1
|
Jin X, Lin H, Jia X, Li S, Li X, Wang Q, Chen S, Cao J. Tunable interfacial charge transfer in a nickel sulfide/red phosphorus composite for efficient benzyl alcohol selective oxidation: Effect of nickel sulfide crystal phase. J Colloid Interface Sci 2025; 690:137315. [PMID: 40117883 DOI: 10.1016/j.jcis.2025.137315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Red phosphorus (RP) has recently attracted considerable attention in the field of photocatalysis owing to its remarkable optical properties. However, the rapid recombination of photogenerated carriers presents a substantial challenge for the application of RP in the selective photocatalytic oxidation of benzyl alcohol. Herein, a series of nickel sulfide (NiS) materials with different crystal phase, including α-NiS, β-NiS and α-β-NiS, were employed to modulate the interfacial charge transfer in RP for photocatalytic oxidation of benzyl alcohol (BA) coupled with H2 evolution. A comprehensive array of experimental and theoretical analyses has demonstrated that the Ohmic junction formed between β-NiS and RP is more conducive to enhancing the separation and migration of carriers in comparison to the Schottky junction formed between α-NiS and RP. As expected, the β-NiS/RP exhibited superior photocatalytic performance, achieving higher yields of benzaldehyde (6.79 μmol g-1 h-1) and H2 (7.16 μmol g-1 h-1) compared to α-NiS/RP, α-β-NiS(glo)/RP and α-β-NiS(fla)/RP. The observed enhancement in photocatalytic activity can primarily be attributed to the distinct carrier separation mechanisms, specifically the Ohmic contact in the β-NiS/RP system and the Schottky junction in the α-NiS/RP system. This study introduces an effective strategy for optimizing carrier migration mechanisms in composite catalysts via crystal phase modulation, thereby providing valuable insights into the design of highly efficient photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xuemei Jia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Shuang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xinyue Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Qianlong Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
2
|
Xiong Y, He C, Qi J, Xiong M, Liu S, Zhao J, Li Y, Liu G, Deng W. Black phosphorus nanosheets activate tumor immunity of glioblastoma by modulating the expression of the immunosuppressive molecule PD-L1. Biomaterials 2025; 317:123062. [PMID: 39736218 DOI: 10.1016/j.biomaterials.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms. We used a subcutaneous mouse model of GBM, which evaded immune surveillance to evaluate BPNS effects on immune cells within the tumor microenvironment. Our results demonstrated that BPNS significantly enhanced the tumor-suppressive microenvironment, reactivating immune cells' cytotoxicity against tumor cells. Moreover, further analysis revealed that BPNS counteracted the immunosuppressive state by reducing the expression of the immunosuppressive molecule PD-L1 in tumor cells, leading to an anti-tumor effect. Mechanistically, BPNS reduced PD-L1 expression through two main pathways: by inducing autophagy via binding to the HSP90 protein, leading to PD-L1 degradation through the autophagy pathway, and by inhibiting the PI3K-AKT signaling pathway, which reduced PD-L1 mRNA levels. This study expands the understanding of BPNS biological activity and suggests new strategies for utilizing BPNS as an adjuvant in immunotherapy.
Collapse
Affiliation(s)
- Yue Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Chao He
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Junyang Qi
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meimei Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuna Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingxin Zhao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Gan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Mei T, Chen F, Huang T, Feng Z, Wan T, Han Z, Li Z, Hu L, Lin CH, Lu Y, Cheng W, Qi DC, Chu D. Ion-Electron Interactions in 2D Nanomaterials-Based Artificial Synapses for Neuromorphic Applications. ACS NANO 2025. [PMID: 40297996 DOI: 10.1021/acsnano.5c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
With the increasing limitations of conventional computing techniques, particularly the von Neumann bottleneck, the brain's seamless integration of memory and processing through synapses offers a valuable model for technological innovation. Inspired by biological synapse facilitating adaptive, low-power computation by modulating signal transmission via ionic conduction, iontronic synaptic devices have emerged as one of the most promising candidates for neuromorphic computing. Meanwhile, the atomic-scale thickness and tunable electronic properties of van der Waals two-dimensional (2D) materials enable the possibility of designing highly integrated, energy-efficient devices that closely replicate synaptic plasticity. This review comprehensively analyzes advancements in iontronic synaptic devices based on 2D materials, focusing on electron-ion interactions in both iontronic transistors and memristors. The challenges of material stability, scalability, and device integration are evaluated, along with potential solutions and future research directions. By highlighting these developments, this review offers insights into the potential of 2D materials in advancing neuromorphic systems.
Collapse
Affiliation(s)
- Tingting Mei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tianxu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zijian Feng
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Zhi Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 0200, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Mei Y, Cao Y, Wang W. Emerging Violet Phosphorus Nanomaterial for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403576. [PMID: 39791284 DOI: 10.1002/adhm.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Indexed: 01/12/2025]
Abstract
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis. In this review, the classification and the relevant synthesis routes of VP are initially summarized, and the unique properties of VP nanomaterial momentous to its biomedical applications are subsequently expounded. The latest research advances of this emerging nanomaterial in the biomedical field are then introduced in detail, and both the existing challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yuanyuan Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
5
|
Cui D, Kong N, Yang W, Yan F. Recent advances in nanoarchitectonics of two-dimensional nanomaterials for dental biosensing and drug delivery. Adv Colloid Interface Sci 2025; 337:103388. [PMID: 39754906 DOI: 10.1016/j.cis.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications. In this review article, nanoarchitectonics of 2D nanomaterials based biomedical applications are discussed. We aim to provide a concise overview of how nanoarchitectonics using 2D nanomaterials can be applied to dental healthcare, with an emphasis on biosensing and drug delivery. By offering a deeper understanding of nanoarchitectonics with programmable structures and predictable properties, we hope to inspire new innovations in the dental bioapplications of 2D nanomaterials.
Collapse
Affiliation(s)
- Di Cui
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China; School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Na Kong
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
6
|
Han Y, Gao H, Yu S, Jia Q, Liang Z, Wang Y, Ding C, Wang J, Sun J. Prediction on a Missing Ferroelectric Butterfly Phosphorus Allotrope and Its Energy-Favorable Low-Dimensional Forms. J Phys Chem Lett 2025; 16:2029-2038. [PMID: 39966097 DOI: 10.1021/acs.jpclett.5c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Elemental phosphorus exhibits a remarkable diversity of allotropes, including black, white, and violet phosphorus, each with unique structural and electronic properties. Recently, phosphorus has experienced a renaissance in scientific interest for its potential applications across various fields. Among these, the red phosphorus (RP) possesses a considerable variety of stacking configurations. By analyzing the preference for the P21 building block in Type II, Type IV, and Type V RP allotropes, we proposed a novel butterfly connected structural scheme. This new structure's stability was well confirmed by ab initio calculations. It is characterized as a semiconductor with a band gap of 1.4 eV, exhibiting a red appearance. Additionally, this structure demonstrates ferroelectric behavior, making it an instance of single-element ferroelectric materials. Furthermore, our investigation of chain-type phosphorus structures within carbon nanotubes (CNTs) revealed that the butterfly type connection scheme represents the lowest energy configuration within specifically sized CNTs.
