1
|
Song S, Xu JT, Zhou H, Manners I, Winnik MA. Focal Point Association of Core-Crystalline Micelles with an Amphiphilic Corona Block. J Am Chem Soc 2025; 147:9919-9930. [PMID: 40052526 DOI: 10.1021/jacs.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We report the preparation of star-like supermicelles by the secondary association of triblock comicelles or scarf-like micelles driven by a change in solvency. These building blocks were synthesized by seeded growth in which crystallites of a triblock terpolymer, either PFS27-b-PTDMA81-b-POEGMA45 (to form triblock comicelles) or PFS66-b-PTDMA81-b-POEGMA45 (to form scarf-like micelles), served as seeds for crystallization-driven self-assembly (CDSA). PFS-b-PTDMA unimers were added in the seeded growth step. The corona-forming block PTDMA-POEGMA is amphiphilic and sensitive to polarity changes of the solvents. We sought solvents in which the upper critical solution temperature (UCST, TUCST) of POEGMA was slightly above room temperature (RT). Examples included 1-decanol and 1-decanol/decane mixtures. Seeded growth proceeded normally in solvents above the UCST of POEGMA. When the solution temperature was lowered below TUCST, or when the triblock comicelles or scarf-like micelles were transferred to a solvent (e.g., 1-decanol) below its TUCST, the center blocks associated to form star-like supermicelles. The addition of small amounts of THF to the medium to increase the solvency for POEGMA led to dissociation of the supermicelles. Transfer of the triblock comicelles to 1-pentanol at RT, below the UCST of PTDMA, also led to controlled secondary association to form supermicelles with a different morphology. Seeded growth with PFS25-b-PDMAEMA184 unimers led to supermicelles in which the poly(dimethylaminoethyl methacrylate) corona chains could serve as carriers for gold nanoparticles (AuNPs). These AuNP@supermicelle complexes could serve as recoverable catalysts, for example to catalyze the condensation polymerization of bis(dimethylsilyl)benzene and pentanediol. They were highly active catalysts and showed excellent mechanical robustness for recovery and reuse.
Collapse
Affiliation(s)
- Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
2
|
Lu Y, Gao J, Ren Y, Ding Y, Jia L. Synergetic Self-Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304955. [PMID: 37649168 DOI: 10.1002/smll.202304955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.
Collapse
Affiliation(s)
- Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yi Ding
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
3
|
Jiang J, Nikbin E, Liu Y, Lei S, Ye G, Howe JY, Manners I, Winnik MA. Defect-Induced Secondary Crystals Drive Two-Dimensional to Three-Dimensional Morphological Evolution in the Co-Self-Assembly of Polyferrocenylsilane Block Copolymer and Homopolymer. J Am Chem Soc 2023; 145:28096-28110. [PMID: 38088827 DOI: 10.1021/jacs.3c09791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Gang Ye
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
4
|
Ding X, Liu D, Jiang X, Chen X, Zuckermann RN, Sun J. Hierarchical Approach for Controlled Assembly of Branched Nanostructures from One Polymer Compound by Engineering Crystalline Domains. ACS NANO 2022; 16:10470-10481. [PMID: 35638769 DOI: 10.1021/acsnano.2c01171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interplay of crystalline packing, which governs atomic length-scale order, and hierarchical assembly, which governs longer length scales, is essential to fabricate complex superstructures from polymers for many applications. Here, we demonstrate that a diblock copolymer containing an N-octylglycine peptoid block, which has a propensity to crystallize, can form distinct hierarchical superstructures including a star-like morphology, a superbrush, or a nanosheet by tuning the balance between surface energy arising from the solubility of the copolymers and crystallization energy of the solvophobic polypeptoid blocks. We show that partially ordered micellar aggregates (clusters) are key intermediates that form early in the assembly process and template the formation of superstructures via the oriented fusion of individual micelles as the growth materials. Notably, the fiber-like branch of the superstructures is driven by crystallization and exhibits growth in a living linear manner. The superstructures can be internalized by mammalian cells and hold promise for biomedical applications.
