1
|
Ding M, Chen H, He L, Wang Z, Zhao X, Sun P, Mei Q, Li D, Fan Q. NIR-II D-A-D-Type Small-Molecule Coordination with Carboxylatopillar[5]Arene: a Multifunctional Phototheranostic for Low-Temperature NIR-II Photothermal/Platinum-Based/Chemodynamic Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501903. [PMID: 40255101 DOI: 10.1002/smll.202501903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Low-temperature second near-infrared region (NIR-II) photothermal therapy (PTT) has shown significant potential in minimizing damage to normal tissues and reducing inflammation. However, it still faces challenge of insufficient immune response. Thus, a multifunctional phototheranostic nanoparticle (BDPB/Pt/Fe@P[5]) is developed by co-loading BDPB, CDHPt, and Fe2⁺ with a pH-sensitive lipid DSPE-PEOz2K. The carboxylatopillar[5]arene (CP[5]) used to construct this nanoparticle exhibits strong host-guest recognition with pyridine salts, alleviating aggregation caused quench (ACQ) effect and enhancing the NIR-II emission of the donor-acceptor-donor (D-A-D)-type organic small molecule (BDPB). CP[5] provides suitable vehicles for encapsulating platinum (IV) prodrugs (CDHPt) and Fe2⁺ ions via metal coordination for controllable reactive oxygen species (ROS) release. Under low-intensity NIR-II laser irradiation and an acidic tumor microenvironment, the nanoparticles degrade, releasing CDHPt and Fe2⁺ ions for platinum-based therapy and chemodynamic therapy (CDT). CDHPt facilitates the direct production of superoxide anions (O₂·⁻) from O₂ and partially converts it into the highly cytotoxic hydroxyl radicals, thereby promoting the Fenton reaction process. The therapeutic efficacy is further synergized by immunogenic cell death (ICD) effect.
Collapse
Affiliation(s)
- Miaomiao Ding
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Haoran Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhichao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianghua Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Pengfei Sun
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qunbo Mei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
2
|
Zhang X, Zhang X, Fan Q, Li J, Jia S, Chen X, Wang S. Self-Accelerated Nanoregulators for Positive Feedback Ferroptosis-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408156. [PMID: 40026025 DOI: 10.1002/smll.202408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Activating specific immunity through intelligent delivery of chemotherapeutic drugs shows great potential for effective tumor therapy. However, conventional tumor microenvironment-responsive nanomedicines are often difficult to achieve both specificity and sensitivity, leading to severe adverse effects or limited drug release efficiency. Furthermore, the immunosuppressive microenvironment of tumor will also seriously restrict the treatment efficacy. In this work, a cascade-responsive multi-polyprodrug nanoregulator is developed. Under the tumor microenvironment with high hydrogen peroxide level, the nanoregulators can simultaneously release chemotherapeutic drugs (doxorubicin), indoleamine 2,3-dioxygenase 1 inhibitor (1-methyl-tryptophan) and cinnamaldehyde in a self-accelerating manner. The combination of reactive oxygen species-induced ferroptosis and doxorubicin-induced apoptosis can synergistically enhance immunogenic cell death and activate the immune response. The released1-methyl-tryptophan can promote cytotoxic T lymphocyte activation and reduce immune escape by inhibiting the tryptophan conversion. Meanwhile, it also enhances ferroptosis by inhibiting reactive oxygen species scavenging and cystine/glutamate antiporter expression, achieving the positive feedback ferroptosis-immunotherapy. This work provides a self-accelerated drug delivery strategy and a potential cooperation mode for tumor synergistic immunotherapy based on ferroptosis-apoptosis.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinlu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| | - Qin Fan
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiansen Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| | - Shitian Jia
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Sheng Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Zou Y, Chen J, Qu Y, Luo X, Wang W, Zheng X. Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy. Front Pharmacol 2025; 16:1533040. [PMID: 40170725 PMCID: PMC11959078 DOI: 10.3389/fphar.2025.1533040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Photodynamic therapy (PDT) has gained significant attention due to its non-invasive nature, low cost, and ease of operation. Nanoscale metal-organic frameworks (nMOFs) incorporating porphyrins, chlorins, and bacteriochlorins have emerged as one of the most prominent photoactive materials for tumor PDT. These nMOFs could enhance the water solubility, stability and loading efficiency of photosensitizers (PSs). Their highly ordered porous structure facilitates O2 diffusion and enhances the generation of 1O2 from hydrophobic porphyrins, chlorins, and bacteriochlorins, thereby improving their efficacy of phototherapy. This review provides insights into the PDT effects of nMOFs derived from porphyrins, chlorins, and bacteriochlorins. It overviews the design strategies, types of reactive oxygen species (ROS), ROS generation efficiency, and the unique biological processes involved in inhibiting tumor cell proliferation, focusing on the mechanism by which molecular structure leads to enhanced photochemical properties. Finally, the review highlights the new possibilities offered by porphyrins, chlorins, and bacteriochlorins-based nMOFs for tumor PDT, emphasizing how optimized design can further improve the bioapplication of porphyrin derivatives represented PSs. With ongoing research and technological advancements, we anticipate that this review will garner increased attention from scientific researchers toward porphyrin-based nMOFs, thereby elevating their potential as a prominent approach in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Li M, Li T, Liu Y, Han D, Wu S, Gong J. Dual Cascade-Responsive Multifunctional Nanoparticles to Overcome Bacterium-Induced Drug Inactivation and Enhanced Photodynamic and Chemo-Immunotherapy of Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412707. [PMID: 40095308 DOI: 10.1002/smll.202412707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/16/2025] [Indexed: 03/19/2025]
Abstract
The harsh biological barriers and bacteria within tumor microenvironment not only hinder drug penetration and induce drug inactivation, but also inhibit antitumor immune responses. Here a tumor microenvironment dual cascade-responsive multifunctional nanoparticle, Gem/Emo@NP@GHA is reported, which is engineered from a hyaluronidase (HAase)-responsive guanidine group functionalized hyaluronic acid (GHA) shell and a glutathione (GSH)-responsive biopolymer core (Gem/Emo@NP), that encapsulates anticancer drug gemcitabine (Gem) and two-photon-excited photosensitizer emodin (Emo). The constructed Gem/Emo@NP@GHA can specifically target the tumor and subsequently be degraded by HAase-abundant in the extracellular matrix. Thus, the resulting Gem/Emo@NP achieved size reduction and charge reversal, strengthening deep tumor penetration. Upon internalization, the positively charged Gem/Emo@NP effectively kills intratumor bacteria by inducing membrane depolarization. Furthermore, the high levels of GSH within tumor cells disrupt the disulfide bonds of Gem/Emo@NP, triggering drug release. Thereby, the undecomposed Gem successfully induces tumor cell apoptosis and necrosis. Under laser irradiation, photosensitizer Emo generates high singlet oxygen (1O2), further eliminating tumors and intracellular bacteria. More importantly, Gem/Emo@NP@GHA can activate T cell-mediated immune response, further enhancing antitumor activity. These findings provide a promising approach to treating bacterially infected tumors through the synergistic application of chem-immunotherapy and two-photon-excited photodynamic therapy.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Tong Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, P. R. China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
5
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
6
|
Liu F, Li Y, Li Y, Wang Z, Li X, Liu Y, Zhao Y. Triggering multiple modalities of cell death via dual-responsive nanomedicines to address the narrow therapeutic window of β-lapachone. J Colloid Interface Sci 2025; 678:915-924. [PMID: 39270391 DOI: 10.1016/j.jcis.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The clinical translation of the anticancer drug β-lapachone (LAP) has been limited by the narrow therapeutic window. Stimuli-responsive anticancer drug delivery systems have gained tremendous attention in recent years to alleviate adverse effects and enhance therapeutic efficacy. Here, we report a dual pH- and enzyme-responsive nanocarrier to address the above issue of LAP. In detail, the epigallocatechin gallate (EGCG) and ferric ions were employed to engineer nanoscale ferric ion-polyphenol complexes where LAP was physically encapsulated therein. The coordination bond between Fe3+ and the catechol moiety of EGCG was sensitive to the low pH, enabling the triggered cargo release in the acidic endosomes/lysosomes. Afterward, the released LAP was activated by the overexpressed NAD(P)H: quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1) in the tumor cells, followed by the generation of reactive oxygen species (ROS), and the induction of oxidative stress and apoptotic cell death. Meanwhile, EGCG could upregulate gasdermin E (GSDME), and ferric ions were involved in the Fenton reaction. Hence, EGCG and ferric ions could sensitize the toxicity of LAP through the induction of multiple cell death pathways (e.g., pyroptosis, ferroptosis, apoptosis, and necroptosis). The current work enlarged the LAP's therapeutic window via controlled cargo release and vehicle sensitization.
