1
|
Shin SS, Lee S, Park SJ, Kim H, Choi J, Won W, Lee JH. Ecofriendly Upcycling of Poly(vinyl chloride) Waste Plastics into Precious Metal Adsorbents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503157. [PMID: 40344331 DOI: 10.1002/advs.202503157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Global interest in the recycling of precious metals (PMs) in various industrial sectors has spurred the exploration of high-performance PM adsorbents. Unfortunately, many adsorbents exhibit unsatisfactory PM adsorption performance and require complex fabrication protocols and toxic chemicals. Hence, further development of simple, efficient, and eco-friendly adsorbents is necessary. Herein, poly(vinyl chloride) (PVC) waste plastics are simply transformed into high-performance PM adsorbents via benign solvent treatment and hydrazination. The resultant hydrazine-functionalized PVC (h-PVC) plastic can effectively recover gold, palladium, and platinum from real-world leachates owing to its combined reduction and chemisorption mechanisms. The PM-adsorbed h-PVC plastic can be regenerated, calcined into high-purity PMs, or directly employed as a catalyst, demonstrating its practical feasibility. Techno-economic and life-cycle assessments reveal that the h-PVC plastic-utilizing industrial-scale recovery of gold from electronic waste is cost-competitive and environmentally advantageous. The strategy supports environmental and sustainable technologies by enabling the sustainable maintenance of carbon and PM resources and provides an efficient and sustainable method for fabricating advanced adsorbent materials.
Collapse
Affiliation(s)
- Seung Su Shin
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seungho Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung-Joon Park
- Department of Polymer Science and Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hansoo Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Juyeon Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Wangyun Won
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Gouda A, Merhi N, Hmadeh M, Cecchi T, Santato C, Sain M. Sustainable Strategies for Converting Organic, Electronic, and Plastic Waste From Municipal Solid Waste Into Functional Materials. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400240. [PMID: 40255238 PMCID: PMC12003218 DOI: 10.1002/gch2.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/22/2025] [Indexed: 04/22/2025]
Abstract
The valorization of municipal solid waste permits to obtain sustainable functional materials. As the urban population burgeons, so does the volume of discarded waste, presenting both a challenge and an opportunity. Harnessing the materials and the latent energy within this solid waste not only addresses the issue of disposal but also contributes to the innovation of functional materials with applications in the energy, electronics, and environment sectors. In this perspective, technologies for converting, after sorting, municipal solid waste into valuable metals, chemicals, and fuels are critically analyzed. Innovative approaches to convert organic waste into functional carbon materials and to create, from plastic and electronic wastes, metal-organic frameworks for energy conversion, storage, and CO2 adsorption and conversion are proposed. Green hydrometallurgy routes that permit the recovery of precious metals avoiding noble metals' oxidative leaching, thus avoiding their downcycling, are also highlighted. The reclaimed precious metals hold promise for use in optoelectronic devices.
Collapse
Affiliation(s)
- Abdelaziz Gouda
- Department of Applied Chemistry and Chemical EngineeringUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
- Centre for Biocomposites and Biomaterials ProcessingDivision of ForestryDaniels Faculty of ArchitectureLandscape and DesignUniversity of TorontoTorontoONM5S 3E8Canada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoONM5S 3G8Canada
| | - Nour Merhi
- Department of ChemistryAmerican University of BeirutRiad El‐Solh, P.O. Box 11‐0236BeirutLebanon
| | - Mohamad Hmadeh
- Department of ChemistryAmerican University of BeirutRiad El‐Solh, P.O. Box 11‐0236BeirutLebanon
| | - Teresa Cecchi
- Istituto Tecnico Tecnologico (ITT) G. and M. MontaniFermo63900Italy
| | - Clara Santato
- Engineering PhysicsPolytechnique MontrealMontrealQCH3T 1J4Canada
| | - Mohini Sain
- Department of Applied Chemistry and Chemical EngineeringUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
- Centre for Biocomposites and Biomaterials ProcessingDivision of ForestryDaniels Faculty of ArchitectureLandscape and DesignUniversity of TorontoTorontoONM5S 3E8Canada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoONM5S 3G8Canada
| |
Collapse
|
3
|
Shi TH, Tuo DH, Azuma S, Tokuda S, Masaki M, Yasuhara K, Asakawa H, Furukawa S, Akine S, Ohtani S, Kato K, Ogoshi T. Internal and External Pockets in Pillar[ n]arene Sheets and Their Host-Guest Binding Beyond Cavity Volume Limitations. J Am Chem Soc 2025. [PMID: 40019768 DOI: 10.1021/jacs.4c16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Constructing binding pockets by hierarchically assembling tailored building blocks and understanding structure-property relationships are challenging goals. Herein, amphiphilic pillar[5]arene and pillar[6]arene were prepared and used to construct 2D sheets, which consisted of well-defined hydrophobic and hydrophilic interlayers. In the hydrophobic interlayers, internal hydrophobic pockets were created by packing pairs of pillar[n]arenes, and external hydrophobic pockets were simultaneously generated from gaps between pillar[n]arenes due to electrostatic attractions. Aromatic hydrocarbons were accommodated in these hydrophobic pockets by ball milling. Due to the external pockets, bulky guests larger than the pillar[n]arene cavity sizes were also captured in the sheets.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - De-Hui Tuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shun Tokuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Minamo Masaki
