1
|
Liu T, Chen S, Jiang W, Zhang X, Zhang X, Zhang X, Shao M, Hu R, Jiang X. Enhanced piezo-photocatalytic performance of W 18O 49/BaTiO 3 heterojunctions under synergistic broad-spectrum light and ultrasound excitation. J Colloid Interface Sci 2025; 689:137182. [PMID: 40048851 DOI: 10.1016/j.jcis.2025.02.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
Rational regulation of the migration and separation of photogenerated charge carriers is a pivotal strategy for optimizing photocatalytic activity. To maximize the potential of piezoelectric and plasmonic properties, W18O49/BaTiO3 heterostructures were fabricated via a straightforward solvothermal process. As anticipated, the W18O49/BaTiO3 heterostructures demonstrated a significantly enhanced piezo-photocatalytic degradation of tetracycline under ultraviolet, visible, and near-infrared light irradiation combined with ultrasound stimulation, outperforming both bare BaTiO3 and W18O49. In-depth investigations indicate that the remarkable piezo-photocatalytic performance of the W18O49/BaTiO3 heterostructures arises from their exceptional photon energy harvesting across the ultraviolet (UV) to near infrared (NIR) spectrum driven by the localized surface plasmon resonance effect of W18O49, as well as the enhanced charge-carrier separation facilitated by the polarized electric field of BaTiO3 and the built-in electric field of the heterojunction. Consequently, the hybrid W18O49/BaTiO3 heterostructure, which exploits synergistic piezoelectric and plasmonic effects, demonstrates great potential for antibiotic pollutant treatment.
Collapse
Affiliation(s)
- Tongyao Liu
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China; Zhejiang Hongli Auto Parts Group Co., Ltd., 314200 Jiaxing, Zhejiang, PR China.
| | - Sitong Chen
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, Fujian, PR China
| | - Wei Jiang
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China
| | - Xudong Zhang
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China
| | - Xia Zhang
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China
| | - Xiaogang Zhang
- Zhejiang Hongli Auto Parts Group Co., Ltd., 314200 Jiaxing, Zhejiang, PR China
| | - Mingwei Shao
- Shandong Dahu New Materials Co., Ltd., 250022 Jinan, Shandong, PR China
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China.
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan 250022 Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Fan X, Teng Z, Han L, Shen Y, Wang X, Qu W, Song J, Wang Z, Duan H, Wu YA, Liu B, Zhang D. Boosted charge and proton transfer over ternary Co/Co 3O 4/CoB for electrochemical nitric oxide reduction to ammonia. Nat Commun 2025; 16:4874. [PMID: 40419495 DOI: 10.1038/s41467-025-60043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
The electrochemical nitric oxide reduction reaction (NORR) holds a great potential for removing environmental pollutant NO and meanwhile generating high value-added ammonia (NH3). Herein, we tactfully design and synthesize a ternary Co/Co3O4/CoB heterostructure that displays a high NH3 Faradaic efficiency of 98.8% in NORR with an NH3 yield rate of 462.18 µmol cm-2 h-1 (2.31 mol h-1 gcat-1) at -0.5 V versus reversible hydrogen electrode, outperforming most of the reported NORR electrocatalysts to date. The superior NORR performance is attributed to the enhanced charge and proton transfer over the ternary Co/Co3O4/CoB heterostructure. The charge transfer between CoB and Co/Co3O4 yields electron-deficient Co and electron-rich Co3O4. The electron-deficient Co sites boost H2O dissociation to generate *H while the electron-rich low-coordination Co3O4 sites promote NO adsorption. The *H formed on electron-deficient Co sites is more favorable to transfer to electron-rich Co3O4 sites adsorbed with NO, facilitating the selective hydrogenation of NO. This study paves the way for designing and developing highly efficient electrocatalysts for electrochemical reduction of NO to NH3.