Collapse
Affiliation(s)
- Xiangmin Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dandan Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Wang MQ, Zou H, Liu WB, Liu N, Wu ZQ. Bottlebrush Polymers Based on RAFT and the "C1" Polymerization Method: Controlled Synthesis and Application in Anticancer Drug Delivery. ACS Macro Lett 2022; 11:179-185. [PMID: 35574766 DOI: 10.1021/acsmacrolett.1c00706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, we reported a strategy to synthesize well-defined bottlebrush polymers. Diazoacetate macromonomers of polystyrene (1-PSn) with controlled molecular weights were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diazo can tolerate the RAFT polymerization conditions and remained on the chain end of the yielded PS macromonomer. The terminal diazo groups of the macromonomer were polymerized by the allyl PdCl/L catalyst to afford well-defined bottlebrush polymers ((1-PSn)ms) carrying a side chain on each backbone atom. Meanwhile, an amphiphilic bottlebrush polymer containing brush-shaped PS and polyethylene glycol (PEG) was synthesized by polymerization of the diazoacetate macromonomer of PEG (2-PEG) using Pd(II)-terminated (1-PSn)m as the macroinitiator. The yielded amphiphilic (1-PS30)50-b-(2-PEG)100 could self assemble into a well-defined core-shell micelle in aqueous solutions. The hydrodynamic diameter of the micelle was ca. 146 nm and had good biocompatibility. These results indicate the micelles have great potential in drug delivery.
Collapse
Affiliation(s)
- Meng-Qing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
8
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Tan‐Phat Huynh
- Laboratory of Molecular Science and Engineering Åbo Akademi University Porthaninkatu 3–5 20500 Turku Finland
| |
Collapse
|
10
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
11
|
Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 2020; 5:21-45. [PMID: 37118104 DOI: 10.1038/s41570-020-00232-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.
Collapse
|
12
|
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020; 120:4111-4140. [DOI: 10.1021/acs.chemrev.9b00774] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Zhang X, Gao C, Xie X, Liu Y, Ding S. Thioether-Facilitated Iridium-Catalyzed Hydrosilylation of Steric 1,1-Disubstituted Olefins. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic-Inorganic Composites; College of Chemical Engineering; Beijing University of Chemical Technology; North Third Ring Road 15 100029 Beijing P. R. China
| | - Chengpeng Gao
- State Key Laboratory of Organic-Inorganic Composites; College of Chemical Engineering; Beijing University of Chemical Technology; North Third Ring Road 15 100029 Beijing P. R. China
| | - Xingze Xie
- State Key Laboratory of Organic-Inorganic Composites; College of Chemical Engineering; Beijing University of Chemical Technology; North Third Ring Road 15 100029 Beijing P. R. China
| | - Yuanqi Liu
- State Key Laboratory of Organic-Inorganic Composites; College of Chemical Engineering; Beijing University of Chemical Technology; North Third Ring Road 15 100029 Beijing P. R. China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites; College of Chemical Engineering; Beijing University of Chemical Technology; North Third Ring Road 15 100029 Beijing P. R. China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; 220 Handan Rd. 200433 Shanghai P. R. China
| |
Collapse
|
14
|
Ganda S, Stenzel MH. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101195] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Wang M, Zhu Y, Han L, Qi R, He F. Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01625b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated block copolymers PPV7-b-P2VPn are utilized as building blocks to construct inky flower-like hierarchical supermicelles. The assembly process is tracked and the control of morphology is successfully realized.
