-phase high performance liquid chromatography coupling with MS (RP-HPLC-MS). The new method was validated by detailed structural identification and quantification of fetal bovine serum (FBS) N-linked sialylglycan isomers, during which many branching isomers were successfully differentiated, and 28 sialylglycan compositions with Neu5Gc residues were analyzed. The method was successfully applied to isomer-specific, quantitative comparison of sialylated N-glycans between bovine and rabbit immunoglobulin G (IgG) and the search for serum sialylated N-glycan biomarker candidates of hepatocellular carcinoma, during which a 55% increase of α-2,6-sialylated fucosylated N-glycans was revealed, demonstrating the great applicability and potential clinical usage of the method.
Collapse
|
19
|
Wu HR, Anwar MT, Fan CY, Low PY, Angata T, Lin CC. Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem LacNAc and sialic acid position towards siglec binding. Eur J Med Chem 2019; 180:627-636. [PMID: 31351394 DOI: 10.1016/j.ejmech.2019.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galβ(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosyl transferase (β3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).
Collapse
Affiliation(s)
- Hsin-Ru Wu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Instrumentation Center of Ministry of Science and Technology at National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | | | - Chen-Yo Fan
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Penk Yeir Low
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
20
|
|
21
|
Gao C, Hanes MS, Byrd-Leotis LA, Wei M, Jia N, Kardish RJ, McKitrick TR, Steinhauer DA, Cummings RD. Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans. Cell Chem Biol 2019; 26:535-547.e4. [PMID: 30745240 DOI: 10.1016/j.chembiol.2019.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-acetylglucosamine residues, as well as core fucose. We identified specific recognition of N-glycans by several plant lectins, human galectins, influenza viruses, and Siglecs, and explored the influence of sialic acid linkages and branching of the N-glycans. These results show the unique recognition of complex-type N-glycans by a wide variety of glycan-binding proteins and their abilities to distinguish isomeric structures, which provides new insights into the biological roles of these proteins and the uses of lectins in biological applications to identify glycans.
Collapse
Affiliation(s)
- Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Lauren A Byrd-Leotis
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA; Department of Microbiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert J Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - David A Steinhauer
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Francisco R, Pascoal C, Marques-da-Silva D, Morava E, Gole GA, Coman D, Jaeken J, Dos Reis Ferreira V. Keeping an eye on congenital disorders of O-glycosylation: A systematic literature review. J Inherit Metab Dis 2019; 42:29-48. [PMID: 30740740 DOI: 10.1002/jimd.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.
Collapse
Affiliation(s)
- Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Eva Morava
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Glen A Gole
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Discipline of Paediatrics and Child Health, University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| |
Collapse
|
23
|
Klamer Z, Hsueh P, Ayala-Talavera D, Haab B. Deciphering Protein Glycosylation by Computational Integration of On-chip Profiling, Glycan-array Data, and Mass Spectrometry. Mol Cell Proteomics 2019; 18:28-40. [PMID: 30257876 PMCID: PMC6317472 DOI: 10.1074/mcp.ra118.000906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
The difficulty in uncovering detailed information about protein glycosylation stems from the complexity of glycans and the large amount of material needed for the experiments. Here we report a method that gives information on the isomeric variants of glycans in a format compatible with analyzing low-abundance proteins. On-chip glycan modification and probing (on-chip gmap) uses sequential and parallel rounds of exoglycosidase cleavage and lectin profiling of microspots of proteins, together with algorithms that incorporate glycan-array analyses and information from mass spectrometry, when available, to computationally interpret the data. In tests on control proteins with simple or complex glycosylation, on-chip gmap accurately characterized the relative proportions of core types and terminal features of glycans. Subterminal features (monosaccharides and linkages under a terminal monosaccharide) were accurately probed using a rationally designed sequence of lectin and exoglycosidase incubations. The integration of mass information further improved accuracy in each case. An alternative use of on-chip gmap was to complement the mass spectrometry analysis of detached glycans by specifying the isomers that comprise the glycans identified by mass spectrometry. On-chip gmap provides the potential for detailed studies of glycosylation in a format compatible with clinical specimens or other low-abundance sources.