Collapse
Affiliation(s)
- Xiaoxuan Fan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Zhenyuan Teng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Lupeng Han
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China.
| | - Yongjie Shen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, ON, Waterloo, Canada
| | - Wenqiang Qu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Jialing Song
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Zhenlin Wang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Haiyan Duan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, ON, Waterloo, Canada
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
Lan R, Hu Z, Liu H, Shen K, Wang H, Hou T, Li Y. Passivating Lattice Oxygen in ZnO Nanocrystals to Reduce its Interactions with the Key Intermediates for a Selective Photocatalytic Methane Oxidation to Methanol. Angew Chem Int Ed Engl 2025; 64:e202425186. [PMID: 39810302 DOI: 10.1002/anie.202425186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
An inevitable overoxidation process is considered as one of the most challenging problems in the direct conversion of methane (CH4) to methanol (CH3OH), which is limited by the uncontrollable cracking of key intermediates. Herein, we have successfully constructed a photocatalyst, the Fe-doped ZnO hollow polyhedron (Fe/ZnOHP), for the highly selective photoconversion of CH4 to CH3OH under mild conditions. In situ experiments and density functional theory calculations confirmed that the introduction of Fe was able to decrease the energy level of the O 2p orbital, which passivated the activity of lattice oxygen in ZnO nanocrystals. This passivation effect greatly weakened the interaction between *CH3 and lattice oxygen, thus facilitating the conversion of *CH3O to *CH3 intermediate rather than the direct desorption of *CH3O. As a result, Fe/ZnOHP exhibited excellent CH3OH generation rate (ca. 1009 μmol gcat -1 h-1) and selectivity (ca. 96 %) in the photocatalytic conversion of CH4 at room temperature and low pressure.
Collapse
Affiliation(s)
- Ruimin Lan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, University of Technology, Guangzhou, 510006, China
| | - Haoran Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kui Shen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
- Guangdong Provincial Key Laboratory of Advanced Green Lubricating Materials, Maoming, Guangdong, 525000, China
| | - Tingting Hou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Wang X, Zhao Y, Wu X, Zhang B, Tian J, Wong WY, Zhang F. Achieving Photocatalytic Overall Nitrogen Fixation via an Enzymatic Pathway on a Distorted CoP 4 Configuration. Angew Chem Int Ed Engl 2025; 64:e202420327. [PMID: 39714573 DOI: 10.1002/anie.202420327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Photocatalytic nitrogen (N2) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N2 adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP4 distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP4 configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference. Consequently, the N2 adsorption pattern switched from an "end-on" to a "side-on" mode with a high N2 adsorption energy of -1.40 eV and an elongated N-N bond length of 1.20 Å, notably decreasing the N2 adsorption/activation energy barrier. In the absence of sacrificial agents, the Co SAC achieved excellent photocatalytic overall N2 fixation performance via an enzymatic pathway. The NH3 yielding rate peaked at 1249.5 μmol h-1 g-1 with an apparent quantum yield of 3.51 % at 365 nm. Moreover, the selective phosphidation strategy has universality for synthesizing other SACs, such as those containing Ni and Fe. This study offers new insight into co-regulating the electronic structure of SACs for efficient photocatalytic overall N2 fixation.
Collapse
Affiliation(s)
- Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Yuqi Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590, China
| | - Xi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Bin Zhang
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jian Tian
- School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
5
|
Deng Y, Sun T, Zhou S, Jiang W, Liu C, Ma C, Che G. Rational design of a donor-acceptor structure in covalent heptazine frameworks to boost photocatalytic nitrogen fixation. Chem Commun (Camb) 2025; 61:3135-3138. [PMID: 39868509 DOI: 10.1039/d4cc06602b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Herein, the construction of potential donor-acceptor (D-A) structures was guided using density-functional theory (DFT) calculations. The photocatalytic nitrogen fixation performance of TAPT-CHF was then experimentally determined to be 327.58 μmol g-1 h-1, which was attributed to its efficient photo-induced charge separation and migration ability.
Collapse
Affiliation(s)
- Yuhang Deng
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
| | - Tao Sun
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shi Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Wei Jiang
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
- The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials, Jilin Normal University, Siping, 136000, P. R. China
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Chunhong Ma
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Guangbo Che
- College of Chemistry, Baicheng Normal University, Baicheng 137018, P. R. China.