Collapse
Affiliation(s)
- Meijing Wang
- Shenzhen Grubbs of Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Yulin Zhu
- Shenzhen Grubbs of Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Liang Han
- Shenzhen Grubbs of Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Rui Qi
- Shenzhen Grubbs of Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Feng He
- Shenzhen Grubbs of Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
16
|
Matern J, Dorca Y, Sánchez L, Fernández G. Revising Complex Supramolecular Polymerization under Kinetic and Thermodynamic Control. Angew Chem Int Ed Engl 2019; 58:16730-16740. [PMID: 31271244 PMCID: PMC6900041 DOI: 10.1002/anie.201905724] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Pathway complexity, hierarchical organization, out of equilibrium, and metastable or kinetically trapped species are common terms widely used in recent, high-quality publications in the field of supramolecular polymers. Often, the terminologies used to describe the different self-assembly pathways, the species involved, as well as their relationship and relative stability are not trivial. Different terms and classifications are commonly found in the literature, however, in many cases, without clear definitions or guidelines on how to use them and how to determine them experimentally. The aim of this Minireview is to classify, differentiate, and correlate the existing concepts with the help of recent literature reports to provide the reader with a general insight into thermodynamic and kinetic aspects of complex supramolecular polymerization processes. A good comprehension of these terms and concepts should contribute to the development of new complex, functional materials.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Yeray Dorca
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
17
|
Matern J, Dorca Y, Sánchez L, Fernández G. Revision komplexer supramolekularer Polymerisation unter kinetischer und thermodynamischer Kontrolle. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905724] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Yeray Dorca
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid 28040 Madrid Spanien
| | - Luis Sánchez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid 28040 Madrid Spanien
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
18
|
Wagner W, Wehner M, Stepanenko V, Würthner F. Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. J Am Chem Soc 2019; 141:12044-12054. [PMID: 31304748 DOI: 10.1021/jacs.9b04935] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Living covalent polymerization has been a subject of intense research for many decades and has culminated in the synthesis of a large variety of block copolymers (BCPs) with structural and functional diversity. In contrast, the research on supramolecular BCPs is still in its infancy and their generation by living processes remains a challenge. Here we report the formation of supramolecular block copolymers by two-component seeded living polymerization of properly designed perylene bisimides (PBIs) under precise kinetic control. Our detailed studies on thermodynamically and kinetically controlled supramolecular polymerization of three investigated PBIs, which contain hydrogen-bonding amide side groups in imide position and chlorine, methoxy, or methylthio substituents in 1,7 bay-positions, revealed that these PBIs form kinetically metastable H-aggregates, which can be transformed into the thermodynamically favored J-aggregates by seed-induced living polymerization. We show here that copolymerization of kinetically trapped states of one PBI with seeds of another PBI leads to the formation of supramolecular block copolymers by chain-growth process from the seed termini as confirmed by UV/vis spectroscopy and atomic force microscopy (AFM). This work demonstrates for the first time the formation of triblock supramolecular polymer architectures with A-B-A and B-A-B block pattern by alternate two-component seeded polymerization in a living manner.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Marius Wehner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| |
Collapse
|
19
|
Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. J Am Chem Soc 2019; 141:6110-6121. [PMID: 30889358 DOI: 10.1021/jacs.9b01089] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular copolymers are an emerging class of materials, and in the last years their potential has been demonstrated on a broad scale. Implementing noncovalent polymers with multiple components can bring together useful features such as dynamicity and new functionalities. However, mastering and tuning the microstructure of these systems is still an open challenge. In this Perspective, we aim to trace the general principles of supramolecular copolymerization by analyzing them through the lens of the well-established field of covalent copolymerization. Our goal is to delineate guidelines to classify and analyze supramolecular copolymers in order to create a fruitful platform to design and investigate new multicomponent systems.