Collapse
Affiliation(s)
- Zachary Klamer
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503
| | - Peter Hsueh
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503
| | | | - Brian Haab
- From the Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503.
| |
Collapse
|
24
|
Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC, van der Woude R, Aldosari MH, Pieters RJ, Woods RJ, Paulson JC, Boons GJ, Ward AB, Verheije MH, de Vries RP. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol 2018; 431:842-856. [PMID: 30597163 DOI: 10.1016/j.jmb.2018.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Influenza A virus carries hundreds of trimeric hemagglutinin (HA) proteins on its viral envelope that interact with various sialylated glycans on a host cell. This interaction represents a multivalent binding event that is present in all the current receptor binding assays, including those employing viruses or precomplexed HA trimers. To study the nature of such multivalent binding events, we fused a superfolder green fluorescent protein (sfGFP) to the C-terminus of trimeric HA to allow for direct visualization of HA-receptor interactions without the need for additional fluorescent antibodies. The multivalent binding of the HA-sfGFP proteins was studied using glycan arrays and tissue staining. The HA-sfGFP with human-type receptor specificity was able to bind to a glycan array as the free trimer. In contrast, the HA-sfGFP with avian-type receptor specificity required multimerization by antibodies before binding to glycans on the glycan array could be observed. Interestingly, multimerization was not required for binding to tissues. The array data may be explained by the possible bivalent binding mode of a single human-specific HA trimer to complex branched N-glycans, which is not possible for the avian-specific HA due to geometrical constrains of the binding sites. The fact that this specificity pattern changes upon interaction with a cell surface probably represents the enhanced amount of glycan orientations and variable densities versus those on the glycan array.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Drug sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584, CL, Utrecht, the Netherlands.
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Fernández de Toro B, Peng W, Thompson AJ, Domínguez G, Cañada FJ, Pérez‐Castells J, Paulson JC, Jiménez‐Barbero J, Canales Á. Avenues to Characterize the Interactions of Extended N-Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angew Chem Int Ed Engl 2018; 57:15051-15055. [PMID: 30238596 PMCID: PMC6282704 DOI: 10.1002/anie.201807162] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 01/22/2023]
Abstract
Long-chain multiantenna N-glycans are extremely complex molecules. Their inherent flexibility and the presence of repetitions of monosaccharide units in similar chemical environments hamper their full characterization by X-ray diffraction or standard NMR methods. Herein, the successful conformational and interaction analysis of a sialylated tetradecasaccharide N-glycan presenting two LacNAc repetitions at each arm is presented. This glycan has been identified as the receptor of the hemagglutinin protein of pathogenic influenza viruses. To accomplish this study, a N-glycan conjugated with a lanthanide binding tag has been synthesized, enabling analysis of the system by paramagnetic NMR. Under paramagnetic conditions, the NMR signals of each sugar unit in the glycan have been determined. Furthermore, a detailed binding epitope of the tetradecasaccharide N-glycan in the presence of HK/68 hemagglutinin is described.
Collapse
Affiliation(s)
- Beatriz Fernández de Toro
- Dpto Biología Estructural y QuímicaCentro de Investigaciones BiológicasCIB-CSICC/Ramiro de Maeztu 928040MadridSpain
| | - Wenjie Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Andrew J. Thompson
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Gema Domínguez
- Dpto Química, Fac. FarmaciaUniversidad San Pablo CEUMadridSpain
| | - F. Javier Cañada
- Dpto Biología Estructural y QuímicaCentro de Investigaciones BiológicasCIB-CSICC/Ramiro de Maeztu 928040MadridSpain
| | | | - James C. Paulson
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Science and Technology Park48160BilbaoSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| | - Ángeles Canales
- Dpto Química Orgánica I, Fac. Ciencias QuímicasUniversidad Complutense de MadridAvd. Complutense s/n28040MadridSpain
| |
Collapse
|
26
|
Unravelling the Role of O-glycans in Influenza A Virus Infection. Sci Rep 2018; 8:16382. [PMID: 30401951 PMCID: PMC6219607 DOI: 10.1038/s41598-018-34175-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
The initial stage of host cell infection by influenza A viruses (IAV) is mediated through interaction of the viral haemagglutinin (HA) with cell surface glycans. The binding requirement of IAVs for Galβ(1,4)Glc/ GlcNAc (lactose/lactosamine) glycans with a terminal α(2,6)-linked (human receptors) or α(2,3)-linked (avian receptors) N-acetylneuraminic residue commonly found on N-glycans, is well-established. However the role and significance of sialylated Galβ(1,3)GalNAc (core 1) epitopes that are typical O-glycoforms in influenza virus pathogenesis remains poorly detailed. Here we report a multidisciplinary study using NMR spectroscopy, virus neutralization assays and molecular modelling, into the potential for IAV to engage sialyl-Galβ(1,3)GalNAc O-glycoforms for cell attachment. H5 containing virus like particles (VLPs) derived from an H5N1 avian IAV strain show a significant involvement of the O-glycan-specific GalNAc residue, coordinated by a EQTKLY motif conserved in highly pathogenic avian influenza (HPAI) strains. Notably, human pandemic H1N1 influenza viruses shift the preference from 'human-like' α(2,6)-linkages in sialylated Galβ(1,4)Glc/GlcNAc fragments to 'avian-like' α(2,3)-linkages in sialylated Galβ(1,3)GalNAc without involvement of the GalNAc residue. Overall, our study suggests that sialylated Galβ(1,3)GalNAc as O-glycan core 1 glycoforms are involved in the influenza A virus life cycle and play a particularly crucial role during infection of HPAI strains.