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shuhei Furukawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Zhang Y, Du J, Shan Y, Wang F, Liu J, Wang M, Liu Z, Yan Y, Xu G, He G, Shi X, Lian Z, Yu Y, Shan W, He H. Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective. Chem Soc Rev 2025; 54:1151-1215. [PMID: 39687940 DOI: 10.1039/d4cs00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols). Special attention will be given to the research advancements in catalysts, including three-way catalysts (TWCs), NOx selective catalytic reduction (SCR) catalysts, NOx storage-reduction (NSR) catalysts, diesel oxidation catalysts (DOCs), soot oxidation catalysts, ammonia slip catalysts (ASCs), methane oxidation catalysts (MOCs), N2O abatement catalysts (DeN2O), passive NOx adsorbers (PNAs), and cold start catalysts (CSCs). The main challenges for industrial applications of these catalysts, such as insufficient low-temperature activity, product selectivity, hydrothermal stability, and poisoning resistance, will be examined. In addition, the future development of synergistic control of vehicle pollutants and greenhouse gases will be discussed from a catalysis perspective.
Collapse
Affiliation(s)
- Yan Zhang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Jinpeng Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yulong Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingjing Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meng Wang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Zhi Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoyan Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhihua Lian
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wenpo Shan
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Hong He
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Huang Z, Groombridge AS, Wu G, Olesińska M, Chen X, McCune JA, Scherman OA. Biomimetic Entropy-Dominant Molecular Hinges with Picomolar Affinity. J Am Chem Soc 2024; 146:24244-24249. [PMID: 39167697 PMCID: PMC11378272 DOI: 10.1021/jacs.4c05274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Molecular hinges are ubiquitous in both natural and artificial supramolecular systems. A major challenge to date, however, has been simultaneously achieving high thermodynamic and kinetic stability. Here, we employ host-enhanced intramolecular charge-transfer interactions to mediate entropy-favored complexation between a flexible AB2-type guest and a macrocyclic host, forming a new type of molecular hinge with an ultrahigh picomolar binding affinity (Ka > 1012 M-1). This entropy-promoted hinge modulates photoisomerization, exhibiting a substantial preference for the E-isomer, which is further demonstrated to mirror the natural retinal-opsin cycle, promoting the sensitization of visible light. This work unveils an efficient approach to exploit entropy-dominant architectures for the design of hierarchical molecular systems.
Collapse
Affiliation(s)
- Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander S Groombridge
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Magdalena Olesińska
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Xiaoyi Chen
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Nag A, Morrison CA, Love JB. Rapid Dissolution of Gold in Alcohols by In-Situ Generation of Halogens. CHEMSUSCHEM 2024; 17:e202301695. [PMID: 38412014 DOI: 10.1002/cssc.202301695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
The dissolution of elemental gold is a fundamental step in its recycling by hydrometallurgy but has a significant environmental impact due to the use of strong acids or highly toxic reagents. Herein, it is shown that mixtures of acetyl halides and hydrogen peroxide in alcohols promote the rapid room-temperature dissolution of gold by halogenation to form Au(III) metalates. After leaching, distillation of the alcohol and re-dissolution in dilute HCl, the gold was refined through its precipitation by a simple diamide ligand; this method was also applied to separate gold from a mixture of metals. The leaching process is rapid, avoids the use of highly toxic materials and corrosive acids, and can be integrated into selective separation processes, so has the potential to be used in the purification of gold from ores, spent catalysts, and electronic and nano-waste.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
7
|
Yuan K, Yao Q, Liu Y. Mutual synergistic regulation of chloride anion and cesium cation binding using a new designed macrocyclic multi-functional sites receptor: A case of DFT computational prediction. J Chem Phys 2024; 161:034305. [PMID: 39007389 DOI: 10.1063/5.0214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The mutual synergistic regulation of the multi-functional sites on a single receptor molecule for ion-binding/recognition is vital for the new receptor design and needs to be well explored from experiment and theory. In this work, a new macrocyclic ion receptor (BEBUR) with three functional zones, including two ether holes and one biurea groups, is designed expecting to mutually enhance the ion-binding performance. The binding behaviors of BEBUR mainly for Cl- and Cs+ are deeply investigated by using density functional theoretical calculations. It is found that Cl-/Cs+ binding can be mutually enhanced and synergistically regulated via corresponding conformational changes of the receptor, well reflecting an electrical complementary matching and mutual reinforcement effect. Moreover, solvent effect calculations indicate that BEBUR may be an excellent candidate structure for Cl--binding with the enhancement of counter ion (Cs+) in water and toluene. In addition, visualization of intermolecular noncovalent interaction is used for analysis on the nature of the binding interactions between receptor and ions.