Collapse
Affiliation(s)
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, et Matériaux, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI)-CNRS, UMR-7167 , Paris Sciences et Lettres (PSL) Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | |
Collapse
|
20
|
One‐dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Oliver AM, Gwyther J, Boott CE, Davis S, Pearce S, Manners I. Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. J Am Chem Soc 2018; 140:18104-18114. [PMID: 30452254 DOI: 10.1021/jacs.8b10993] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembled 1D block copolymer nanoparticles (micelles) are of interest for a range of applications. However, morphologically pure samples are often challenging to access, and precise dimensional control is not possible. Moreover, the development of synthetic protocols that operate on a commercially viable scale has been a major challenge. Herein, we describe the preparation 1D fiber-like micelles with crystalline cores at high concentrations by a one-pot process termed polymerization-induced crystallization-driven self-assembly (PI-CDSA). We also demonstrate the formation of uniform fibers by living PI-CDSA, a process in which block copolymer synthesis, self-assembly, and seeded growth are combined. We have demonstrated that the method is successful for block copolymers that possess the same composition as that of the seed (homoepitaxial growth) and also where the coronal chemistries differ to give segmented 1D fibers known as block co-micelles. We have also shown that heteroepitaxial growth allows the formation of scaled-up block co-micelles where the composition of both the core and corona was varied. These proof-of-concept experiments indicate that PI-CDSA is a promising, scalable route to a variety of polydisperse or uniform 1D nanoparticles based on block copolymers with different crystalline core chemistries and, therefore, functions.
Collapse
Affiliation(s)
- Alex M Oliver
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K.,Department of Chemistry , University of Victoria , Victoria , British Columbia, V8W 3V6 , Canada
| | - Jessica Gwyther
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Charlotte E Boott
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Sean Davis
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Samuel Pearce
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Ian Manners
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K.,Department of Chemistry , University of Victoria , Victoria , British Columbia, V8W 3V6 , Canada
| |
Collapse
|
22
|
Jia L, Guerin G, Lu Y, Yu Q, Manners I, Winnik MA. Creating Biomorphic Barbed and Branched Mesostructures in Solution through Block Copolymer Crystallization. Angew Chem Int Ed Engl 2018; 57:17205-17210. [DOI: 10.1002/anie.201809605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/03/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Jia
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Laboratory of Polymer Chemistry Department of Polymer Materials College of Materials Science and Engineering Shanghai University Nanchen Street 333 Shanghai 200444 China
| | - Gerald Guerin
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Yijie Lu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Qing Yu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ian Manners
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mitchell A. Winnik
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
23
|
Jia L, Guerin G, Lu Y, Yu Q, Manners I, Winnik MA. Creating Biomorphic Barbed and Branched Mesostructures in Solution through Block Copolymer Crystallization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Jia
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Laboratory of Polymer Chemistry Department of Polymer Materials College of Materials Science and Engineering Shanghai University Nanchen Street 333 Shanghai 200444 China
| | - Gerald Guerin
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Yijie Lu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Qing Yu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ian Manners
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mitchell A. Winnik
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
24
|
Boott CE, Leitao EM, Hayward DW, Laine RF, Mahou P, Guerin G, Winnik MA, Richardson RM, Kaminski CF, Whittell GR, Manners I. Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly. ACS NANO 2018; 12:8920-8933. [PMID: 30207454 DOI: 10.1021/acsnano.8b01353] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core-shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small- and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)- b-(polydimethylsiloxane) (PFS- b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers. By altering various self-assembly parameters including concentration, temperature, solvent, and BCP composition our results have established that the time taken to prepare fiber-like micelles via the living CDSA method can be reduced by decreasing temperature, by employing solvents that are poorer for the crystallizable PFS core-forming block, and by increasing the length of the PFS core-forming block. These results are of general importance for the future optimization of a wide variety of living CDSA systems. Our studies also demonstrate that the growth kinetics for living CDSA do not exhibit the first-order dependence of growth rate on unimer concentration anticipated by analogy with living covalent polymerizations of molecular monomers. This difference may be caused by the combined influence of chain conformational effects of the BCP on addition to the seed termini and chain length dispersity.