Collapse
Affiliation(s)
- Fang Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yaru Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zheng Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Yancheng Liu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tiajin University, 406 Jiefangnan Road, Hexi District, Tianjin 300211, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
7
|
Lang J, Schorr K, Goepferich A. Towards a switchable nanoparticle behavior using inverse electron-demand Diels-Alder chemistry and ectoenzyme-based ligand activation. Eur J Pharm Sci 2025; 204:106944. [PMID: 39461601 DOI: 10.1016/j.ejps.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Nanoparticles (NPs) as drug delivery platforms encounter numerous obstacles on their journey from administration to the target site. Often, diametrically opposing particle properties are desirable to overcome biological and physical barriers. Therefore, stimuli-responsive NPs have been developed to allow for specific particle adaptation. In this work, it was demonstrated that NPs can be rendered switchable with respect to their interaction with a receptor through an external chemical stimulus. A combination of the inverse electron-demand Diels-Alder (iEDDA) reaction for subsequent NP functionalization and ectoenzyme-based ligand activation allowed for specific particle tailoring. Building on this, a two-step process for target cell recognition was developed. First, NPs were functionalized with Angiotensin-I (Ang-I) as inactive ligand using iEDDA chemistry. At the target site, the ligand was enzymatically processed to Angiotensin-ll (Ang-II) by cellular ectoenzymes. Ang-ll binds as active ligand to the angiotensin ll type 1 (AT1) receptor on the target cell surface. This enzymatic activation aims to minimize the biological effect of the ligand prior to particle binding, while the NP target cell specificity is increased by a two-step recognition with enzymatic processing and receptor binding.
Collapse
Affiliation(s)
- Johannes Lang
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany.
| |
Collapse
|
8
|
Wen X, Wang C, Bi S, Xu Y, Wu Z, Huang H, Liu Z, Zeng S. Tumor Microenvironment Cascade Activated Biodegradable Nano-Enzymes for Glutathione-Depletion and Ultrasound-Enhanced Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405457. [PMID: 39428855 DOI: 10.1002/smll.202405457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Chemodynamic therapy (CDT) is emerged as a novel and promising tumor therapy by using the powerful reactive oxygen species (ROS) to kill cancer cells. However, the current CDT is remarkably inhibited due to insufficient H2O2 supply and over-expression of glutathione (GSH) in the tumor microenvironment (TME). Herein, a biodegradable self-supplying H2O2 nano-enzyme of CuO2@CaP with a GSH-consumption effect is designed for cascade enhanced CDT to overcome the problem of H2O2 deficiency and GSH overexpression. In this design, CuO2@CaP is gradually degraded to Ca2+, Cu2+, and H2O2 in acidic TME, resulting in synergistically enhanced CDT owing to the efficient self-supplied H2O2 and GSH-depletion and Ca2+ overload therapy. Interestingly, the faster degradation of CuO2@CaP and promoted production rate of •OH are further achieved after triggering with ultrasound (US). And, the US-enhanced CDT and Ca2+ overload synergistic antitumor therapy is successfully achieved in vivo. These findings provide a promising strategy for designing biodegradable nano-enzymes with self-supplying H2O2 and GSH consumption for US-mediated CDT.
Collapse
Affiliation(s)
- Xingwang Wen
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunxia Wang
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shenghui Bi
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yao Xu
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zezheng Wu
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Hao Huang
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhiqiu Liu
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Songjun Zeng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
9
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
10
|
Chen S, Zhang X, Li H, Cao C, Zhang X, Li J, Jia S, Liu Y, Han L, Wang S. Dual-enzyme inhibiting nanomedicines for enhanced cancer chemodynamic therapy by inducing intratumoral acidosis. Int J Pharm 2024; 663:124568. [PMID: 39137822 DOI: 10.1016/j.ijpharm.2024.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Deficiency of endogenous hydrogen peroxide and insufficient intracellular acidity are usually two important factors limiting chemodynamic therapy (CDT). Here we report a glutathione-responsive nanomedicine that can provide a suitable environment for CDT by inhibiting dual-enzymes simultaneously. The nanomedicine is constructed by encapsulation of a novel hydrogen sulfide donor in nanomicelle assembled by glutathione-responsive amphiphilic polymer. In response to intracellular glutathione, the nanomedicine can efficiently release the active ingredients hydrogen sulfide, carbonic anhydrase inhibitor and ferrocene. The hydrogen sulfide can increase the concentrations of hydrogen peroxide and lactic acid by inhibiting catalase and enhancing glycolysis. The carbonic anhydrase inhibitor can further induce intratumoral acidosis by inhibiting the function of carbonic anhydrase IX. Therefore, the nanomedicine can provide more efficient reaction conditions for the ferrocene-mediated Fenton reaction to generate abundant toxic hydroxyl radicals. In vivo results show that the combination of enhanced CDT and acidosis can effectively inhibit tumor growth. This design of nanomedicine provides a promising dual-enzyme inhibiting strategy to enhance antitumor efficacy of CDT.
Collapse
Affiliation(s)
- Shutong Chen
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xinlu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Huan Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jiansen Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shitian Jia
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yongxin Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Sheng Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Zhang X, Zhang X, Chen S, Liu Y, Cao C, Cheng G, Wang S. Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy. J Colloid Interface Sci 2024; 670:279-287. [PMID: 38763024 DOI: 10.1016/j.jcis.2024.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.
Collapse
Affiliation(s)
- Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shutong Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yongxin Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Jiang F, Liu S, Wang L, Chen H, Huang Y, Cao Y, Wang X, Lin M, Zhang J. ROS-Responsive Nanoprobes for Bimodal Imaging-Guided Cancer Targeted Combinatorial Therapy. Int J Nanomedicine 2024; 19:8071-8090. [PMID: 39130685 PMCID: PMC11317049 DOI: 10.2147/ijn.s467512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Chemotherapy mediated by Reactive oxygen species (ROS)-responsive drug delivery systems can potentially mitigate the toxic side effects of chemotherapeutic drugs and significantly enhance their therapeutic efficacy. However, achieving precise targeted drug delivery and real-time control of ROS-responsive drug release at tumor sites remains a formidable challenge. Therefore, this study aimed to describe a ROS-responsive drug delivery system with specific tumor targeting capabilities for mitigating chemotherapy-induced toxicity while enhancing therapeutic efficacy under guidance of Fluorescence (FL) and Magnetic resonance (MR) bimodal imaging. Methods Indocyanine green (ICG), Doxorubicin (DOX) prodrug pB-DOX and Superparamagnetic iron oxide (SPIO, Fe3O4) were encapsulated in poly(lactic-co-glycolic acid) (PLGA) by double emulsification method to prepare ICG/ pB-DOX/ Fe3O4/ PLGA nanoparticles (IBFP NPs). The surface of IBFP NPs was functionalized with mammaglobin antibodies (mAbs) by carbodiimide method to construct the breast cancer-targeting mAbs/ IBFP NPs (MIBFP NPs). Thereafter, FL and MR bimodal imaging ability of MIBFP NPs was evaluated in vitro and in vivo. Finally, the combined photodynamic therapy (PDT) and chemotherapy efficacy evaluation based on MIBFP NPs was studied. Results The multifunctional MIBFP NPs exhibited significant targeting efficacy for breast cancer. FL and MR bimodal imaging clearly displayed the distribution of the targeting MIBFP NPs in vivo. Upon near-infrared laser irradiation, the MIBFP NPs loaded with ICG effectively generated ROS for PDT, enabling precise tumor ablation. Simultaneously, it triggered activation of the pB-DOX by cleaving its sensitive moiety, thereby restoring DOX activity and achieving ROS-responsive targeted chemotherapy. Furthermore, the MIBFP NPs combined PDT and chemotherapy to enhance the efficiency of tumor ablation under guidance of bimodal imaging. Conclusion MIBFP NPs constitute a novel dual-modality imaging-guided drug delivery system for targeted breast cancer therapy and offer precise and controlled combined treatment options.
Collapse
Affiliation(s)
- Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Lu Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Yao Huang
- School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Meng Lin
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, 400030, People’s Republic of China
| |
Collapse
|
13
|
Wu S, Wang H, Wei Y, Kang L, Cui T, Huang Y, Liu Z, Pu F, Ren J. Mitochondria-mediated self-cycling nanoreactor enabling uninterrupted oxidative damage for enhanced chemodynamic therapy. Colloids Surf B Biointerfaces 2024; 240:113990. [PMID: 38810468 DOI: 10.1016/j.colsurfb.2024.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Chemodynamic therapy (CDT), which employs intracellular H2O2 to produce toxic hydroxyl radicals to kill cancer cells, has received great attention due to its specificity to tumors. However, the relatively insufficient endogenous H2O2 and the short-lifetime and limited diffusion distance of •OH compromise the therapeutic efficacy of CDT. Mitochondria, which play crucial roles in oncogenesis, are highly vulnerable to elevated oxidative stress. Herein, we constructed a mitochondria-mediated self-cycling system to achieve high dose of •OH production through continuous H2O2 supply. Cinnamaldehyde (CA), which can elevate H2O2 level in the mitochondria, was loaded in Cu(II)-containing metal organic framework (MOF), termed as HKUST-1. After actively targeting mitochondria, the intrinsic H2O2 in mitochondria of cancer cells could induce degradation of MOF, releasing the initial free CA. The released CA further triggered the upregulation of endogenous H2O2, resulting in the subsequent adequate release of CA and the final burst growth of H2O2. The cycle process greatly promoted the Fenton-like reaction between Cu2+ and H2O2 and induced long-term high oxidative stress, achieving enhanced chemodynamic therapy. In a word, we put forward an efficient strategy for enhanced chemodynamic therapy.