| |
Collapse
|
6
|
Zhang Z, Zhang C, Wang N, Hu Y, Cui L, Wang J, Zhu L, Zhang J, Wang R. Enhanced Photosensitizer Wettability via Anchoring Competition of Violet Phosphorus Quantum Dots for Breakthroughs in Photodynamic Film Sterilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410989. [PMID: 39511870 DOI: 10.1002/adma.202410989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Wettability is important for photodynamic film sterilization since higher wettability enhances the capture of bacteria in contact with photosensitizers. Herein, a small number of violet phosphorus quantum dots (VPQDs) are anchored into hypericin bacterial cellulose films (VP/Hy-BC films) to improve wettability, reducing the water contact angle from 56.8° to 33.0°. This modification facilitated more effective interactions between the bacteria and photosensitizers, rapidly inactivating 7 log10 CFU/mL of Staphylococcus aureus within 60 min. First-principles calculations and molecular dynamics simulations reveal that VPQDs, with their low spatial site resistance, reduced the intermolecular Hy self-aggregation force. This increased the solvent-accessible surface area of VP/Hy by ≈25.7%, thereby decreasing hydrophobic photosensitizer aggregation. Consequently, more active sites are exposed, remarkably improving the photoelectron transfer efficiency. VP/Hy-BC demonstrated exceptional efficacy in inhibiting bacterial proliferation; for instance, it extended beef shelf life by up to 10 days. The findings of this study will aid the development of health-conscious, eco-friendly, and efficient antimicrobial packaging films.
Collapse
Affiliation(s)
- Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jinying Zhang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Lv S, Guo F, Li K, Wang D, Gao H, Song C. The synergistic effect of Cl doping and Bi coupling to promote the carrier separation of BiOBr for efficient photocatalytic nitrogen reduction. J Colloid Interface Sci 2025; 677:831-841. [PMID: 39126801 DOI: 10.1016/j.jcis.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Photocatalytic nitrogen reduction reaction (NRR) is a sustainable process for ammonia synthesis under mild conditions. However, photocatalytic NRR activity and are generally limited by inefficient carrier separation and transfer. Therefore, parallel engineering of bulk phase doping and surface coupling is critical to achieving the goal of efficient NRR. In this study, Cl doped BiOBr nanosheet assemblies (BiOBr/Cl) were constructed in delicately designed deep eutectic solvents (DESs), combined with ionothermal methods at low temperatures and Bi3+ exsolution reduction strategy at high temperatures. The unique liquid state and reducibility of DESs induce the reduction of Bi3+ and the in situ coupling of Bi quantum dots at the surface of BiOBr/Cl nanosheets along with the construction of Bi-BiOBr/Cl nanosheet assemblies. The experimental results show that Cl doping could reduce the exciton dissociation energy and promote its dissociation to free carriers. Bi quantum dots could form tightly coupled Schottky junction with BiOBr/Cl enabling the efficient and unidirectional transmission of photogenerated electrons from BiOBr/Cl to metal Bi. The formed electron deficient region at Schottky interface promotes the adsorption and activation of N2. The hierarchical structure of Bi-BiOBr/Cl nanosheet assembly benefits to providing more N2 adsorption active sites. The DFT calculation shows that the accumulation of high concentration of active hydrogen in Bi-BiOBr/Cl leads to a significant decrease of energy barrier of the first step hydrogenation of N2. Bi-BiOBr/Clis more inclined to adsorb nitrogen for NRR in comparison with H* for hydrogen production. The synergistic effect of Cl doping and Bi coupling result in a high NRR activity of Bi-BiOBr/Cl photocatalyst of 6.67 mmol·g-1·h-1, which was 11.3 times higher than that of initial BiOBr. This study provides a promising strategy for designing highly active NRR photocatalysts with high efficiency carrier dissociation and transport.
Collapse
Affiliation(s)
- Shuhua Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Fengjuan Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Kaiding Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, PR China
| | - Debao Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Hongtao Gao
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
He S, Li W, Li M, Liu Z, Sun X, Ding Z. Electrochemiluminescence of N, N'-Dimethylformamide Passivated Black Phosphorus Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27279-27285. [PMID: 39700330 DOI: 10.1021/acs.langmuir.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have shown promising applications in biosensors and energy storage devices. However, the electrochemiluminescence (ECL) properties of pristine BPQDs in an organic system have rarely been reported. In this paper, N,N'-dimethylformamide passivated BPQDs with a small size of 2.3 nm were obtained by an ultrasonication-assisted liquid exfoliation process, and their ECL properties of BPQDs were studied. A reversible reduction peak was recorded by differential pulse voltammetry, while no apparent oxidation peak was observed. ECL signal was not seen in the annihilation route. Persulfate was proved to be an effective coreactant and yellow emission was observed which was greatly red-shifted in comparison to that of photoluminescence. ECL of BPQDs is believed to be generated from both the surface states and electron promotion over their band gap.
