1
|
Motz RN, Anderson JK, Nolan EM. Re-evaluation of the C-Glucosyltransferase IroB Illuminates Its Ability to C-Glucosylate Non-native Triscatecholate Enterobactin Mimics. Biochemistry 2025; 64:224-237. [PMID: 39718537 DOI: 10.1021/acs.biochem.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The pathogen-associated C-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, C-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including Salmonella enterica and Escherichia coli. Here, we reassess the ability of IroB to C-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial C-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.
Collapse
Affiliation(s)
- Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaden K Anderson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Zahorska E, Denig LM, Lienenklaus S, Kuhaudomlarp S, Tschernig T, Lipp P, Munder A, Gillon E, Minervini S, Verkhova V, Imberty A, Wagner S, Titz A. High-Affinity Lectin Ligands Enable the Detection of Pathogenic Pseudomonas aeruginosa Biofilms: Implications for Diagnostics and Therapy. JACS AU 2024; 4:4715-4728. [PMID: 39735928 PMCID: PMC11672137 DOI: 10.1021/jacsau.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
Pseudomonas aeruginosa is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for P. aeruginosa infections are available. Here, we present the noninvasive pathogen-specific detection of P. aeruginosa using novel fluorescent probes that target the bacterial biofilm-associated lectins LecA and LecB. Several glycomimetic probes were developed to target these extracellular lectins and demonstrated to stain P. aeruginosa biofilms in vitro. Importantly, for the targeting of LecA an activity boost to low-nanomolar affinity could be achieved, which is essential for in vivo application. In vitro, the nanomolar divalent LecA-targeted imaging probe accumulated effectively in biofilms under flow conditions, independent of the fluorophore identity. Investigation of these glycomimetic imaging probes in a murine lung infection model and fluorescence imaging revealed accumulation at the infection site. These findings demonstrate the use of LecA- and LecB-targeting probes for the imaging of P. aeruginosa infections and suggest their potential as pathogen-specific diagnostics to accelerate the start of the appropriate treatment.
Collapse
Affiliation(s)
- Eva Zahorska
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Lisa Marie Denig
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Stefan Lienenklaus
- Hannover
Medical School, Institute of Laboratory
Animal Science, Hannover 30625, Germany
| | - Sakonwan Kuhaudomlarp
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thomas Tschernig
- Medical
Faculty of Saarland University, Institute
of Anatomy and Cell Biology, Homburg/Saar, D-66421, Germany
| | - Peter Lipp
- Center
for Molecular Signaling (PZMS), Medical
Faculty of Saarland University, Homburg/Saar D-66421, Germany
| | - Antje Munder
- Department
of Pediatric Pneumology, Allergology and
Neonatology, Hannover Medical School, Carl Neuberg-Str. 1, Hannover D-30625, Germany
- Biomedical
Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover D-30625, Germany
| | - Emilie Gillon
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Saverio Minervini
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
| | - Varvara Verkhova
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Anne Imberty
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Stefanie Wagner
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| |
Collapse
|
3
|
Weber B, Ritchie NE, Hilker S, Chan DCK, Peukert C, Deisinger JP, Ives R, Årdal C, Burrows LL, Brönstrup M, Magolan J, Raivio TL, Brown ED. High-Throughput Discovery of Synthetic Siderophores for Trojan Horse Antibiotics. ACS Infect Dis 2024; 10:3821-3841. [PMID: 39438291 PMCID: PMC11556397 DOI: 10.1021/acsinfecdis.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
To cause infection, bacterial pathogens must overcome host immune factors and barriers to nutrient acquisition. Reproducing these aspects of host physiology in vitro has shown great promise for antibacterial drug discovery. When used as a bacterial growth medium, human serum replicates several aspects of the host environment, including innate immunity and iron limitation. We previously reported that a high-throughput chemical screen using serum as the growth medium enabled the discovery of novel growth inhibitors overlooked by conventional screens. Here, we report that a subset of compounds from this high-throughput serum screen display an unexpected growth enhancing phenotype and are enriched for synthetic siderophores. We selected 35 compounds of diverse chemical structure and quantified their ability to enhance bacterial growth in human serum. We show that many of these compounds chelate iron, suggesting they were acting as siderophores and providing iron to the bacteria. For two different pharmacophores represented among these synthetic siderophores, conjugation to the β-lactam antibiotic ampicillin imparted iron-dependent enhancement in antibacterial activity. Conjugation of the most potent growth-enhancing synthetic siderophore with the monobactam aztreonam produced MLEB-22043, a broad-spectrum antibiotic with significantly improved activity against Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. This synthetic siderophore-monobactam conjugate uses multiple TonB-dependent transporters for uptake into P. aeruginosa. Like aztreonam, MLEB-22043 demonstrated activity against metallo-β-lactamase expressing bacteria, and, when combined with the β-lactamase inhibitor avibactam, was active against clinical strains coexpressing the NDM-1 metallo-β-lactamase and serine β-lactamases. Our work shows that human serum is an effective bacterial growth medium for the high-throughput discovery of synthetic siderophores, enabling the development of novel Trojan Horse antibiotics.
Collapse
Affiliation(s)
- Brent
S. Weber
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikki E. Ritchie
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Simon Hilker
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Derek C. K. Chan
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Julia P. Deisinger
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Rowan Ives
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Christine Årdal
- Antimicrobial
Resistance Centre, Norwegian Institute of
Public Health, 0213 Oslo, Norway
| | - Lori L. Burrows
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site
Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
for Organic Chemistry (IOC), Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Jakob Magolan
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Tracy L. Raivio
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Eric D. Brown
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Michael
G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| |
Collapse
|
4
|
Motz RN, Kamyabi G, Nolan EM. Experimental methods for evaluating siderophore-antibiotic conjugates. Methods Enzymol 2024; 702:21-50. [PMID: 39155112 DOI: 10.1016/bs.mie.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Siderophore-antibiotic conjugates (SACs) are of past and current interest for delivering antibacterials into Gram-negative bacterial pathogens that express siderophore receptors. Studies of SACs are often multifaceted and involve chemical and biological approaches. Major goals are to evaluate the antimicrobial activity and uptake of novel SACs and use the resulting data to inform further mode-of-action studies and molecular design strategies. In this chapter, we describe four key methods that we apply when investigating the antimicrobial activity and uptake of novel SACs based on the siderophore enterobactin (Ent). These methods are based on approaches from the siderophore literature as well as established protocols for antimicrobial activity testing, and include assays for evaluating SAC antimicrobial activity, time-kill kinetics, siderophore competition, and bacterial cell uptake using 57Fe. These assays have served us well in characterizing our Ent-based conjugates and can be applied to study SACs that use other siderophores as targeting vectors.