Collapse
|
27
|
Fernández de Toro B, Peng W, Thompson AJ, Domínguez G, Cañada FJ, Pérez‐Castells J, Paulson JC, Jiménez‐Barbero J, Canales Á. Avenues to Characterize the Interactions of Extended N‐Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Beatriz Fernández de Toro
- Dpto Biología Estructural y QuímicaCentro de Investigaciones BiológicasCIB-CSIC C/Ramiro de Maeztu 9 28040 Madrid Spain
| | - Wenjie Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Andrew J. Thompson
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Gema Domínguez
- Dpto Química, Fac. FarmaciaUniversidad San Pablo CEU Madrid Spain
| | - F. Javier Cañada
- Dpto Biología Estructural y QuímicaCentro de Investigaciones BiológicasCIB-CSIC C/Ramiro de Maeztu 9 28040 Madrid Spain
| | | | - James C. Paulson
- Depts. of Molecular Medicine, and Immunology and MicrobiologyThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Bizkaia Science and Technology Park 48160 Bilbao Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| | - Ángeles Canales
- Dpto Química Orgánica I, Fac. Ciencias QuímicasUniversidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
28
|
Primadona I, Lai YH, Capangpangan RY, Obena RP, Tseng MC, Huang MF, Chang HT, Li ST, Wu CY, Chien WT, Lin CC, Wang YS, Chen YJ. Functionalized HgTe nanoparticles promote laser-induced solid phase ionization/dissociation for comprehensive glycan sequencing. Analyst 2018; 141:6093-6103. [PMID: 27722232 DOI: 10.1039/c6an00923a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry.
Collapse
Affiliation(s)
- Indah Primadona
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan and Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Chemistry, Academia Sinica, Taiwan and Institute of Chemistry, Academia Sinica, Taipei, Taiwan. and Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | - Yin-Hung Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Rey Y Capangpangan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan. and Division of Chemistry, Caraga State University, Butuan city, Philippines
| | | | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Ming-Feng Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shiou-Ting Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Wei-Ting Chien
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Sheng Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan. and Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Mutation W222L at the Receptor Binding Site of Hemagglutinin Could Facilitate Viral Adaption from Equine Influenza A(H3N8) Virus to Dogs. J Virol 2018; 92:JVI.01115-18. [PMID: 29997206 DOI: 10.1128/jvi.01115-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
An outbreak of respiratory disease caused by the equine-origin influenza A(H3N8) virus was first detected in dogs in 2004 and since then has been enzootic among dogs. Currently, the molecular mechanisms underlying host adaption of this virus from horses to dogs is unknown. Here, we have applied quantitative binding, growth kinetics, and immunofluorescence analyses to elucidate these mechanisms. Our findings suggest that a substitution of W222L in the hemagglutinin of the equine-origin A(H3N8) virus facilitated its host adaption to dogs. This mutation increased binding avidity of the virus specifically to receptor glycans with N-glycolylneuraminic acid (Neu5Gc) and sialyl Lewis X (SLeX) motifs. We have demonstrated these motifs are abundantly located in the submucosal glands of dog trachea. Our findings also suggest that in addition to the type of glycosidic linkage (e.g., α2,3-linkage or α2,6-linkage), the type of sialic acid (Neu5Gc or 5-N-acetyl neuraminic acid) and the glycan substructure (e.g., SLeX) also play an important role in host tropism of influenza A viruses.IMPORTANCE Influenza A viruses (IAVs) cause a significant burden on human and animal health, and mechanisms for interspecies transmission of IAVs are far from being understood. Findings from this study suggest that an equine-origin A(H3N8) IAV with mutation W222L at its hemagglutinin increased binding to canine-specific receptors with sialyl Lewis X and Neu5Gc motifs and, thereby, may have facilitated viral adaption from horses to dogs. These findings suggest that in addition to the glycosidic linkage (e.g., α2,3-linked and α2,6-linked), the substructure in the receptor saccharides (e.g., sialyl Lewis X and Neu5Gc) could present an interspecies transmission barrier for IAVs and drive viral mutations to overcome such barriers.