Collapse
Affiliation(s)
- Charlotte E Boott
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , U.K
| | - Erin M Leitao
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , U.K
- School of Chemical Sciences , University of Auckland , 23 Symonds Street , Auckland , 1010 , New Zealand
| | - Dominic W Hayward
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , U.K
| | - Romain F Laine
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge , CB3 0AS , U.K
| | - Pierre Mahou
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge , CB3 0AS , U.K
| | - Gerald Guerin
- Chemistry Department , University of Toronto , 80 St. George Street , Toronto , M5S 3H6 , Canada
| | - Mitchell A Winnik
- Chemistry Department , University of Toronto , 80 St. George Street , Toronto , M5S 3H6 , Canada
| | - Robert M Richardson
- School of Physics , University of Bristol , Tyndall Avenue , Bristol , BS8 1TL , U.K
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge , CB3 0AS , U.K
| | - George R Whittell
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , U.K
| | - Ian Manners
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , U.K
| |
Collapse
|
25
|
Guo Z, Zhang D, Song S, Shu Y, Chen X, Wang J. Complexes of magnetic nanospheres with amphiprotic polymer-Zn systems for the selective isolation of lactoferrin. J Mater Chem B 2018; 6:5596-5603. [PMID: 32254969 DOI: 10.1039/c8tb01341a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiprotic polymer-Zn complex magnetic nanospheres, termed Fe3O4@PCL-CMC-Zn, are designed and prepared via a step-wise synthetic strategy. Hydrophobic polycaprolactone (PCL) is firstly coated onto the magnetic Fe3O4 nanospheres, and then hydrophilic carboxymethylcellulose (CMC) is grafted onto the hydrophobic PCL blocks via an esterification reaction, followed by finally chelating with Zn2+ ions. The homogeneous core-shell structure and fastened amphiprotic polymer layer provide the as-prepared Fe3O4@PCL-CMC-Zn magnetic nanospheres with improved protein binding behavior, and the chelated Zn2+ offers the nanospheres favorable adsorption selectivity towards apo-lactoferrin. The adsorption capacity of apo-lactoferrin is high, up to 615.3 mg g-1. The exploitation of FeCl3 as a stripping reagent not only provides efficient recovery of the adsorbed apo-lactoferrin, i.e. a recovery of 83.2%, but also achieves the restoration of the lactoferrin structure. The Fe3O4@PCL-CMC-Zn magnetic nanospheres are then employed as a sorbent for the selective isolation of lactoferrin from human colostrum samples, obtaining high-purity lactoferrin as demonstrated by SDS-PAGE and Q-TOF LC-MS assays.
Collapse
Affiliation(s)
- Zhiyong Guo
- Research Center for Analytical Sciences, Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
26
|
Wu H, Hang C, Li X, Yin L, Zhu M, Zhang J, Zhou Y, Ågren H, Zhang Q, Zhu L. Molecular stacking dependent phosphorescence-fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chem Commun (Camb) 2018; 53:2661-2664. [PMID: 27424946 DOI: 10.1039/c6cc04901j] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A self-recoverable mechanoconversion of multicolor luminescence was observed by crystallization-induced self-assembly. Such a self-assembly led to the formation of nanorods with different molecular stacking modes, thus making the phosphorescence/fluorescence proportion alterable. Therefore, multicolor luminescence of the single luminophore can be achieved by a straightforward reversible mechanical stimulus.