Collapse
Affiliation(s)
- Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| | - Qingqing Yao
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| | - Yanzhi Liu
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gasu Province, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
8
|
Su Y, Berbille A, Li XF, Zhang J, PourhosseiniAsl M, Li H, Liu Z, Li S, Liu J, Zhu L, Wang ZL. Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis. Nat Commun 2024; 15:4196. [PMID: 38760357 PMCID: PMC11101412 DOI: 10.1038/s41467-024-48407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.
Collapse
Affiliation(s)
- Yusen Su
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinyang Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - MohammadJavad PourhosseiniAsl
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Huifan Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhanqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Jianbo Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
9
|
Xu J, Li B, Zhang XD, Wu D, Zhao JL, Chen K. Selective removal of Cr 2O 72- in aqueous solution by nonporous pure crystals of cucurbit[6]uril. Dalton Trans 2024; 53:6168-6172. [PMID: 38488062 DOI: 10.1039/d4dt00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cucurbit[6]uril (Q[6]) could serve as a selective absorbent for the toxic anion Cr2O72-, which was demonstrated by the results of UV-vis, ICP, XPS, SEM, and EDS experiments. Single-crystal X-ray diffraction analysis revealed that capture capacity could be attributed to the outer-surface interactions of cucurbit[n]uril between Cr2O72- and the outer surface of Q[6].
Collapse
Affiliation(s)
- Jing Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiu-Du Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, China
| | - Dong Wu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China.
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519080, Guangdong, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
10
|
Zhang L, Xu Y, Wei W. Water-soluble organic macrocycles based on dye chromophores and their applications. Chem Commun (Camb) 2023; 59:13562-13570. [PMID: 37901908 DOI: 10.1039/d3cc04159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Traditional water-soluble organic macrocyclic receptors generally lack photofunctionality, thus monitoring the drug delivery and the phototheranostic applications of these host-guest macrocyclic systems has been greatly restricted. To address this issue, incorporating π-conjugated dye chromophores as building blocks into macrocyclic molecules is a straightforward and promising strategy. This approach not only imparts intrinsic optical features to the macrocycles themselves but also enhances the host-guest binding ability due to the large planar structures of the dyes. In this feature article, we focus on recent advances in water-soluble macrocyclic compounds based on organic dye chromophores, such as naphthalimide (NDI), perylene diimides (PDI), azobenzene (azo), tetraphenylethylene (TPE) and anthracene, and provide an overview of their various applications including molecular recognition, drug release, biological imaging, photothermal therapy, etc. We hope that this article could be helpful and instructive for the design of water-soluble dye-based macrocycles and the further development of their biomedical applications, particularly in combination with drug therapy and phototheranostics.