Collapse
|
30
|
Xu Y, Fan Y, Ye J, Wang F, Nie Q, Wang L, Wang PG, Cao H, Cheng J. Successfully Engineering a Bacterial Sialyltransferase for Regioselective α2,6-sialylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yangyang Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Yueyuan Fan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Jinfeng Ye
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Faxing Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Quandeng Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Hongzhi Cao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| |
Collapse
|
31
|
Park DD, Xu G, Wong M, Phoomak C, Liu M, Haigh NE, Wongkham S, Yang P, Maverakis E, Lebrilla CB. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem Sci 2018; 9:6271-6285. [PMID: 30123482 PMCID: PMC6063140 DOI: 10.1039/c8sc01875h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Sialic acid distribution was quantified by LC-MS/MS. The number of sialylated glycoforms increases at sites nearest to the transmembrane domain.
Given that unnatural sugar expression is metabolically achieved, the kinetics and disposition of incorporation can lend insight into the temporal and localization preferences of sialylation across the cell surface. However, common detection schemes lack the ability to detail the molecular diversity and distribution of target moieties. Here we employed a mass spectrometric approach to trace the placement of azido sialic acids on membrane glycoconjugates, which revealed substantial variations in incorporation efficiencies between N-/O-glycans, glycosites, and glycosphingolipids. To further explore the propensity for sialylation, we subsequently mapped the native glycome of model epithelial cell surfaces and illustrate that while glycosylation sites span broadly across the extracellular region, a higher number of heterogeneous glycoforms occur on sialylated sites closest to the transmembrane domain. Beyond imaging techniques, this integrative approach provides unprecedented details about the frequency and structure-specific distribution of cell surface sialylation, a critical feature that regulates cellular interactions and homeostatic pathways.
Collapse
Affiliation(s)
- Diane Dayoung Park
- Department of Chemistry , University of California , Davis , CA 95616 , USA.,Department of Surgery , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA 02115 , USA .
| | - Gege Xu
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| | - Maurice Wong
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| | - Chatchai Phoomak
- Department of Biochemistry , Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Mingqi Liu
- Department of Chemistry , Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Nathan E Haigh
- Department of Dermatology , University of California , Davis School of Medicine , Sacramento , CA 95817 , USA
| | - Sopit Wongkham
- Department of Biochemistry , Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Pengyuan Yang
- Department of Chemistry , Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Emanual Maverakis
- Department of Dermatology , University of California , Davis School of Medicine , Sacramento , CA 95817 , USA
| | - Carlito B Lebrilla
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| |
Collapse
|
32
|
Chinoy ZS, Friscourt F, Capicciotti CJ, Chiu P, Boons GJ. Chemoenzymatic Synthesis of Asymmetrical Multi-Antennary N-Glycans to Dissect Glycan-Mediated Interactions between Human Sperm and Oocytes. Chemistry 2018; 24:7970-7975. [PMID: 29603480 DOI: 10.1002/chem.201800451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Complex N-glycans of glycoproteins of the zona pellucida (ZP) of human oocytes have been implicated in the binding of spermatozoa. The termini of these unusual bi-, tri-, and tetra-antennary N-glycans consist of the tetrasaccharide sialyl-Lewisx (SLex ), which was previously identified as the minimal epitope for sperm binding. We describe here the chemoenzymatic synthesis of highly complex triantennary N-glycans derived from ZP carrying SLex moieties at the C-2 and C-2' arm and a sialyl-Lewisx -Lewisx (SLex -Lex ) residue at the C-6 antenna and two closely related analogues. The compounds were examined for their ability to inhibit the interaction of human sperm to ZP. It was found that the SLex -Lex moiety is critical for inhibitory activity, whereas the other SLex moieties exerted minimal effect. Further studies with SLex -Lex and SLex showed that the extended structure is the more potent inhibitor. In addition, trivalent SLex -Lex and SLex were prepared which showed greater inhibitory activity compared to their monovalent counterparts. Our studies show that although SLex can inhibit the binding of spermatozoa, presenting this epitope in the context of a complex N-glycan results in a loss of inhibitory potential, and in this context only SLex -Lex can make productive interactions. It is not the multivalent display of SLex on a multi-antennary glycan but the presentation of multiple SLex -Lex on the various glycosylation sites of ZP that accounts for high avidity binding.