Collapse
Affiliation(s)
- Si Wu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Huan Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Lihua Kang
- Cancer center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China.
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ying Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
14
|
Zhuge X, Tang R, Jiang Y, Lin L, Xi D, Yang H. A multifunctional nanoplatform for chemotherapy and nanocatalytic synergistic cancer therapy achieved by amplified lipid peroxidation. Acta Biomater 2024; 184:419-430. [PMID: 38936754 DOI: 10.1016/j.actbio.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Traditional cancer chemotherapy suffers from low efficacy and severe side effects, limiting its use as a first-line treatment. To address this issue, we investigated a novel way to induce lipid peroxidation (LPO), which plays an essential role in ferroptosis and may be useful against cancer cells and tumors. In this study, a pH-responsive synergistic cancer therapy nanoplatform was prepared using CaCO3 co-loaded with oleanolic acid (OA) and lipoxygenase (LOX), resulting in the formation OLCaP NP. This nanoplatform exhibited good drug release properties in an acidic tumor environment owing to the presence of CaCO3. As a result of acidic stimulation at tumor sites, the OLCaP NP released OA and LOX. OA, a chemotherapeutic drug with anticancer activity, is already known to promote the apoptosis of cancer cells, and LOX is a natural enzyme that catalyzes the oxidation of polyunsaturated fatty acids, leading to the accumulation of lipid peroxides and promoting the apoptosis of cancer cells. More importantly, OA upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), which promoted enzyme-mediated LPO. Based on our combined chemotherapy and nanocatalytic therapy, the OLCaP NP not only had remarkable antitumor ability but also upregulated ACSL4 expression, allowing further amplification of LPO to inhibit tumor growth. These findings demonstrate the potential of this nanoplatform to enhance the therapeutic efficacy against tumors by inducing oxidative stress and disrupting lipid metabolism, highlighting its clinical potential for improved cancer treatment. STATEMENT OF SIGNIFICANCE: This study presents a novel nanoplatform that combines oleanolic acid (OA), a chemotherapeutic drug, and lipoxygenase (LOX), which oxidizes polyunsaturated fatty acids to trigger apoptosis, for targeted cancer therapy. Unlike traditional treatments, our nanoplatform exhibits pH-responsive drug release, specifically in acidic tumor environments. This innovation enhances the therapeutic effects of OA and LOX, upregulating acyl-CoA synthetase long-chain family member 4 expression and amplifying lipid peroxidation to promote tumor cell apoptosis. Our findings significantly advance the existing literature by demonstrating a synergistic approach that combines chemotherapy and nanocatalytic therapy. The scientific impact of this work lies in its potential to improve cancer treatment efficacy and specificity, offering a promising strategy for clinical applications and future research in cancer therapy.
Collapse
Affiliation(s)
- Xiao Zhuge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Ruping Tang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
15
|
Wang J, Liu Y, Cui T, Yang H, Lin L. Current progress in the regulation of endogenous molecules for enhanced chemodynamic therapy. Chem Sci 2024; 15:9915-9926. [PMID: 38966366 PMCID: PMC11220580 DOI: 10.1039/d4sc02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Chemodynamic therapy (CDT) is a potential cancer treatment strategy, which relies on Fenton chemistry to transform hydrogen peroxide (H2O2) into highly cytotoxic reactive oxygen species (ROS) for tumor growth suppression. Although overproduced H2O2 in cancerous tissues makes CDT a feasible and specific tumor therapeutic modality, the treatment outcomes of traditional chemodynamic agents still fall short of expectations. Reprogramming cellular metabolism is one of the hallmarks of tumors, which not only supports unrestricted proliferative demands in cancer cells, but also mediates the resistance of tumor cells against many antitumor modalities. Recent discoveries have revealed that various cellular metabolites including H2O2, iron, lactate, glutathione, and lipids have distinct effects on CDT efficiency. In this perspective, we intend to provide a comprehensive summary of how different endogenous molecules impact Fenton chemistry for a deep understanding of mechanisms underlying endogenous regulation-enhanced CDT. Moreover, we point out the current challenges and offer our outlook on the future research directions in this field. We anticipate that exploring CDT through manipulating metabolism will yield significant advancements in tumor treatment.
Collapse
Affiliation(s)
- Jun Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yina Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Tingting Cui
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore Singapore 117597 Singapore
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
16
|
Huang Z, Song J, Huang S, Wang S, Shen C, Song S, Lian J, Ding Y, Gong Y, Zhang Y, Yuan A, Hu Y, Tan C, Luo Z, Wang L. Phase and Defect Engineering of MoSe 2 Nanosheets for Enhanced NIR-II Photothermal Immunotherapy. NANO LETTERS 2024; 24:7764-7773. [PMID: 38864366 DOI: 10.1021/acs.nanolett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, People's Republic of China
| | - Jingrun Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shengheng Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Simin Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Jianhui Lian
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yankui Ding
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
17
|
Zhang M, Ying N, Chen J, Wu L, Liu H, Luo S, Zeng D. Engineering a pH-responsive polymeric micelle co-loaded with paclitaxel and triptolide for breast cancer therapy. Cell Prolif 2024; 57:e13603. [PMID: 38228366 DOI: 10.1111/cpr.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Breast cancer has overtaken lung cancer as the number one cancer worldwide. Paclitaxel (PTX) is a widely used first-line anti-cancer drug, but it is not very effective in clinical breast cancer therapy. It has been reported that triptolide (TPL) can enhance the anticancer effect of paclitaxel, and better synergistic therapeutic effects are seen with concomitant administration of PTX and TPL. In this study, we developed pH-responsive polymeric micelles for co-delivery of PTX and TPL, which disassembling in acidic tumour microenvironments to target drug release and effectively kill breast cancer cells. Firstly, we synthesized amphiphilic copolymer mPEG2000-PBAE through Michael addition reaction, confirmed by various characterizations. Polymer micelles loaded with TPL and PTX (TPL/PTX-PMs) were prepared by the thin film dispersion method. The average particle size of TPL/PTX-PMs was 97.29 ± 1.63 nm, with PDI of 0.237 ± 0.003 and Zeta potential of 9.57 ± 0.80 mV, LC% was 6.19 ± 0.21%, EE% was 88.67 ± 3.06%. Carrier material biocompatibility and loaded micelle cytotoxicity were assessed using the CCK-8 method, demonstrating excellent biocompatibility. Under the same drug concentration, TPL/PTX-PMs were the most toxic to tumour cells and had the strongest proliferation inhibitory effect. Cellular uptake assays revealed that TPL/PTX-PMs significantly increased intracellular drug concentration and enhanced antitumor activity. Overall, pH-responsive micellar co-delivery of TPL and PTX is a promising approach for breast cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Tongji University, Shanghai, China
| | - Liwen Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
18
|
Ma X, Yang Q, Lin N, Feng Y, Liu Y, Liu P, Wang Y, Deng H, Ding H, Chen H. Integrated anti-vascular and immune-chemotherapy for colorectal carcinoma using a pH-responsive polymeric delivery system. J Control Release 2024; 370:230-238. [PMID: 38643937 DOI: 10.1016/j.jconrel.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Colorectal carcinoma (CRC) has become one of the most prevalent malignant tumors and exploring a potential therapeutic strategy with diminished drug-associated adverse effects to combat CRC is urgent. Herein, we designed a pH-responsive polymer to efficiently encapsulate a stimulator of interferon genes (STING) agonist (5,6- dimethylxanthenone-4-acetic acid, termed ASA404) and a common clinically used chemotherapeutic agent (1-hexylcarbamoyl-5-fluorouracil, termed HCFU). Investigations in vitro demonstrated that polymer encapsulation endowed the system with a pH-dependent disassembly behavior (pHt 6.37), which preferentially selected cancerous cells with a favorable dose reduction (dose reduction index (DRI) of HCFU was 4.09). Moreover, the growth of CRC in tumor-bearing mice was effectively suppressed, with tumor suppression rates up to 94.74%, and a combination index (CI) value of less than one (CI = 0.41 for CT26 cell lines), indicating a significant synergistic therapeutic effect. Histological analysis of the tumor micro-vessel density and enzyme-linked immunosorbent assay (ELISA) tests indicated that the system increased TNF-α and IFN-β levels in serum. Therefore, this research introduces a pH-responsive polymer-based theranostic platform with great potential for immune-chemotherapeutic and anti-vascular combination therapy of CRC.