Collapse
Affiliation(s)
- Yu Han
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hao Gao
- Fisika Aplikatua Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018 Donostia/San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Manuel de Lardizabal Pasealekua 5, 20018 Donostia/San Sebastián, Spain
| | - Shaobo Yu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiuhan Jia
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhixin Liang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yunlong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chi Ding
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Sapchenko SA, Belosludov RV, Vitoria-Irezabal IJ, da Silva I, Chen X, Whitehead GFS, Maddock J, Natrajan LS, Kippax-Jones M, Alwis Jayasinghe DD, Bawn C, Polyukhov DM, Chen Y, Fedin VP, Yang S, Schröder M. Direct synthesis of a semiconductive double-helical phosphorus allotrope in a metal-organic framework. Nat Commun 2025; 16:1578. [PMID: 39939602 PMCID: PMC11821825 DOI: 10.1038/s41467-025-55999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/14/2025] Open
Abstract
There remains much ambiguity regarding the structure of red phosphorus. We report the adsorption and photo-polymerisation of P4 molecules encapsulated in an indium(III)-based metal-organic framework to afford a double-helical chain composite comprising of [P8] units. The similarity between the Raman spectrum of bulk red phosphorus and of the metal-organic framework - (P8)n adduct suggests the presence of such helical chains in the structure of amorphous red phosphorus. This provides crystallographic evidence of the structural building blocks of the red phosphorus allotrope stabilized within the pores of a metal-organic host. The (P8)n inclusion compound is an air-stable semiconductor with a band gap of 2.3 eV, which is relevant for gas detection and photo-catalysis. We demonstrate that this phosphorus adduct demonstrates a 10-fold increase in conversion in the oxidation of methyl orange dye compared with the parent metal-organic framework material.
Collapse
Affiliation(s)
- Sergei A Sapchenko
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Rodion V Belosludov
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | | | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Oxfordshire, Oxfordshire, OX11 0QX, UK
| | - Xi Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | | | - John Maddock
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Louise S Natrajan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | | | | | - Carlo Bawn
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Daniil M Polyukhov
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave, Novosibirsk, 630090, Russian Federation
- Faculty of Natural Sciences, Novosibirsk State University, 1 Pirogov Str., Novosibirsk, 630090, Russian Federation
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, PR China.
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Mu L, Gao S, Jiang J, Wang M, Chen L, Sheng S. Toward Surface Passivation of Black Phosphorus via a Self-Assembled Ferrocene Molecular Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3228-3235. [PMID: 39817351 DOI: 10.1021/acs.langmuir.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp2) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations. In addition, atomic force microscopy analysis confirms that ferrocene-passivated BP flakes with thicknesses of <10 nm exhibit minimal degradation over 25 days. Density functional theory calculations further show that ferrocene stabilizes BP and modulates its band gap, improving its electronic applicability. Notably, we find that the passivation of BP by metallocenes is universal because other metallocenes (VCp2, MnCp2, and NiCp2) exhibit similar adsorption behaviors. These findings underscore the potential of metallocenes as versatile protective layers for BP and other materials that are not stable in air.
Collapse
Affiliation(s)
- Liuhua Mu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Shiyu Gao
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Minglei Wang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Shiqi Sheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Qiu P, Wang J, Kojima T, Kazumi K, Sato H, Komatsu N, Fukami K, Sakaguchi H. Photo-Assisted Bottom-Up Synthesis of Orange Phosphorus. Angew Chem Int Ed Engl 2025; 64:e202421571. [PMID: 39714399 PMCID: PMC11795726 DOI: 10.1002/anie.202421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
A tubular strand of phosphorus composed of vectorially aligned pentagons has been theoretically predicted as a new allotrope of phosphorus with a polar structure, expecting potential applications. However, it has not been successfully synthesized yet due to the difficulty of creating isolated strands to avoid interchain bonding. Here, such an allotrope named "orange phosphorus" was successfully produced using a photo-assisted synthesis from an amorphous film of solution-processable Na2P16 precursors. A green laser irradiation initiated the phase transition of precursors, inducing chemical reactions like topochemical polymerization and rearrangement, creating a 1D chain of orange phosphorus. 3D electron diffraction crystallography showed that the molecular structure of orange phosphorus consists of one-dimensional polar pentagonal-tubes made up of [P8]P2[ repeat units. Orange phosphorus demonstrates excellent piezoresistivity due to its high strain-sensitive 1D chain structure, showing strain-induced Raman shifts. Its gauge factor exceeds those of 2D materials such as black phosphorus and transition metal dichalcogenides. These findings indicate that orange phosphorus has great potential for use in strain sensor applications.
Collapse
Affiliation(s)
- Pengcheng Qiu
- Institute of Advanced EnergyKyoto UniversityUjiKyoto 611-0011Japan
| | - Jiameng Wang
- Institute of Advanced EnergyKyoto UniversityUjiKyoto 611-0011Japan
| | - Takahiro Kojima
- Institute of Advanced EnergyKyoto UniversityUjiKyoto 611-0011Japan
| | - Kenji Kazumi
- Department of Materials Science and EngineeringKyoto UniversityKyotoKyoto 606-8501Japan
| | | | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoKyoto 606-8501Japan
| | - Kazuhiro Fukami
- Department of Materials Science and EngineeringKyoto UniversityKyotoKyoto 606-8501Japan
| | | |
Collapse
|
10
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
11
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
12
|
Eisenkolb J, Lloret V, Zink-Lorre N, Pla S, Abellán G, Sastre-Santos Á, Hauke F, Fernández-Lázaro F, Hirsch A. Investigations of Crucial Factors for the Non-Covalent Functionalization of Black Phosphorus (BP) using Perylene Diimide Derivatives for the Passivation of BP Nanosheets. Chemistry 2024:e202402166. [PMID: 39282882 DOI: 10.1002/chem.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 10/30/2024]
Abstract
The non-covalent functionalization of black phosphorus (BP) was studied with a scope of ten tailor-made perylene diimides (PDIs). A combination of UV/Vis-, fluorescence-, as well as Raman spectroscopy and atomic force microscopy was used to investigate the structural factors, which contribute to a pronounced PDI-BP interaction and thus support the protection of BP nanosheets against oxidative degradation. We were able to show, that water-soluble, amphiphilic PDIs with highly charged head groups can be used for the non-covalent functionalization of BP in aqueous media. Here, based on the hydrophobic effect, an efficient adsorption of the respective PDI molecules takes place and leads to the formation of a passivating film, yielding a considerable stabilization of the BP flakes under ambient conditions exceeding 30 days.
Collapse
Affiliation(s)
- Jasmin Eisenkolb
- Chair of Organic Chemistry II, Center of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth
| | - Vicent Lloret
- Chair of Organic Chemistry II, Center of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth
| | - Nathalie Zink-Lorre
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Sara Pla
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Frank Hauke
- Chair of Organic Chemistry II, Center of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Andreas Hirsch
- Chair of Organic Chemistry II, Center of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth
| |
Collapse
|
13
|
Gu H, Zhang T, Wang Y, Zhou T, Chen H. 2D compounds with heterolayered architecture for infrared photodetectors. Chem Sci 2024:d4sc03428g. [PMID: 39328196 PMCID: PMC11423492 DOI: 10.1039/d4sc03428g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Compounds with heterolayered architecture, as a family of two-dimensional (2D) materials, are composed of alternating positive and negative layers. Their physical properties are determined not only by the charged constituents, but also by the interaction between the two layers. This kind of material has been widely used for superconductivity, thermoelectricity, energy storage, etc. In recent years, heterolayered compounds have been found as an encouraging choice for infrared photodetectors with high sensitivity, fast response, and remarkable reliability. In this review, we summarize the research progress of heterolayered materials for infrared photodetectors. A simple development history of the materials with three-dimensional (3D) or 2D structures, which are suitable for infrared photodetectors, is introduced firstly. Then, we compare the differences between van der Waals layered 2D materials and heterolayered 2D cousins and explain the advantages of heterolayered 2D compounds. Finally, we present our perspective on the future direction of heterolayered 2D materials as an emerging class of materials for infrared photodetectors.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Tianshuo Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yunluo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Tianrui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Haijie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
14
|
Wang J, Miao Y, Lu Z, Zhang Q, Guo W, Zhao M, Zhai X, Du H. High-Yield Exfoliation of Stanene Nanodots for High-Performance Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46590-46599. [PMID: 39171824 DOI: 10.1021/acsami.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stanene nanodots (SnNDs) derived from layered tin have attracted considerable interest due to their conveniently tunable bandgap and topological superconductivity. However, high-yield exfoliation of ultrathin SnNDs is still a challenge due to the short layer spacing and strong binding energy. In this work, atomically thin SnNDs with a uniform size of 2.3 nm are successfully prepared by utilizing imidazolium ionic liquid-assisted exfoliation. The obtained SnNDs possess a wide bandgap of 2.69 eV, along with notable solvent compatibility (well dispersed in both polar and nonpolar solvents) and excellent stability. Furthermore, we construct Ir(ppy)3-based green OLED with hybridizing SnNDs and graphene oxide (GO) as the hole injection layer (HIL). It proves that the application of SnNDs helps to modulate the work function and passivate surface defects of GO, increasing hole mobility and thereby improving the device performance. Compared to the PEDOT:PSS-based control device, the optimized SnNDs-GO-based OLED demonstrates an improvement of 6.56, 41.06, and 8.16% in current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. This work not only introduces a new approach to preparing 2D SnNDs but also creates a novel HIL material for OLED devices.
