1
|
Chen B, Zhang L, Tao Y, Han J, Wang D, Wang H, Wu L, Ma X, Zhang X. Engineering cobalt phosphide with anion vacancy and carbon shell for kinetically enhanced lithium-sulfur batteries. J Colloid Interface Sci 2025; 693:137563. [PMID: 40233696 DOI: 10.1016/j.jcis.2025.137563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The widespread adoption of lithium-Sulfur (Li-S) batteries is significantly hindered by the well-known "shuttle effect" and the sluggish conversion kinetics of sulfur species. In this study, cobalt phosphide (CoP) nanoparticles are engineered with phosphorus vacancies (Pv) and a carbon shell (CoPv@C) to effectively anchor polysulfides (LiPSs) and promote their conversion. The introduction of Pv notably enhances the binding energy between CoP and LiPSs, facilitating the subsequent cleavage of the SS bond in the Li2S6 molecule. The carbon shell further aids in the chemical adsorption of LiPSs by generating a space charge region, while simultaneously shielding CoP nanoparticles from direct exposure to oxidative conditions during charge/discharge cycles. On the surface of CoPv@C nanofibers, the nucleation of Li2S exhibits rapid liquid-solid conversion dynamics, adhering to a three-dimensional progressive nucleation model. Consequently, in our case, Li-S batteries assembled with CoPv@C-modified separators exhibit an initial capacity of 1,536 mAh g-1 at 0.1 C. Significantly, Li-S batteries can afford 4 C discharge/charge along with a superior 0.019 % decline rate. These findings position CoPv@C nanofibers as a promising material for advanced Li-S batteries and offer novel insights into the design of electrocatalysts and separator engineering for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Baihui Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Lirong Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Ye Tao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Jingui Han
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Di Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Han Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| |
Collapse
|
2
|
Xu Z, Jiang H, Wang X, Zhang Z, Qiu Y, Xu J, Shan D, Guo B. Synergistic Boiling Enhancement on Hierarchical Micro-Pit/Carbon Nanotube Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40386919 DOI: 10.1021/acsami.5c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Pool boiling offers exceptional heat transfer performance, making it crucial for advanced thermal management. However, simultaneously optimizing both critical heat flux (CHF) and heat transfer coefficient (HTC) is challenging due to the inherent trade-off between promoting bubble nucleation and mitigating detrimental bubble coalescence. This study presents a micro/nano-hierarchical surface architecture designed to overcome this limitation. Fabricated via laser machining and chemical vapor deposition, the architecture comprises an array of micro pits (MPs) decorated with Co-catalyzed carbon nanotubes (CoCNTs). Computational fluid dynamics (CFD) simulations demonstrate that the MP array enhances HTC by increasing the density of nucleation sites and reducing the bubble departure diameter. Simultaneously, the CoCNTs within the MPs enhance interfacial heat transfer and promote capillary-driven liquid replenishment to the heating surface, effectively mitigating dry-out and significantly improving CHF. The synergistic effects of these micro/nanofeatures yield remarkable performance enhancements on Cu substrates, with the HTC and CHF increasing by 211.5% and 125.2%, respectively, compared to a bare Cu surface. This hierarchical surface design offers a promising strategy for developing high-performance boiling heat transfer surfaces for next-generation thermal management applications.
Collapse
Affiliation(s)
- Zhiming Xu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongpeng Jiang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoliang Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhirong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, 211 Jianjun East Road, Tinghu District, Yancheng, Jiangsu Province 224051, China
| | - Yunfeng Qiu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- Faculty of Life Science and Medicine, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Jie Xu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Debin Shan
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Guo
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Li W, Chen Y, Liu S, Tang J. Enhanced electrocatalytic performance of carbon-coated NiCoO 2/NiCo composites for efficient water splitting. Sci Rep 2025; 15:12294. [PMID: 40210966 PMCID: PMC11986038 DOI: 10.1038/s41598-025-96880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The urgent need for sustainable energy conversion technologies has propelled the development of efficient and cost-effective electrocatalysts for water splitting. In this study, we synthesize carbon-coated NiCoO2/NiCo@C composites through the calcination of CoNi Prussian Blue Analogues nanocubes, aiming to enhance the electrocatalytic performance for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Our findings demonstrate that the NiCoO2/NiCo@C composites exhibit outstanding catalytic activity, achieving low overpotentials of 329 mV for OER and 61.9 mV for HER at a current density of 10 mA cm-2, with robust stability under prolonged operational conditions. The enhanced activity is attributed to the large interface area and high density of exposed active sites facilitated by the unique heterojunction structure of NiCoO2/NiCo particles embedded in carbon frameworks and nanotubes. This architecture not only prevents the agglomeration of metal nanoparticles but also promotes efficient electron and proton transfer, significantly boosting electrochemical performance. This study introduces a promising approach for designing high-performance, cost-effective electrocatalysts, paving the way for their application in industrial water electrolysis.
Collapse
Affiliation(s)
- Weijun Li
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yajuan Chen
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
| | - Siyuan Liu
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
| | - Jing Tang
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China.
| |
Collapse
|
4
|
Aleman AM, Crago CF, Kamat GA, Mule AS, Avilés Acosta JE, Matthews JE, Keyes N, Hannagan RT, Nielander AC, Stevens MB, Jaramillo TF. Multimodal In Situ Characterization Uncovers Unexpected Stability of a Cobalt Electrocatalyst for Acidic Sustainable Energy Technologies. J Am Chem Soc 2025; 147:10309-10319. [PMID: 40079839 DOI: 10.1021/jacs.4c16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
An accelerated development of durable and affordable sustainable energy technologies is often hindered by a limited understanding of how nonprecious materials within these systems degrade. In acidic proton exchange membrane fuel cells and water electrolyzers, metallic cobalt (Co) is considered an unstable component that is often combined with precious metals or other stabilizers. To understand the mechanisms behind Co instability, we employ an experimental platform that quantifies dissolution with on-line inductively coupled plasma mass spectrometry and product formation with electrochemical mass spectrometry during electrochemical testing, along with ex situ characterization. Under varied conditions (electrocatalysis, time, gas-type saturation, and ion concentration), windows of Co stability are observed that are different than predicted with classical chemical thermodynamics, suggesting new stabilization and degradation mechanisms than previously understood. Notably, Co is active for the hydrogen evolution reaction (HER), with prolonged stability that is ∼300 mV greater than thermodynamically projected. Additionally, in an oxygenated environment, Co concurrently performs the HER and the oxygen reduction reaction (ORR) yet undergoes different morphology changes and dissolution mechanisms. Interestingly, at open-circuit voltage, there is a 22× decrease in dissolution in an oxygen-free environment, proposing a route to decrease Co losses during device shutdown protocols. Lastly, under more extreme operating conditions, Co becomes stable after a substantial amount of dissolution, suggesting that high concentrations of Co2+ ions in the microenvironment induce the formation of a stable CoHO2 surface. Altogether, these results can be leveraged to improve the design and development of more robust and cost-effective sustainable energy technologies, as well as promote strategic strategies for prolonged material utilization.