Collapse
Affiliation(s)
- Hongwei Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China. and Shanghai Key Lab of Polymer and Electrical Insulation, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Cheng Hang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Liyuan Yin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Jian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Qing Zhang
- Shanghai Key Lab of Polymer and Electrical Insulation, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
27
|
Ji M, Dawadi MB, LaSalla AR, Sun Y, Modarelli DA, Parquette JR. Strategy for the Co-Assembly of Co-Axial Nanotube-Polymer Hybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9129-9136. [PMID: 28805395 DOI: 10.1021/acs.langmuir.7b02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured materials having multiple, discrete domains of sorted components are particularly important to create efficient optoelectronics. The construction of multicomponent nanostructures from self-assembled components is exceptionally challenging due to the propensity of noncovalent materials to undergo structural reorganization in the presence of excipient polymers. This work demonstrates that polymer-nanotube composites comprised of a self-assembled nanotube wrapped with two conjugated polymers could be assembled using a layer-by-layer approach. The polymer-nanotube nanostructures arrange polymer layers coaxially on the nanotube surface. Femtosecond transient absorption (TA) studies indicated that the polymer-nanotube composites undergo photoinduced charge separation upon excitation of the NDI chromophore within the nanotube.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - Mahesh B Dawadi
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron , Akron, Ohio 44325-3601, United States
| | - Alexandria R LaSalla
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - Yuan Sun
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| | - David A Modarelli
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory, The University of Akron , Akron, Ohio 44325-3601, United States
| | - Jon R Parquette
- Department of Chemistry, The Ohio State University , 100 W. 18th Avenue Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Bertula K, Nonappa, Myllymäki TT, Yang H, Zhu X, Ikkala O. Hierarchical self-assembly from nanometric micelles to colloidal spherical superstructures. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Liu N, He Q, Wang Y, Bu W. Stepwise self-assembly of a block copolymer-platinum(ii) complex hybrid in solvents of variable quality: from worm-like micelles to free-standing sheets to vesicle-like nanostructures. SOFT MATTER 2017; 13:4791-4798. [PMID: 28676879 DOI: 10.1039/c7sm01055a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly process of formation of worm-like micelles of a block copolymer-platinum(ii) complex hybrid is investigated with respect to the influence of solvent quality. When the solvent quality is moderately weakened, unilamellar free-standing sheets are achieved, in which the worm-like micelles snap off to form star micelles together with a few short worms. Extremely worsened solvent quality leads to unilamellar vesicle-like nanostructures, onto which only star micelles emerged. With the intermediate solvent quality, the sheets coexist with the vesicle-like nanostructures. This is well correlated with mechanistic insights regarding the morphological transition from sheet- to vesicle-like nanoassemblies. In these aggregates, short worms and star micelles still hold their core-shell structures. Furthermore, these unconventional superstructures are well interrelated with their luminescence properties. This result challenges the conventional paradigm of the amphiphilic self-assembly of surfactants and block copolymers in selective solvents, where they form bilayered nanostructures and are required universally to be rearranged during the morphological transition from micelles to vesicles.
Collapse
Affiliation(s)
- Nijuan Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Yongyue Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
30
|
Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02767] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ulrich Tritschler
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Sam Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
31
|
Qi Y, Li B, Wang Y, Huang Y. Synthesis and sequence-controlled self-assembly of amphiphilic triblock copolymers based on functional poly(ethylene glycol). Polym Chem 2017. [DOI: 10.1039/c7py01680h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Given the increasing prosperity of multifunctional poly(ethylene glycol) (mf-PEG), an amphiphilic triblock copolymer, poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(allyl glycidyl ether) (mPEG-PCL-PAGE), was synthesized by a combination of living ring-opening polymerization (ROP) and click chemistry.
Collapse
Affiliation(s)
- Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- PR China
| | - Bin Li
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- PR China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- PR China
| |
Collapse
|
32
|
Besenius P. Controlling supramolecular polymerization through multicomponent self-assembly. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28385] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 Mainz 55128 Germany
| |
Collapse
|
33
|
Li X, Gao Y, Harniman R, Winnik M, Manners I. Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. J Am Chem Soc 2016; 138:12902-12912. [DOI: 10.1021/jacs.6b05973] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Li
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Yang Gao
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert Harniman
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mitchell Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
34
|
Zhuang Z, Jiang T, Lin J, Gao L, Yang C, Wang L, Cai C. Hierarchical Nanowires Synthesized by Supramolecular Stepwise Polymerization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zeliang Zhuang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Tao Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
35
|
Zhuang Z, Jiang T, Lin J, Gao L, Yang C, Wang L, Cai C. Hierarchical Nanowires Synthesized by Supramolecular Stepwise Polymerization. Angew Chem Int Ed Engl 2016; 55:12522-7. [DOI: 10.1002/anie.201607059] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zeliang Zhuang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Tao Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
36
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1156] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
37
|
Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles. Nat Commun 2016; 7:12371. [PMID: 27538877 PMCID: PMC4992161 DOI: 10.1038/ncomms12371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale.