Collapse
Affiliation(s)
- Jingkun Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ze Lu
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qi Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Wenhao Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Aluminum-Magnesium Based New Material R&D Co., Ltd., Subsidiary of Xing Xian County Economic and Technological Development Zone, Xing Xian County 033600, China
| | - Xinping Zhai
- Research Institute of Microscale Optoelectronics, School of Jia Yang, Zhejiang Shuren, Shaoxing, Zhejiang 312028, China
| | - Huayun Du
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
15
|
Zhang Z, He D, Zhou Y, Bai E, Qu J, Zhang YN. Fabrication of black phosphorus/CdS heterostructure with enhancement photocatalytic degradation activity for tetrabromobisphenol A and toxicity prediction of intermediates. ENVIRONMENTAL RESEARCH 2024; 256:119060. [PMID: 38751001 DOI: 10.1016/j.envres.2024.119060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Black phosphorus nanosheets (BPNs)/CdS heterostructure was successfully synthesized via hydrothermal method. The experimental results indicated that BPNs modified the surface of CdS nanoparticles uniformly. Meanwhile, the BPNs/CdS heterostructure exhibited a distinguished high rate of photocatalytic activity for Tetrabromobisphenol A (TBBPA) degradation under visible light irradiation (λ > 420 nm), the kinetic constant of TBBPA degradation reached 0.0261 min-1 was approximately 5.68 and 9.67 times higher than that of CdS and P25, respectively. Moreover, superoxide radical (•O2-) is the main active component in the degradation process of TBBPA (the relative contribution is 91.57%). The photocatalytic mechanism and intermediates of the TBBPA was clarified, and a suitable model and pathway for the degradation of TBBPA were proposed. The results indicated that the toxicities of some intermediates were higher than the parent pollutant. This research provided an efficient approach by a novel photocatalyst for the removal of TBBPA from wastewater, and the appraisal methods for the latent risks from the intermediates were reported in this paper.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 130024, Changchun, China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 130024, Changchun, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
16
|
Zhao Y, Mao J, Wu Z, Io WF, Pang SY, Zhao Y, Hao J. A clean transfer approach to prepare centimetre-scale black phosphorus crystalline multilayers on silicon substrates for field-effect transistors. Nat Commun 2024; 15:6795. [PMID: 39122765 PMCID: PMC11315922 DOI: 10.1038/s41467-024-51140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Recently reported direct growth of highly crystalline centimetre-sized black phosphorus (BP) thin films on mica substrates by pulsed laser deposition (PLD) has attracted considerable research interest. However, an effective and general transfer method to incorporate them into (opto-)electronic devices is still missing. Here, we show a wet transfer method utilizing ethylene-vinyl acetate (EVA) and an ethylene glycol (EG) solution to transfer high-crystalline large-area PLD-BP films onto SiO2/Si substrates. The transferred films were used to fabricate BP-based bottom-gate field-effect transistor (FET) arrays exhibiting good uniformity and continuity, with carrier mobility and current switching ratios comparable to those obtained in as-grown BP films on mica substrates. Our work presents a promising transfer strategy for scalable integration of on-substrate grown 2D BP into devices with more complex structures and further investigation of material properties.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Weng Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yifei Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China.
| |
Collapse
|
17
|
Li W, Liu X, He P, Hu W, Tang K, Wen Y, Zeng Q, Tang H, Lei Y, Liu X. AuNPs-BP-MWCNTs-COOH-based electrochemical immunosensor for the determination of deoxynivalenol in wheat flour. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5231-5238. [PMID: 39007341 DOI: 10.1039/d4ay00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Deoxynivalenol (DON) has drawn considerable attention for its obvious pathogenicity and wide use in agro-products, which cause a potential threat to human health. In this work, an electrochemical immunosensor is developed for the highly sensitive and selective detection of DON in wheat flour using AuNPs-BP-MWCNTs-COOH and antibodies. The AuNPs-BP-MWCNTs-COOH nanocomposite was prepared via an in situ reduction reaction and ultrasonic-assisted liquid-phase exfoliation. The nanocomposite exhibits a larger surface area, decent stability, excellent electron transfer capability, good protein binding capability and prominent specificity. The plentiful carboxyl group on the nanocomposite can bind to the amino group of the antibody, and AuNPs have an affinity for the sulfhydryl group of the antibody, which makes it feasible for the nanocomposite to load the antibody. The peak currents are plotted against the logarithm of DON concentration from 0.002 to 80 ng mL-1 with a limit of detection (LOD) of 0.5 pg mL-1. This approach establishes an effective label-free immunosensor platform for the detection of DON with high sensitivity and selectivity in various food and agricultural products.
Collapse
Affiliation(s)
- Weiqiang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiaoxue Liu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Pianpian He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wentao Hu
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qian Zeng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Huiyi Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yaxuan Lei
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xin Liu
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
18
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
19
|
Chen J, Wang X, Song T, Wang T, Ma G, Zhang X, Zhao Y, Chen J, Yang B, Li Y. Temperature dependent Raman spectroscopy and sensing performance of 2D black phosphorus. J Chem Phys 2024; 161:034703. [PMID: 39007385 DOI: 10.1063/5.0215386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Temperature is an important parameter to be monitored in new wearable electronic devices. Layered black phosphorus (BP) has inherent good thermal stability and semiconductor properties and has a promising application as a temperature sensing layer. Here, we investigate the temperature sensing properties of BP, using in situ Raman spectroscopy and x-ray diffraction techniques. Flexible sensors are constructed, and temperature response is investigated in the range of 6-38 °C. The prospect application for monitoring the temperature of human body parts is demonstrated. The results show that the BP-based temperature sensors demonstrate good negative temperature coefficient characteristics and display high sensitivity and reproducible sensing performance. The temperature-dependent performance suggests the feasibility of BP as a sensitive layer in a wide temperature range. This work paves the way for exploring new applications of amazing layered materials, such as BP, in wearable electronic devices.
Collapse
Affiliation(s)
- Jiangtao Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinyi Wang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tiancheng Song
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ting Wang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guobin Ma
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuqiang Zhang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun Zhao
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianbiao Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Bingjun Yang
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan Li
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
20
|
Wang X, Wang Y, Ma M, Zhao X, Zhang J, Zhang F. P-N Bonds-Mediated Atomic-Level Charge-Transfer Channel Fabricated between Violet Phosphorus and Carbon Nitride Favors Charge Separation and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311841. [PMID: 38368255 DOI: 10.1002/smll.202311841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Heterostructures are widely employed in photocatalysis to promote charge separation and photocatalytic activity. However, their benefits are limited by the linkages and contact environment at the interface. Herein, violet phosphorus quantum dots (VPQDs) and graphitic carbon nitride (g-C3N4) are employed as model materials to form VPQDs/g-C3N4 heterostructures by a simple ultrasonic pulse excitation method. The heterostructure contains strong interfacial P-N bonds that mitigate interfacial charge-separation issues. P-P bond breakage occurs in the distinctive cage-like [P9] VPQD units during longitudinal disruption, thereby exposing numerous active P sites that bond with N atoms in g-C3N4 under ultrasonic pulse excitation. The atomic-level interfacial P-N bonds of the Z-scheme VPQDs/g-C3N4 heterostructure serve as photogenerated charge-transfer channels for improved electron-hole separation efficiency. This results in excellent photocatalytic performance with a hydrogen evolution rate of 7.70 mmol g-1 h-1 (over 9.2 and 8.5 times greater than those of pure g-C3N4 and VPQDs, respectively) and apparent quantum yield of 11.68% at 400 nm. Using atomic-level chemical bonds to promote interfacial charge separation in phosphorene heterostructures is a feasible and effective design strategy for photocatalytic water-splitting materials.