Collapse
Affiliation(s)
- Zoeisha S Chinoy
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Frédéric Friscourt
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Philip Chiu
- Department of Obstetrics and Gynaecology, Faculty of Medicine Building, The University of Hong Kong, Hong Kong, China
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences.,Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| |
Collapse
|
33
|
Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. J Virol 2018; 92:JVI.02016-17. [PMID: 29491160 DOI: 10.1128/jvi.02016-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses.IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk.
Collapse
|
34
|
Cheng HW, Wang HW, Wong TY, Yeh HW, Chen YC, Liu DZ, Liang PH. Synthesis of S-linked NeuAc-α(2-6)-di-LacNAc bearing liposomes for H1N1 influenza virus inhibition assays. Bioorg Med Chem 2018; 26:2262-2270. [PMID: 29472127 DOI: 10.1016/j.bmc.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
S-NeuAc-α(2-6)-di-LacNAc (5) was efficiently synthesized by a [2+2] followed by a [1+4] glycosylation, and later conjugated with 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) to form both single-layer and multi-layer homogeneous liposomes in the presence of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol. These liposomes were found to be weak inhibitors in both the influenza virus entry assay and the hemagglutination inhibition assay. The single layer liposome was found to more efficiently interfere with the entry of the H1N1 influenza virus into MDCK cells than the multilayer liposome containing 5.
Collapse
Affiliation(s)
- Hou-Wen Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiao-Wen Wang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsung-Yun Wong
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsien-Wei Yeh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Chun Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Medical and Pharmaceutical Industry Technology and Development Center, Academia Sinica, Taipei 128, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; The Genomics Research Center, Academia Sinica, Taipei 128, Taiwan.
| |
Collapse
|
35
|
Klamer Z, Staal B, Prudden AR, Liu L, Smith DF, Boons GJ, Haab B. Mining High-Complexity Motifs in Glycans: A New Language To Uncover the Fine Specificities of Lectins and Glycosidases. Anal Chem 2017; 89:12342-12350. [PMID: 29058413 PMCID: PMC5700451 DOI: 10.1021/acs.analchem.7b04293] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Knowledge of lectin
and glycosidase specificities is fundamental
to the study of glycobiology. The primary specificities of such molecules
can be uncovered using well-established tools, but the complex details
of their specificities are difficult to determine and describe. Here
we present a language and algorithm for the analysis and description
of glycan motifs with high complexity. The language uses human-readable
notation and wildcards, modifiers, and logical operators to define
motifs of nearly any complexity. By applying the syntax to the analysis
of glycan-array data, we found that the lectin AAL had higher binding
where fucose groups are displayed on separate branches. The lectin
SNA showed gradations in binding based on the length of the extension
displaying sialic acid and on characteristics of the opposing branches.
A new algorithm to evaluate changes in lectin binding upon treatment
with exoglycosidases identified the primary specificities and potential
fine specificities of an α1–2-fucosidase and an α2–3,6,8-neuraminidase.