Collapse
Affiliation(s)
- Ashton M Aleman
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Colin F Crago
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aniket S Mule
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jaime E Avilés Acosta
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Department of Materials Science, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Jesse E Matthews
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Nathaniel Keyes
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Ryan T Hannagan
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Ghanem LG, Taha MM, Shaheen BS, Allam NK. Unleashing the Full Potential of Electrochromic Heterostructured Nickel-Cobalt Phosphate for Optically Active High-Performance Asymmetric Quasi-Solid-State Supercapacitor Devices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17657-17671. [PMID: 37773759 DOI: 10.1021/acsami.3c11494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The rational design of hybrid systems that combine capacitor and battery merits is crucial to enable the fabrication of high energy and power density devices. However, the development of such systems remains a significant barrier to overcome. Herein, we report the design of a Ni-Co phosphate (Ni3-xCox(PO4)2·8H2O) nanoplatelet-based system via a facile coprecipitation method at ambient conditions. The nanoplatelets exhibit multicomponent synergy, exceptional charge storage capabilities, rich redox active sites (ameliorating the redox reaction activity), and high ionic diffusion rate/electron transfer kinetics. The designed Ni3-xCox(PO4)2·8H2O offered a respectable gravimetric specific capacity and marvelous capability rate (966 and 595 C g-1 at 1 and 15 A g-1) over the Ni3(PO4)2·8H2O (327.3 C g-1) and Co3(PO4)2·8H2O (68 C g-1) counterparts. Additionally, the nanoplatelets showed enhanced photoactive storage performance with a 9.7% increase in the recorded photocurrent density. Upon integration of Ni3-xCox(PO4)2·8H2O as a positive pole and commercial activated carbon as a negative pole, the constructed hybrid supercapacitor device with PVA@KOH quasi-gel electrolyte exhibits great energy and power densities of 77.7 Wh kg-1 and 15998.54 W kg-1 with remarkable cycling stability of 6000 charging/discharging cycles and prominent Coulombic efficiency of 100%. Interestingly, two assembled devices are capable of glowing a red LED bulb for nearly 180 s. This research paves the way to design and fabricate electroactive species via a facile approach for boosting the design of a plethora of supercapattery devices.
Collapse
Affiliation(s)
- Loujain G Ghanem
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Manar M Taha
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basamat S Shaheen
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
6
|
Li J, Li C, Hu Y, Guo Y, Huang Z, Cao Y, Xu J, Wang L, Sun J, Ma Y. Long-Lasting Lithium-Ion Batteries Enabled by Advanced Anode Design of a Hydrangea-like FeP/SnP@C Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12085-12094. [PMID: 39943680 DOI: 10.1021/acsami.4c19838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Transition metal phosphide (TMP)-based anode materials for lithium-ion batteries (LIBs) have garnered significant attention due to their high theoretical specific capacity and cost-effectiveness, yet they suffer from volume changes and pulverization during cycling. Herein, an advanced heterostructural FeP/SnP@C material was synthesized and applied as the anode material for tackling the key issues. The FeP/SnP@C composite comprises ultrathin nanosheets arranged in a hydrangea-like morphology, boasting a substantial specific surface area toward electrolyte penetration. Moreover, the heterogeneous interface between FeP and SnP creates a self-generated electric field, thereby improving electrochemical reaction kinetics and furnishing additional active sites for lithium storage performance. Electrochemical measurements reveal an initial discharge specific capacity of 1140.7 mAh g-1 at a current density of 0.2 A g-1, which remains at 756.1 mAh g-1 after 200 cycles. Even at a high current density of 2 A g-1, the electrode material exhibits a reversible specific capacity of 284.2 mAh g-1 after 1000 cycles, showcasing its excellent long-life cyclic stability. When assembled into full cells with commercial LiFePO4, FeP/SnP@C shows high discharge capacity and exceptional cyclic stability with a high value of 101.2 mAh g-1 after 100 cycles. This work provides new insights for rational design of TMP-based anodes for advanced LIBs.
Collapse
Affiliation(s)
- Junzhe Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Chen Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Yuqing Hu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Yu Guo
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Zhiwei Huang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jie Xu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Liang Wang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ji Sun
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Maanshan 243002, China
| | - Yangzhou Ma
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Maanshan 243002, China
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
7
|
Souza MR, Cardoso ESF, Pinto LMC, Crivelli ISC, Rodrigues CD, Souto RS, Rezende-Filho AT, Lanza MRV, Maia G. Effective Nitrate Electroconversion to Ammonia Using an Entangled Co 3O 4/Graphene Nanoribbon Catalyst. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1295-1310. [PMID: 39729587 PMCID: PMC11783537 DOI: 10.1021/acsami.4c18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO3-) to ammonia (NH4+) due to the useful application of NH4+ in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied Co3O4/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO3- to NH4+, where NH4+ yield rate of 42.11 mg h-1 mgcat-1, FE of 98.7%, NO3- conversion efficiency of 14.71%, and NH4+ selectivity of 100% were obtained, with the application of only 37.5 μg cm-2 of the catalysts (for the best catalyst ─Co3O4(Cowt %55)GNR, only 20.6 μg cm-2 of Co was applied), confirmed by loadings ranging from 19-150 μg cm-2. The highly satisfactory results obtained from the application of the proposed catalysts were favored by high average values of electrochemically active surface area (ECSA) and low Rct values, along with the presence of several planes in Co3O4 entangled with GNR and the occurrence of a kind of "(Co3(Co(CN)6)2(H2O)12)1.333 complex" structure on the catalyst surface, in addition to the effective migration of NO3- from the cell cathodic branch to the anodic branch, which was confirmed by the experiment conducted using a H-cell separated by a Nafion 117 membrane. The in situ FTIR and Raman spectroscopy results helped identify the adsorbed intermediates, namely, NO3-, NO2-, NO, and NH2OH, and the final product NH4+, which are compatible with the proposed NO3- electroreduction mechanism. The Density Functional Theory (DFT) calculations helped confirm that the Co3O4(Cowt %55)GNR catalyst exhibited a better performance in terms of nitrate electroreduction in comparison with Co3O4(Cowt %75), considering the intermediates identified by the in situ FTIR and Raman spectroscopy results and the rate-determining step (RDS) observed for the transition of *NO to *NHO (0.43 eV).
Collapse
Affiliation(s)
- Marciélli
K. R. Souza
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Eduardo S. F. Cardoso
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Leandro M. C. Pinto
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Isabela S. C. Crivelli
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Clauber D. Rodrigues
- State
University of Mato Grosso do Sul, Rua Rogério Luis Rodrigues s/n, Glória de Dourados, Mato Grosso
do Sul 79730-000, Brazil
| | - Robson S. Souto
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Ary T. Rezende-Filho
- Faculty
of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Marcos R. V. Lanza
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Gilberto Maia
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| |
Collapse
|
8
|
Tang S, Zhang Z, Lv Q, Pan X, Dong J, Liu L, Wan Y, Han J, Song F. Heteroatom Engineering in Earth-Abundant Cobalt Electrocatalyst for Energy-Saving Hydrogen Evolution Coupling with Urea Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561092 DOI: 10.1021/acsami.4c11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of multifunctional electrocatalysts with high performance for electrocatalyzing urea oxidation-assisted water splitting is of great significance for energy-saving hydrogen production. In this work, we demonstrate a novel heteroatom engineering strategy for development of B-doped Co as a multifunctional electrocatalyst for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and urea oxidation reaction (UOR). Density functional theory (DFT) results suggest that a B dopant can efficiently adjust the electron reconstruction of the exposure of Co sites nearby and facilitate electron transfer, resulting in an optimal d-band center along with a lower Gibbs free energy barrier. Ultimately, the obtained B-Co exhibits pH-universal HER properties in various electrolytes. A highly efficient HER performance with overpotentials as low as 27, 163, and 430 mV to -10, -100, and -500 mA cm-2 in 1.0 M KOH, respectively, is observed for the B-Co electrode. More importantly, the UOR-assisted electrolyzer only requires a voltage input of 1.55 V to produce the current densities of 50 mA cm-2, resulting in a 200 mV saving-energy potential compared to water electrolysis, demonstrating its high efficiency of hydrogen production in industrial applications.