Collapse
Affiliation(s)
- Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Weihan Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Minsi Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhenlu Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Zhang H, Bao L, Pan Y, Du J, Wang W. Interface reconstruction of MXene-Ti 3C 2 doped CeO 2 nanorods for remarked photocatalytic ammonia synthesis. J Colloid Interface Sci 2024; 675:130-138. [PMID: 38968633 DOI: 10.1016/j.jcis.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Prospective photocatalytic ammonia synthesis process has received more attentions but quite challenging with the low visible light utilization and weak N2 molecule absorption ability around the photocatalysts. Herein, interface reconstruction of MXene-Ti3C2/CeO2 composites with high-concentration active sites through the carbon-doped process are presented firstly, and obvious transition zones with the three-phase reaction interface are formed in the as-prepared catalysts. The optimal co-doped sample demonstrates an excellent photo response in the visible light region, the strongest chemisorption activity and the most active sites. Moreover, much more in-situ extra oxygen defects are also produced under light irradiation. It is expected that the double decorated catalyst shows a remarked ammonia production rate of above 0.76 mmol gcal-1·h-1 under visible-light illumination and a higher apparent quantum efficiency of 1.08 % at 420 nm, which is one of the most completive properties for the photocatalytic N2 fixation at present.
Collapse
Affiliation(s)
- Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Zhong X, Huang Y, Cai J, Li Y, He Z, Cai D, Geng Z, Deng W, Zou G, Hou H, Ji X. Origin of the High Catalytic Activity of MoS 2 in Na-S Batteries: Electrochemically Reconstructed Mo Single Atoms. J Am Chem Soc 2024; 146:32124-32134. [PMID: 39511837 DOI: 10.1021/jacs.4c13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries with high energy density and low cost are considered promising next-generation electrochemical energy storage systems. However, their practical feasibility is seriously impeded by the shuttle effect of sodium polysulfide (NaPSs) resulting from the sluggish reaction kinetics. Introducing a suitable catalyst to accelerate conversion of NaPSs is the most used strategy to inhibit the shuttle effect. Traditional catalytic approaches often want to avoid the irreversible phase transition of the catalyst at a deep discharge. On the contrary, here, we leverage the intrinsic structural tunability of the MoS2 catalyst in the opposite direction and innovatively propose a voltage modulation strategy for in situ generation of trace Mo single atoms (MoSAC) during the first charge-discharge process, leading to the formation of highly active catalytic phases (MoS2/MoSAC) through the self-reconstruction. Theoretical calculations reveal that the incorporation of MoSAC modulates the electronic structure of the Mo d-band center, which not only effectively promotes the d-p orbital hybridization but also accelerates the catalytic intermediate desorption by the bonding transition, the dynamic single-atom synergistic catalytic mechanism enhances the adsorption response between the metal active site and NaPSs, which significantly improves the sulfur redox reaction (SRR), and the initial capacity of the MoS2/MoSAC/CF@S cell at 0.2 A g-1 is increased by 46.58% compared to that of the MoS2/CF@S cell. The discovery of the MoS2/MoSAC/CF catalyst provides new insights into adjusting the structure and function of transition metal disulfide catalysts at the atomic scale, offering hope for the development of high-specific-energy RT Na-S batteries.
Collapse
Affiliation(s)
- Xue Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yujie Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jieming Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zidong He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dongyang Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhenglei Geng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
11
|
Jin C, Shen H, Li J, Guo X, Rao S, Yang W, Liu Q, Sun Z, Yang J. Isolated Ni Atoms for Enhanced Photocatalytic H 2O 2 Performance with 1.05% Solar-to-Chemical Conversion Efficiency in Pure Water. NANO LETTERS 2024; 24:14484-14492. [PMID: 39533894 DOI: 10.1021/acs.nanolett.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photocatalytic hydrogen peroxide (H2O2) production encounters a major impediment in its low solar-to-chemical conversion (SCC) efficiency due to undesired H2O2 product decomposition. Herein, an isolated nickel (Ni) atom modification strategy is developed to adjust the thermodynamic process of H2O2 production to address the challenge. Sacrificial experiments and in situ characterization reveal that H2O2 generation occurs via a highly selective indirect two-electron oxygen reduction reaction. The optimized photocatalyst exhibits a remarkable H2O2 production rate of 338.9 μmol gcat-1 h-1 in pure water, representing a 48-fold enhancement. Notably, it attains an impressive SCC efficiency of 1.05%, surpassing that of current state-of-the-art catalysts. Theoretical insights reveal the downshifted d-band center facilitates moderate O2 adsorption and barrier-free *OOH conversion, favoring H2O2 release and preventing *H2O2 decomposition. This work showcases efficient H2O2 photosynthesis via d-band manipulation, presenting a fresh perspective for advancing high-efficiency SCC systems.