The fucosidase had significantly lower action where sialic acid neighbors
the fucose, and the neuraminidase showed statistically lower action
where α1–2 fucose neighbors the sialic acid or is on
the opposing branch. The complex features identified here would have
been inaccessible to analysis using previous methods. The new language
and algorithms promise to facilitate the precise determination and
description of lectin and glycosidase specificities.
Collapse
Affiliation(s)
- Zachary Klamer
- Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| | - Ben Staal
- Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| | - Anthony R Prudden
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Brian Haab
- Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
36
|
Ting CY, Lin YW, Wu CY, Wong CH. Design of Disaccharide Modules for a Programmable One-Pot Synthesis of Building Blocks with LacNAc Repeating Units for Asymmetric N-Glycans. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng-Yueh Ting
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| | - Yu-Wei Lin
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chung-Yi Wu
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chi-Huey Wong
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| |
Collapse
|
37
|
Peng W, Paulson JC. CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells. J Am Chem Soc 2017; 139:12450-12458. [PMID: 28829594 DOI: 10.1021/jacs.7b03208] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.
Collapse
Affiliation(s)
- Wenjie Peng
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - James C Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Ji Y, White YJ, Hadden JA, Grant OC, Woods RJ. New insights into influenza A specificity: an evolution of paradigms. Curr Opin Struct Biol 2017; 44:219-231. [PMID: 28675835 DOI: 10.1016/j.sbi.2017.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
Understanding the molecular origin of influenza receptor specificity is complicated by the paucity of quantitative affinity measurements, and the qualitative and variable nature of glycan array data. Further obstacles arise from the varied impact of viral glycosylation and the relatively narrow spectrum of biologically relevant receptors present on glycan arrays. A survey of receptor conformational properties is presented, leading to the conclusion that conformational entropy plays a key role in defining specificity, as does the newly reported ability of biantennary receptors that terminate in Siaα2-6Gal sequences to form bidentate interactions to two binding sites in a hemagglutinin trimer. Bidentate binding provides a functional explanation for the observation that Siaα2-6 receptors adopt an open-umbrella topology when bound to hemagglutinins from human-infective viruses, and calls for a reassessment of virus avidity and tissue tropism.
Collapse
Affiliation(s)
- Ye Ji
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Yohanna Jb White
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Jodi A Hadden
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States.
| |
Collapse
|
39
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
40
|
The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 2017; 19:235-245. [PMID: 28402848 DOI: 10.1016/j.celrep.2017.03.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/15/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022] Open
Abstract
Adaptation of influenza A viruses to new hosts are rare events but are the basis for emergence of new influenza pandemics in the human population. Thus, understanding the processes involved in such events is critical for anticipating potential pandemic threats. In 2013, the first case of human infection by an avian H10N8 virus was reported, yet the H10 hemagglutinin (HA) maintains avian receptor specificity. However, the 150-loop of H10 HA, as well as related H7 and H15 subtypes, contains a two-residue insert that can potentially block human receptor binding. Mutation of the 150-loop on the background of Q226L and G228S mutations, which arose in the receptor-binding site of human pandemic H2 and H3 viruses, resulted in acquisition of human-type receptor specificity. Crystal structures of H10 HA mutants with human and avian receptor analogs, receptor-binding studies, and tissue staining experiments illustrate the important role of the 150-loop in H10 receptor specificity.
Collapse
|
41
|
Okamoto R. Recent Advancements in the Preparation of Structurally Defined Glycoproteins. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1612.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
42
|
Okamoto R. Recent Advancements in the Preparation of Structurally Defined Glycoproteins. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1612.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
43
|
Hahm HS, Broecker F, Kawasaki F, Mietzsch M, Heilbronn R, Fukuda M, Seeberger PH. Automated Glycan Assembly of Oligo-N-Acetyllactosamine and Keratan Sulfate Probes to Study Virus-Glycan Interactions. Chem 2017. [DOI: 10.1016/j.chempr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B, Lee PS, Razi N, Wilson IA, Woods RJ, Paulson JC. Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. Cell Host Microbe 2016; 21:23-34. [PMID: 28017661 DOI: 10.1016/j.chom.2016.11.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.