Collapse
Affiliation(s)
- Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Qing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Nuo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yaqing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Peifei Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yiru Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Huaping Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Dang J, Li Y, Yan J, Wu J, Cai K, Yin L, Zhou Z. Reversal of Chemoresistance via Staged Liberation of Chemodrug and siRNA in Hierarchical Response to ROS Gradient. Adv Healthc Mater 2024; 13:e2304130. [PMID: 38427696 DOI: 10.1002/adhm.202304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Indexed: 03/03/2024]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) often leads to the failure of antitumor chemotherapy, and codelivery of chemodrug with P-gp siRNA (siP-gp) represents a promising approach for treating chemoresistant tumors. To maximize the antitumor efficacy, it is desired that the chemodrug be latently released upon completion of siP-gp-mediated gene silencing, which however, largely remains an unmet demand. Herein, core-shell nanocomplexes (NCs) are developed to overcome MDR via staged liberation of siP-gp and chemodrug (doxorubicin, Dox) in hierarchical response to reactive oxygen species (ROS) concentration gradients. The NCs are constructed from mesoporous silica nanoparticles (MSNs) surface-decorated with cRGD-modified, PEGylated, ditellurium-crosslinked polyethylenimine (RPPT), wherein thioketal-linked dimeric doxorubicin (TK-Dox2) and photosensitizer are coencapsulated inside MSNs while siP-gp is embedded in the RPPT polymeric layer. RPPT with ultrahigh ROS-sensitivity can be efficiently degraded by the low-concentration ROS inside cancer cells to trigger siP-gp release. Upon siP-gp-mediated gene silencing and MDR reversal, light irradiation is performed to generate high-concentration, lethal amount of ROS, which cleaves thioketal with low ROS-sensitivity to liberate the monomeric Dox. Such a latent release profile greatly enhances Dox accumulation in Dox-resistant cancer cells (MCF-7/ADR) in vitro and in vivo, which cooperates with the generated ROS to efficiently eradicate MCF-7/ADR xenograft tumors.
Collapse
MESH Headings
- Humans
- Reactive Oxygen Species/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- RNA, Small Interfering/chemistry
- Drug Resistance, Neoplasm/drug effects
- Animals
- Nanoparticles/chemistry
- Mice
- Mice, Nude
- Female
- Silicon Dioxide/chemistry
- Cell Line, Tumor
- MCF-7 Cells
- Mice, Inbred BALB C
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Drug Resistance, Multiple/drug effects
- Photosensitizing Agents/chemistry
- Photosensitizing Agents/pharmacology
Collapse
Affiliation(s)
- Juanjuan Dang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yongjuan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianhua Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
20
|
Silva LP, Portela RW, Machado MC, Canuto GAB, Costa-Neto JM, de Carvalho VDMP, de Sá HC, Damasceno KA, de Souza VRC, Coelho CS, Estrela-Lima A. Ozone Therapy in the Integrated Treatment of Female Dogs with Mammary Cancer: Oxidative Profile and Quality of Life. Antioxidants (Basel) 2024; 13:673. [PMID: 38929112 PMCID: PMC11200475 DOI: 10.3390/antiox13060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Considering the high frequency of malignant breast tumors, there is a growing search for new therapeutic strategies that control neoplastic growth and dissemination, combined with fewer adverse reactions. Therefore, this study evaluated the effects of ozone therapy in female dogs with mammary cancer undergoing chemotherapy treatment. Twenty-five canines diagnosed with malignant mammary neoplasia were divided into two groups: one treated with carboplatin alone (n = 11) and the other with carboplatin associated with ozone therapy (n = 14). Clinical and laboratory evaluations, mastectomy, analysis of the oxidative profile based on total antioxidant capacity (TAC) and serum concentrations of malondialdehyde (MDA), survival rate, and quality of life were performed. Animals in the ozone therapy group had higher concentrations of red blood cells and platelets, significantly improving the survival rate and quality of life. Furthermore, adverse reactions were less intense and frequent in this group, which was associated with an increase in TAC and a reduction in MDA. These results indicate that the combination of carboplatin and ozone therapy represents a promising complementary treatment for female dogs with mammary cancer, as it was associated with fewer adverse reactions and a better oxidative profile.
Collapse
Affiliation(s)
- Laís Pereira Silva
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology (LABIMUNO), Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, Brazil
| | - Marília Carneiro Machado
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, Cruz das Almas 44380-000, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40170-110, Brazil; (G.A.B.C.); (H.C.d.S.)
| | - João Moreira Costa-Neto
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
- Department of Anatomy, Pathology and Veterinary Clinics, Federal University of Bahia, Salvador 40170-110, Brazil
| | - Vitor de Moraes Pina de Carvalho
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
| | - Hanna Carvalho de Sá
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40170-110, Brazil; (G.A.B.C.); (H.C.d.S.)
| | - Karine Araújo Damasceno
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
- Experimental Pathology Laboratory (LAPEX), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
| | | | - Clarisse Simões Coelho
- Faculty of Veterinary Medicine, Lusofona University, 1749-024 Lisbon, Portugal; (V.R.C.d.S.); (C.S.C.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusofona University, 1749-024 Lisbon, Portugal
- Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, 7004-516 Évora, Portugal
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology (NPqOM), Federal University of Bahia, Salvador 40170-110, Brazil; (L.P.S.); (M.C.M.); (J.M.C.-N.); (V.d.M.P.d.C.); (K.A.D.)
- Department of Anatomy, Pathology and Veterinary Clinics, Federal University of Bahia, Salvador 40170-110, Brazil
| |
Collapse
|
21
|
Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, Nikolic MV. An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2024; 7:3014-3032. [PMID: 38597359 DOI: 10.1021/acsabm.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.
Collapse
Affiliation(s)
- Zorka Vasiljevic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, 11158 Belgrade, Serbia
| | - Dragana Bartolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Goran Miskovic
- Silicon Austria Laboratories GMBH, High Tech Campus Villach, A-9524 Villach, Austria
| | - Milos Ognjanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad B Tadic
- Faculty of Physics, University of Belgrade, 11000 Belgrade, Serbia
| | - Maria Vesna Nikolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| |
Collapse
|
22
|
Li Z, Xie HY, Nie W. Nano-Engineering Strategies for Tumor-Specific Therapy. ChemMedChem 2024; 19:e202300647. [PMID: 38356248 DOI: 10.1002/cmdc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Nanodelivery systems (NDSs) provide promising prospects for decreasing drug doses, reducing side effects, and improving therapeutic effects. However, the bioapplications of NDSs are still compromised by their fast clearance, indiscriminate biodistribution, and limited tumor accumulation. Hence, engineering modification of NDSs aiming at promoting tumor-specific therapy and avoiding systemic toxicity is usually needed. An NDS integrating various functionalities, including flexible camouflage, specific biorecognition, and sensitive stimuli-responsiveness, into one sequence would be "smart" and highly effective. Herein, we systematically summarize the related principles, methods, and progress. At the end of the review, we predict the obstacles to precise nanoengineering and prospects for the future application of NDSs.
Collapse
Affiliation(s)
- Zijin Li
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
23
|
Zhang Z, Wang L, Guo Z, Sun Y, Yan J. A pH-sensitive imidazole grafted polymeric micelles nanoplatform based on ROS amplification for ferroptosis-enhanced chemodynamic therapy. Colloids Surf B Biointerfaces 2024; 237:113871. [PMID: 38547796 DOI: 10.1016/j.colsurfb.2024.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Highly toxic reactive oxygen species (ROS), crucial in inducing apoptosis and ferroptosis, are pivotal for cell death pathways in cancer therapy. However, the effectiveness of ROS-related tumor therapy is impeded by the limited intracellular ROS and substrates, coupled with the presence of abundant ROS scavengers like glutathione (GSH). In this research, we developed acid-responsive, iron-coordinated polymer nanoparticles (PPA/TF) encapsulating a mitochondrial-targeting drug alpha-tocopheryl succinate (α-TOS) for enhanced synergistic tumor treatment. The imidazole grafted micelles exhibit prolonged blood circulation and improve the delivery efficiency of the hydrophobic drug α-TOS. Additionally, PPA's design aids in delivering Fe3+, supplying ample iron ions for chemodynamic therapy (CDT) and ferroptosis through the attachment of imidazole groups to Fe3+. In the tumor's weakly acidic intracellular environment, PPA/TF facilitates pH-responsive drug release. α-TOS specifically targets mitochondria, generating ROS and replenishing those depleted by the Fenton reaction. Moreover, the presence of Fe3+ in PPA/TF amplifies ROS upregulation, promotes GSH depletion, and induces oxidative damage and ferroptosis, effectively inhibiting tumor growth. This research presents an innovative ROS-triggered amplification platform that optimizes CDT and ferroptosis for effective cancer treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China; Ningbo Baoting Bioscience & Technology Co., Ltd, Ningbo 315100, China
| | - Lingyang Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Zhaoyuan Guo
- Ningbo Baoting Bioscience & Technology Co., Ltd, Ningbo 315100, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
24
|
Tang B, Zhang Y, Liu X, Wang Y, He P. A Novel Polyamino Acid Sulfur Dioxide Prodrug Synergistically Elevates ROS with β-Lapachone in Cancer Treatment. J Pharm Sci 2024; 113:1239-1247. [PMID: 38042342 DOI: 10.1016/j.xphs.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Due to the distorted redox balance, cancer cells are considered more vulnerable to excessive reactive oxygen species (ROS). In a variety of oxidative stress-related therapies, gas therapy has emerged as a new therapeutic strategy owing to its efficacy and biosafety. Herein, a newly-discovered gasotransmitter sulfur dioxide (SO2) and a tumor specific ROS generation agent β-lapachone (Lapa) were firstly combined for anticancer therapy. Firstly, amphiphilic glutathione (GSH) responsive polypeptide SO2 prodrug PEG-b-poly(Lys-DNs) was synthesized by ring opening polymerization of SO2-containing N-carboxyanhydride. Then, Lapa was encapsulated into the polymeric micelles with loading content of 8.6 % and loading efficiency of 51.6 %. The obtained drug-loaded nanoparticles (NPs(Lapa)) exhibited a fast release of Lapa and SO2 in the stimuli of 10 mM GSH in PBS. Subsequently, in vitro experiment showed that NPs(Lapa) exhibited obvious cytotoxicity towards 4 T1 cancer cells at a concentration of 2.0 μg/mL, which may be attributed to the depletion of intracellular GSH and upregulation of ROS level both by SO2 release and by the ROS generation from lapachone transformation. In vivo fluorescence imaging showed that the NPs were gradually enriched in tumor tissues in 24 h, probably due to the enhanced permeability and retention effect of NPs. Finally, NPs(Lapa) showed the best anticancer effect in 4 T1 tumor bearing mice with a tumor inhibiting rate (IRT) of 61 %, whereas IRT for free Lapa group was only 23.6 %. This work may be a new attempt to combine SO2 gas therapy with ROS inducer for anticancer therapy through oxidative stress.