Collapse
Affiliation(s)
- Luying Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yanqing Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
11
|
Zhu H, Chen L, Sun B, Wang M, Li H, Stoddart JF, Huang F. Applications of macrocycle-based solid-state host-guest chemistry. Nat Rev Chem 2023; 7:768-782. [PMID: 37783822 DOI: 10.1038/s41570-023-00531-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Bin Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| |
Collapse
|
12
|
Nag A, Singh MK, Morrison CA, Love JB. Efficient Recycling of Gold and Copper from Electronic Waste by Selective Precipitation. Angew Chem Int Ed Engl 2023; 62:e202308356. [PMID: 37594475 PMCID: PMC10952234 DOI: 10.1002/anie.202308356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
The recycling of metals from electronic waste (e-waste) using efficient, selective, and sustainable processes is integral to circular economy and net-zero aspirations. Herein, we report a new method for the selective precipitation of metals such as gold and copper that offsets the use of organic solvents that are traditionally employed in solvent extraction processes. We show that gold can be selectively precipitated from a mixture of metals in hydrochloric acid solution using triphenylphosphine oxide (TPPO), as the complex [(TPPO)4 (H5 O2 )][AuCl4 ]. By tuning the acid concentration, controlled precipitation of gold, zinc and iron can be achieved. We also show that copper can be selectively precipitated using 2,3-pyrazinedicarboxylic acid (2,3-PDCA), as the complex [Cu(2,3-PDCA-H)2 ]n ⋅ 2n(H2 O). The combination of these two precipitation methods resulted in the recovery of 99.5 % of the Au and 98.5 % of the Cu present in the connector pins of an end-of-life computer processing unit. The selectivity of these precipitation processes, combined with their straightforward operation and the ability to recycle and reuse the precipitants, suggests potential industrial uses in the purification of gold and copper from e-waste.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| | - Mukesh K. Singh
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| | | | - Jason B. Love
- EaStCHEM School of ChemistryUniversity of EdinburghEH9 3FJEdinburghUK
| |
Collapse
|
13
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
15
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
16
|
Jin XY, Ge Q, Cong H, Zhang YQ, Zhao JL, Jiang N. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. CHEMSUSCHEM 2023; 16:e202300027. [PMID: 36946375 DOI: 10.1002/cssc.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Indexed: 06/04/2023]
Abstract
Supercapacitors are essential for electrochemical energy storage because of their high-power density, good cycle stability, fast charging and discharging rates, and low maintenance cost. Macrocycles, including cucurbiturils, calixarene, and cyclodextrins, are cage-like organic compounds (with a nanocavity that contains O and N heteroatoms) with unique potential in supercapacitors. Here, we review the applications of macrocycles in supercapacitor systems, and we illustrate the merits of organic macrocycles in electrodes and electrolytes for improving the electrochemical double-layer capacitors and pseudocapacitance via supramolecular strategies. Then, the observed relationships between electrochemical performance and macrocyclic structures are introduced. This comprehensive review describes recent progress on macrocycle-block supercapacitors for researchers.
Collapse
Affiliation(s)
- Xian-Yi Jin
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Qingmei Ge
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Hang Cong
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, 519080, Guangdong, P. R. China
| | - Nan Jiang
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| |
Collapse
|
17
|
Nogueira AF, Carreira AR, Vargas SJ, Passos H, Schaeffer N, Coutinho JA. Simple gold recovery from e-waste leachate by selective precipitation using a quaternary ammonium salt. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Wu H, Wang Y, Tang C, Jones LO, Song B, Chen XY, Zhang L, Wu Y, Stern CL, Schatz GC, Liu W, Stoddart JF. High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin. Nat Commun 2023; 14:1284. [PMID: 36894545 PMCID: PMC9998620 DOI: 10.1038/s41467-023-36591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311215, Hangzhou, China.
| |
Collapse
|
19
|
Zupanc A, Install J, Jereb M, Repo T. Sustainable and Selective Modern Methods of Noble Metal Recycling. Angew Chem Int Ed Engl 2023; 62:e202214453. [PMID: 36409274 PMCID: PMC10107291 DOI: 10.1002/anie.202214453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing-by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media-of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Joseph Install
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| |
Collapse
|
20
|
Wang Y, Wu H, Jones LO, Mosquera MA, Stern CL, Schatz GC, Stoddart JF. Color-Tunable Upconversion-Emission Switch Based on Cocrystal-to-Cocrystal Transformation. J Am Chem Soc 2023; 145:1855-1865. [PMID: 36642916 DOI: 10.1021/jacs.2c11425] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cocrystal engineering, involving the assembly of two or more components into a highly ordered solid-state superstructure, has emerged as a popular strategy for tuning the photophysical properties of crystalline materials. The reversible co-assembly and disassembly of multicomponent cocrystals and their reciprocal transformation in the solid state remain challenging objectives. Herein, we report a color-tunable upconversion-emission switch based on the interconversion between two cocrystals. One red- and one yellow-emissive cocrystal, composed of an electron-deficient naphthalenediimide-based triangular macrocycle and different electron donors, have been obtained. The red- and yellow-emissive cocrystals undergo reversible transformations on exchanging the electron donors. Benefiting from intermolecular charge transfer interactions, the two cocrystals display superior two-photon excited upconversion emission. Accompanying the interconversion of the two cocrystals, their luminescent color changes between red and yellow, forming a dual-color upconversion-emission switch. This research provides a rare yet critical example involving precise control of cocrystal-to-cocrystal transformation and affords a reference for fabricating color-tunable nonlinear optical materials in the solid state.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
21
|
Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zhang CR, Cui WR, Yi SM, Niu CP, Liang RP, Qi JX, Chen XJ, Jiang W, Liu X, Luo QX, Qiu JD. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO 4- or 99TcO 4. Nat Commun 2022; 13:7621. [PMID: 36494388 PMCID: PMC9734744 DOI: 10.1038/s41467-022-35435-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.