Collapse
Affiliation(s)
- Wenjie Peng
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert P de Vries
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Andrew J Thompson
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan McBride
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Buyankhishig Tsogtbaatar
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter S Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nahid Razi
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - James C Paulson
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
45
|
Reatini BS, Ensink E, Liau B, Sinha JY, Powers TW, Partyka K, Bern M, Brand RE, Rudd PM, Kletter D, Drake R, Haab BB. Characterizing Protein Glycosylation through On-Chip Glycan Modification and Probing. Anal Chem 2016; 88:11584-11592. [PMID: 27809484 PMCID: PMC5290727 DOI: 10.1021/acs.analchem.6b02998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans are critical to protein biology and are useful as disease biomarkers. Many studies of glycans rely on clinical specimens, but the low amount of sample available for some specimens limits the experimental options. Here we present a method to obtain information about protein glycosylation using a minimal amount of protein. We treat proteins that were captured or directly spotted in small microarrays (2.2 mm × 2.2 mm) with exoglycosidases to successively expose underlying features, and then we probe the native or exposed features using a panel of lectins or glycan-binding reagents. We developed an algorithm to interpret the data and provide predictions about the glycan motifs that are present in the sample. We demonstrated the efficacy of the method to characterize differences between glycoproteins in their sialic acid linkages and N-linked glycan branching, and we validated the assignments by comparing results from mass spectrometry and chromatography. The amount of protein used on-chip was about 11 ng. The method also proved effective for analyzing the glycosylation of a cancer biomarker in human plasma, MUC5AC, using only 20 μL of the plasma. A glycan on MUC5AC that is associated with cancer had mostly 2,3-linked sialic acid, whereas other glycans on MUC5AC had a 2,6 linkage of sialic acid. The on-chip glycan modification and probing (on-chip GMAP) method provides a platform for analyzing protein glycosylation in clinical specimens and could complement the existing toolkit for studying glycosylation in disease.
Collapse
Affiliation(s)
| | - Elliot Ensink
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Brian Liau
- Bioprocessing Technology Institute, Singapore
| | | | - Thomas W. Powers
- Medical University of South Carolina, Charleston, South Carolina
| | - Katie Partyka
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Randall E. Brand
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pauline M. Rudd
- Bioprocessing Technology Institute, Singapore
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | | | | | - Brian B. Haab
- Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
46
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
47
|
Alymova IV, York IA, Air GM, Cipollo JF, Gulati S, Baranovich T, Kumar A, Zeng H, Gansebom S, McCullers JA. Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence. Sci Rep 2016; 6:36216. [PMID: 27796371 PMCID: PMC5086918 DOI: 10.1038/srep36216] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Since the emergence of human H3N2 influenza A viruses in the pandemic of 1968, these viruses have become established as strains of moderate severity. A decline in virulence has been accompanied by glycan accumulation on the hemagglutinin globular head, and hemagglutinin receptor binding has changed from recognition of a broad spectrum of glycan receptors to a narrower spectrum. The relationship between increased glycosylation, binding changes, and reduction in H3N2 virulence is not clear. We evaluated the effect of hemagglutinin glycosylation on receptor binding and virulence of engineered H3N2 viruses. We demonstrate that low-binding virus is as virulent as higher binding counterparts, suggesting that H3N2 infection does not require either recognition of a wide variety of, or high avidity binding to, receptors. Among the few glycans recognized with low-binding virus, there were two structures that were bound by the vast majority of H3N2 viruses isolated between 1968 and 2012. We suggest that these two structures support physiologically relevant binding of H3N2 hemagglutinin and that this physiologically relevant binding has not changed since the 1968 pandemic. Therefore binding changes did not contribute to reduced severity of seasonal H3N2 viruses. This work will help direct the search for factors enhancing influenza virulence.
Collapse
Affiliation(s)
- Irina V Alymova
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Gillian M Air
- Department of Biochemistry &Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shelly Gulati
- Department of Biochemistry &Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tatiana Baranovich
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amrita Kumar
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA.,Battelle Memorial Institute, Atlanta, GA, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
48
|
Grant OC, Tessier MB, Meche L, Mahal LK, Foley BL, Woods RJ. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology 2016; 26:772-783. [PMID: 26911287 PMCID: PMC4976521 DOI: 10.1093/glycob/cww020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022] Open
Abstract
Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016).