Collapse
Affiliation(s)
- Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yanping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Chongqing Research Institute, Changchun University of Science and Technology, No.618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City, 401135, PR China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| |
Collapse
|
25
|
Hu W, Ye B, Yu G, Yang H, Wu H, Ding Y, Huang F, Wang W, Mao Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305382. [PMID: 38493499 PMCID: PMC11132052 DOI: 10.1002/advs.202305382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Hao Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Feihe Huang
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouZhejiang311215China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
26
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Liu Y, Wang Y, Liu B, Liu W, Ma Y, Cao Y, Yan S, Zhang P, Zhou L, Zhan Q, Wu N. Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:663-679. [PMID: 38155279 DOI: 10.1007/s11427-023-2434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 12/30/2023]
Abstract
Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.
Collapse
Affiliation(s)
- Yanfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
28
|
Xie C, Peng Y, Zhang Z, Luo K, Yang Q, Tan L, Zhou L. Tumor Microenvironment Activatable Nanoprodrug System for In Situ Fluorescence Imaging and Therapy of Liver Cancer. Anal Chem 2024; 96:5006-5013. [PMID: 38484040 DOI: 10.1021/acs.analchem.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of new imaging and treatment nanoprodrug systems is highly demanded for diagnosis and therapy of liver cancer, a severe disease characterized by a high recurrence rate. Currently, available small molecule drugs are not possible for cancer diagnosis because of the fast diffusion of imaging agents and low efficacy in treatment due to poor water solubility and significant toxic side effects. In this study, we report the development of a tumor microenvironment activatable nanoprodrug system for the diagnosis and treatment of liver cancer. This nanoprodrug system can accumulate in the tumor site and be selectively activated by an excess of hydrogen peroxide (H2O2) in the tumor microenvironment, releasing near-infrared solid-state organic fluorescent probe (HPQCY-1) and phenylboronic acid-modified camptothecin (CPT) prodrug. Both HPQCY-1 and CPT prodrugs can be further activated in tumor sites for achieving more precise in situ near-infrared (NIR) fluorescence imaging and treatment while reducing the toxic effects of drugs on normal tissues. Additionally, the incorporation of hydrophilic multivalent chitosan as a carrier effectively improved the water solubility of the system. This research thus provides a practical new approach for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Mo-lecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
29
|
Singh P, Chen Y, Youden B, Oakley D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Accelerated cascade melanoma therapy using enzyme-nanozyme-integrated dissolvable polymeric microneedles. Int J Pharm 2024; 652:123814. [PMID: 38280502 DOI: 10.1016/j.ijpharm.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Dissolvable polymeric microneedles (DPMNs) have emerged as a powerful technology for the localized treatment of diseases, such as melanoma. Herein, we fabricated a DPMN patch containing a potent enzyme-nanozyme composite that transforms the upregulated glucose consumption of cancerous cells into lethal reactive oxygen species via a cascade reaction accelerated by endogenous chloride ions and external near-infrared (NIR) irradiation. This was accomplished by combining glucose oxidase (Gox) with a NIR-responsive chloroperoxidase-like copper sulfide (CuS) nanozyme. In contrast with subcutaneous injection, the microneedle system highly localizes the treatment, enhancing nanomedicine uptake by the tumor and reducing its systemic exposure to the kidneys and spleen. NIR irradiation further controls the potency and toxicity of the formulation by thermally disabling Gox. In a mouse melanoma model, this unique combination of photothermal, starvation, and chemodynamic therapies resulted in complete tumor eradication (99.2 ± 0.8 % reduction in tumor volume within 10 d) without producing signs of systemic toxicity. By comparison, other treatment combinations only resulted in a 42-76.5 % reduction in tumor growth. The microneedle patch design is therefore not only highly potent but also with regulated toxicity and improved safety.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Biological Applied Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yongli Chen
- Shenzhen Siyomicro BIO-TECH CO., Ltd., Shenzhen 518116, China
| | - Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - David Oakley
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON N2G 1G3, Canada.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
30
|
Wang K, Yao SY, Wang Z, Shen L, Guo DS, Zhu Y, Yang X, Yu Q, Gao C. A Sequential Dual Functional Supramolecular Hydrogel with Promoted Drug Release to Scavenge ROS and Stabilize HIF-1α for Myocardial Infarction Treatment. Adv Healthc Mater 2024; 13:e2302940. [PMID: 37844263 DOI: 10.1002/adhm.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/18/2023]
Abstract
Myocardial infarction (MI) has a characteristic inflammatory microenvironment due to the overproduction of reactive oxygen species (ROS) and causes the extraordinary deposition of collagen and thereby fibrosis. An on-demand adaptive drug releasing hydrogel is designed to modulate the inflammatory microenvironment and inhibit cardiac fibroblasts (CFs) proliferation post MI by scavenging the overproduced ROS and releasing 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA) to maintain the expression of hypoxia-inducible factor 1α (HIF-1α). DPCA is prefabricated to a prodrug linked with disulfide bond (DPCA-S-S-OH). The DPCA-S-S-OH and carboxylated calixarene (CSAC4A) are grafted onto the backbone of methacrylated hyaluronic acid (HAMA) to obtain HAMA-S-S-DPCA and HAMA-CA, respectively, which are further reacted to form a dual network hydrogel (R+ /DPCA(CA)) with covalent linking and host-guest interaction between DPCA and CSAC4A. The ROS-triggered hydrolysis of ester bond and subsequently sustaining release of DPCA from the cavity of CSAC4A jointly cause the constant expression of HIF-1α, which significantly restricts the CFs proliferation, leading to suppressed fibrosis and promoted heart repair.