Collapse
Affiliation(s)
- Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ghazal Kamyabi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
5
|
Huang YJ, Yang MH, Lin LY, Liu J, Zang YP, Lin J, Chen WM. Exploring the Localization of Siderophore-Mediated Cargo Delivery in Gram-Negative Bacteria Using 3-Hydroxypyridin-4(1 H)-one-Fluorescein Probes. ACS Infect Dis 2024; 10:2303-2317. [PMID: 38725130 DOI: 10.1021/acsinfecdis.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The design of siderophore-antibiotic conjugates is a promising strategy to overcome drug resistance in negative bacteria. However, accumulating studies have shown that only those antibiotics acting on the cell wall or cell membrane multiply their antibacterial effects when coupled with siderophores, while antibiotics acting on targets in the cytoplasm of bacteria do not show an obvious enhancement of their antibacterial effects when coupled with siderophores. To explore the causes of this phenomenon, we synthesized several conjugate probes using 3-hydroxypyridin-4(1H)-ones as siderophores and replacing the antibiotic cargo with 5-carboxyfluorescein (5-FAM) or malachite green (MG) cargo. By monitoring changes in the fluorescence intensity of FAM conjugate 20 in bacteria, the translocation of the conjugate across the outer membranes of Gram-negative pathogens was confirmed. Further, the use of the fluorogen activating protein(FAP)/MG system revealed that 3-hydroxypyridin-4(1H)-one-MG conjugate 26 was ultimately distributed mainly in the periplasm rather than being translocated into the cytosol of Escherichia coli and Pseudomonas aeruginosa PAO1. Additional mechanistic studies suggested that the uptake of the conjugate involved the siderophore-dependent iron transport pathway and the 3-hydroxypyridin-4(1H)-ones siderophore receptor-dependent mechanism. Meanwhile, we demonstrated that the conjugation of 3-hydroxypyridin-4(1H)-ones to the fluorescein 5-FAM can reduce the possibility of the conjugates crossing the membrane layers of mammalian Vero cells by passive diffusion, and the advantages of the mono-3-hydroxypyridin-4(1H)-ones as a delivery vehicle in the design of conjugates compared to the tri-3-hydroxypyridin-4(1H)-ones. Overall, this work reveals the localization rules of 3-hydroxypyridin-4(1H)-ones as siderophores to deliver the cargo into Gram-negative bacteria. It provides a theoretical basis for the subsequent design of siderophore-antibiotic conjugates, especially based on 3-hydroxypyridin-4(1H)-ones as siderophores.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Ling-Yin Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jun Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
6
|
Hao X, Tang Y, Zhang R, Wang Z, Gao M, Wei R, Zhao Y, Mu X, Lu Y, Zhou X. Cationized orthogonal triad as a photosensitizer with enhanced synergistic antimicrobial activity. Acta Biomater 2024; 178:287-295. [PMID: 38395101 DOI: 10.1016/j.actbio.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso‑position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso‑position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.
Collapse
Affiliation(s)
- Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ran Wei
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yongxian Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Margeta R, Schelhaas S, Hermann S, Schäfers M, Niemann S, Faust A. A novel radiolabelled salmochelin derivative for bacteria-specific PET imaging: synthesis, radiolabelling and evaluation. Chem Commun (Camb) 2024; 60:3507-3510. [PMID: 38385843 DOI: 10.1039/d4cc00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For specific imaging of bacterial infections we aimed at targeting the exclusive bacterial iron transport system via siderophore-based radiotracers. De novo synthesis and radiolabeling yielded the salmochelin-based PET radiotracer [68Ga]Ga-RMA693, which showed a favourable biodistribution and a bacteria-specific uptake in an animal model of Escherichia coli infection.
Collapse
Affiliation(s)
- Renato Margeta
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
8
|
Weng C, Tan YLK, Koh WG, Ang WH. Harnessing Transition Metal Scaffolds for Targeted Antibacterial Therapy. Angew Chem Int Ed Engl 2023; 62:e202310040. [PMID: 37621226 DOI: 10.1002/anie.202310040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial resistance, caused by persistent adaptation and growing resistance of pathogenic bacteria to overprescribed antibiotics, poses one of the most serious and urgent threats to global public health. The limited pipeline of experimental antibiotics in development further exacerbates this looming crisis and new drugs with alternative modes of action are needed to tackle evolving pathogenic adaptation. Transition metal complexes can replenish this diminishing stockpile of drug candidates by providing compounds with unique properties that are not easily accessible using pure organic scaffolds. We spotlight four emerging strategies to harness these unique properties to develop new targeted antibacterial agents.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Wayne Gareth Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
9
|
Mangal S, Ranot N, Nosran A, Singh V, Chhibber S, Harjai K. In vivo efficacy of pyochelin-mediated delivery of zingerone in Pseudomonas aeruginosa-induced peritonitis. Future Microbiol 2023; 18:1339-1351. [PMID: 37962488 DOI: 10.2217/fmb-2023-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/14/2023] [Indexed: 11/15/2023] Open
Abstract
Aim: The efficacy of a pyochelin-zingerone conjugate (PZC) against Pseudomonas aeruginosa in vivo in a mouse model of peritonitis, as well as mode of action in vitro, were investigated. Methods & results: Intraperitoneal administration of PZC (220 mg kg-1 b.wt.) resulted in a significant reduction in bacterial count in liver tissue by 2 log10 on the 4th day post infection. This was supported by reduced levels of inflammatory markers, liver function, inflammatory cytokines and improved histopathology. PZC showed its ability to disrupt the cellular membrane, increase permeability of the membrane and leakage of intracellular contents of P. aeruginosa, resulting in its death. Conclusion: The present study reports the hepatoprotective potential of PZC in an experimental model of P. aeruginosa-induced peritonitis.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Nishma Ranot
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Anu Nosran
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| |
Collapse
|
10
|
Abstract
Recently developed molecular imaging approaches can be used to visualize specific host responses and pathology in a quest to image infections where few microbe-specific tracers have been developed and in recognition that host responses contribute to morbidity and mortality in their own right. Here we highlight several recent examples of these imaging approaches adapted for imaging infections. The early successes and new avenues described here encompass diverse imaging modalities and leverage diverse aspects of the host response to infection-including inflammation, tissue injury and healing, and key nutrients during host-pathogen interactions. Clearly, these approaches merit further preclinical and clinical study as they are complementary and orthogonal to the pathogen-focused imaging modalities currently under investigation.