Collapse
Affiliation(s)
- Siyuan Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhipeng Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quanjiang Lv
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianling Dong
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luyu Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jian Han
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Fuzhan Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Sadan S, Svenum IH, Hanslin SØ, Akola J. Reaction modelling of hydrogen evolution on nickel phosphide catalysts: density functional investigation. Phys Chem Chem Phys 2024; 26:25957-25968. [PMID: 39365166 DOI: 10.1039/d4cp02760d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Nickel phosphides (NixPy), particularly Ni2P, are promising catalysts for the acidic hydrogen evolution reaction (HER). Using density functional theory (DFT), we model HER at the potential of zero charge (PZC), incorporating solvation effects via an explicit water cluster and implicit surrounding solvent. Comparing the Volmer, Tafel, and Heyrovsky steps under saturated hydrogen coverage on Ni2P(0001) terminations, we find that the Ni3P2 (pristine) surface termination prefers the Volmer-Volmer-Tafel (VVT) pathway with activation energy (Ea) of 0.57 eV. Conversely, the Ni3P2 + 4P (reconstructed) surface favors the Volmer-Heyrovsky (VH) pathway with Ea = 0.60 eV. For the pristine surface termination, the differential gas-phase hydrogen adsorption free energies (ΔGdiff) correlate with the Volmer and Tafel step reaction energies, and a linear Bell-Evans-Polanyi relationship for the calculated activation and reaction energies validates the usefulness of the ΔGdiff descriptor for the Volmer step under PZC conditions. Nickel atoms play a crucial role in H2 production on both pristine and reconstructed surfaces, suggesting that modifications of the Ni sites can be used for catalyst design. Our findings highlight the importance of considering surface reconstruction and solvation effects on the HER catalytic performance.
Collapse
Affiliation(s)
- Syam Sadan
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Ingeborg-Helene Svenum
- SINTEF Industry, Postboks 4760 Torgarden, NO-7465 Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sander Ø Hanslin
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
- Computational Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| |
Collapse
|
10
|
Adam A, Díez-García MI, Morante JR, Chen Z, Tian Z, Adamu H, Qamar M. Sparkling Synergy: Enhancing Hydrogen Evolution with a Mesoporous CoP/FeP Interface. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39363631 DOI: 10.1021/acsami.4c09579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The reaction kinetics is predominantly determined by the surface and interface engineering of electrocatalysts. Herein, we demonstrate the growth of cobalt monophosphide and iron monophosphide (CoP/FeP) with an effective solid interface. The surface of CoP/FeP is mesoporous, which is obtained by phosphidizing mesoporous CoFe2O4. The CoP/FeP electrode exhibits substantially superior hydrogen evolution reaction (HER) performance compared to CoP and FeP. The overpotentials (η) required to generate 10 mA cm-2 are determined to be around 98 mVRHE (CoP/FeP), 220 mVRHE (FeP), and 265 mVRHE (CoP) in an acidic electrolyte. The exchange current density and Tafel slopes suggest that CoP/FeP has better redox properties and kinetic abilities compared to FeP and CoP. Furthermore, the CoP/FeP electrode exhibits reduced electrochemical impedance and superior surface charge transport characteristics in comparison to both the CoP and FeP electrodes. In addition to having a greater number of catalytically active sites, the turnover frequency of CoP/FeP is approximately 2 and 5 times higher than that of FeP and CoP, respectively. The CoP/FeP electrode maintains a consistent current density of around 25 mA cm-2 for a continuous period of 24 h during the HER, attesting to the excellent durability of the CoP/FeP electrode. In addition, a relationship between differential hydrogen adsorption energy (ΔEH), the corresponding Gibbs free energy change (ΔGH), and the hydrogen coverage on distinct surfaces, namely, CoP, FeP, and CoP/FeP, is established. The calculation findings show that the CoP/FeP surface, which is predominantly exposed with CoP, exhibits the highest catalytic potential for the HER. The estimation of the specific HER activity of the electrodes, normalized to the electrochemically active surface area, corroborates the calculation findings.
Collapse
Affiliation(s)
- Alaaldin Adam
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - María Isabel Díez-García
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adriá de Besós, Barcelona 08930, Spain
| | - Joan Ramon Morante
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adriá de Besós, Barcelona 08930, Spain
| | - Zijin Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, PR China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, PR China
| | - Haruna Adamu
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Materials Science and Engineering Department King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Vinu M, Chiang KY. Highly efficient oxygen carrier NiFeP (oxy) hydroxides nanoparticle embedded in N-doped porous carbon derived from bio-waste for bifunctional electrocatalysts. CHEMOSPHERE 2024; 366:143486. [PMID: 39401673 DOI: 10.1016/j.chemosphere.2024.143486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Developing cost-effective, readily available materials for efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting is a crucial step toward enhancing the profitability and sustainability of energy conversion systems. This research introduces a novel synthesis method for NiFeP/NPC OHs from banana peel bio-waste, a method that could revolutionize the field of materials science and electrochemistry. The use of metallic phosphides, known for their excellent electrical conductivity and catalytic activity, as bifunctional catalysts, combined with the efficient synthesis of nanoporous carbons (NPC) from banana peel bio-waste (BPW), could pave the way for a new era of sustainable and cost-effective energy conversion. By chemically activating different porogens, such as nickel, iron, and phosphorus (NiFeP), to form (oxy) hydroxides (OHs), functional carbonaceous structures with a high density of pores and large specific surface areas can be achieved. The resulting materials, designated as NiFeP/NPC OHs, are characterized by their remarkable porosity, high conductivity, large surface area, and chemical stability. These properties make NiFeP/NPC OHs particularly suitable for electrocatalysis, where they exhibit outstanding activity in both HER and OER. The optimized NiFeP/NPC OHs material shows a very low overpotential of 93 mV for HER and 243 mV for OER at 10 mA cm⁻2 and high durability over 100 h. Moreover, the bifunctional NiFeP/NPC OHs electrode demonstrates exceptional catalytic activity and stability in alkaline solutions. This study not only highlights the innovative synthesis of NPC from BPW and the cost-effective fabrication of NiFeP/NPC OHs but also sparks curiosity about the potential of this novel synthesis method.
Collapse
Affiliation(s)
- Madhan Vinu
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City 32001, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City 32001, Taiwan.
| |
Collapse
|
12
|
Zhang Q, Zhang G, Guan S, Wang J, Li K, Wang C, Guan T. N-CoFeP/NF electrocatalyst for coupling hydrogen production and oxidation reaction of various alcohols. J Colloid Interface Sci 2024; 662:686-694. [PMID: 38368826 DOI: 10.1016/j.jcis.2024.02.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Replacing the oxygen evolution reaction with the alcohols oxidation reaction (AOR) in electrolytic water is not only expected to reduce the overall energy consumption, but also realize the green synthesis of high value-added chemicals. However, designing high-activity electrocatalysts toward AOR yet faces a daunting challenge due to the indefinite conversion mechanism of different alcohols. Herein, a self-supported N-CoFeP/NF electrocatalyst on a nickel foam is synthesized via hydrothermal method, followed by low temperature nitriding and phosphating. The N-CoFeP/NF exhibits a fine nanorod nanostructure and high crystallinity. The AOR using N-CoFeP/NF catalysts requires a significantly lower potential (1.38-1.42 V vs. RHE) at 100 mA cm-2, reducing the energy input and the improvement of the overall efficiency. Moreover, alcohols with secondary hydroxyl groups located in the middle of the carbon chain underwent CC bond breakage during oxidation, yielding primarily formic acid (FE = 74 %) and acetic acid (FE = 50 %), which exhibits more attractive performance than alcohols with primary hydroxyl groups located at the end group did not undergo chemical bond breakage at a high current density of 400 mA cm-2. This study provides a novel and effective method to design TMPs and the selection of alcohols for anodic reaction, which can be used as a versatile strategy to improve the performance of anodic AOR coupled hydrogen evolution.