Collapse
Affiliation(s)
- Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiayan Yang
- Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai, 201318, China
| | - Qifeng Yu
- Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai, 201318, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
31
|
Wang F, Dong G, Ding M, Yu N, Sheng C, Li J. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306378. [PMID: 37817359 DOI: 10.1002/smll.202306378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Indexed: 10/12/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) can provide promising opportunities for cancer treatment, while precise regulation of their activities remains challenging to achieve effective and safe therapeutic outcomes. A semiconducting polymer nanoPROTAC (SPNFeP ) is reported that can achieve ultrasound (US) and tumor microenvironment dual-programmable PROTAC activity for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. SPNFeP is formed through a nano-precipitation of a sonodynamic semiconducting polymer, a ferroptosis inducer, and a newly synthesized PROTAC molecule. The semiconducting polymers work as sonosensitizers to produce singlet oxygen (1 O2 ) via sonodynamic effect under US irradiation, and ferroptosis inducers react with intratumoral hydrogen peroxide (H2 O2 ) to generate hydroxyl radical (·OH). Such a dual-programmable reactive oxygen species (ROS) generation not only triggers ferroptosis and immunogenic cell death (ICD), but also induces on-demand activatable delivery of PROTAC molecules into tumor sites. The effectively activated nanoPROTACs degrade nicotinamide phosphoribosyl transferase (NAMPT) to suppress tumor infiltration of myeloid-derived suppressive cells (MDSCs), thus promoting antitumor immunity. In such a way, SPNFeP mediates sonodynamic-ferroptosis activatable immunotherapy for entirely inhibiting tumor growths in both subcutaneous and 2-cm tissue-covered deep tumor mouse models. This study presents a dual-programmable activatable strategy based on PROTACs for effective and precise cancer combinational therapy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
32
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
33
|
Li S, Zhao Y, Ma W, Wang D, Liu H, Wang W, Peng D, Yu CY, Wei H. A multivalent polyphenol-metal-nanoplatform for cascade amplified chemo-chemodynamic therapy. Acta Biomater 2024; 173:389-402. [PMID: 37967695 DOI: 10.1016/j.actbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Chemodynamic therapy (CDT), as an emerging therapeutic strategy, kills cancer cells by converting intracellular hydrogen peroxide (H2O2) into cytotoxic oxidizing hydroxyl radicals (⋅OH). However, the therapeutic efficiency of CDT is compromised due to the insufficient endogenous H2O2 and metal catalysts in tumor cells. The use of multivalent polyphenols with multiple hydroxyl functions provides a facile yet robust means for efficient CDT augmentation. For this purpose, we reported herein the construction of polyphenol-metal nanoparticles (NPs) via a phenol-metal coordination strategy. The uniqueness of this study is the preparation of only one polymer construct with multivalency that can afford various supramolecular interactions for simultaneous "one-pot" loading of different therapeutic species, i.e., doxorubicin (DOX), glucose oxidases (GOD), and Fe3+ and further co-self-assembly into a stabilized nanomedicine for cascade amplified chemo-chemodynamic therapy. Specifically, the tumor intracellular acidic pH-triggered DOX release could serve for chemotherapy as well as enhance the intracellular H2O2 level. Together with the extra H2O2 and gluconic acid produced by the GOD-triggered glucose consumption, DOX@POAD-Fe@GOD NPs promoted Fe3+participation in the Fe-mediated Fenton reaction for cascade amplified chemo-chemodynamic therapy. Notably, this formulation displayed a greater anti-tumor effect with a tumor inhibition ratio 1.6-fold higher than that of free DOX in a BALB/c mice model bearing 4T1 tumors. Overall, the multivalent polyphenol-metal nanoplatform developed herein integrates chemotherapy, starvation therapy, and CDT for synergistic enhanced anticancer efficiency, which shows great potential for clinical translations. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) generally suffers from compromised therapeutic efficiency due to insufficient endogenous H2O2 and metal catalysts in tumor cells. To develop a facile yet robust strategy for efficient CDT augmentation, we reported herein construction of a multivalent polyphenol-metal nanoplatform, DOX@POAD-Fe@GOD nanoparticles (NPs) via a phenol-metal coordination strategy. This nanoplatform integrates multiple supramolecular dynamic interactions not only for simultaneously safe encapsulation of doxorubicin (DOX), Fe3+, and glucose oxidases (GOD), but also for cascade amplified chemo-chemodynamic therapy. Specifically, the intracellular acidic pH-triggered dissociation of DOX@POAD-Fe@GOD NPs promoted the release of Fe3+, DOX, and GOD for significantly increased ROS levels that can accelerate Fenton reactions for cascaded chemotherapy, starvation therapy, and CDT with amplified antitumor efficiency in vivo.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hongbing Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Wei Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Dongdong Peng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
34
|
Xie P, Liu P. Formulation of DOX-dimer with bi-functionalized chitooligosaccharide for tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy. Carbohydr Polym 2023; 320:121210. [PMID: 37659811 DOI: 10.1016/j.carbpol.2023.121210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 09/04/2023]
Abstract
The toxic side effects and possible drug resistance of the chemotherapeutics hinder their antitumor efficacy. Here, a pH/reactive oxygen species (ROS) dual-triggered nanodrug was developed for the tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy, by formulating ROS-cleavable doxorubicin (DOX)-based dimer (DOX-TK-DOX) with bi-functionalized chitooligosaccharide (COS-Fc-TK) with ferrocenecarboxylic acid (Fc) and thioketal (TK). The resultant DOX-TK-DOX/COS-Fc-TK nanoparticles with a high DOX content of 39.70 % showed tumor-specific self-boosted drug release, which was triggered by highly toxic OH generated via Fc-catalyzed Fenton reaction of the endogenous H2O2 in tumor intracellular microenvironment. As a result, a synergistic chemo/chemodynamic therapy with combination index (CI) of 0.94 was achieved for selective treatment of tumors.
Collapse
Affiliation(s)
- Pengwei Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Zhang X, Zhang X, Guo H, Jia S, Li Y, Xing S, Chang J, Wang S. A Photo-Activated Continuous Reactive Oxygen Species Nanoamplifier for Dual-Dynamic Cascade Cancer Therapy. Adv Healthc Mater 2023; 12:e2301469. [PMID: 37571991 DOI: 10.1002/adhm.202301469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The special redox homeostasis of tumor cells makes reactive oxygen species (ROS)-based approaches a promising cancer therapeutic strategy. Among these approaches, photodynamic therapy is the most widely studied ROS-based treatment due to its ability to achieve targeted therapy by local light irradiation. However, achieving efficient and continuous ROS generation without prolonged laser exposure is still challenging. In this work, a photo-activated continuous ROS nanoamplifier is proposed for photodynamic-chemodynamic cascade therapy. Upon local laser irradiation, the nanoamplifier can continuously amplify cellular oxidative stress through a positive feedback loop of "light-triggered ROS generation, ROS-responsive prodrug activation, and Fenton reaction-mediated ROS cyclic regenerative amplification", avoiding tissue damage caused by excessive laser exposure. This strategy provides a potential pathway to overcome the limitations of ROS-based therapeutic approaches.
Collapse
Affiliation(s)
- Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Haizhen Guo
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shitian Jia
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Suixin Xing
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Jin Chang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
36
|
Zhao B, Ma Z, Ding S, Cao Y, Du J, Zeng L, Hu Y, Zhou J, Zhang X, Bian X, Tian G. Catalytic MnWO 4 Nanorods for Chemodynamic Therapy Synergized Radiotherapy of Triple Negative Breast Cancer. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202306328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 01/12/2025]
Abstract
AbstractNanomedicine‐based synergy of chemodynamic therapy (CDT) and radiotherapy (RT) modulated by tumor microenvironment enables rapid tumor ablation, which holds great hope for the refractory and recurrent cancers, such as triple negative breast cancer (TNBC). The clinical translation of hafnium oxide (HfO2), commercially named as NBTXR3, has aroused new research focus on single‐component inorganic nanomedicines as clinical candidates. Herein, the single‐component MnWO4 is first reported as a new kind of Fenton‐like agent yet radiosensitizer for TNBC treatment undergoing the synergistic CDT/RT mechanism. MnWO4 nanorods are synthesized via a simple one‐pot hydrothermal method and then undergo a layer‐by‐layer PEGylation to obtain bioavailable MnWO4‐PEG (MWP). MWP‐based Fenton‐like reaction efficacy depends on reaction time, temperatures, pH values, and MWP concentrations. Mn‐triggered chemodynamic effect delays RT‐induced DNA damage repair and sorts cell cycles distribution toward radiosensitive phases, while W‐mediated radiosensitization improves the tumoral H2O2 overexpression to enhance CDT, remarkably amplifying of the intracellular oxidative stress to boost 4T1 cell apoptosis. In vitro and in vivo evaluations further demonstrate the effectiveness and biosafety of MWP‐based synergistic therapy. Considering the potential magnetic resonance and computed tomography imaging capabilities, MWP can be expected as an intelligent cancer theranostics for imaging‐guided cancer therapy in clinic in the future.
Collapse
Affiliation(s)
- Bin Zhao
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Zhili Ma
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Jiangfeng Du
- College of Basic Medicine and College of Pharmacy Shanxi Medical University Jinzhong Shanxi 030619 P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center The First Affiliated Hospital Third Military Medical University (Army Medical University) Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing 400038 P. R. China
- Chongqing Institute of Advanced Pathology Jinfeng Laboratory Chongqing 401329 P. R. China
| |
Collapse
|
37
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
38
|
Chasara RS, Ajayi TO, Leshilo DM, Poka MS, Witika BA. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon 2023; 9:e19896. [PMID: 37809420 PMCID: PMC10559285 DOI: 10.1016/j.heliyon.2023.e19896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular milieu in which malignant growths or cancer stem cells reside is known as the tumour microenvironment (TME). It is the consequence of the interactivity amongst malignant and non-malignant cells and directly affects cancer development and progression. Reactive oxygen species (ROS) are chemically reactive molecules that contain oxygen, they are generated because of numerous endogenous and external factors. Endogenous ROS produced from mitochondria is known to significantly increase intracellular oxidative stress. In addition to playing a key role in several biological processes both in healthy and malignant cells, ROS function as secondary messengers in cell signalling. At low to moderate concentrations, ROS serves as signalling transducers to promote cancer cell motility, invasion, angiogenesis, and treatment resistance. At high concentrations, ROS can induce oxidative stress, leading to DNA damage, lipid peroxidation and protein oxidation. These effects can result in cell death or trigger signalling pathways that lead to apoptosis. The creation of innovative therapies and cancer management techniques has been aided by a thorough understanding of the TME. At present, surgery, chemotherapy, and radiotherapy, occasionally in combination, are the most often used methods for tumour treatment. The current challenge that these therapies face is the lack of spatiotemporal application specifically at the lesion which results in toxic effects on healthy cells associated with off-target drug delivery and undesirably high doses. Nanotechnology can be used to specifically deliver various chemicals via nanocarriers to target tumour cells, thereby increasing the accumulation of ROS-inducing agents at the site of the tumour. Nanoparticles can be engineered to release ROS-inducing agents in a controlled manner to the TME that will in turn react with the ROS to either increase or decrease it, thereby improving antitumour efficiency. Nano-delivery systems such as liposomes, nanocapsules, solid lipid nanoparticles and nanostructured lipid carriers were explored for the up/down-regulation of ROS. This review will discuss the use of nanotechnology in targeting and altering the ROS in the TME.