Collapse
Affiliation(s)
- Cheng Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Shen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinhe Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinge Guo
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shaosheng Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenqiang Yang
- Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Zheng X, Wang X, Feng L, Chen Z, Zhang J, Zhang X, Liu P. In Situ Fabrication of 2D-2D Bi/BiOBr Ohmic Heterojunction for Enhanced Photocatalytic Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62107-62120. [PMID: 39487778 DOI: 10.1021/acsami.4c14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The performance of BiOBr in photocatalytic nitrogen (N2) fixation is suboptimal, attributed to the weak chemisorption and activation of N2 by surface atoms. In our study, we achieved the formation of two-dimensional (2D) bismuth (Bi) on BiOBr nanosheets through in situ annealing in hydrogen atmosphere and successfully constructed a unique 2D-2D Bi/BiOBr ohmic heterojunction using a one-step method. Notably, the Bi/BiOBr heterojunction was utilized for photocatalytic N2 fixation under visible light (λ > 400 nm) in ultrapure water, demonstrating an exceptional N2 fixation rate of 376.16 μmol g-1 h-1. This rate is 7.7 and 4.1 times higher than those of BiOBr and BiOBr-OVs, respectively. The improved photocatalytic efficiency is attributed to the significantly enhanced N2 adsorption capability and more effective separation of photogenerated carriers, both stemming from the distinctive 2D/2D architecture of the Bi/BiOBr heterojunction. This work demonstrates that 2D Bi offers active sites that facilitate photocatalytic N2 fixation and introduces an approach to the design and construction of 2D/2D photocatalysts for applications spanning catalysis, optoelectronics, electronics, and beyond.
Collapse
Affiliation(s)
- Xiaoqi Zheng
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xitong Wang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Liping Feng
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhilin Chen
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jiayang Zhang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaodong Zhang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Pengfei Liu
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
13
|
Li P, Wu R, Li P, Gao S, Qin Z, Song X, Sun W, Hua Z, Wang Q, Chen S. Bi 2Ti 2O 7 Quantum Dots for Efficient Photocatalytic Fixation of Nitrogen to Ammonia: Impacts of Shallow Energy Levels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408829. [PMID: 39234814 PMCID: PMC11538629 DOI: 10.1002/advs.202408829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Photocatalytic fixation of nitrogen to ammonia represents an attractive alternative to the Haber-Bosch process under ambient conditions, and the performance can be enhanced by defect engineering of the photocatalysts, in particular, formation of shallow energy levels due to oxygen vacancies that can significantly facilitate the adsorption and activation of nitrogen. This calls for deliberate size engineering of the photocatalysts. In the present study, pyrochlore Bi2Ti2O7 quantum dots and (bulk-like) nanosheets are prepared hydrothermally by using bismuth nitrate and titanium sulfate as the precursors. Despite a similar oxygen vacancy concentration, the quantum dots exhibit a drastically enhanced photocatalytic performance toward nitrogen fixation, at a rate of 332.03 µmol g-1 h-1, which is 77 times higher than that of the nanosheet counterpart. Spectroscopic and computational studies based on density functional theory calculations show that the shallow levels arising from oxygen vacancies in the Bi2Ti2O7 quantum dots, in conjunction with the moderately constrained quantum confinement effect, facilitate the chemical adsorption and activation of nitrogen.