Collapse
Affiliation(s)
- Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
21
|
Chebl M, He X, Yang DS. Cross-examination of photoinitiated carrier and structural dynamics of black phosphorus at elevated fluences. J Chem Phys 2024; 160:124703. [PMID: 38516973 DOI: 10.1063/5.0193613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Revived attention in black phosphorus (bP) has been tremendous in the past decade. While many photoinitiated experiments have been conducted, a cross-examination of bP's photocarrier and structural dynamics is still lacking. In this article, we provide such analysis by examining time-resolved data acquired using optical transient reflectivity and reflection ultrafast electron diffraction, two complementary methods under the same experimental conditions. At elevated excitation fluences, we find that more than 90% of the photoinjected carriers are annihilated within the first picosecond (ps) and transfer their energy to phonons in a nonthermal, anisotropic fashion. Electronically, the remaining carrier density around the band edges induces a significant interaction that leads to an interlayer lattice contraction in a few ps but soon diminishes as a result of the continuing loss of carriers. Structurally, phonon-phonon scattering redistributes the energy in the lattice and results in the generation of out-of-plane coherent acoustic phonons and thermal lattice expansion. Their onset times at ∼6 ps are found to be in good agreement. Later, a thermalized quasi-equilibrium state is reached following a period of about 40-50 ps. Hence, we propose a picture with five temporal regimes for bP's photodynamics.
Collapse
Affiliation(s)
- Mazhar Chebl
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xing He
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Ding-Shyue Yang
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
22
|
Chen J, Ma G, Wang X, Song T, Zhu Y, Jia S, Zhang X, Zhao Y, Chen J, Yang B, Li Y. Multifunctional black phosphorus pressure sensors with bending angle monitoring and direction recognition characteristics. NANOSCALE 2024; 16:5999-6009. [PMID: 38391244 DOI: 10.1039/d3nr05372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Flexible pressure sensors, an important class of intelligent sensing devices, are widely explored in body-motion and medical health monitoring, artificial intelligence and human-machine interaction. As a unique layered nanomaterial, black phosphorus (BP) has excellent electrical, mechanical, and flexible characteristics, which make it a promising candidate for fabricating high-performance pressure sensors. Herein, hierarchically structured BP-based pressure sensors were constructed. The sensors exhibit high sensitivity, stability and a wide sensing range and respond to various human motions including finger pressure, swallowing, and wrist bending. The sensors can identify different handwriting processes with featured signals. In particular, benefiting from the unique structure of loose-dense layers, the sensors show a distinctive response to bending angles and directions, revealing a characteristic of direction recognition. This feature facilitates the sensors to monitor human motions. The sensors have been successfully powered by a home-made Cu2ZnSn(S,Se)4 thin-film solar cell, which demonstrates the sustainability, flexibility and low power consumption of integrated devices. This work offers a strategy to construct hierarchically structured pressure/strain sensors with direction recognition and provides further insights into manufacturing portable sensing devices for realistic and innovative applications.
Collapse
Affiliation(s)
- Jiangtao Chen
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Guobin Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xinyi Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Tiancheng Song
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yirun Zhu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuangju Jia
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xuqiang Zhang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yun Zhao
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Jianbiao Chen
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Bingjun Yang
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan Li
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
23
|
Xu T, Qi L, Xu Y, Xiao S, Yuan Q, Niu R, Wang J, Tsang HK, Liu T, Cheng Z. Giant optical absorption of a PtSe 2-on-silicon waveguide in mid-infrared wavelengths. NANOSCALE 2024; 16:3448-3453. [PMID: 38189416 DOI: 10.1039/d3nr05983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-dimensional platinum diselenide (PtSe2) is a promising candidate for high-performance optoelectronics in the short-wavelength mid-infrared band due to its high carrier mobility, excellent stability, and tunable bandgap. However, light usually interacts moderately with low-dimensional PtSe2, limiting the optoelectronic responses of PtSe2-based devices. Here we demonstrated a giant optical absorption of a PtSe2-on-silicon waveguide by integrating a ten-layer PtSe2 film on an ultra-thin silicon waveguide. The weak mode confinement in the ultra-thin waveguide dramatically increases the waveguide mode overlap with the PtSe2 film. Our experimental results show that the absorption coefficient of the PtSe2-on-silicon waveguide is in the range of 0.0648 dB μm-1 to 0.0704 dB μm-1 in a spectral region of 2200 nm to 2300 nm wavelengths. Furthermore, we also studied the optical absorption in an ultra-thin silicon microring resonator. Our study provides a promising approach to developing PtSe2-on-silicon hybrid optoelectronic integrated circuits.
Collapse
Affiliation(s)
- Tianping Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Liqiang Qi
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Yingqi Xu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shuqi Xiao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Quan Yuan
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Rui Niu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Jiaqi Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hon Ki Tsang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Tiegen Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Zhenzhou Cheng
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518055, China
- School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
24
|
Ding X, Yu Y, Fan L, Li W, Bian F, Wang J, Zhao Y. Sprayable Multifunctional Black Phosphorus Hydrogel with On-Demand Removability for Joint Skin Wound Healing. Adv Healthc Mater 2024; 13:e2302588. [PMID: 37948613 DOI: 10.1002/adhm.202302588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Wound healing remains a critical challenge in regenerative engineering. Great efforts are devoted to develop functional patches for wound healing. Herein, a novel sprayable black phosphorus (BP)-based multifunctional hydrogel with on-demand removability is presented as a joints' skin wound dressing. The hydrogel is facilely prepared by mixing dopamine-modified oxidized hyaluronic acid, cyanoacetategroup-functionalized dextran containing black phosphorus, and the catalyst histidine. The catechol-containing dopamine can not only enhance tissue adhesiveness, but also endow the hydrogel with antioxidant capacity. In addition, benefiting from the photothermal conversion ability of the BP and thermally reversible performance of the formed C═C double bonds between aldehyde groups and cyanoacetate groups, the resulting hydrogel displays excellent antibacterial performance and on-demand dissolving ability under NIR irradiation. Moreover, by loading vascular endothelial growth factor into the hydrogel, the promoted migration and angiogenesis effects of endothelial cells can also be achieved. Based on these features, it is demonstrated that such sprayable BP hydrogels can effectively facilitate joint wounds healing by accelerating angiogenesis, alleviating inflammation, and improving wound microenvironment. Thus, it is believed that this NIR-responsive removable BP hydrogel dressing will put forward an innovative concept in designing wound dressings.
Collapse
Affiliation(s)
- Xiaoya Ding
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yunru Yu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lu Fan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
25
|
You Q, Jiang XL, Fan W, Cui YS, Zhao Y, Zhuang S, Gu W, Liao L, Xu CQ, Li J, Wu Z. Pd 8 Nanocluster with Nonmetal-to-Metal- Ring Coordination and Promising Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313491. [PMID: 37990769 DOI: 10.1002/anie.202313491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Constructing ambient-stable, single-atom-layered metal-based materials with atomic precision and understanding their underlying stability mechanisms are challenging. Here, stable single-atom-layered nanoclusters of Pd were synthesized and precisely characterized through electrospray ionization mass spectrometry and single-crystal X-ray crystallography. A pseudo-pentalene-like Pd8 unit was found in the nanocluster, interacting with two syn PPh units through nonmetal-to-metal -ring coordination. The unexpected coordination, which is distinctly different from the typical organoring-to-metal coordination in half-sandwich-type organometallic compounds, contributes to the ambient stability of the as-obtained single-atom-layered nanocluster as revealed through theoretical and experimental analyses. Furthermore, quantum chemical calculations revealed dominant electron transition along the horizontal x-direction of the Pd8 plane, indicating high photothermal conversion efficiency (PCE) of the nanocluster, which was verified by the experimental PCE of 73.3 %. Therefore, this study unveils the birth of a novel type of compound and the finding of the unusual nonmetal-to-metal -ring coordination and has important implications for future syntheses, structures, properties, and structure-property correlations of single-atom-layered metal-based materials.