Collapse
|
38
|
Du VA, Qiu H, Winnik MA, Whittell GR, Manners I. Synthesis and Solution Self-Assembly of Polyisoprene-block-poly(ferrocenylmethylsilane): A Diblock Copolymer with an Atactic but Semicrystalline Core-Forming Metalloblock. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Van An Du
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Huibin Qiu
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Mitchell A. Winnik
- Department of Chemistry; University of Toronto; Toronto Ontario M5S 3H6 Canada
| | - George R. Whittell
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Ian Manners
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
39
|
Qi R, Jin Y, Cheng X, Li H, Lai S, Sun X. Water-Induced Transitions from Ellipsoidal Micelles to Chain-Like Nanostructures Self-Assembled by the Coil-Rod-Coil Block Copolymer Based on Hydrogen-Bonding Urea Groups. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rui Qi
- Center of Polymer Science and Technology; Chengdu Institute of Organic Chemistry; Chinese Academy of Science; Chengdu 610041 China
- University of Chinese Academy of Sciences; No.19A Yuquan Road Beijing 100049 China
| | - Yong Jin
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Xinfeng Cheng
- Center of Polymer Science and Technology; Chengdu Institute of Organic Chemistry; Chinese Academy of Science; Chengdu 610041 China
- University of Chinese Academy of Sciences; No.19A Yuquan Road Beijing 100049 China
| | - Hanping Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Shuangquan Lai
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Xiaopeng Sun
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| |
Collapse
|
40
|
Zhang Z, Zhou C, Dong H, Chen D. Solution-Based Fabrication of Narrow-Disperse ABC Three-Segment and Θ-Shaped Nanoparticles. Angew Chem Int Ed Engl 2016; 55:6182-6. [DOI: 10.1002/anie.201511768] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Changming Zhou
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Haiyan Dong
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| |
Collapse
|
41
|
Zhang Z, Zhou C, Dong H, Chen D. Solution-Based Fabrication of Narrow-Disperse ABC Three-Segment and Θ-Shaped Nanoparticles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Changming Zhou
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Haiyan Dong
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science; Fudan University; 220 Handan Road Shanghai 200433 P.R. China
| |
Collapse
|
42
|
Nazemi A, Boott CE, Lunn DJ, Gwyther J, Hayward DW, Richardson RM, Winnik MA, Manners I. Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media. J Am Chem Soc 2016; 138:4484-93. [DOI: 10.1021/jacs.5b13416] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Nazemi
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charlotte E. Boott
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - David J. Lunn
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Dominic W. Hayward
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert M. Richardson
- H.
H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
43
|
Li X, Gao Y, Boott CE, Hayward DW, Harniman R, Whittell GR, Richardson RM, Winnik MA, Manners I. “Cross” Supermicelles via the Hierarchical Assembly of Amphiphilic Cylindrical Triblock Comicelles. J Am Chem Soc 2016; 138:4087-95. [DOI: 10.1021/jacs.5b12735] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaoyu Li
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Yang Gao
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charlotte E. Boott
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Dominic W. Hayward
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert Harniman
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
44
|
Hailes RLN, Oliver AM, Gwyther J, Whittell GR, Manners I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev 2016; 45:5358-407. [DOI: 10.1039/c6cs00155f] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This comprehensive review covers polyferrocenylsilanes (PFSs), a well-established, readily accessible class of main chain organosilicon metallopolymer. The focus is on the recent advances involving PFS homopolymers and block copolymers and the article covers the synthesis, properties, and applications of these fascinating materials.