Collapse
Affiliation(s)
- Quan Zhang
- College of Materials Science and Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
| | - Guoli Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China; Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China
| | - Shengqin Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
| | - Jianlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
| | - Kaixi Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China.
| | - Chao Wang
- College of Materials Science and Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, PR China.
| | - Taotao Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China.
| |
Collapse
|
13
|
Wang Q, Fei Z, Shen D, Cheng C, Dyson PJ. Ginkgo Leaf-Derived Carbon Supports for the Immobilization of Iron/Iron Phosphide Nanospheres for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309830. [PMID: 38174610 DOI: 10.1002/smll.202309830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
14
|
Cao X, Tian J, Tan Y, Zhu Y, Hu J, Wang Y, Liu E, Chen Z. Interfacial Electron Potential Well Facilitates the Design of Cobalt Phosphide Heterojunctions for Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306113. [PMID: 38088524 DOI: 10.1002/smll.202306113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/22/2023] [Indexed: 05/12/2024]
Abstract
The interfacial electron modulation of electrocatalysts is an effective way to realize efficient hydrogen production, which is of great importance for future renewable energy systems. However, systematic theory-guided design of catalysts in heterojunction coupling is lacking. In this work, a multi-level theoretical calculation is performed to screen optimal candidates to form a heterojunction with CoP (101) surface for electrocatalytic hydrogen production. To overcome the weak adsorption of H+ on CoP (101), rational design of electrons potential well at the heterojunction interface can effectively enhance the hydrogen adsorption. All p-type cobalt-based phosphides are considered potential candidates at the beginning. After screening for conductivity, stability, interface matching screening, and ΔGH* evaluation, the CoP/Co2P-H system is identified to be able to display optimal hydrogen production performance. To verify the theoretical design, CoP, CoP/Co2P-H, and CoP/Co2P-O are synthesized and the electrochemical analysis is carried out. The hydrogen evolution reaction (HER) performance is consistent with the prediction. This work utilizes the electron potential well effect and multi-level screening calculations to design highly efficient heterojunction catalysts, which can provide useful theoretical guidance for the rational design of heterojunction-type catalysts.
Collapse
Affiliation(s)
- Xiaofei Cao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jingzhuo Tian
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuan Tan
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yucheng Zhu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- The Education Department of Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Xi'an, 710069, China
| | - Yao Wang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Enzhou Liu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Liu Y, Li Y, Liu Z, Feng T, Lin H, Li G, Wang K. Uniform P-Doped MnMoO 4 Nanosheets for Enhanced Asymmetric Supercapacitors Performance. Molecules 2024; 29:1988. [PMID: 38731479 PMCID: PMC11085725 DOI: 10.3390/molecules29091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Manganese molybdate has garnered considerable interest in supercapacitor research owing to its outstanding electrochemical properties and nanostructural stability but still suffers from the common problems of transition metal oxides not being able to reach the theoretical specific capacitance and lower electrical conductivity. Doping phosphorus elements is an effective approach to further enhance the electrochemical characteristics of transition metal oxides. In this study, MnMoO4·H2O nanosheets were synthesized on nickel foam via a hydrothermal route, and the MnMoO4·H2O nanosheet structure was successfully doped with a phosphorus element using a gas-solid reaction method. Phosphorus element doping forms phosphorus-metal bonds and oxygen vacancies, thereby increasing the charge storage and conductivity of the electrode material. The specific capacitance value is as high as 2.112 F cm-2 (1760 F g-1) at 1 mA cm-2, which is 3.2 times higher than that of the MnMoO4·H2O electrode (0.657 F cm-2). The P-MnMoO4//AC ASC device provides a high energy density of 41.9 Wh kg-1 at 666.8 W kg-1, with an 84.5% capacity retention after 10,000 charge/discharge cycles. The outstanding performance suggests that P-MnMoO4 holds promise as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Yan Li
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Zhuohao Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Tao Feng
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Huichuan Lin
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Gang Li
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
16
|
Wang J, Yang J, Huang F, Li Y, Luo Y, Xue Y, Cai N, Li H, Yu F. Porous tremella-like NiMoP/CoP network electrodes as an efficient electrocatalyst. Phys Chem Chem Phys 2024; 26:11667-11675. [PMID: 38563364 DOI: 10.1039/d3cp04423h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The design of efficient, stable and cost-effective electrocatalysts for the hydrogen evolution reaction holds substantial significance in water electrolysis, but it remains challenging. Tremella-like nickel-molybdenum bimetal phosphide encapsulated cobalt phosphide (NiMoP/CoP) with hierarchical architectures has been effectively synthesized on nickel foam (NF) via a straightforward hydrothermal followed by low-temperature phosphating method. Based on the unique structural benefits, it significantly increases the number of redox active centers, enhances the electrical conductivity of materials, and diminishes the ion diffusion path lengths, thereby promoting efficient electrolyte penetration and reducing the inherent resistance. The as-obtained NiMoP/CoP/NF electrocatalyst exhibited remarkable catalytic activity with an ultralow overpotential of 38 mV (10 mA cm-2) and low Tafel slope of 83 mV dec-1. The straightforward synthesis process and exceptional electrocatalytic properties of NiMoP/CoP/NF demonstrate great potential for the HER to replace the precious metal catalyst.
Collapse
Affiliation(s)
- Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jie Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Fuhua Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yuru Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yu Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology Hubei Engineering Research Center for Advanced Fine Chemicals School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
- Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st road, Wuhan 430205, Hubei, China
| |
Collapse
|
17
|
Gan Y, Ye Y, Dai X, Yin X, Cao Y, Cai R, Feng B, Wang Q, Wu Y, Zhang X. Nickel molybdate/cobalt iron carbonate hydroxide heterojunction with oxygen vacancy enables interfacial synergism to trigger oxygen evolution reaction. J Colloid Interface Sci 2024; 658:343-353. [PMID: 38113543 DOI: 10.1016/j.jcis.2023.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The development of electrocatalysts with excellent performance toward oxygen evolution reaction (OER) for the production of hydrogen is of great significance to alleviate energy crisis and environmental pollution. Herein, the heterostructure (NMO/FCHC-0.4) was fabricated by the coupling growth of NiMoO4 (NMO) and cobalt iron carbonate hydroxide (FCHC) on nickel foam as an electrocatalyst for OER. The interfacial synergy on NMO/FCHC-0.4 heterojunction can promote the interfacial electron redistribution, affect the center position of d band, optimize the adsorption of intermediate, and improve the conductivity. Beyond, oxygen defect sites are conducive to the adsorption of intermediates, and increase the number of active sites. Real-time OER kinetic simulation revealed that the interfacial synergism and molybdate could reduce the adsorption of hydroxide, promote the deprotonation step of M-OH, and facilitate the formation of M-OOH (M represents the metal active site). As a result, NMO/FCHC-0.4 displays excellent OER electrocatalytic performance with an overpotential of 250/280 mV at the current density 100/200 mA cm-2 and robust stability at 100 mA cm-2 for 100 h. This work provides deep insights into the roles of interfacial electronic modulation and oxygen vacancy to design high-efficiency electrocatalysts for OER.
Collapse
Affiliation(s)
- Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China.