Collapse
Grants
- 21925303, 21829501, 22033005, 21905284, 22038002, 22103035, 21771186, 21222301, 22075291, 21171170 and 21528303 National Natural Science Foundation of China
- 2022YFA1503900, 2022YFA1503000 National Key Research and Development Project
- 2020B121201002 Guangdong Provincial Key Laboratory of Catalysis
- BJPY2019A02 CASHIPS Director's Fund
- 2020HSC-CIP005, 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- YZJJ202306-TS and YZJJ-GGZX-2022-01 Foundation of President of HFIPS
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Yun-Shu Cui
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| |
Collapse
|
26
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
27
|
Liu Y, Chen X, Yu B. Sustainable Photo- and Electrochemical Transformation of White Phosphorous (P 4 ) into P 1 Organo-Compounds. Chemistry 2023; 29:e202302142. [PMID: 37671623 DOI: 10.1002/chem.202302142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Elemental white phosphorous (P4 ) is a crucial feedstock for the entire phosphorus-derived chemical industry, serving as a common precursor for the ultimate preparation of high-grade monophosphorus (P1 ) fine chemicals. However, the corresponding manufacturing processes generally suffer from a deep reliance on hazardous reagents, inputs of immense energy, emissions of toxic pollutants, and the generation of substantial waste, which have negative impacts on the environment. In this context, sustainability and safety concerns provide a consistent impetus for the urgent overall improvement of phosphorus cycles. In this Concept, we present an overview of the most recent growth in photo- and electrochemical synthesis of P1 organo-compounds from P4 , with special emphasis on sustainable features. The key aspects of innovations regarding activation mode and mechanism have been comprehensively analyzed. A preliminary look at the possible future direction of development is also provided.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- National Key Laboratory of Cotton Bio Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P. R. China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Sultana N, Thanil Singh C, Khan MR, Sen Sarma N. An optical sensing platform for the detection of anti-cancer drugs and their cytotoxicity screening using a highly selective phosphorene-based composite. NANOSCALE 2023; 15:17570-17582. [PMID: 37873646 DOI: 10.1039/d3nr03948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Monitoring therapeutic drugs and their elimination is crucial because they may cause severe side effects on the human body. Methotrexate (MTX) is a widely used anti-cancer drug, which is highly expensive, and the detection of unwanted overdoses of MTX using traditional procedures is time-consuming and involves complex instrumentation. In this work, we have developed a nanocomposite material using phosphorene, cystine, and gold (Ph-Cys-Au) that shows excellent optical properties. This nanocomposite can be used as an optical sensing platform for the detection of MTX in the range 0-260 μM. The synthesized sensing platform is very sensitive, selective, and cost-effective for the detection of MTX. Ph-Cys-Au can effectively detect MTX in aqueous media with a limit of detection (LOD) of about 0.0266 nM (for a linear range of 0-140 μM) and 0.0077 nM (for a linear range of 160-260 μM). The nanocomposite is equally selective for real samples, such as human blood serum (HBS) and artificial urine (AU) with a LOD of 0.0914 nM and 0.0734 nM, respectively. We have also determined the limit of quantification (LOQ); the LOQ values for the aqueous media were 0.0807 nM (for a linear range of 0-140 μM) and 0.0234 nM (for a linear range of 160-260 μM), whereas, the values for HBS and AU were around 0.2771 nM and 0.2226 nM, respectively. Moreover, the nanocomposite also provides a feasible platform for cytotoxicity screening in cancerous cells (Caco-2 cell lines) and non-cancerous cells (L-929 cell lines).
Collapse
Affiliation(s)
- Nasrin Sultana
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chingtham Thanil Singh
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mojibur R Khan
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Neelotpal Sen Sarma
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
29
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Purbayanto MAK, Chandel M, Birowska M, Rosenkranz A, Jastrzębska AM. Optically Active MXenes in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301850. [PMID: 37715336 DOI: 10.1002/adma.202301850] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/26/2023] [Indexed: 09/17/2023]
Abstract
The vertical integration of distinct 2D materials in van der Waals (vdW) heterostructures provides the opportunity for interface engineering and modulation of electronic as well as optical properties. However, scarce experimental studies reveal many challenges for vdW heterostructures, hampering the fine-tuning of their electronic and optical functionalities. Optically active MXenes, the most recent member of the 2D family, with excellent hydrophilicity, rich surface chemistry, and intriguing optical properties, are a novel 2D platform for optoelectronics applications. Coupling MXenes with various 2D materials into vdW heterostructures can open new avenues for the exploration of physical phenomena of novel quantum-confined nanostructures and devices. Therefore, the fundamental basis and recent findings in vertical vdW heterostructures composed of MXenes as a primary component and other 2D materials as secondary components are examined. Their robust designs and synthesis approaches that can push the boundaries of light-harvesting, transition, and utilization are discussed, since MXenes provide a unique playground for pursuing an extraordinary optical response or unusual light conversion features/functionalities. The recent findings are finally summarized, and a perspective for the future development of next-generation vdW multifunctional materials enriched by MXenes is provided.
Collapse
Affiliation(s)
- Muhammad A K Purbayanto
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Madhurya Chandel
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Magdalena Birowska
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Avenida Beauchef 851, Santiago, 8370456, Chile
| | - Agnieszka M Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| |
Collapse
|
31
|
Liu X, Gaihre B, Park S, Li L, Dashtdar B, Astudillo Potes MD, Terzic A, Elder BD, Lu L. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioact Mater 2023; 27:216-230. [PMID: 37122896 PMCID: PMC10130629 DOI: 10.1016/j.bioactmat.2023.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Three-dimensional (3D) printing technology is driving forward the progresses of various engineering fields, including tissue engineering. However, the pristine 3D-printed scaffolds usually lack robust functions in stimulating desired activity for varied regeneration applications. In this study, we combined the two-dimensional (2D) hetero-nanostructures and immuno-regulative interleukin-4 (IL-4) cytokines for the functionalization of 3D-printed scaffolds to achieve a pro-healing immuno-microenvironment for optimized bone injury repair. The 2D hetero-nanostructure consists of graphene oxide (GO) layers, for improved cell adhesion, and black phosphorous (BP) nanosheets, for the continuous release of phosphate ions to stimulate cell growth and osteogenesis. In addition, the 2D hetero-nanolayers facilitated the adsorption of large content of immuno-regulative IL-4 cytokines, which modulated the polarization of macrophages into M2 phenotype. After in vivo implantation in rat, the immuno-functioned 3D-scaffolds achieved in vivo osteo-immunomodulation by building a pro-healing immunological microenvironment for better angiogenesis and osteogenesis in the defect area and thus facilitated bone regeneration. These results demonstrated that the immuno-functionalization of 3D-scaffolds with 2D hetero-nanostructures with secondary loading of immuno-regulative cytokines is an encouraging strategy for improving bone regeneration.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D. Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Li X, Shi F, Wang L, Zhang S, Yan L, Zhang X, Sun W. Electrochemical Biosensor Based on Horseradish Peroxidase and Black Phosphorene Quantum Dot Modified Electrode. Molecules 2023; 28:6151. [PMID: 37630403 PMCID: PMC10459736 DOI: 10.3390/molecules28166151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore, an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE) for the first time. The direct electrochemical behavior of HRP was studied with a pair of well-shaped voltammetric peaks that appeared, indicating that the existence of BPQDs was beneficial to accelerate the electron transfer rate between HRP and the electrode surface. This was due to the excellent properties of BPQDs, such as small particle size, high interfacial reaction activity, fast conductivity, and good biocompatibility. The presence of BPQDs on the electrode surface provided a fast channel for direct electron transfer of HRP. Therefore, the constructed electrochemical HRP biosensor was firstly used to investigate the electrocatalytic behavior of trichloroacetic acid (TCA) and potassium bromate (KBrO3), and the wide linear detection ranges of TCA and KBrO3 were 4.0-600.0 mmol/L and 2.0-57.0 mmol/L, respectively. The modified electrode was applied to the actual samples detection with satisfactory results.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fan Shi
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Lisi Wang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Siyue Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Lijun Yan
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Xiaoping Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Wei Sun
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| |
Collapse
|
33
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Wang Y, Jin M, Gu M, Zhao X, Xie J, Meng G, Cheng Y, He J, Zhang J. Synthesis of violet phosphorus with large lateral sizes to facilitate nano-device fabrications. NANOSCALE 2023; 15:12406-12412. [PMID: 37458483 DOI: 10.1039/d3nr01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Violet phosphorus has been proven to be the most stable phosphorus allotrope and has attracted much attention recently. The growth of violet phosphorus with large lateral sizes is crucial to obtain good quality violet phosphorene for nanodevice fabrication. Herein, a large number of violet phosphorus plates have been produced from molten lead using an optimized method to achieve red bronze luster. The crystal structure of the as-produced violet phosphorus was determined by single-crystal X-ray diffraction to be monoclinic with the space group P2/n (13) (CSD-2160375), identical to the one from the chemical vapor transport method (CSD-1935087). The as-produced violet phosphorus plates were found to have lateral sizes of 1.30 ± 0.41 mm2. The violet phosphorus plates were easily exfoliated and directly transferred to silicon substrates to facilitate building of a back-gate field-effect transistor. A hole mobility of 2.308 cm2 V-1 s-1 was obtained from a violet phosphorus nanosheet with a thickness of 52 nm under ambient conditions. The absolute responsivity of 130 mA W-1 with a fast response time of 27 ms was also obtained under the irradiation of a 530 nm laser.