Collapse
Affiliation(s)
- Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei-Rong Cui
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Qiu-Xia Luo
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
23
|
Nag A, Morrison CA, Love JB. Rapid Dissolution of Noble Metals in Organic Solvents. CHEMSUSCHEM 2022; 15:e202201285. [PMID: 35929761 PMCID: PMC9804267 DOI: 10.1002/cssc.202201285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The dissolution of elemental noble metals (NMs) such as gold, platinum, palladium, and copper is necessary for their recycling but carries a high environmental burden due to the use of strong acids and toxic reagents. Herein, a new approach was developed for the rapid dissolution of elemental NMs in organic solvents using mixtures of triphenylphosphine dichloride or oxalyl chloride and hydrogen peroxide, forming metal chloride salts directly. Almost quantitative dissolution of metallic Au, Pd, and Cu was observed within minutes at room temperature. For Pt, dissolution was achieved, albeit more slowly, using the chlorinating oxidant alone but was inhibited on addition of hydrogen peroxide. After leaching, transfer of PtIV and PdII chloride salts from the organic phase into a 6 m HCl aqueous phase facilitated their separation by precipitation of PtIV using a simple diamide ligand. In contrast, the retention of AuIII chloridometalate in the organic phase allowed its selective separation from Ni and Cu from a leachate solution obtained from electronic CPUs. This new approach has potential application in the hydrometallurgical leaching and purification of NMs from ores, spent catalysts, and electronic and nano-wastes.
Collapse
Affiliation(s)
- Abhijit Nag
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| | - Carole A. Morrison
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| | - Jason B. Love
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUnited Kingdom
| |
Collapse
|
24
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity
Nor
‐
Seco
‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022; 61:e202207209. [DOI: 10.1002/anie.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Ran Cen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jisen Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Qing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland, College Park College Park MD 20742 USA
| |
Collapse
|
25
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity Nor‐Seco‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Liu
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Ran Cen
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Jisen Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Qing Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Zhu Tao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Xin Xiao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Lyle Isaacs
- University of Maryland at College Park Department of Chemistry and Biochemistry Building 091 20742 College Park UNITED STATES
| |
Collapse
|
26
|
Yang F, Li Y, Li R, Wang X, Cui X, Wei W, Xu Y. Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion. Org Chem Front 2022. [DOI: 10.1039/d2qo00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational and specific synthesis of the required organic macrocycles to bind the size-matched targeted guests without undesired macrocyclic byproducts remains a great challenge. Herein, based on a new naphthalimide...
Collapse
|
27
|
Kinsman LMM, Ngwenya BT, Morrison CA, Love JB. Tuneable separation of gold by selective precipitation using a simple and recyclable diamide. Nat Commun 2021; 12:6258. [PMID: 34716348 PMCID: PMC8556376 DOI: 10.1038/s41467-021-26563-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
The efficient separation of metals from ores and secondary sources such as electronic waste is necessary to realising circularity in metal supply. Precipitation processes are increasingly popular and are reliant on designing and understanding chemical recognition to achieve selectivity. Here we show that a simple tertiary diamide precipitates gold selectively from aqueous acidic solutions, including from aqua regia solutions of electronic waste. The X-ray crystal structure of the precipitate displays an infinite chain of diamide cations interleaved with tetrachloridoaurate. Gold is released from the precipitate on contact with water, enabling ligand recycling. The diamide is highly selective, with its addition to 29 metals in 2 M HCl resulting in 70% gold uptake and minimal removal of other metals. At 6 M HCl, complete collection of gold, iron, tin, and platinum occurs, demonstrating that adaptable selective metal precipitation is controlled by just one variable. This discovery could be exploited in metal refining and recycling processes due to its tuneable selectivity under different leaching conditions, the avoidance of organic solvents inherent to biphasic extraction, and the straightforward recycling of the precipitant.
Collapse
Affiliation(s)
- Luke M M Kinsman
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|