Collapse
Affiliation(s)
- Oliver C Grant
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Matthew B Tessier
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lawrence Meche
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Lara K Mahal
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Bethany L Foley
- New York University Department of Chemistry, Biomedical Chemistry Institute, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
49
|
McBride R, Paulson JC, de Vries RP. A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. J Vis Exp 2016. [PMID: 27284789 DOI: 10.3791/53847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Influenza A virus (IAV) hemagglutinins recognize sialic acids on the cell surface as functional receptors to gain entry into cells. Wild waterfowl are the natural reservoir for IAV, but IAV can cross the species barrier to poultry, swine, horses and humans. Avian viruses recognize sialic acid attached to a penultimate galactose by a α2-3 linkage (avian-type receptors) whereas human viruses preferentially recognize sialic acid with a α2-6 linkage (human-type receptors). To monitor if avian viruses are adapting to human type receptors, several methods can be used. Glycan microarrays with diverse libraries of synthetic sialosides are increasingly used to evaluate receptor specificity. However, this technique is not used for measuring avidities. Measurement of avidity is typically achieved by evaluating the binding of serially diluted hemagglutinin or virus to glycans adsorbed to conventional polypropylene 96-well plates. In this assay, glycans with α2-3 or α2-6 sialic acids are coupled to biotin and adsorbed to streptavidin plates, or are coupled to polyacrylamide (PAA) which directly adsorb to the plastic. We have significantly miniaturized this assay by directly printing PAA-linked sialosides and their non PAA-linked counterparts on micro-well glass slides. This set-up, with 48 arrays on a single slide, enables simultaneous assays of 6 glycan binding proteins at 8 dilutions, interrogating 6 different glycans, including two non-sialylated controls. This is equivalent to 18x 96-well plates in the traditional plate assay. The glycan array format decreases consumption of compounds and biologicals and thus greatly enhances efficiency.
Collapse
Affiliation(s)
- Ryan McBride
- Department of Cell and Molecular Biology, Chemical Physiology and Microbial Science, The Scripps Research Institute
| | - James C Paulson
- Department of Cell and Molecular Biology, Chemical Physiology and Microbial Science, The Scripps Research Institute
| | - Robert P de Vries
- Department of Cell and Molecular Biology, Chemical Physiology and Microbial Science, The Scripps Research Institute; Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University;
| |
Collapse
|
50
|
Sommer R, Wagner S, Varrot A, Nycholat CM, Khaledi A, Häussler S, Paulson JC, Imberty A, Titz A. The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chem Sci 2016; 7:4990-5001. [PMID: 30155149 PMCID: PMC6018602 DOI: 10.1039/c6sc00696e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 01/18/2023] Open
Abstract
P. aeruginosa causes a substantial number of nosocomial infections and is the leading cause of death of cystic fibrosis patients. This Gram-negative bacterium is highly resistant against antibiotics and further protects itself by forming a biofilm. Moreover, a high genomic variability among clinical isolates complicates therapy. Its lectin LecB is a virulence factor and necessary for adhesion and biofilm formation. We analyzed the sequence of LecB variants in a library of clinical isolates and demonstrate that it can serve as a marker for strain family classification. LecB from the highly virulent model strain PA14 presents 13% sequence divergence with LecB from the well characterized PAO1 strain. These differences might result in differing ligand binding specificities and ultimately in reduced efficacy of drugs directed towards LecB. Despite several amino acid variations at the carbohydrate binding site, glycan array analysis showed a comparable binding pattern for both variants. A common high affinity ligand could be identified and after its chemoenzymatic synthesis verified in a competitive binding assay: an N-glycan presenting two blood group O epitopes (H-type 2 antigen). Molecular modeling of the complex suggests a bivalent interaction of the ligand with the LecB tetramer by bridging two separate binding sites. This binding rationalizes the strong avidity (35 nM) of LecBPA14 to this human fucosylated N-glycan. Biochemical evaluation of a panel of glycan ligands revealed that LecBPA14 demonstrated higher glycan affinity compared to LecBPAO1 including the extraordinarily potent affinity of 70 nM towards the monovalent human antigen Lewisa. The structural basis of this unusual high affinity ligand binding for lectins was rationalized by solving the protein crystal structures of LecBPA14 with several glycans.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Ariane Khaledi
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Susanne Häussler
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - James C Paulson
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Alexander Titz
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| |
Collapse
|