Collapse
Affiliation(s)
- Catherine A Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam R Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Peukert C, Vetter AC, Fuchs HLS, Harmrolfs K, Karge B, Stadler M, Brönstrup M. Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant E. coli. Chem Sci 2023; 14:5490-5502. [PMID: 37234900 PMCID: PMC10208051 DOI: 10.1039/d2sc06850h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The growing antibiotic resistance, foremost in Gram-negative bacteria, requires novel therapeutic approaches. We aimed to enhance the potency of well-established antibiotics targeting the RNA polymerase (RNAP) by utilizing the microbial iron transport machinery to improve drug translocation across their cell membrane. As covalent modifications resulted in moderate-low antibiotic activity, cleavable linkers were designed that permit a release of the antibiotic payload inside the bacteria and unperturbed target binding. A panel of ten cleavable siderophore-ciprofloxacin conjugates with systematic variation at the chelator and the linker moiety was used to identify the quinone trimethyl lock in conjugates 8 and 12 as the superior linker system, displaying minimal inhibitory concentrations (MICs) of ≤1 μM. Then, rifamycins, sorangicin A and corallopyronin A, representatives of three structurally and mechanistically different natural product RNAP inhibitor classes, were conjugated via the quinone linker to hexadentate hydroxamate and catecholate siderophores in 15-19 synthetic steps. MIC assays revealed an up to 32-fold increase in antibiotic activity against multidrug-resistant E. coli for conjugates such as 24 or 29 compared to free rifamycin. Experiments with knockout mutants in the transport system showed that translocation and antibiotic effects were conferred by several outer membrane receptors, whose coupling to the TonB protein was essential for activity. A functional release mechanism was demonstrated analytically by enzyme assays in vitro, and a combination of subcellular fractionation and quantitative mass spectrometry proved cellular uptake of the conjugate, release of the antibiotic, and its increased accumulation in the cytosol of bacteria. The study demonstrates how the potency of existing antibiotics against resistant Gram-negative pathogens can be boosted by adding functions for active transport and intracellular release.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Anna C Vetter
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Hazel L S Fuchs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Kirsten Harmrolfs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig, Inhoffenstraße 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig, Inhoffenstraße 7 38124 Braunschweig Germany
- Institute for Organic Chemistry (IOC), Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
12
|
Han X, Cui AL, Yang HX, Wu L, Wei R, Liu Q, Li ZR, Hu HY. Polymyxin-based fluorescent probes to combat Gram-negative antimicrobial resistance. Talanta 2023; 260:124576. [PMID: 37148689 DOI: 10.1016/j.talanta.2023.124576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Reliable diagnostic approaches especially those targeting critical Gram-negative bacteria are urgently needed for the prevention of antimicrobial resistance. Polymyxin B (PMB) which specifically targets the outer membrane of Gram-negative bacteria is the last-line antibiotic against life-threatening multidrug-resistant Gram-negative bacteria. However, increasing number of studies have reported the spread of PMB-resistant strains. With the aim to specifically detect Gram-negative bacteria and potentially reduce the irrational use of antibiotics, we herein rationally designed two Gram-negative bacteria specific fluorescent probes based on our previous activity-toxicity optimization of PMB. The in vitro probe PMS-Dns showed fast and selective labeling of Gram-negative pathogens in complex biological cultures. Subsequently, we constructed the caged in vivo fluorescent probe PMS-Cy-NO2 by conjugating bacterial nitroreductase (NTR)-activatable positive charged hydrophobic near-infrared (NIR) fluorophore with polymyxin scaffold. Significantly, PMS-Cy-NO2 exhibited excellent Gram-negative bacterial detection capability with the differentiation between Gram-positive and Gram-negative in a mouse skin infection model.
Collapse
Affiliation(s)
- Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - A-Long Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - He-Xian Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lingling Wu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
14
|
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
15
|
Peukert C, Rox K, Karge B, Hotop SK, Brönstrup M. Synthesis and Characterization of DOTAM-Based Sideromycins for Bacterial Imaging and Antimicrobial Therapy. ACS Infect Dis 2023; 9:330-341. [PMID: 36719860 PMCID: PMC9927285 DOI: 10.1021/acsinfecdis.2c00523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 02/01/2023]
Abstract
The rise of antimicrobial resistance, especially in Gram-negative bacteria, calls for novel diagnostics and antibiotics. To efficiently penetrate their double-layered cell membrane, we conjugated the potent antibiotics daptomycin, vancomycin, and sorangicin A to catechol siderophores, which are actively internalized by the bacterial iron uptake machinery. LC-MS/MS uptake measurements of sorangicin derivatives verified that the conjugation led to a 100- to 525-fold enhanced uptake into bacteria compared to the free drug. However, the transfer to the cytosol was insufficient, which explains their lack of antibiotic efficacy. Potent antimicrobial effects were observed for the daptomycin conjugate 7 (∼1 μM) against multidrug-resistant Acinetobacter baumannii. A cyanin-7 label aside the daptomycin warhead furnished the theranostic 13 that retained its antibiotic activity and was also able to label ESKAPE bacteria, as demonstrated by microscopy and fluorescence assays. 13 and the cyanin-7 imaging conjugate 14 were stable in human plasma and had low plasma protein binding and cytotoxicity.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Bianka Karge
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- Institute
for Organic Chemistry (IOC), Leibniz Universität
Hannover, Schneiderberg
1B, 30167Hannover, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| |
Collapse
|
16
|
Southwell JW, Herman R, Raines DJ, Clarke JE, Böswald I, Dreher T, Gutenthaler SM, Schubert N, Seefeldt J, Metzler‐Nolte N, Thomas GH, Wilson KS, Duhme‐Klair A. Siderophore-Linked Ruthenium Catalysts for Targeted Allyl Ester Prodrug Activation within Bacterial Cells. Chemistry 2023; 29:e202202536. [PMID: 36355416 PMCID: PMC10108276 DOI: 10.1002/chem.202202536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
Due to rising resistance, new antibacterial strategies are needed, including methods for targeted antibiotic release. As targeting vectors, chelating molecules called siderophores that are released by bacteria to acquire iron have been investigated for conjugation to antibacterials, leading to the clinically approved drug cefiderocol. The use of small-molecule catalysts for prodrug activation within cells has shown promise in recent years, and here we investigate siderophore-linked ruthenium catalysts for the activation of antibacterial prodrugs within cells. Moxifloxacin-based prodrugs were synthesised, and their catalyst-mediated activation was demonstrated under anaerobic, biologically relevant conditions. In the absence of catalyst, decreased antibacterial activities were observed compared to moxifloxacin versus Escherichia coli K12 (BW25113). A series of siderophore-linked ruthenium catalysts were investigated for prodrug activation, all of which displayed a combinative antibacterial effect with the prodrug, whereas a representative example displayed little toxicity against mammalian cell lines. By employing complementary bacterial growth assays, conjugates containing siderophore units based on catechol and azotochelin were found to be most promising for intracellular prodrug activation.