Collapse
Affiliation(s)
| | | | | | | | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol
- UK
| |
Collapse
|
45
|
Yang B, Huang Q, Liu H, Zhao Y, Du J. Hairy cylinders based on a coil-comb-coil copolymer. RSC Adv 2016. [DOI: 10.1039/c6ra20862b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present the preparation and possible formation mechanism of hairy cylinders self-assembled from a coil-comb-coil copolymer.
Collapse
Affiliation(s)
- Bo Yang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| | - Qiutong Huang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Jianzhong Du
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| |
Collapse
|
46
|
Yang JX, Fan B, Li JH, Xu JT, Du BY, Fan ZQ. Hydrogen-Bonding-Mediated Fragmentation and Reversible Self-assembly of Crystalline Micelles of Block Copolymer. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02349] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jie-Xin Yang
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Fan
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun-Huan Li
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin-Yang Du
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Cai C, Lin J, Zhu X, Gong S, Wang XS, Wang L. Superhelices with Designed Helical Structures and Temperature-Stimulated Chirality Transitions. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingyu Zhu
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuting Gong
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Song Wang
- Department
of Chemistry, Waterloo Institute of Nanotechnology (WIN), University of Waterloo, Waterloo N2L 3G1, Canada
| | - Liquan Wang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
48
|
Gould OEC, Qiu H, Lunn DJ, Rowden J, Harniman RL, Hudson ZM, Winnik MA, Miles MJ, Manners I. Transformation and patterning of supermicelles using dynamic holographic assembly. Nat Commun 2015; 6:10009. [PMID: 26627644 PMCID: PMC4686664 DOI: 10.1038/ncomms10009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/22/2015] [Indexed: 11/26/2022] Open
Abstract
Although the solution self-assembly of block copolymers has enabled the fabrication of a broad range of complex, functional nanostructures, their precise manipulation and patterning remain a key challenge. Here we demonstrate that spherical and linear supermicelles, supramolecular structures held together by non-covalent solvophobic and coordination interactions and formed by the hierarchical self-assembly of block copolymer micelle and block comicelle precursors, can be manipulated, transformed and patterned with mediation by dynamic holographic assembly (optical tweezers). This allows the creation of new and stable soft-matter superstructures far from equilibrium. For example, individual spherical supermicelles can be optically held in close proximity and photocrosslinked through controlled coronal chemistry to generate linear oligomeric arrays. The use of optical tweezers also enables the directed deposition and immobilization of supermicelles on surfaces, allowing the precise creation of arrays of soft-matter nano-objects with potentially diverse functionality and a range of applications. Block copolymers can form micelles and assemblies of micelles (supermicelles) when placed in suitable solvents. Here, the authors use optical tweezers to control the arrangement and deposition of supermicelles into higher-order patterned nanostructures.
Collapse
Affiliation(s)
- Oliver E C Gould
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| | - Huibin Qiu
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - David J Lunn
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - John Rowden
- School of Physics, University of Bristol, Bristol BS8 1TL, UK
| | | | | | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Mervyn J Miles
- School of Physics, University of Bristol, Bristol BS8 1TL, UK
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
49
|
|
50
|
Gröschel AH, Müller AHE. Self-assembly concepts for multicompartment nanostructures. NANOSCALE 2015; 7:11841-76. [PMID: 26123217 DOI: 10.1039/c5nr02448j] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.
Collapse
Affiliation(s)
- André H Gröschel
- Molecular Materials, Department of Applied Physics, Aalto University School of Science, FIN-00076 Aalto, Espoo, Finland.
| | | |
Collapse
|