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Yindan Wu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Xin Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| |
Collapse
|
18
|
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
19
|
Li D, Cheng H, Hao X, Yu G, Qiu C, Xiao Y, Huang H, Lu Y, Zhang B. Wood-Derived Freestanding Carbon-Based Electrode with Hierarchical Structure for Industrial-Level Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304917. [PMID: 37560976 DOI: 10.1002/adma.202304917] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Indexed: 08/11/2023]
Abstract
The sustainable and scalable fabrication of low-cost, efficient, and durable electrocatalysts that operate well at industrial-level current density is urgently needed for large-scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N-doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial-level current density of 1000 mA cm-2 at low overpotential of 401 mV. The freestanding binder-free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere-level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost-effective freestanding electrode with monometallic, bimetallic, or trimetallic species based on abundant natural wood resources for water splitting.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Hao Cheng
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xixun Hao
- School of Light Industry and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China
| | - Guoping Yu
- Transfar Group Co., Ltd; Transfar Tower, NO. 945 Minhe Road, Hangzhou, 311217, China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yanjun Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hubiao Huang
- RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
20
|
Fan J, Chang X, Li L, Zhang M. Synthesis of CoMoO 4 Nanofibers by Electrospinning as Efficient Electrocatalyst for Overall Water Splitting. Molecules 2023; 29:7. [PMID: 38202590 PMCID: PMC10779614 DOI: 10.3390/molecules29010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
To improve the traditional energy production and consumption of resources, the acceleration of the development of a clean and green assembly line is highly important. Hydrogen is considered one of the most ideal options. The method of production of hydrogen through water splitting constitutes the most attractive research. We synthesized CoMoO4 nanofibers by electrospinning along with post-heat treatment at different temperatures. CoMoO4 nanofibers show a superior activity for hydrogen evolution reaction (HER) and only demand an overpotential of 80 mV to achieve a current density of 10 mA cm-2. In particular, the CoMoO4 catalyst also delivers excellent performances of oxygen evolution reaction (OER) in 1 M KOH, which is a more complicated process that needs extra energy to launch. The CoMoO4 nanofibers also showed a superior stability in multiple CV cycles and maintained a catalytic activity for up to 80 h through chronopotentiometry tests. This is attributed mainly to a synergistic interaction between the different metallic elements that caused the activity of CoMoO4 beyond single oxides. This approach proved that bimetallic oxides are promising for energy production.
Collapse
Affiliation(s)
| | | | - Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (J.F.); (X.C.)
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (J.F.); (X.C.)
| |
Collapse
|
21
|
Zhang H, Chen A, Bi Z, Wang X, Liu X, Kong Q, Zhang W, Mai L, Hu G. MOF-on-MOF-Derived Ultrafine Fe 2P-Co 2P Heterostructures for High-Efficiency and Durable Anion Exchange Membrane Water Electrolyzers. ACS NANO 2023. [PMID: 38009586 DOI: 10.1021/acsnano.3c09020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The alkaline hydrogen evolution reaction (HER) in an anion exchange membrane water electrolyzer (AEMWE) is considered to be a promising approach for large-scale industrial hydrogen production. Nevertheless, it is severely hampered by the inability to operate tolerable HER catalysts consistently under low overpotentials at ampere-level current densities. Here, we develop a universal ligand-exchange (MOF-on-MOF) modulation strategy to synthesize ultrafine Fe2P and Co2P nanoparticles, which are well anchored on N and P dual-doped carbon porous nanosheets (Fe2P-Co2P/NPC). In addition, benefiting from the downshift of the d-band center and the interfacial Co-P-Fe bridging, the electron-rich P site is triggered, which induces the redistribution of electron density and the swapping of active centers, lowering the energy barrier of the HER. As a result, the Fe2P-Co2P/NPC catalyst only requires a low overpotential of 175 mV to achieve a current density of 1000 mA cm-2. The solar-driven water electrolysis system presents a record-setting and stable solar-to-hydrogen conversion efficiency of 20.36%. Crucially, the catalyst could stably operate at 1000 mA cm-2 over 1000 h in a practical AEMWE at an estimated cost of US$0.79 per kilogram of H2, which achieves the target (US$2 per kg of H2) set by the U.S. Department of Energy (DOE).
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- Donghai Laboratory, Zhoushan 316021, China
| | - Anran Chen
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zenghui Bi
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xinzhong Wang
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guangzhi Hu
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- Donghai Laboratory, Zhoushan 316021, China
| |
Collapse
|
22
|
Zuo X, Zhang D, Zhang J, Fang T. Magnetic induction heating and drug release properties of magnetic carbon nanotubes. Int J Hyperthermia 2023; 40:2280448. [PMID: 37987751 DOI: 10.1080/02656736.2023.2280448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
AIM The use of magnetic carbon nanotubes for multi-modal cancer treatment, incorporating both hyperthermia and drug delivery functions, has drawn substantial interest. Yet, the present method of regulating hyperthermia temperature involves manually adjusting the magnetic field intensity, adding to the complexity and difficulty of clinical applications. This study seeks to design novel magnetic carbon nanotubes capable of self-temperature regulation, and investigate their drug loading and release characteristics. METHODS Using the co-precipitation method, we synthesized magnetic carbon nanotubes with a Curie temperature of 43 °C. A comprehensive investigation was conducted to analyze their morphology, crystal structure, and magnetic characteristics. To enhance their functionality, chitosan and sodium alginate modifications were introduced, enabling the loading of the antitumor drug doxorubicin hydrochloride (DOX) into these magnetic carbon nanotubes. Subsequently, the loading and release properties of DOX were investigated within the modified magnetic nanotubes. RESULTS Under alternating magnetic field, magnetic carbon nanotubes exhibit self-regulating properties by undergoing a magnetic phase transition, maintaining temperatures around 43 °C as required for hyperthermia. On the other hand, during magnetic induction heating, the release percentage of DOX reached 23.5% within 2 h and 71.7% within 70 h at tumor pH conditions, indicating their potential for sustained drug release. CONCLUSIONS The prepared magnetic carbon nanotubes can effectively regulate the temperature during hyperthermia treatment while ensuring controlled drug release, which presents a promising method for preparing nanomaterials that synergistically enhance magnetic hyperthermia and chemotherapy drugs.
Collapse
Affiliation(s)
- Xudong Zuo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Jiandong Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Tao Fang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| |
Collapse
|
23
|
Nangan S, Natesan T, Sukmas W, Okhawilai M, Justice Babu K, Tsuppayakorn-Aek P, Bovornratanaraks T, Wongsalam T, Vimal V, Uyama H, Al-Enizi AM, Kansal L, Sehgal SS. Waste plastics derived nickel-palladium alloy filled carbon nanotubes for hydrogen evolution reaction. CHEMOSPHERE 2023; 341:139982. [PMID: 37648169 DOI: 10.1016/j.chemosphere.2023.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Carbon nanotubes (CNTs) composed of bimetallic nickel-palladium (NiPd) nanoparticles encapsulated in graphitic carbon shells (NdPd@CNT) are prepared by the chemical vapour deposition method using waste polyethylene terephthalate (PET) plastic carbon sources and NiPd-decorated carbon sheets (NiPd@C) catalyst. The characterization results reveal that the face-centered cubic crystalline (fcc)-structured NiPd bimetallic alloy nanoparticles are encased by thin carbon nanotubes. The bimetallic synergism of NiPd nanoparticles actuates the outer CNT layers and accelerates the electrical conductivity, stimulating the electrochemical activity toward an effective hydrogen evolution reaction (HER). By virtue of the collective individualities of highly conductive aligned carbon walls and bimetallic active sites, the NiPd@CNT-equipped HER delivers a minimum overpotential of 87 mV and a Tafel slope value of 95 mV dec-1. The existing intact contact between NiPd and CNT facilitates continuous electron and ion transportation and firm stability toward long-term hydrogen production in HER. Notably, the NiPd@CNT reported here produces excellent electrochemical activity with minimal charge transference resistance, substantiating the efficacy of NiPd@CNT for futuristic green hydrogen production.