Collapse
Affiliation(s)
| | - Reyme Herman
- University of YorkDepartment of BiologyHeslingtonWentworth WayYO10 5DDUK
| | - Daniel J. Raines
- University of YorkDepartment of ChemistryHeslingtonYorkYO10 5DDUK
| | - Justin E. Clarke
- University of YorkYork Structural Biology LaboratoryHeslingtonYO10 5DDUK
| | - Isabelle Böswald
- University of YorkDepartment of ChemistryHeslingtonYorkYO10 5DDUK
| | - Thorsten Dreher
- University of YorkDepartment of ChemistryHeslingtonYorkYO10 5DDUK
| | | | - Nicole Schubert
- Anorganische ChemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Jana Seefeldt
- Anorganische ChemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Nils Metzler‐Nolte
- Anorganische ChemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Gavin H. Thomas
- University of YorkDepartment of BiologyHeslingtonWentworth WayYO10 5DDUK
| | - Keith S. Wilson
- University of YorkYork Structural Biology LaboratoryHeslingtonYO10 5DDUK
| | | |
Collapse
|
17
|
Peukert C, Gasser V, Orth T, Fritsch S, Normant V, Cunrath O, Schalk IJ, Brönstrup M. Trojan Horse Siderophore Conjugates Induce Pseudomonas aeruginosa Suicide and Qualify the TonB Protein as a Novel Antibiotic Target. J Med Chem 2023; 66:553-576. [PMID: 36548006 PMCID: PMC9841981 DOI: 10.1021/acs.jmedchem.2c01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Rising infection rates with multidrug-resistant pathogens calls for antibiotics with novel modes of action. Herein, we identify the inner membrane protein TonB, a motor of active uptake in Gram-negative bacteria, as a novel target in antimicrobial therapy. The interaction of the TonB box of outer membrane transporters with TonB is crucial for the internalization of essential metabolites. We designed TonB box peptides and coupled them with synthetic siderophores in order to facilitate their uptake into bacteria in up to 32 synthetic steps. Three conjugates repressed the growth of Pseudomonas aeruginosa cells unable to produce their own siderophores, with minimal inhibitory concentrations between 0.1 and 0.5 μM. The transporters mediating uptake of these compounds were identified as PfeA and PirA. The study illustrates a variant of cellular suicide where a transporter imports its own inhibitor and demonstrates that artificial siderophores can import cargo with molecular weights up to 4 kDa.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Véronique Gasser
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Till Orth
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sarah Fritsch
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Vincent Normant
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Olivier Cunrath
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Isabelle J. Schalk
- CNRS, University
of Strasbourg, UMR7242, ESBS, Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for
Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
18
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
19
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
20
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
21
|
Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem 2022; 61:19172-19182. [PMID: 36251475 DOI: 10.1021/acs.inorgchem.2c02777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an electrochemical setup comprising a boron-doped diamond (BDD) working electrode for the electrochemical study of iron(III) catecholate siderophores. We demonstrate its successful application in the voltammetric investigation of iron(III) azotochelin, an iron complex of a bis(catecholate) siderophore. Cyclic voltammetry results, when complemented by UV-vis and native electrospray ionization-mass spectrometry (ESI-MS) characterization, reveal the formation of a coordinatively unsaturated tetracoordinate 1:1 complex of Fe:azotochelin (M1:L1) at neutral pH, contrary to iron(III) tetradentate siderophore complexes of other classes which favor the hexacoordinate environment of an M2:L3 species. A notable effect of pH and buffer composition on the reduction potential of iron(III) azotochelin is demonstrated. Lower pH values and buffers encompassing primary or secondary amines facilitate a positive potential shift of up to +290 mV and +250 mV vs Ag/AgCl 3 M NaCl, respectively. The study was extended to the investigation of the iron(III) complexes of hexadentate siderophores. For tris(catecholate) siderophores, enterobactin and protochelin, the reduction potentials were found to lie beyond the potential window accessible to the BDD electrode; however, we were successful in observing the electrochemical behavior of a tris(hydroxamate) siderophore, ferricrocin.