Collapse
Affiliation(s)
- Yanhao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengting Jin
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinan Xie
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guodong Meng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinjiang He
- National Engineering Research Center of Key Materials of Integrated Circuit, Beijing 100088, China.
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
35
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
36
|
Esfandiarpour R, Badalkhani-Khamseh F, Hadipour NL. Theoretical studies of phosphorene as a drug delivery nanocarrier for fluorouracil. RSC Adv 2023; 13:18058-18069. [PMID: 37323453 PMCID: PMC10267674 DOI: 10.1039/d3ra00007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The interactions between phosphorene nanosheets (PNSs) and 5-fluorouracil (FLU) were explored using the density functional theory (DFT) method and molecular dynamics (MD) simulations. DFT calculations were performed utilizing M06-2X functional and the 6-31G(d,p) basis set in both gas and solvent phases. Results showed that the FLU molecule is adsorbed horizontally on the PNS surface with an adsorption energy (Eads) of -18.64 kcal mol-1. The energy gap (Eg) between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) of PNS remains constant after the adsorption process. The adsorption behavior of PNS is not affected by carbon and nitrogen doping. The dynamical behavior of PNS-FLU was studied at T = 298, 310, and 326 K reminiscent of room temperature, body temperature, and temperature of the tumor after exposure to 808 nm laser radiation, respectively. The D value decreases significantly after the equilibration of all systems so that the equilibrated value of D is about 1.1 × 10-6, 4.0 × 10-8, and 5.0 × 10-9 cm2 s-1 at T = 298, 310, and 326 K, respectively. About 60 FLU molecules can be adsorbed on both sides of each PNS, indicating its high loading capacity. PMF calculations demonstrated that the release of FLU from PNS is not spontaneous, which is favorable from a sustained drug delivery point of view.
Collapse
Affiliation(s)
- Razieh Esfandiarpour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University Tehran Iran
| | | | - Nasser L Hadipour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
37
|
Mu G, Zhang Z, Cui D, Chen W, Shi Y. Universal visualization of crystalline orientation for black phosphorus by angle-resolved polarized photoacoustic microscopy. OPTICS LETTERS 2023; 48:2748-2751. [PMID: 37186756 DOI: 10.1364/ol.489709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Anisotropic two-dimensional (2D) materials, such as black phosphorus (BP), normally possess unique directional in-plane electrical, optical, and thermal properties that are highly correlated with their crystalline orientations. Nondestructive visualization of their crystalline orientation is an indispensable premise for the 2D materials to harness their distinctive strengths in optoelectronic and thermoelectric applications. Here, by photoacoustically recording the anisotropic optical absorption variation under linearly polarized laser beams, an angle-resolved polarized photoacoustic microscopy (AnR-PPAM) is developed, capable of non-invasively determining and visualizing BP's crystalline orientation. We theoretically deduced the physical relationship between the crystalline orientation and polarized photoacoustic (PA) signals, and experimentally proved the ability of AnR-PPAM to universally visualize BP's crystalline orientation regardless of its thickness, substrate, and encapsulation layer. This method provides a new, to the best of our knowledge, strategy for crystalline orientation recognition of 2D materials with flexible measurement conditions, prefiguring important potential for the applications of anisotropic 2D materials.
Collapse
|
38
|
Zhai R, Zhang L, Gu M, Zhao X, Zhang B, Cheng Y, Zhang J. A Review of Phosphorus Structures as CO 2 Reduction Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207840. [PMID: 36775943 DOI: 10.1002/smll.202207840] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Indexed: 05/11/2023]
Abstract
Effective photocatalytic carbon dioxide (CO2 ) reduction into high-value-added chemicals is promising to mitigate current energy crisis and global warming issues. Finding effective photocatalysts is crucial for photocatalytic CO2 reduction. Currently, metal-based semiconductors for photocatalytic CO2 reduction have been well reviewed, while review of nonmetal-based semiconductors is almost limited to carbon nitrides. Phosphorus is a promising nonmetal photocatalysts with various allotropes and tunable band gaps, which has been demonstrated to be promising non-metallic photocatalysts. However, no systematic review about phosphorus structures for photocatalytic CO2 reduction reactions has been reported. Herein, the progresses of phosphorus structures as photocatalysts for CO2 reduction are reviewed. The fundamentals of photocatalytic CO2 reduction, corresponding properties of phosphorus allotropes, photocatalysts with phosphorus doping or phosphorus-containing ligands, research progress of phosphorus allotropes as photocatalysts for CO2 reduction have been reviewed in this paper. The future research and perspective of phosphorus structures for photocatalytic CO2 reduction are also presented.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lihui Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
39
|
Singh M, Ingle A, González A, Mariathomas P, Ramanathan R, Taylor PD, Christofferson AJ, Spencer MJS, Low MX, Ahmed T, Walia S, Trasobares S, Manzorro R, Calvino JJ, García-Fernández E, Orte A, Dominguez-Vera JM, Bansal V. Repairing and Preventing Photooxidation of Few-Layer Black Phosphorus with β-Carotene. ACS NANO 2023; 17:8083-8097. [PMID: 37093765 DOI: 10.1021/acsnano.2c10232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule β-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of β-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of β-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.