Collapse
Affiliation(s)
- Senthilkumar Nangan
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMTAS), Saveetha University, Chennai, 600077, Tamilnadu, India
| | - Wiwittawin Sukmas
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | - Prutthipong Tsuppayakorn-Aek
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Bovornratanaraks
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tawan Wongsalam
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vrince Vimal
- Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Lavish Kansal
- School Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
24
|
Yoon SJ, Lee SJ, Kim MH, Park HA, Kang HS, Bae SY, Jeon IY. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2613. [PMID: 37764642 PMCID: PMC10535723 DOI: 10.3390/nano13182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER.
Collapse
Affiliation(s)
| | | | | | | | | | - Seo-Yoon Bae
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| | - In-Yup Jeon
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| |
Collapse
|
25
|
Huang M, Jiang Y, Luo Z, Wang J, Ding Z, Guo X, Liu X, Wang Y. Transition metal doped WSi 2N 4monolayer for water splitting electrocatalysts: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:485001. [PMID: 37665141 DOI: 10.1088/1361-648x/acf263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
High-performance water splitting electrocatalysts are urgently needed in the face of the environmental degradation and energy crisis. The first principles method was used in this study to systematically examine the electronic characteristics of transition metal (Sc, Ti, V, Cr, Mn, Fe, and Ru) doped WSi2N4(TM@WSi2N4) and its potential as oxygen evolution reaction (OER) catalysts. Our study shows that the doping of TM atoms significantly improves the catalytic performance of TM@WSi2N4, especially Fe@WSi2N4shows a low overpotential (ηOER= 470 mV). Interestingly, we found that integrated-crystal orbital Hamilton population and d-band center can be used as descriptors to explain the high catalytic activity of Fe@WSi2N4. Subsequently, Fe@WSi2N4exhibits the best hydrogen evolution reaction (HER) activity with a universal overpotential of 47 mV on N1sites. According to our research, Fe@WSi2N4offers a promising substitute for precious metals as a catalyst for overall water splitting with low OER and HER overpotentials.
Collapse
Affiliation(s)
- Mengya Huang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
- College of Big Health, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Yan Jiang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Zijiang Luo
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, People's Republic of China
| | - Jihong Wang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zhao Ding
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Xiang Guo
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, People's Republic of China
| | - Yi Wang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| |
Collapse
|
26
|
Liu Z, Zhang T, Lin Y, Jia H, Wang Y, Wang Y, Zhang G. Highly N-Doped Fe/Co Phosphide Superstructures for Efficient Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302475. [PMID: 37231568 DOI: 10.1002/smll.202302475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Developing an inexpensive bifunctional electrocatalyst for overall water splitting is critical for acquiring scalable green hydrogen and thereby realizing carbon neutralization. Herein, an "all-in-one" method is developed for the fabrication of highly N-doped binary FeCo-phosphides (N-FeCoP) with hierarchical superstructure, this delicately designed synthesis route allows the following merits for benefiting water splitting electrocatalysis in alkaline, including high N/defect-doping for mediating the surface property of the as-made N-FeCoP, binary Fe and Co components exhibiting strong coupling interaction, and 3D hierarchical superstructure for shortening diffusion length and thereby improving reaction kinetics. Electrochemical measurements reveal that the N-FeCoP sample exhibits very low overpotentials for initiating the hydrogen and oxygen evolution reactions. Remarkably, overall water splitting can be promoted on N-FeCoP using a commercial primary Zn-MnO2 battery. The developed synthesis strategy may potentially inspire the preparation of other N-doped metal-based nanostructures for broad electrocatalysis.
Collapse
Affiliation(s)
- Zhicheng Liu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Tian Zhang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yan Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Hongrui Jia
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yaqun Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yiyan Wang
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., LTD, Shanghai, 201208, China
| | - Guoxin Zhang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
27
|
Tian G, Liu X, Song S, Zhang Q, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. In Situ Formation of CoP/Co 3 O 4 Heterojunction for Efficient Overall Water Splitting. Chemistry 2023; 29:e202301478. [PMID: 37332063 DOI: 10.1002/chem.202301478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Electrochemical water splitting is an environmentally friendly and effective energy storage method. However, it is still a huge challenge to prepare non-noble metal based electrocatalysts that possess high activity and long-term durability to realize efficient water splitting. Here, we present a novel method of low-temperature phosphating for preparing CoP/Co3 O4 heterojunction nanowires catalyst on titanium mesh (TM) substrate that can be used for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting. CoP/Co3 O4 @TM heterojunction showed an excellent catalytic performance and long-term durability in 1.0 M KOH electrolyte. The overpotential of CoP/Co3 O4 @TM heterojunction was only 257 mV at 20 mA cm-2 during the OER process, and it could work stably more than 40 h at 1.52 V versus reversible hydrogen electrode (vs. RHE). During the HER process, the overpotential of CoP/Co3 O4 @TM heterojunction was only 98 mV at -10 mA cm-2 . More importantly, when used as anodic and cathodic electrocatalyst, they achieved 10 mA cm-2 at 1.59 V. The Faradaic efficiencies of OER and HER were 98.4 % and 99.4 %, respectively, outperforming Ru/Ir-based noble metal electrocatalysts and other non-noble metal electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Guoliang Tian
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiaolei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuhong Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
28
|
Yang J, Bashir T, Lin Y, Gao L. A Ni-doped Mo 2C/NCF composite for efficient electrocatalytic hydrogen evolution. Chem Commun (Camb) 2023. [PMID: 37464869 DOI: 10.1039/d3cc01810e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Ni-Mo2C nano catalysts dispersed on N-doped carbon flowers: a composite with nitrogen-containing carbon flowers carrying nickel-modified molybdenum carbide exhibits enhanced HER catalytic activity in alkaline electrolyte.
Collapse
Affiliation(s)
- Jie Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China.
| | - Tariq Bashir
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China.
| | - Yanping Lin
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lijun Gao
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China.
| |
Collapse
|
29
|
Zhang XL, Yu PC, Su XZ, Hu SJ, Shi L, Wang YH, Yang PP, Gao FY, Wu ZZ, Chi LP, Zheng YR, Gao MR. Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. SCIENCE ADVANCES 2023; 9:eadh2885. [PMID: 37406120 DOI: 10.1126/sciadv.adh2885] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Large-scale deployment of proton exchange membrane (PEM) water electrolyzers has to overcome a cost barrier resulting from the exclusive adoption of platinum group metal (PGM) catalysts. Ideally, carbon-supported platinum used at cathode should be replaced with PGM-free catalysts, but they often undergo insufficient activity and stability subjecting to corrosive acidic conditions. Inspired by marcasite existed under acidic environments in nature, we report a sulfur doping-driven structural transformation from pyrite-type cobalt diselenide to pure marcasite counterpart. The resultant catalyst drives hydrogen evolution reaction with low overpotential of 67 millivolts at 10 milliamperes per square centimeter and exhibits no degradation after 1000 hours of testing in acid. Moreover, a PEM electrolyzer with this catalyst as cathode runs stably over 410 hours at 1 ampere per square centimeter and 60°C. The marked properties arise from sulfur doping that not only triggers formation of acid-resistant marcasite structure but also tailors electronic states (e.g., work function) for improved hydrogen diffusion and electrocatalysis.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Zhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Shao-Jin Hu
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ya-Rong Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology, Hefei, Anhui 230009, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Duan W, Han S, Fang Z, Xiao Z, Lin S. In Situ Filling of the Oxygen Vacancies with Dual Heteroatoms in Co 3O 4 for Efficient Overall Water Splitting. Molecules 2023; 28:molecules28104134. [PMID: 37241875 DOI: 10.3390/molecules28104134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Electrocatalytic water splitting is a crucial area in sustainable energy development, and the development of highly efficient bifunctional catalysts that exhibit activity toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance. Co3O4 is a promising candidate catalyst, owing to the variable valence of Co, which can be exploited to enhance the bifunctional catalytic activity of HER and OER through rational adjustments of the electronic structure of Co atoms. In this study, we employed a plasma-etching strategy in combination with an in situ filling of heteroatoms to etch the surface of Co3O4, creating abundant oxygen vacancies, while simultaneously filling them with nitrogen and sulfur heteroatoms. The resulting N/S-VO-Co3O4 exhibited favorable bifunctional activity for alkaline electrocatalytic water splitting, with significantly enhanced HER and OER catalytic activity compared to pristine Co3O4. In an alkaline overall water-splitting simulated electrolytic cell, N/S-VO-Co3O4 || N/S-VO-Co3O4 showed excellent overall water splitting catalytic activity, comparable to noble metal benchmark catalysts Pt/C || IrO2, and demonstrated superior long-term catalytic stability. Additionally, the combination of in situ Raman spectroscopy with other ex situ characterizations provided further insight into the reasons behind the enhanced catalyst performance achieved through the in situ incorporation of N and S heteroatoms. This study presents a facile strategy for fabricating highly efficient cobalt-based spinel electrocatalysts incorporated with double heteroatoms for alkaline electrocatalytic monolithic water splitting.