Collapse
Affiliation(s)
- Natalia G Baranska
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
22
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
23
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
24
|
Holzapfel M, Baldau T, Kerpa S, Guadalupi G, Qi B, Liu Y, Parak WJ, Maison W. Solution Structure and Relaxivity of Ln‐DOTXAZA Derivatives. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Center for Applied Nanoscience GERMANY
| | - Torben Baldau
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | - Svenja Kerpa
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | | | - Bing Qi
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Yang Liu
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang J. Parak
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang Maison
- University of Hamburg Chemistry Bundesstr. 45 20146 Hamburg GERMANY
| |
Collapse
|
25
|
Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Brönstrup M. Enzyme-Activated, Chemiluminescent Siderophore-Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial Pathogens. Angew Chem Int Ed Engl 2022; 61:e202201423. [PMID: 35358362 PMCID: PMC9322335 DOI: 10.1002/anie.202201423] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
The sensitive detection of bacterial infections is a prerequisite for their successful treatment. The use of a chemiluminescent readout was so far hampered by an insufficient probe enrichment at the pathogens. We coupled siderophore moieties, that harness the unique iron transport system of bacteria, with enzyme-activatable dioxetanes and obtained seven trifunctional probes with high signal-to-background ratios (S/B=426-859). Conjugates with efficient iron transport capability into bacteria were identified through a growth recovery assay. All ESKAPE pathogens were labelled brightly by desferrioxamine conjugates, while catechols were weaker due to self-quenching. Bacteria could also be detected inside lung epithelial cells. The best probe 8 detected 9.1×103 CFU mL-1 of S. aureus and 5.0×104 CFU mL-1 of P. aeruginosa, while the analogous fluorescent probe 10 was 205-305fold less sensitive. This qualifies siderophore dioxetane probes for the selective and sensitive detection of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Sachin Popat Gholap
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Ori Green
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Lukas Pinkert
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Joop van den Heuvel
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Marco van Ham
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Doron Shabat
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| |
Collapse
|
26
|
Conjugates of Iron-Transporting N-Hydroxylactams with Ciprofloxacin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123910. [PMID: 35745033 PMCID: PMC9228471 DOI: 10.3390/molecules27123910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Screening of a library of novel N-hydroxylactams amenable by the Castagnoli-Cushman reaction identified four lead compounds that facilitated 55Fe transport into P. aeruginosa cells (one of these synthetic siderophores was found to be as efficient at promoting iron uptake as the natural siderophores pyoverdine, pyochelin or enterobactin). Conjugates of the four lead siderophores with ciprofloxacin were tested for antibacterial activity against P. aeruginosa POA1 (wild type) and the ∆pvdF∆pchA mutant strain. The antibacterial activity was found to be pronounced against the ∆pvdF∆pchA mutant strain grown in CAA medium but not for the POA1 strain. This may be indicative of these compounds being ‘Trojan horse’ antibiotics. Further scrutiny of the mechanism of the antibacterial action of the newly developed conjugates is warranted.
Collapse
|
27
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
28
|
Fritsch S, Gasser V, Peukert C, Pinkert L, Kuhn L, Perraud Q, Normant V, Brönstrup M, Schalk IJ. Uptake Mechanisms and Regulatory Responses to MECAM- and DOTAM-Based Artificial Siderophores and Their Antibiotic Conjugates in Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1134-1146. [PMID: 35500104 DOI: 10.1021/acsinfecdis.2c00049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new antibiotics against Gram-negative bacteria has to deal with the low permeability of the outer membrane. This obstacle can be overcome by utilizing siderophore-dependent iron uptake pathways as entrance routes for antibiotic uptake. Iron-chelating siderophores are actively imported by bacteria, and their conjugation to antibiotics allows smuggling the latter into bacterial cells. Synthetic siderophore mimetics based on MECAM (1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene) and DOTAM (1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane) cores, both chelating iron via catechol groups, have been recently applied as versatile carriers of functional cargo. In the present study, we show that MECAM and the MECAM-ampicillin conjugate 3 transport iron into Pseudomonas aeruginosa cells via the catechol-type outer membrane transporters PfeA and PirA and DOTAM solely via PirA. Differential proteomics and quantitative real-time polymerase chain reaction (qRT-PCR) showed that MECAM import induced the expression of pfeA, whereas 3 led to an increase in the expression of pfeA and ampc, a gene conferring ampicillin resistance. The presence of DOTAM did not induce the expression of pirA but upregulated the expression of two zinc transporters (cntO and PA0781), pointing out that bacteria become zinc starved in the presence of this compound. Iron uptake experiments with radioactive 55Fe demonstrated that import of this nutrient by MECAM and DOTAM was as efficient as with the natural siderophore enterobactin. The study provides a functional validation for DOTAM- and MECAM-based artificial siderophore mimetics as vehicles for the delivery of cargo into Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex F-67084, France
| | - Quentin Perraud
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Vincent Normant
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig 38124, Germany
- Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover 30159, Germany
| | - Isabelle J. Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| |
Collapse
|
29
|
Pandey A, Cao M, Boros E. Tracking Uptake and Metabolism of Xenometallomycins Using a Multi-Isotope Tagging Strategy. ACS Infect Dis 2022; 8:878-888. [PMID: 35319188 DOI: 10.1021/acsinfecdis.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic and naturally occurring siderophores and their conjugates provide access to the bacterial cytoplasm via active membrane transport. Previously, we displaced iron with the radioactive isotope 67Ga to quantify and track in vitro and in vivo uptake and distribution of siderophore Trojan Horse antibiotic conjugates. Here, we introduce a multi-isotope tagging strategy to individually elucidate the fate of metal cargo and the ligand construct with radioisotopes 67Ga and 124I. We synthesized gallium(III) model complexes of a ciprofloxacin-functionalized linear desferrichrome (Ga-D6) and deferoxamine (Ga-D7) incorporating an iodo-tyrosine linker to enable radiolabeling using the metal-binding (67Ga) and the cargo-conjugation site (124I). Radiochemical experiments with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa wt strains show that 67Ga-D6/D7 and Ga-D6-124I/D7-124I have comparable uptake, indicating intact complex import and siderophore-mediated uptake. In naive mice, 67Ga-D6/D7 and Ga-D6-124I/D7-124I demonstrate predominantly renal clearance; urine metabolite analysis indicates in vivo dissociation of Ga(III) is a likely mechanism of degradation for 67Ga-D6/D7 when compared to ligand radiolabeled compounds, Ga-D6-124I/D7-124I, which remain >60% intact in urine. Cumulatively, this work demonstrates that a multi-isotope tagging strategy effectively elucidates the in vitro uptake, pharmacokinetics, and in vivo stability of xenometallomycins with modular chemical structures.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Minhua Cao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