Collapse
Affiliation(s)
- Mandeep Singh
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aviraj Ingle
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ana González
- Departamento de Química Inorgánica and Instituto de Biotecnología. Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Universidad de Granada, 18071 Granada, Spain
| | - Pyria Mariathomas
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Patrick D Taylor
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Michelle J S Spencer
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), RMIT University, Melbourne, Victoria 3000, Australia
| | - Mei Xian Low
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Taimur Ahmed
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Susana Trasobares
- Departamento Ciencia de Materiales e Ingeniería Metalúrgicay Química Inorgánica, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Ramón Manzorro
- Departamento Ciencia de Materiales e Ingeniería Metalúrgicay Química Inorgánica, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Jose J Calvino
- Departamento Ciencia de Materiales e Ingeniería Metalúrgicay Química Inorgánica, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Emilio García-Fernández
- Nanoscopy-UGR Lab. Departamento de Fisicoquímica. Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Angel Orte
- Nanoscopy-UGR Lab. Departamento de Fisicoquímica. Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Jose M Dominguez-Vera
- Departamento de Química Inorgánica and Instituto de Biotecnología. Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Universidad de Granada, 18071 Granada, Spain
| | - Vipul Bansal
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
40
|
Cicirello G, Wang M, Sam QP, Hart JL, Williams NL, Yin H, Cha JJ, Wang J. Two-Dimensional Violet Phosphorus P 11: A Large Band Gap Phosphorus Allotrope. J Am Chem Soc 2023; 145:8218-8230. [PMID: 36996286 DOI: 10.1021/jacs.3c01766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The discovery of novel large band gap two-dimensional (2D) materials with good stability and high carrier mobility will innovate the next generation of electronics and optoelectronics. A new allotrope of 2D violet phosphorus P11 was synthesized via a salt flux method in the presence of bismuth. Millimeter-sized crystals of violet-P11 were collected after removing the salt flux with DI water. From single-crystal X-ray diffraction, the crystal structure of violet-P11 was determined to be in the monoclinic space group C2/c (no. 15) with unit cell parameters of a = 9.166(6) Å, b = 9.121(6) Å, c = 21.803(14)Å, β = 97.638(17)°, and a unit cell volume of 1807(2) Å3. The structure differences between violet-P11, violet-P21, and fibrous-P21 are discussed. The violet-P11 crystals can be mechanically exfoliated down to a few layers (∼6 nm). Photoluminescence and Raman measurements reveal the thickness-dependent nature of violet-P11, and exfoliated violet-P11 flakes were stable in ambient air for at least 1 h, exhibiting moderate ambient stability. The bulk violet-P11 crystals exhibit excellent stability, being stable in ambient air for many days. The optical band gap of violet-P11 bulk crystals is 2.0(1) eV measured by UV-Vis and electron energy-loss spectroscopy measurements, in agreement with density functional theory calculations which predict that violet-P11 is a direct band gap semiconductor with band gaps of 1.8 and 1.9 eV for bulk and monolayer, respectively, and with a high carrier mobility. This band gap is the largest among the known single-element 2D layered bulk crystals and thus attractive for various optoelectronic devices.
Collapse
Affiliation(s)
- Gary Cicirello
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mengjing Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Quynh P Sam
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Natalie L Williams
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Judy J Cha
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
41
|
Iqbal MA, Xie H, Qi L, Jiang WC, Zeng YJ. Recent Advances in Ferroelectric-Enhanced Low-Dimensional Optoelectronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205347. [PMID: 36634972 DOI: 10.1002/smll.202205347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Ferroelectric (FE) materials, including BiFeO3 , P(VDF-TrFE), and CuInP2 S6 , are a type of dielectric material with a unique, spontaneous electric polarization that can be reversed by applying an external electric field. The combination of FE and low-dimensional materials produces synergies, sparking significant research interest in solar cells, photodetectors (PDs), nonvolatile memory, and so on. The fundamental aspects of FE materials, including the origin of FE polarization, extrinsic FE materials, and FE polarization quantification are first discussed. Next, the state-of-the-art of FE-based optoelectronic devices is focused. How FE materials affect the energy band of channel materials and how device structures influence PD performance are also summarized. Finally, the future directions of this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haowei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lu Qi
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Wei-Chao Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
42
|
Khan MA, Ramzan F, Ali M, Zubair M, Mehmood MQ, Massoud Y. Emerging Two-Dimensional Materials-Based Electrochemical Sensors for Human Health and Environment Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040780. [PMID: 36839148 PMCID: PMC9964193 DOI: 10.3390/nano13040780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional materials (2DMs) have been vastly studied for various electrochemical sensors. Among these, the sensors that are directly related to human life and health are extremely important. Owing to their exclusive properties, 2DMs are vastly studied for electrochemical sensing. Here we have provided a selective overview of 2DMs-based electrochemical sensors that directly affect human life and health. We have explored graphene and its derivatives, transition metal dichalcogenide and MXenes-based electrochemical sensors for applications such as glucose detection in human blood, detection of nitrates and nitrites, and sensing of pesticides. We believe that the areas discussed here are extremely important and we have summarized the prominent reports on these significant areas together. We believe that our work will be able to provide guidelines for the evolution of electrochemical sensors in the future.
Collapse
|
43
|
Carrasco JA, Congost-Escoin P, Assebban M, Abellán G. Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine. Chem Soc Rev 2023; 52:1288-1330. [PMID: 36744431 PMCID: PMC9987414 DOI: 10.1039/d2cs00570k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 02/07/2023]
Abstract
The post-graphene era is undoubtedly marked by two-dimensional (2D) materials such as quasi-van der Waals antimonene. This emerging material has a fascinating structure, exhibits a pronounced chemical reactivity (in contrast to graphene), possesses outstanding electronic properties and has been postulated for a plethora of applications. However, chemistry and physics of antimonene remain in their infancy, but fortunately recent discoveries have shed light on its unmatched allotropy and rich chemical reactivity offering a myriad of unprecedented possibilities in terms of fundamental studies and applications. Indeed, antimonene can be considered as one of the most appealing post-graphene 2D materials reported to date, since its structure, properties and applications can be chemically engineered from the ground up (both using top-down and bottom-up approaches), offering an unprecedented level of control in the realm of 2D materials. In this review, we provide an in-depth analysis of the recent advances in the synthesis, characterization and applications of antimonene. First, we start with a general introduction to antimonene, and then we focus on its general chemistry, physical properties, characterization and synthetic strategies. We then perform a comprehensive study on the allotropy, the phase transition mechanisms, the oxidation behaviour and chemical functionalization. From a technological point of view, we further discuss the applications recently reported for antimonene in the fields of optoelectronics, catalysis, energy storage, cancer therapy and sensing. Finally, important aspects such as new scalable methodologies or the promising perspectives in biomedicine are discussed, pinpointing antimonene as a cutting-edge material of broad interest for researchers working in chemistry, physics, materials science and biomedicine.
Collapse
Affiliation(s)
- Jose A Carrasco
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain.
| | - Pau Congost-Escoin
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain.
| | - Mhamed Assebban
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain.
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain.
| |
Collapse
|
44
|
Kumar A, Chang DW. Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications. Polymers (Basel) 2023; 15:polym15040947. [PMID: 36850230 PMCID: PMC9962990 DOI: 10.3390/polym15040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
With the advent of a new 2D nanomaterial, namely, black phosphorus (BP) or phosphorene, the scientific community is now dedicated to focusing on and exploring this 2D material offering elusive properties such as a higher carrier mobility, biocompatibility, thickness-dependent band gap, and optoelectronic characteristics that can be harnessed for multiple applications, e.g., nanofillers, energy storage devices, field effect transistors, in water disinfection, and in biomedical sciences. The hexagonal ring of phosphorus atoms in phosphorene is twisted slightly, unlike how it is in graphene. Its unique characteristics, such as a high carrier mobility, anisotropic nature, and biocompatibility, have attracted much attention and generated further scientific curiosity. However, despite these interesting features, the phosphorene or BP poses challenges and causes frustrations when it comes to its stability under ambient conditions and processability, and thus in order to overcome these hurdles, it must be conjugated or linked with the suitable and functional organic counter macromolecule in such a way that its properties are not compromised while providing a protection from air/water that can otherwise degrade it to oxides and acid. The resulting composites/hybrid system of phosphorene and a macromolecule, e.g., a polymer, can outperform and be exploited for the aforementioned applications. These assemblies of a polymer and phosphorene have the potential for shifting the paradigm from exhaustively used graphene to new commercialized products offering multiple applications.