Collapse
Affiliation(s)
- Wei Duan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Shixing Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Zhonghai Fang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, No. 58 Renmin Road, Haikou 570228, China
| |
Collapse
|
31
|
Chen N, Che S, Liu H, Li G, Ta N, Jiang Chen F, Jiang B, Wu N, Li Z, Yu W, Yang F, Li Y. Multistage interfacial engineering of 3D carbonaceous Ni 2P nanospheres/nanoflowers derived from Ni-BTC metal-organic frameworks for overall water splitting. J Colloid Interface Sci 2023; 638:582-594. [PMID: 36774872 DOI: 10.1016/j.jcis.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
The regulation of the multi-dimensional interface plays an important role in optimizing the electron transport and gas mass transfer during catalysis, which is conducive to promoting the electrocatalytic process. Herein, a self-supporting electrode has been developed with the multistage interface within 3D Ni2P@C nanospheres/nanoflowers arrays derived from metal-organic frameworks (MOFs) as template skeletons and precursors. The constructed nanosphere interface protrudes outward to optimize the contact with the electrolyte while the nanoflower lamellar connection promotes rapid electron transfer and exposes more active sites, and accelerates the gas diffusion with the abundant interspace channels. According to theoretical calculation, the synergistic effect between Ni2P and C is conducive to the optimal adsorption and desorption of H*, thus contributing to the improvement of catalytic kinetics. With the optimized growth times assembled onto nickel foam substrates, the Ni2P@C-12 h requires overpotentials of only 69 mV and 205 mV to drive the current density of 10 mA cm-2 towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And it reveals an ultralow cell voltage of 1.55 V at 10 mA cm-2 to achieve overall water splitting (OWS). In addition, the stability of the Ni2P@C/NF electrocatalyst emerges as prominent long-term stability, which is attributed to the carbonaceous nanosphere anchors on the substrate to minimize the possibility of oxidation of the catalyst surface. This strategy of in situ growth of MOF-derived phosphates provides a general idea for interfacial engineering modification of OWS electrode materials.
Collapse
Affiliation(s)
- Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Na Ta
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Feng Jiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Zhengxuan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Weiqi Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| |
Collapse
|
32
|
Zeb Z, Huang Y, Chen L, Zhou W, Liao M, Jiang Y, Li H, Wang L, Wang L, Wang H, Wei T, Zang D, Fan Z, Wei Y. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
33
|
Chen N, Che S, Yuan Y, Liu H, Ta N, Li G, Chen FJ, Ma G, Jiang B, Wu N, Yu W, Yang F, Li Y. Self-supporting electrocatalyst constructed from in-situ transformation of Co(OH) 2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting. J Colloid Interface Sci 2023; 645:513-524. [PMID: 37159993 DOI: 10.1016/j.jcis.2023.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Transition metal phosphide (TMP) emerges as a promising electrocatalyst for overall water splitting (OWS). However, conventional TMP materials require exogenous metal ions to participate in coordination reactions, which usually suffer from active site blocking, pronounced intrinsic impedance, and inevitable catalyst shedding at high current density. Herein, a novel in-situ construction strategy has been developed to grow N-doped carbon (NC) enwrapped Co/CoP nanosheets directly onto Co foam (abbreviated as CoF) through a three-step transformation of Co to Co(OH)2 to Co-Metal-Organic Framework (Co-MOF) to Co/CoP/NC. In the entire preparation process, Co metal is only provided by the CoF substrate without external metal sources. Such in-situ construction yields tight contact at the interface of the heterogeneous catalyst, leading to much-reduced impedance and boundary vacancy, while the porous nitrogen-doped carbon backbone further endows the catalyst with the exposure of massive active sites, promotes mass transfer, and possesses high electrical conductivity. The Co/CoP/NC/CoF requires overpotentials of only 64 mV/263 mV@10 mA cm-2 and 414 mV/481 mV@400 mA cm-2 for both HER/OER in 1.0 M KOH, respectively. Remarkably, it reveals excellent OWS catalytic activity with a cell voltage of 1.56 V@10 mA cm-2 and 1.88 V@200 mA cm-2. This strategy of in-situ interface engineering transformation provides new ideas for direct device processing and construction of highly-efficient transition-metal-based OWS electrode materials.
Collapse
Affiliation(s)
- Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| | - Yu Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Na Ta
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Feng Jiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Weiqi Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| |
Collapse
|
34
|
Yu H, Wu L, Ni B, Chen T. Research Progress on Porous Carbon-Based Non-Precious Metal Electrocatalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3283. [PMID: 37110119 PMCID: PMC10143149 DOI: 10.3390/ma16083283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The development of efficient, stable, and economic electrocatalysts are key to the large-scale application of electrochemical energy conversion. Porous carbon-based non-precious metal electrocatalysts are considered to be the most promising materials to replace Pt-based catalysts, which are limited in large-scale applications due to high costs. Because of its high specific surface area and easily regulated structure, a porous carbon matrix is conducive to the dispersion of active sites and mass transfer, showing great potential in electrocatalysis. This review will focus on porous carbon-based non-precious metal electrocatalysts and summarize their new progress, focusing on the synthesis and design of porous carbon matrix, metal-free carbon-based catalysts, non-previous metal monatomic carbon-based catalyst, and non-precious metal nanoparticle carbon-based catalysts. In addition, current challenges and future trends will be discussed for better development of porous carbon-based non-precious metal electrocatalysts.
Collapse
|
35
|
Wei D, Chen L, Tian L, Ramakrishna S, Ji D. Hierarchically Structured CoNiP/CoNi Nanoparticle/Graphene/Carbon Foams as Effective Bifunctional Electrocatalysts for HER and OER. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Dan Wei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Lidong Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Dongxiao Ji
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
36
|
Babaei A, Rezaei M. Development of a highly stable and active non-precious anode electrocatalyst for oxygen evolution reaction in acidic medium based on nickel and cobalt-containing antimony oxide. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
37
|
Kim J, Jang YJ, Jang YH. Electrodeposition of Stable Noble-Metal-Free Co-P Electrocatalysts for Hydrogen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:593. [PMID: 36676330 PMCID: PMC9867289 DOI: 10.3390/ma16020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen production via water splitting has been extensively explored over the past few decades, and considerable effort has been directed toward finding more reactive and cost-effective electrocatalysts by engineering their compositions, shapes, and crystal structures. In this study, we developed hierarchical cobalt phosphide (Co-P) nanosphere assemblies as non-noble metal electrocatalysts via one-step electrodeposition. The morphologies of the Co-P nanostructures and their electrocatalytic activities towards the hydrogen evolution reactions (HER) were controlled by the applied potentials during electrodeposition. The physicochemical properties of the as-prepared Co-P nanostructures in this study were characterized by field-emission scanning electron microscopy, X-ray photoemission spectroscopy and X-ray diffraction. Linear sweep voltammetry revealed that the Co-P grown at -0.9 V showed the best HER performance exhibiting the highest electrochemical active surface area and lowest interfacial charge transfer resistance. The Co-P electrocatalysts showed superior long-term stability to electrodeposited Pt, indicating their potential benefits.