30
|
Zhang Y, Zhou W, Xu N, Wang G, Li J, An K, Jiang W, Zhou X, Qiao Q, Jiang X, Xu Z. Aniline as a TICT rotor to derive methine fluorogens for biomolecules: A curcuminoid-BF2 compound for lighting up HSA/BSA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Peukert C, Gholap SP, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Broenstrup M. Enzyme‐activated, Chemiluminescent Siderophore‐Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial ESKAPE Pathogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carsten Peukert
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology GERMANY
| | - Sachin Popat Gholap
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Ori Green
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Lukas Pinkert
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology GERMANY
| | - Joop van den Heuvel
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH SFPR GERMANY
| | - Marco van Ham
- Helmholtz-Zentrum für Infektionsforschung GmbH: Helmholtz-Zentrum fur Infektionsforschung GmbH SFPR GERMANY
| | - Doron Shabat
- Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Chemistry ISRAEL
| | - Mark Broenstrup
- Helmholtz-Zentrum fur Infektionsforschung GmbH Chemical Biology Inhoffenstraße 7 38124 Braunschweig GERMANY
| |
Collapse
|
32
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
33
|
Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK, Chaudhury K, Dhara S. Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. BIOSENSING, THERANOSTICS, AND MEDICAL DEVICES 2022:345-376. [DOI: 10.1007/978-981-16-2782-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
34
|
Li L, Gu P, Hao M, Xiang X, Feng Y, Zhu X, Song Y, Song E. Bacteria-Targeted MRI Probe-Based Imaging Bacterial Infection and Monitoring Antimicrobial Therapy In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103627. [PMID: 34554653 DOI: 10.1002/smll.202103627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Despite the significant advances of imaging techniques nowadays, accurate diagnosis of bacterial infections and real-time monitoring the efficacy of antibiotic therapy in vivo still remain huge challenges. Herein, a self-assembling peptide (FFYEGK) and vancomycin (Van) antibiotic molecule co-modified gadolinium (Gd) MRI nanoaggregate probe (GFV) for detecting Staphylococcus aureus (S. aureus) infection in vivo and monitoring the treatment of S. aureus-infected myositis by using daptomycin (Dap) antibiotic as model are designed and fabricated. The as-prepared GFV probe bears Van molecules, making itself good bacteria-specific targeting, and the peptide in the probe can enhance the longitudinal relaxivity rate (r1 ) after self-assembly due to the π-π stacking. The study showed that, based on the GFV probe, bacterial infections and sterile inflammation can be discriminated, and as few as 105 cfu S. aureus can be detected in vivo with high specificity and accurately. Moreover, the T1 signal of GFV probe at the S. aureus-infected site in mice correlates with the increasing time of Dap treating, indicating the possibility of monitoring the efficacy of antibacterial agents for infected mice based on the as proposed GFV probe. This study shows the potential of GFV probe for diagnosis, evaluation, and prognosis of infectious diseases in clinics.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Peilin Gu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Mengqi Hao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoli Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuting Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Pinkert L, Lai YH, Peukert C, Hotop SK, Karge B, Schulze LM, Grunenberg J, Brönstrup M. Antibiotic Conjugates with an Artificial MECAM-Based Siderophore Are Potent Agents against Gram-Positive and Gram-Negative Bacterial Pathogens. J Med Chem 2021; 64:15440-15460. [PMID: 34619959 DOI: 10.1021/acs.jmedchem.1c01482] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of novel drugs against Gram-negative bacteria represents an urgent medical need. To overcome their outer cell membrane, we synthesized conjugates of antibiotics and artificial siderophores based on the MECAM core, which are imported by bacterial iron uptake systems. Structures, spin states, and iron binding properties were predicted in silico using density functional theory. The capability of MECAM to function as an effective artificial siderophore in Escherichia coli was proven in microbiological growth recovery and bioanalytical assays. Following a linker optimization focused on transport efficiency, five β-lactam and one daptomycin conjugates were prepared. The most potent conjugate 27 showed growth inhibition of Gram-positive and Gram-negative multidrug-resistant pathogens at nanomolar concentrations. The uptake pathway of MECAMs was deciphered by knockout mutants and highlighted the relevance of FepA, CirA, and Fiu. Resistance against 27 was mediated by a mutation in the gene encoding ExbB, which is involved in siderophore transport.
Collapse
Affiliation(s)
- Lukas Pinkert
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yi-Hui Lai
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Carsten Peukert
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bianka Karge
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lara Marie Schulze
- Institute for Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jörg Grunenberg
- Institute for Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, 30159 Hannover, Germany
| |
Collapse
|
36
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
37
|
Tegge W, Guerra G, Höltke A, Schiller L, Beutling U, Harmrolfs K, Gröbe L, Wullenkord H, Xu C, Weich H, Brönstrup M. Selective Bacterial Targeting and Infection-Triggered Release of Antibiotic Colistin Conjugates. Angew Chem Int Ed Engl 2021; 60:17989-17997. [PMID: 34097810 PMCID: PMC8456958 DOI: 10.1002/anie.202104921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Indexed: 12/18/2022]
Abstract
In order to render potent, but toxic antibiotics more selective, we have explored a novel conjugation strategy that includes drug accumulation followed by infection-triggered release of the drug. Bacterial targeting was achieved using a modified fragment of the human antimicrobial peptide ubiquicidin, as demonstrated by fluorophore-tagged variants. To limit the release of the effector colistin only to infection-related situations, we introduced a linker that was cleaved by neutrophil elastase (NE), an enzyme secreted by neutrophil granulocytes at infection sites. The linker carried an optimized sequence of amino acids that was required to assure sufficient cleavage efficiency. The antibacterial activity of five regioisomeric conjugates prepared by total synthesis was masked, but was released upon exposure to recombinant NE when the linker was attached to amino acids at the 1- or the 3-position of colistin. A proof-of-concept was achieved in co-cultures of primary human neutrophils and Escherichia coli that induced the secretion of NE, the release of free colistin, and an antibacterial efficacy that was equal to that of free colistin.