Collapse
|
45
|
Vanni M, Serrano-Ruiz M, Filippi J, Salvatici MC, Fonda E, Peruzzini M, Caporali M. Unraveling the Role of Nickel Nanoparticles Functionalization in the Electronic Properties and Structural Features of 2D Black Phosphorene Exposed to Ambient Conditions. Chempluschem 2023; 88:e202200457. [PMID: 36799270 DOI: 10.1002/cplu.202200457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Layered black phosphorus (BP) is endowed with peculiar chemico-physical properties that make it a highly promising candidate in the field of electronics. Nevertheless, as other 2D materials with atomic scale thickness, it suffers from easy degradation under ambient conditions. Herein, it is shown that the functionalization of BP with preformed and in situ grown Ni NPs, affects the electronic properties of the material. In particular, Ni functionalization performed in situ leads to a narrowing of the average BP band gap from 1.15 to 0.95 eV and to a marked shift in the conduction band maximum from -0.33 V to -0.07 V, which, in turn, improve the ambient stability. Structural studies carried out by XAS can well distinguish the two nanohybrids and reveal that once Ni NPs are grown on BP nanosheets, a Ni-P coordinative bond is formed, featuring a short Ni-P distance of 2.27 Å, which is not observed when preformed Ni NPs are immobilized on BP. Comparing the XANES and EXAFS spectra of fresh and aged samples of both nanohybrids, suggests that the interaction between Ni and P atoms results in a stabilization effect exerted via a dual electronic and redox mechanism, that infers a much superior ambient stability to BP, even if the surface functionalization is far to achieve a full coverage.
Collapse
Affiliation(s)
- Matteo Vanni
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Manuel Serrano-Ruiz
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Jonathan Filippi
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Maria Cristina Salvatici
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Emiliano Fonda
- Synchrotron SOLEIL L'orme des Merisiers, 91192, Gif-sur-Yvette, France
| | - Maurizio Peruzzini
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for the Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
46
|
Nkinahamira F, Yang R, Zhu R, Zhang J, Ren Z, Sun S, Xiong H, Zeng Z. Current Progress on Methods and Technologies for Catalytic Methane Activation at Low Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204566. [PMID: 36504369 PMCID: PMC9929156 DOI: 10.1002/advs.202204566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Methane (CH4 ) is an attractive energy source and important greenhouse gas. Therefore, from the economic and environmental point of view, scientists are working hard to activate and convert CH4 into various products or less harmful gas at low-temperature. Although the inert nature of CH bonds requires high dissociation energy at high temperatures, the efforts of researchers have demonstrated the feasibility of catalysts to activate CH4 at low temperatures. In this review, the efficient catalysts designed to reduce the CH4 oxidation temperature and improve conversion efficiencies are described. First, noble metals and transition metal-based catalysts are summarized for activating CH4 in temperatures ranging from 50 to 500 °C. After that, the partial oxidation of CH4 at relatively low temperatures, including thermocatalysis in the liquid phase, photocatalysis, electrocatalysis, and nonthermal plasma technologies, is briefly discussed. Finally, the challenges and perspectives are presented to provide a systematic guideline for designing and synthesizing the highly efficient catalysts in the complete/partial oxidation of CH4 at low temperatures.
Collapse
Affiliation(s)
- François Nkinahamira
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Ruijie Yang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Senlin Sun
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| |
Collapse
|
47
|
Li HX, Zhao KC, Jiang JJ, Zhu QS. Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications. J Biol Eng 2023; 17:8. [PMID: 36717887 PMCID: PMC9887857 DOI: 10.1186/s13036-023-00328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogels, also known as three-dimensional, flexible, and polymer networks, are composed of natural and/or synthetic polymers with exceptional properties such as hydrophilicity, biocompatibility, biofunctionality, and elasticity. Researchers in biomedicine, biosensing, pharmaceuticals, energy and environment, agriculture, and cosmetics are interested in hydrogels. Hydrogels have limited adaptability for complicated biological information transfer in biomedical applications due to their lack of electrical conductivity and low mechanical strength, despite significant advances in the development and use of hydrogels. The nano-filler-hydrogel hybrid system based on supramolecular interaction between host and guest has emerged as one of the potential solutions to the aforementioned issues. Black phosphorus, as one of the representatives of novel two-dimensional materials, has gained a great deal of interest in recent years owing to its exceptional physical and chemical properties, among other nanoscale fillers. However, a few numbers of publications have elaborated on the scientific development of black phosphorus hybrid hydrogels extensively. In this review, this review thus summarized the benefits of black phosphorus hybrid hydrogels and highlighted the most recent biological uses of black phosphorus hybrid hydrogels. Finally, the difficulties and future possibilities of the development of black phosphorus hybrid hydrogels are reviewed in an effort to serve as a guide for the application and manufacture of black phosphorus -based hydrogels. Recent applications of black phosphorus hybrid hydrogels in biomedicine.
Collapse
Affiliation(s)
- Hao-xuan Li
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Kun-chi Zhao
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Jia-jia Jiang
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Qing-san Zhu
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
48
|
Li X, Wang L, Yan L, Han X, Zhang Z, Zhang X, Sun W. A Portable Wireless Intelligent Nanosensor for 6,7-Dihydroxycoumarin Analysis with A Black Phosphorene and Nano-Diamond Nanocomposite-Modified Electrode. BIOSENSORS 2023; 13:153. [PMID: 36831920 PMCID: PMC9953709 DOI: 10.3390/bios13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this work, a novel portable and wireless intelligent electrochemical nanosensor was developed for the detection of 6,7-dihydroxycoumarin (6,7-DHC) using a modified screen-printed electrode (SPE). Black phosphorene (BP) nanosheets were prepared via exfoliation of black phosphorus nanoplates. The BP nanosheets were then mixed with nano-diamond (ND) to prepare ND@BP nanocomposites using the self-assembly method, achieving high environmental stability. The nanocomposite was characterized by SEM, TEM, Raman, XPS and XRD. The nanocomposite was used for the modification of SPE to improve its electrochemical performances. The nanosensor displayed a wide linear range of 0.01-450.0 μmol/L with a low detection limit of 0.003 μmol/L for 6,7-DHC analysis. The portable and wireless intelligent electrochemical nanosensor was applied to detect 6,7-DHC in real drug samples by the standard addition method with satisfactory recoveries, which extends the application of BP-based nanocomposite for electroanalysis.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lisi Wang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lijun Yan
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiao Han
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zejun Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
49
|
Sarwar H, Ji P, Shafique S, Wang X, Yang S. Production of high-quality and large lateral-size black phosphorus nanoparticles/nanosheets by liquid-phase exfoliation. RSC Adv 2023; 13:1223-1228. [PMID: 36686922 PMCID: PMC9827280 DOI: 10.1039/d2ra06504e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The liquid phase exfoliation (LPE) of layered black phosphorus (BP) material is essential in the field of electronics. N-Methyl-2-pyrrolidone (NMP) is one of the most promising precursors for obtaining BP nanosheets/nanoparticles, but the longer sonication time leads to smaller production of phosphorene. Herein, for the first time, the large lateral size fabrication of phosphorene was attained through NMP solvent by optimizing the process parameters. The resultant dispersions were characterized by atomic force microscopy, X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The characterization results revealed that the average lateral sizes of BP nanoparticles were found to be 67.8 ± 18.6 nm and the lateral size of fabricated BP nanosheets was found to be 5.37 μm. Moreover, this research provides a strategic approach for the mass production of phosphorene for photodetection applications.
Collapse
Affiliation(s)
- Haris Sarwar
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University Xi'an, 710049 China
| | - Peirui Ji
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University Xi'an, 710049 China
| | - Shareen Shafique
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University Xi'an, 710049 China
| | - Xiaomin Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University Xi'an, 710049 China
| | - Shuming Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University Xi'an, 710049 China
| |
Collapse
|
50
|
Liu Y, Li Z, Cheng Y, Wang R, Shi Y. Insights into the regulation of energy storage behaviors of antimonene in aqueous electrolytes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|