Collapse
Affiliation(s)
- Jeongwon Kim
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yu Jin Jang
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yoon Hee Jang
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
38
|
Gan Y, Ye Y, Dai X, Yin X, Cao Y, Cai R, Zhang X. Self-sacrificial reconstruction of MoO 42- intercalated NiFe LDH/Co 2P heterostructures enabling interfacial synergies and oxygen vacancies for triggering oxygen evolution reaction. J Colloid Interface Sci 2023; 629:896-907. [PMID: 36206678 DOI: 10.1016/j.jcis.2022.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Exploring high-efficiency electrocatalysts for oxygen evolution reaction (OER) is one of the most important concerns to produce hydrogen in water electrolysis. Herein, the FNM/Co2P-0.4 heterostructure was designed as an electrocatalyst for the OER process by the combination of MoO42- intercalating NiFe LDH and Co2P on nickel foam (NF). The surface reconstruction and MoO42- leaching can induce the conversion of Co2P and NiFe LDH on FNM/Co2P-0.4 to generate Co/NiOOH with more oxygen vacancies. Beyond, CoOOH and NiOOH can also synergize to reduce the energy barrier of OER, optimize conductivity, and improve stability. The surface reconstruction and the formation of OOH⁎ were further unveiled by in-situ UV-vis absorption spectra and Fourier-transformed alternative current voltammetry (FTACV). The integration of interfacial synergies and oxygen vacancies can facilitate the adsorption/desorption of intermediates, regulate the d-band center, and expose more active sites. And as a result, FNM/Co2P-0.4 shows a significant low overpotential (240 mV) at 50 mA cm-2, a small Tafel (74 mV dec-1), low activation energy (Ea) and remarkable durability. This work provides a new pathway to improve the OER performance by using interfacial synergies and rich oxygen vacancies derived from the self-sacrificial reconstruction of heterostructured electrocatalysts.
Collapse
Affiliation(s)
- Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
39
|
Du M, Li D, Liu S(F, Yan J. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Porous carbon framework decorated with carbon nanotubes encapsulating cobalt phosphide for efficient overall water splitting. J Colloid Interface Sci 2023; 629:22-32. [DOI: 10.1016/j.jcis.2022.08.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
|
41
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
42
|
Shu X, Yang M, Liu M, Wang H, Zhang J. In-situ formation of cobalt phosphide nanoparticles confined in three-dimensional porous carbon for high-performing zinc-air battery and water splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Li DH, Li QM, Qi SL, Qin HC, Liang XQ, Li L. Theoretical Study of Hydrogen Production from Ammonia Borane Catalyzed by Metal and Non-Metal Diatom-Doped Cobalt Phosphide. Molecules 2022; 27:8206. [PMID: 36500299 PMCID: PMC9741264 DOI: 10.3390/molecules27238206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The decomposition of ammonia borane (NH3BH3) to produce hydrogen has developed a promising technology to alleviate the energy crisis. In this paper, metal and non-metal diatom-doped CoP as catalyst was applied to study hydrogen evolution from NH3BH3 by density functional theory (DFT) calculations. Herein, five catalysts were investigated in detail: pristine CoP, Ni- and N-doped CoP (CoPNi-N), Ga- and N-doped CoP (CoPGa-N), Ni- and S-doped CoP (CoPNi-S), and Zn- and S-doped CoP (CoPZn-S). Firstly, the stable adsorption structure and adsorption energy of NH3BH3 on each catalytic slab were obtained. Additionally, the charge density differences (CDD) between NH3BH3 and the five different catalysts were calculated, which revealed the interaction between the NH3BH3 and the catalytic slab. Then, four different reaction pathways were designed for the five catalysts to discuss the catalytic mechanism of hydrogen evolution. By calculating the activation energies of the control steps of the four reaction pathways, the optimal reaction pathways of each catalyst were found. For the five catalysts, the optimal reaction pathways and activation energies are different from each other. Compared with undoped CoP, it can be seen that CoPGa-N, CoPNi-S, and CoPZn-S can better contribute hydrogen evolution from NH3BH3. Finally, the band structures and density of states of the five catalysts were obtained, which manifests that CoPGa-N, CoPNi-S, and CoPZn-S have high-achieving catalytic activity and further verifies our conclusions. These results can provide theoretical references for the future study of highly active CoP catalytic materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
44
|
Bai H, Chen D, Ma Q, Qin R, Xu H, Zhao Y, Chen J, Mu S. Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Cao Q, Cheng Z, Dai J, Sun T, Li G, Zhao L, Yu J, Zhou W, Lin J. Enhanced Hydrogen Evolution Reaction over Co Nanoparticles Embedded N-Doped Carbon Nanotubes Electrocatalyst with Zn as an Accelerant. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204827. [PMID: 36148861 DOI: 10.1002/smll.202204827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The rational design for transition metals-based carbon nano-materials as efficient electrocatalysts still remains a crucial challenge for economical electrochemical hydrogen production. Carbon nanotubes (CNTs) as attractive electrocatalysts are typically activated by non-metal dopant to promote catalytic performance. Metals doping or metal/non-metal co-doping of CNTs, however, are rarely explored. Herein, this work rationally designs bimetal oxide templates of ZnCo2 O4 for heterogeneously doping Zn and N into Co nanoparticles embedded carbon nanotubes (Co@Zn-N-CNTs). During the formation of CNTs, Zn atoms volatilize from ZnCo2 O4 and in situ dope into the carbon skeleton. In particular, owing to the low electronegativity of Zn, the electrons aptly transfer from Zn to carbon atoms, which generate a high electron density for the carbon layers and offer more preponderant catalytic sites for hydrogen reduction. The Co@Zn-N-CNTs catalyst exhibits enhanced hydrogen evolution reaction activity in 0.5 m H2 SO4 electrolyte, with a low onset potential of -20 mV versus RHE at 1 mA cm-2 , an overpotential of 67 mV at 10 mA cm-2 , a small Tafel slope of 52.1 mV dec-1 , and persistent long-term stability. This study provides brand-new insights into the utilization of Zn as electronic regulator and activity promoter toward the design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Qing Cao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Zhaoyang Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiajun Dai
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Tianxiao Sun
- Institute Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489, Berlin, Germany
| | - Guixiang Li
- Department Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489, Berlin, Germany
| | - Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
46
|
Das A, Roy D, Kumar Das B, Ansari MI, Chattopadhyay KK, Sarkar S. Zinc doping induced WS2 accelerating the HER and ORR kinetics: A theoretical and experimental validation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Ding L, Yu Z, Sun L, Jiang R, Hou Y, Huang J, Zhu H, Zhong T, Chen H, Lian C. Microelectronic structure changes electron utilization: Core-shell structure catalysts with electron library and quantum dots for photocatalytic hydrogen production. J Colloid Interface Sci 2022; 623:660-673. [DOI: 10.1016/j.jcis.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 01/17/2023]
|
48
|
Saji VS. Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. J Colloid Interface Sci 2022; 622:250-260. [DOI: 10.1016/j.jcis.2022.04.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
|
50
|
Well-dispersive Pt nanocrystals anchored onto 3D boron and nitrogen double-doped reduced graphene oxide–carbon nanotube frameworks as efficient electrocatalysts for methanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|