Collapse
Affiliation(s)
- Werner Tegge
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Giulia Guerra
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Alexander Höltke
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Lauritz Schiller
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Ulrike Beutling
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Kirsten Harmrolfs
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Lothar Gröbe
- Flow Cytometry and Cell Sorting PlatformHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Hannah Wullenkord
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Chunfa Xu
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Herbert Weich
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
- German Center for Infection Research (DZIF), SiteHannover-BraunschweigGermany
- Center of Biomolecular Drug Research (BMWZ)Leibniz Universität30167HannoverGermany
| |
Collapse
|
38
|
Tegge W, Guerra G, Höltke A, Schiller L, Beutling U, Harmrolfs K, Gröbe L, Wullenkord H, Xu C, Weich H, Brönstrup M. Zielgerichtete bakterielle Lokalisation und infektionsinduzierte Freisetzung von antibiotischen Colistin‐Konjugaten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Werner Tegge
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Giulia Guerra
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Alexander Höltke
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Lauritz Schiller
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Ulrike Beutling
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Kirsten Harmrolfs
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Lothar Gröbe
- Flow Cytometry and Cell Sorting Platform Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Hannah Wullenkord
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Chunfa Xu
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Herbert Weich
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - Mark Brönstrup
- Abteilung für Chemische Biologie Helmholtz-Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig Deutschland
- Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität 30167 Hannover Deutschland
| |
Collapse
|
39
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
40
|
Pfister J, Petrik M, Bendova K, Matuszczak B, Binder U, Misslinger M, Kühbacher A, Gsaller F, Haas H, Decristoforo C. Antifungal Siderophore Conjugates for Theranostic Applications in Invasive Pulmonary Aspergillosis Using Low-Molecular TAFC Scaffolds. J Fungi (Basel) 2021; 7:558. [PMID: 34356941 PMCID: PMC8304796 DOI: 10.3390/jof7070558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening form of fungal infection, primarily in immunocompromised patients and associated with significant mortality. Diagnostic procedures are often invasive and/or time consuming and existing antifungals can be constrained by dose-limiting toxicity and drug interaction. In this study, we modified triacetylfusarinine C (TAFC), the main siderophore produced by the opportunistic pathogen Aspergillus fumigatus (A. fumigatus), with antifungal molecules to perform antifungal susceptibility tests and molecular imaging. A variation of small organic molecules (eflornithine, fludioxonil, thiomersal, fluoroorotic acid (FOA), cyanine 5 (Cy5) with antifungal activity were coupled to diacetylfusarinine C (DAFC), resulting in a "Trojan horse" to deliver antifungal compounds specifically into A. fumigatus hyphae by the major facilitator transporter MirB. Radioactive labeling with gallium-68 allowed us to perform in vitro characterization (distribution coefficient, stability, uptake assay) as well as biodistribution experiments and PET/CT imaging in an IPA rat infection model. Compounds chelated with stable gallium were used for antifungal susceptibility tests. [Ga]DAFC-fludioxonil, -FOA, and -Cy5 revealed a MirB-dependent active uptake with fungal growth inhibition at 16 µg/mL after 24 h. Visualization of an A. fumigatus infection in lungs of a rat was possible with gallium-68-labeled compounds using PET/CT. Heterogeneous biodistribution patterns revealed the immense influence of the antifungal moiety conjugated to DAFC. Overall, novel antifungal siderophore conjugates with promising fungal growth inhibition and the possibility to perform PET imaging combine both therapeutic and diagnostic potential in a theranostic compound for IPA caused by A. fumigatus.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria;
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77200 Olomouc, Czech Republic; (M.P.); (K.B.)
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77200 Olomouc, Czech Republic; (M.P.); (K.B.)
| | - Barbara Matuszczak
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Ulrike Binder
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Matthias Misslinger
- Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.M.); (A.K.); (F.G.); (H.H.)
| | - Alexander Kühbacher
- Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.M.); (A.K.); (F.G.); (H.H.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.M.); (A.K.); (F.G.); (H.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.M.); (A.K.); (F.G.); (H.H.)
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
41
|
Yuwen L, Qiu Q, Xiu W, Yang K, Li Y, Xiao H, Yang W, Yang D, Wang L. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomater Sci 2021; 9:4484-4495. [PMID: 34002742 DOI: 10.1039/d1bm00406a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious diseases associated with antibiotic-resistant bacteria are ever-growing threats to public health. Effective treatment and detection methods of bacterial infections are in urgent demand. Herein, novel phototheranostic nanoagents (MoS2@HA-Ce6 nanosheets, MHC NSs) with hyaluronidase (HAase)-responsive fluorescence imaging (FLI) and photothermal/photodynamic therapy (PTT/PDT) functions were prepared. In this design, Ce6 is used as both a photosensitizer and a fluorescent probe, while MoS2 nanosheets (MoS2 NSs) serve as both a fluorescence quencher and a photothermal agent. Hyaluronic acid conjugated with Ce6 (HA-Ce6) was assembled on the surface of MoS2 NSs to form MHC NSs. Without the HAase secreted by methicillin-resistant Staphylococcus aureus (MRSA), the fluorescence of Ce6 is quenched by MoS2 NSs, while in the presence of MRSA, HAase can degrade the HA and release Ce6, which restores the fluorescence and photodynamic activity of Ce6. The experimental results show that MHC NSs can fluorescently image the MRSA both in vitro and in vivo by HAase activation. Meanwhile, MHC NSs can serve as PTT/PDT dual-mode antibacterial agents for MRSA. In vitro antibacterial results show that MHC NSs can kill 99.97% MRSA under 635 nm and 785 nm laser irradiation. In vivo study further shows that MHC NSs can kill 99.9% of the bacteria in MRSA infected tissues in mice and prompt wound healing by combined PTT/PDT. This work provides novel HAase-responsive phototheranostic nanoagents for effective detection and treatment of bacterial infections.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Qiu Qiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yuqing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Hang Xiao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wenjing Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
42
|
Richter R, Lehr CM. Extracellular vesicles as novel assay tools to study cellular interactions of anti-infective compounds - A perspective. Adv Drug Deliv Rev 2021; 173:492-503. [PMID: 33857554 DOI: 10.1016/j.addr.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Sudden outbreaks of novel infectious diseases and the persistent evolution of antimicrobial resistant pathogens make it necessary to develop specific tools to quickly understand pathogen-cell interactions and to study appropriate drug delivery strategies. Extracellular vesicles (EVs) are cell-specific biogenic transport systems, which are gaining more and more popularity as either diagnostic markers or drug delivery systems. Apart from that, there are emerging possibilities for EVs as tools to study drug penetration, drug-membrane interactions as well as pathogen-membrane interactions. However, it appears that the potential of EVs for such applications has not been fully exploited yet. Considering the vast variety of cells that can be involved in an infection, vesicle-based analytical methods are just emerging and the number of reported applications is still relatively small. Aim of this review is to discuss the current state of the art of EV-based assays, especially in the context of antimicrobial research and therapy, and to present some new perspectives for a more exhaustive and creative exploration in the future.