Collapse
Affiliation(s)
- Rumbidzai Sharon Chasara
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Taiwo Oreoluwa Ajayi
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Dineo Motjoadi Leshilo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| |
Collapse
|
39
|
Koo S, Kim YG, Lee N, Hyeon T, Kim D. Inorganic nanoparticle agents for enhanced chemodynamic therapy of tumours. NANOSCALE 2023; 15:13498-13514. [PMID: 37578148 DOI: 10.1039/d3nr02000b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
With the recent interest in the role of oxidative species/radicals in diseases, inorganic nanomaterials with redox activities have been extensively investigated for their potential use in nanomedicine. While many studies focusing on relieving oxidative stress to prevent pathogenesis and to suppress the progression of diseases have shown considerable success, another approach for increasing oxidative stress using nanomaterials to kill malignant cells has suffered from low efficiency despite its wide applicability to various targets. Chemodynamic therapy (CDT) is an emerging technique that can resolve such a problem by exploiting the characteristic tumour microenvironment to achieve high selectivity. In this review, we summarize the recent strategies and underlying mechanisms that have been used to improve the CDT performance using inorganic nanoparticles. In addition to the design of CDT agents, the effects of contributing factors, such as the acidity and the levels of hydrogen peroxide and antioxidants in the tumour microenvironment, together with their modulation and application in combination therapy, are presented. The challenges lying ahead of future clinical translation of this rapidly advancing technology are also discussed.
Collapse
Affiliation(s)
- Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
40
|
Li S, Chen X, Guan S, Wang Z, Cao W, Luo G, Ling X. Precisely Amplifying Intracellular Oxidative Storm by Metal-Organic Coordination Polymers to Augment Anticancer Immunity. ACS NANO 2023; 17:15165-15179. [PMID: 37490051 DOI: 10.1021/acsnano.3c04785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Oxidative stress accompanying the reactive oxygen species (ROS) burst governs immunocyte infiltration, activation, and differentiation in tumor microenvironments and thus can elicit robust antitumor immunity. Here, we identify a photoactive metal-organic coordination polymer (MOCP), composed of an organometallic core formed by cytotoxic mitoxantrone (MTX) acylates and photosensitive Ru(BIQ)-HDBB [BIQ = 2,2'-biquinoline, HDBB = 4,4'-di(4-benzoato)-2,2'-bipyridine] linked by Fe(II) ions via coordinate covalent bonds and an amphipathic shell encapsulating cholesterol-modified siRNA against GPX4 (siGPX4) via hydrophobic force, to precisely amplify intracellular oxidative storm. MOCPs simultaneously encapsulated MTX, Ru, and siGPX4 with efficiencies >98% and loaded Fe with efficiencies of ∼0.49%. With longer blood circulation and higher tumor accumulation, MOCPs with a 670 nm LED irradiation generate abundant ROS to induce biomembrane dysfunction and subsequently contribute to ferroptotic and immunogenic cell death, which drive tumor-associated antigen-specific immunity. MTX analogs contributed to Type I immunogenic cell death (ICD), while oxidative storm served as a damager for endo/lysosomal escape, an initiator for ferroptosis, and an inducer for type II ICD. Moreover, the blockade of CD73 that reduces extoATP catabolism unleashes immunosuppression, finally enhancing antitumor immune stimulation of MOCPs to promote orthotopic mammary cancer regression and prevent postoperative advanced cancer from recurrence and metastasis. MOCPs by exposing sufficient antigenicity thus provide a platform to synergize immune checkpoint inhibitors for the treatment of immunologically cold tumors.
Collapse
Affiliation(s)
- Shangfei Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Shuo Guan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Zhiyuan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Guoshun Luo
- Department of Chemistry, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Xiang Ling
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| |
Collapse
|
41
|
Chen W, Yin Y, Zhang Z. Effects of N-acetylcysteine on CG8005 gene-mediated proliferation and apoptosis of Drosophila S2 embryonic cells. Sci Rep 2023; 13:12502. [PMID: 37532734 PMCID: PMC10397334 DOI: 10.1038/s41598-023-39668-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
To investigate the effect of the antioxidant N-acetylcysteine (NAC) on the proliferation and apoptosis in CG8005 gene-interfering Drosophila S2 embryonic cells by scavenging intracellular reactive oxygen species (ROS). The interfering efficiency of CG8005 gene in Drosophila S2 embryonic cells was verified by real-time quantitative PCR (qRT-PCR). Different concentrations of NAC and phosphate buffered saline (PBS) were used to affect the Drosophila S2 embryonic cells. The growth state of Drosophila S2 embryonic cells was observed by light microscope. Two probes dihydroethidium (DHE) and 2,7-dichlorodihydrofluorescein-acetoacetate (DCFH-DA) were used to observe the ROS production in each group after immunofluorescence staining. TUNEL staining and flow cytometry were used to investigate the apoptosis level of Drosophila S2 embryos, and CCK-8 (Cell Counting Kit-8) was used to detect the cell viability of Drosophila S2 embryos. The knockdown efficiency of siCG8005-2 fragment was high and stable, which was verified by interference efficiency (P < 0.05). There was no significant change in the growth of Drosophila S2 embryonic cells after the treatment of NAC as compared to PBS group. Moreover, knockdowning CG8005 gene resulted in an increase in ROS and apoptosis in Drosophila S2 embryonic cells (P < 0.05) and a decrease in proliferation activity (P < 0.05). In addition, the pretreatment of antioxidant NAC could inhibit ROS production in Drosophila S2 embryonic cells (P < 0.05), reduce cell apoptosis (P < 0.05), and improve cell survival (P < 0.05). The CG8005 gene in Drosophila S2 embryonic cells could regulate the proliferation and apoptosis of S2 embryonic cells by disrupting the redox homeostasis, and antioxidant NAC could inhibit cell apoptosis and promotes cell proliferation by scavenging ROS in Drosophila S2 embryonic cells, which is expected to provide novel insights for the pathogenesis of male infertility and spermatogenesis.
Collapse
Affiliation(s)
- Wanyin Chen
- Department of Medical Gynecology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Yifei Yin
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226006, People's Republic of China.
| | - Zheng Zhang
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China.
| |
Collapse
|
42
|
Li Y, Feng M, Guo T, Wang Z, Zhao Y. Tailored Beta-Lapachone Nanomedicines for Cancer-Specific Therapy. Adv Healthc Mater 2023; 12:e2300349. [PMID: 36970948 DOI: 10.1002/adhm.202300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone-containing compound, beta-lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP-mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton-like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer-specific LAP therapy and speed up its clinical translation.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Meiyu Feng
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
43
|
Huang P, Yang Y, Wang W, Li Z, Gao N, Chen H, Zeng X. Self-driven nanoprodrug platform with enhanced ferroptosis for synergistic photothermal-IDO immunotherapy. Biomaterials 2023; 299:122157. [PMID: 37196407 DOI: 10.1016/j.biomaterials.2023.122157] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Insufficient immune stimulation and stubborn immune resistance are the critical factors limiting tumor immunotherapy. Here, we report a multifunctional nanoprodrug platform with self-driven indoximod (IND) release and oxidative stress amplification. The aim is to awaken immune responses and block the indoleamine 2,3-dioxygenase (IDO) pathway through a combination of ferroptosis, photothermal therapy, and immunotherapy. This nanosystem improved the delivery efficiency of IND due to click chemistry linked ROS responsive prodrug and self-driven drug release. Meanwhile, the tactic of simultaneously increasing ROS and eliminating GSH amplified oxidative stress and strengthened ferroptosis, which further enhanced immunogenicity along with polydopamine-based photothermal therapy. IDO immunization combined with ferroptosis as well as photothermal therapy not only stimulated immune response, but also reversed immune suppression with enhanced immune memory. Therefore, primary tumor, distant tumor, and cancer metastasis were inhibited. This study provides a perspective on immunotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
44
|
Huang L, Feng J, Zhu J, Yang J, Xiong W, Lu X, Chen S, Yang S, Li Y, Xu Y, Shen Z. A Strategy of Fenton Reaction Cycloacceleration for High-Performance Ferroptosis Therapy Initiated by Tumor Microenvironment Remodeling. Adv Healthc Mater 2023; 12:e2203362. [PMID: 36893770 DOI: 10.1002/adhm.202203362] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Indexed: 03/11/2023]
Abstract
The emerging tumor ferroptosis therapy confronts impediments of the tumor microenvironment (TME) with weak intrinsic acidity, inadequate endogenous H2 O2 , and a powerful intracellular redox balance system that eliminates toxic reactive oxygen species (ROS). Herein, a strategy of Fenton reaction cycloacceleration initiated by remodeling the TME for magnetic resonance imaging (MRI)-guided high-performance ferroptosis therapy of tumors is proposed. The synthesized nanocomplex exhibits enhanced accumulation at carbonic anhydrase IX (CAIX)-positive tumors based on the CAIX-mediated active targeting, and increased acidification via the inhibition of CAIX by 4-(2-aminoethyl) benzene sulfonamide (ABS) (remodeling TME). This accumulated H+ and abundant glutathione in TME synergistically trigger biodegradation of the nanocomplex to release the loaded cuprous oxide nanodots (CON), β-lapachon (LAP), Fe3+ , and gallic acid-ferric ions coordination networks (GF). The Fenton and Fenton-like reactions are cycloaccelerated via the catalytic loop of Fe-Cu, and the LAP-triggered and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase1-mediated redox cycle, generating robust ROS and plenitudinous lipid peroxides accumulation for ferroptosis of tumor cells. The detached GF network has improved relaxivities in response to the TME. Therefore, the strategy of Fenton reaction cycloacceleration initiated by remodeling the TME is promising for MRI-guided high-performance ferroptosis therapy of tumors.