Collapse
Affiliation(s)
- Robert Richter
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
43
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
44
|
Brennecke B, Wang Q, Haap W, Grether U, Hu HY, Nazaré M. DOTAM-Based, Targeted, Activatable Fluorescent Probes for the Highly Sensitive and Selective Detection of Cancer Cells. Bioconjug Chem 2021; 32:702-712. [PMID: 33691062 DOI: 10.1021/acs.bioconjchem.0c00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The utilization of an activatable, substrate-based probe design in combination with a cellular targeting approach has been rarely explored for cancer imaging on a small-molecule basis, although such probes could benefit from advantages of both concepts. Cysteine proteases like cathepsin S are known to be involved in fundamental processes associated with tumor development and progression and thus are valuable cancer markers. We report the development of a combined dual functional DOTAM-based, RGD-targeted internally quenched fluorescent probe that is activated by cathepsin S. The probe exhibits excellent in vitro activation kinetics which can be fully translated to human cancer cell lines. We demonstrate that the targeted, activatable probe is superior to its nontargeted analog, exhibiting improved uptake into ανβ3-integrin expressing human sarcoma cells (HT1080) and significantly higher resultant fluorescence staining. However, profound activation was also found in cancer cells with a lower integrin expression level, whereas in healthy cells almost no probe activation could be observed, highlighting the high selectivity of our probe toward cancer cells. These auspicious results show the outstanding potential of the dual functionality concept combining a substrate-based probe design with a targeting approach, which could form the basis for highly sensitive and selective in vivo imaging probes.
Collapse
Affiliation(s)
- Benjamin Brennecke
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, 13125 Berlin, Germany
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wolfgang Haap
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, 13125 Berlin, Germany
| |
Collapse
|
45
|
Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging 2021; 55:7-14. [PMID: 33643484 DOI: 10.1007/s13139-021-00689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial cancer therapy (BCT) approaches have been extensively investigated because bacteria can show unique features of strong tropism for cancer, proliferation inside tumors, and antitumor immunity, while bacteria are also possible agents for drug delivery. Despite the rapidly increasing number of preclinical studies using BCT to overcome the limitations of conventional cancer treatments, very few BCT studies have advanced to clinical trials. In patients undergoing BCT, the precise localization and quantification of bacterial density in different body locations is important; however, most clinical trials have used subjective clinical signs and invasive sampling to confirm bacterial colonization. There is therefore a need to improve the visualization of bacterial densities using noninvasive and repetitive in vivo imaging techniques that can facilitate the clinical translation of BCT. In vivo optical imaging techniques using bioluminescence and fluorescence, which are extensively employed to image the therapeutic process of BCT in small animal research, are hard to apply to the human body because of their low penetrative power. Thus, new imaging techniques need to be developed for clinical trials. In this review, we provide an overview of the various in vivo bacteria-specific imaging techniques available for visualizing tumor-treating bacteria in BCT studies.
Collapse
|
46
|
Fan D, Fang Q. Siderophores for medical applications: Imaging, sensors, and therapeutics. Int J Pharm 2021; 597:120306. [PMID: 33540031 DOI: 10.1016/j.ijpharm.2021.120306] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Siderophores are low-molecular-weight chelators produced by microorganisms to scavenge iron from the environment and deliver it to cells via specific receptors. Tremendous researches on the molecular basis of siderophore regulation, synthesis, secretion, and uptake have inspired their diverse applications in the medical field. Replacing iron with radionuclides in siderophores, such as the most prominent Ga-68 for positron emission tomography (PET), carves out ways for targeted imaging of infectious diseases and cancers. Additionally, the high affinity of siderophores for metal ions or microorganisms makes them a potent detecting moiety in sensors that can be used for diagnosis. As for therapeutics, the notable Trojan horse-inspired siderophore-antibiotic conjugates demonstrate enhanced toxicity against multi-drug resistant (MDR) pathogens. Besides, siderophores can tackle iron overload diseases and, when combined with moieties such as hydrogels and nanoparticles, a wide spectrum of iron-induced diseases and even cancers. In this review, we briefly outline the related mechanisms, before summarizing the siderophore-based applications in imaging, sensors, and therapeutics.
Collapse
Affiliation(s)
- Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; Sino-Danish Center for Education and Research, Beijing 101408, PR China.
| |
Collapse
|
47
|
Fang Q, Xu K, Xiong Q, Xu Y, Hui A, Xuan S. Fe 3O 4–Au–polydopamine hybrid microcapsules with photothermal–photodynamic synergistic anti-bacterial performance. CrystEngComm 2021. [DOI: 10.1039/d1ce00926e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel magnetic Fe3O4–Au–PDA hybrid microcapsule with both photothermal (PTT) and photodynamic (PDT) anti-bacterial functions has been developed, and the product exhibits higher antibacterial performance by the combined PTT/PDT treatment.
Collapse
Affiliation(s)
- Qunling Fang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Kezhu Xu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Qingshan Xiong
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Ailing Hui
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P.R. China
| |
Collapse
|
48
|
Wangngae S, Pewklang T, Chansaenpak K, Ganta P, Worakaensai S, Siwawannapong K, Kluaiphanngam S, Nantapong N, Lai RY, Kamkaew A. A chalcone-based fluorescent responsive probe for selective detection of nitroreductase activity in bacteria. NEW J CHEM 2021. [DOI: 10.1039/d1nj01794b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new chalcone-based fluorescent turn-on probe (3c) responsive to nitroreductase (NTR) activity and its application toward the detection of bacteria are presented.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Thitima Pewklang
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center
- National Science and Technology Development Agency
- Thailand Science Park
- Pathum Thani 12120
- Thailand
| | - Phongsakorn Ganta
- School of Preclinical Sciences
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima
- Thailand
| | - Suphanida Worakaensai
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Kittipan Siwawannapong
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Surayut Kluaiphanngam
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima
- Thailand
| | - Rung-Yi Lai
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Anyanee Kamkaew
- School of Chemistry
- Institute of Science, Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| |
Collapse
|
49
|
Southwell JW, Black CM, Duhme-Klair AK. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials. ChemMedChem 2020; 16:1063-1076. [PMID: 33238066 DOI: 10.1002/cmdc.202000806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
The field of antibacterial siderophore conjugates, referred to as Trojan Horse antibacterials, has received increasing attention in recent years, driven by the rise of antimicrobial resistance. Trojan Horse antibacterials offer an opportunity to exploit the specific pathways present in bacteria for active iron uptake, potentially allowing the drugs to bypass membrane-associated resistance mechanisms. Hence, the Trojan Horse approach might enable the redesigning of old antibiotics and the development of antibacterials that target specific pathogens. Critical parts of evaluating such Trojan Horse antibacterials and improving their design are the quantification of their bacterial uptake and the identification of the pathways by which this occurs. In this minireview, we highlight a selection of the biological and chemical methods used to study the uptake of Trojan Horse antibacterials, exemplified with case studies, some of which have led to drug candidates in clinical development or approved antibiotics.
Collapse
Affiliation(s)
- James W Southwell
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Conor M Black
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | | |
Collapse
|
50
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|