Collapse
Affiliation(s)
- Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Sijin Chen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Yan Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
45
|
Fan D, Zhang C, Wang H, Wei Q, Cai H, Wei F, Bian Z, Liu W, Wang X, Liu Z. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater Today Bio 2023; 20:100683. [PMID: 37346395 PMCID: PMC10279918 DOI: 10.1016/j.mtbio.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor occurring in adolescents. Surgery combined with adjuvant or neoadjuvant chemotherapy is the standard treatment. However, systemic chemotherapy is associated with serious side effects and a high risk of postoperative tumor recurrence, leading to a high amputation rate and mortality in cancer patients. Implant materials that can simultaneously repair large bone defects and prevent osteosarcoma recurrence are in urgent need. Herein, an intelligent system comprising 3D-printed titanium scaffold (TS) and pH-responsive PEGylated paclitaxel prodrugs was fabricated for bone defect reconstruction and recurrence prevention following osteosarcoma surgery. The drug-loaded implants exhibited excellent stability and biocompatibility for supporting the activity of bone stem cells under normal body fluid conditions and the rapid release of drugs in response to faintly acidic environments. An in vitro study demonstrated that five human osteosarcoma cell lines could be efficiently eradicated by paclitaxel released in an acidic microenvironment. Using mice models, we demonstrated that the drug-loaded TS can enable a pH-responsive treatment of postoperative tumors and effectively prevent osteosarcoma recurrence. Therefore, local implantation of this composite scaffold may be a promising topical therapeutic method to prevent osteosarcoma recurrence.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhilei Bian
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
46
|
Ning S, Mo J, Huang R, Liu B, Fu B, Ding S, Yang H, Cui Y, Yao L. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front Bioeng Biotechnol 2023; 11:1191014. [PMID: 37200848 PMCID: PMC10185793 DOI: 10.3389/fbioe.2023.1191014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. Methods: The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu2+) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy. The released Cu2+ consumes the overexpressed GSH in TME and the generated Cu+ further exploits the TME characteristics to initiate nanocatalytic reactions for generating highly toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles. H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like reaction, leading to a burst of reactive oxygen species in TME, which further enhances the therapeutic effect of chemokines. Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor model mice showed a significant delay in tumor growth and no systemic toxicity was detected. Discussion: In conclusion, we have established a CLH nanodrug platform that enables efficient lung tumor therapy through combined photothermal/chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve cascade catalysis, leading to explosive amplification of oxidative stress.
Collapse
Affiliation(s)
- Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rong Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Benkun Liu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuaijie Ding
- Department of Gastrointestinal Surgery and Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huawei Yang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Yao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
47
|
Chen X, Li F, Liang R, Liu W, Ma H, Lan T, Liao J, Yang Y, Yang J, Liu N. A Smart Benzothiazole-Based Conjugated Polymer Nanoplatform with Multistimuli Response for Enhanced Synergistic Chemo-Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16343-16354. [PMID: 36947054 DOI: 10.1021/acsami.2c19246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation. Controlled drug release of DOX from the obtained nanoformulation (CPNs-DOX-PEG-cRGD-BSA@POM) triggered by both endogenous stimulations (GSH and low pH) and exogenous laser irradiation has been well demonstrated by pharmacodynamics investigations. More intriguingly, incorporating POM into the nanoplatform not only enables the nanomedicine to achieve mild hyperthermia but also makes it exhibit self-assembly behavior in acidic TME, producing enhanced tumor retention. Benefiting from the versatile functions, the prepared CPNs-DOX-PEG-cRGD-BSA@POM exhibited excellent tumor targeting and therapeutic effects in murine xenografted models, showing great potential in practical cancer therapy.
Collapse
Affiliation(s)
- Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
48
|
Liu W, Wang M, Guo Z, He Y, Jia H, He J, Miao S, Ding Y, Wang S. Inspired by bis-β-carboline alkaloids: Construction and antitumor evaluation of a novel bis-β-carboline scaffold as potent antitumor agents. Bioorg Chem 2023; 133:106401. [PMID: 36746025 DOI: 10.1016/j.bioorg.2023.106401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Bis-β-carboline alkaloids are widely distributed in natural products and represent a promising drug-like scaffold for discovering drugs and bioactive molecules. In this study, we utilized the structural simplification strategy to construct a novel bis-β-carboline scaffold via "one-pot" condensation-Mannich reaction. The simplified bis-β-carboline derivatives were obtained in good yield. Antitumor evaluation revealed most compounds, especially 3m, displayed potent antitumor activity (IC50 values for 3m: 0.96 μM ∼ 1.52 μM). More importantly, 3m displayed valuable antitumor properties including anti-migration and anti-invasion activity against cancer cells, antiangiogenic and vascular-disrupting properties. Mechanistic studies revealed 3m potently inhibited both Top1 and Top2 activity, thus interfering with DNA synthesis in cancer cells. Taken together, this study developed a new synthetic methodology to construct a novel bis-β-carboline scaffold, which represents a promising lead structure for antitumor drug discovery.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Hairui Jia
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shanshan Miao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
49
|
Tan J, Zhou X, Zhang S. Iron-doped cross-linked lipoic acid nano-aggregates for ferroptosis-mediated cancer treatment. Acta Biomater 2023; 159:289-299. [PMID: 36706854 DOI: 10.1016/j.actbio.2023.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Recently, Fenton reaction-mediated ferroptosis has attracted great attention in cancer treatment while the metabolism loss of iron and the limited endogenous H2O2 level imped its clinical application. Here, a new ferroptosis inducer (Fe@cLANAs) constructed only by Fe(II) and (R)-(+)-lipoic acid (LA) was developed for tumor ablation. After entering the tumor cells, the Fe@cLANAs dissociated into disdihydrolipoic acid (DHLA) and released iron, which would regenerate each other to continuously provide iron and H2O2 to enhance ferroptosis. The Fe@cLANAs demonstrated the IC50Fe below 10 μM against various tumor cells, an anti-tumor effect comparable to many chemotherapy drugs. In vivo antitumor evaluation based on the tumor cell-derived xenograft model showed a tumor inhibitory rate (TIR) of 97.4% at the iron usage of 1.53 mg/kg, the lowest iron usage reported so far in ferrotherapy using iron as the main agent to treat tumors. Notably, the good anti-tumor effect of Fe@cLANAs was further achieved in the glioma patient-derived xenograft (PDX) model. This strategy utilizing the reciprocal circulation of metal iron and LA to delay the metabolism loss of iron and increase the H2O2 level in the tumor cells holds a great potential for ferroptosis-mediated cancer treatment. STATEMENT OF SIGNIFICANCE: The metabolism loss of iron and the limited endogenous H2O2 level are key factors to impede the clinical application of ferroptosis-mediated cancer treatment. Herein, a new ferroptosis inducer constructed only by lipoic acid and iron is developed to delay the metabolism loss of iron and increase the level of endogenous H2O2 by causing a cyclic regeneration of Fe(II)/Fe(III) and LA/DHLA in the tumor cells. According to the previous reports, at least 75 mg/kg of iron dosage was needed to achieve effective antitumor efficacy, here, the use of only 1.53 mg/kg iron in Fe@cLANAs achieved the TIR of 97.4% and 62.8% in the U251 CDX and glioma PDX models, showing the good prospect of Fe@cLANAs in clinic.
Collapse
Affiliation(s)
- Juan Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xueying Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
50
|
Zhu Y, Gong P, Wang J, Cheng J, Wang W, Cai H, Ao R, Huang H, Yu M, Lin L, Chen X. Amplification of Lipid Peroxidation by Regulating Cell Membrane Unsaturation To Enhance Chemodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218407. [PMID: 36708200 DOI: 10.1002/anie.202218407] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/29/2023]
Abstract
Lipid peroxidation (LPO) is one of the most damaging processes in chemodynamic therapy (CDT). Although it is well known that polyunsaturated fatty acids (PUFAs) are much more susceptible than saturated or monounsaturated ones to LPO, there is no study exploring the effect of cell membrane unsaturation degree on CDT. Here, we report a self-reinforcing CDT agent (denoted as OA@Fe-SAC@EM NPs), consisting of oleanolic acid (OA)-loaded iron single-atom catalyst (Fe-SAC)-embedded hollow carbon nanospheres encapsulated by an erythrocyte membrane (EM), which promotes LPO to improve chemodynamic efficacy via modulating the degree of membrane unsaturation. Upon uptake of OA@Fe-SAC@EM NPs by cancer cells, Fe-SAC-catalyzed conversion of endogenous hydrogen peroxide into hydroxyl radicals, in addition to initiating the chemodynamic therapeutic process, causes the dissociation of the EM shell and the ensuing release of OA that can enrich cellular membranes with PUFAs, enabling LPO amplification-enhanced CDT.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Peng Gong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wenyu Wang
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongwei Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meili Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|