Collapse
Affiliation(s)
- Pengkun Li
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Runjie Wu
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Peishen Li
- College of Environmental Sciences and EngineeringKey Laboratory of Water and Sediment Sciences (MOE)Peking UniversityBeijing100871China
| | - Shuai Gao
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Zeping Qin
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Xingjian Song
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA95064USA
| | - Wenming Sun
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Zhaorui Hua
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Qiang Wang
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Shaowei Chen
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA95064USA
| |
Collapse
|
14
|
Liu R, Wu H, Chung HY, Utomo WP, Tian Y, Shang J, Sit PHL, Ng YH. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402779. [PMID: 39082205 DOI: 10.1002/smll.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/28/2024] [Indexed: 11/02/2024]
Abstract
Rationally designing photocatalysts is crucial for the solar-driven nitrogen reduction reaction (NRR) due to the stable N≡N triple bond. Metal-organic frameworks (MOFs) are considered promising candidates but suffer from insufficient active sites and inferior charge transport. Herein, it is demonstrated that incorporating 3d metal ions, such as zinc (Zn) or iron (Fe) ions, into Al-coordinated porphyrin MOFs (Al-PMOFs) enables the enhanced ammonia yield of 88.7 and 65.0 µg gcat -1 h-1, 2.5- and 1.8-fold increase compared to the pristine Al-PMOF (35.4 µg gcat -1 h-1), respectively. The origin of ammonia (NH3) is verified via isotopic labeling experiments. Incorporating Zn or Fe into Al-PMOF generates active sites in Al-PMOF, that is, Zn-N4 or Fe-N4 sites, which not only facilitates the adsorption and activation of N2 molecules but suppresses the charge recombination. Photophysical and theoretical studies further reveal the upshift of the lowest unoccupied molecular orbital (LUMO) level to a more energetic position upon inserting 3d metal ions (with a more significant shift in Zn than Fe). The promoted nitrogen activation, suppressed charge recombination, and more negative LUMO levels in Al-PMOF(3d metal) contribute to a higher photocatalytic activity than pristine Al-PMOF. This work provides a promising strategy for designing photocatalysts for efficient solar-to-chemical conversion.
Collapse
Affiliation(s)
- Rui Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 99078, China
| | - Hoi Ying Chung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya, 60111, Indonesia
| | - Yuanmeng Tian
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
15
|
Xin C, Sun H, Yao J, Wang B, Yu X, Tang Y. Designing ultrathin Fe doped Ta 2O 5-x nanobelts for highly enhanced ammonia photosynthesis. J Colloid Interface Sci 2024; 669:477-485. [PMID: 38723536 DOI: 10.1016/j.jcis.2024.04.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.
Collapse
Affiliation(s)
- Changhui Xin
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China
| | - Hezheng Sun
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China
| | - Jiaxin Yao
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China
| | - Bin Wang
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China
| | - Xin Yu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yanting Tang
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| |
Collapse
|
16
|
An N, Tang S, Wang Y, Luan J, Shi Y, Gao M, Guo C. FeP-Based Nanotheranostic Platform for Enhanced Phototherapy/Ferroptosis/Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309940. [PMID: 38534030 DOI: 10.1002/smll.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated. Exogenous iron pool can enhance the effect of ferroptosis via the depletion of GSH and further regulate GPX4 inactivation. Generation of ·OH derived from the Fenton reaction is proved by increased accumulation of lipid peroxides. The heat generated by photothermal therapy and ROS generated by photodynamic therapy can enhance cell apoptosis under near-infrared (NIR-808 nm) irradiation, as evidenced by mitochondrial dysfunction and further accumulation of lipid peroxide content. FeP@PEG NPs can significantly inhibit the growth of several types of cancer cells in vitro and in vivo, which is validated by theoretical and experimental results. Meanwhile, FeP@PEG NPs show excellent T2-weighted magnetic resonance imaging (MRI) property. In summary, the FeP-based nanotheranostic platform for enhanced phototherapy/ferroptosis/chemodynamic therapy provides a reliable opportunity for clinical cancer theranostics.
Collapse
Affiliation(s)
- Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuanglong Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Luan
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Shi
- Magnetic Resonance Department of the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Minghui Gao
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
17
|
Li Y, Li R, Sun Z, Guo L, Wang Y, Ma X, Li H, Lei T, Fan C, Liu J. Promoted photocatalytic N 2 fixation to ammonia over floatable TiO 2/Bi/Carbon cloth through relay pathway. J Colloid Interface Sci 2024; 664:198-209. [PMID: 38460384 DOI: 10.1016/j.jcis.2024.02.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The floatable photocatalyst at N2-water interface allows the adequate supply of N2 reactant and the utilization of photothermal energy for photocatalytic N2 fixation, however, the presence of non-volatile NO3- product poses a challenge to the stability as it easily covers the catalytic active sites. Herein, a floatable TiO2/Bi/CC (Carbon cloth) photocatalyst was designed, in which the non-volatile NO3- can be transformed to the volatile NH3 via the newly synergistic relay photocatalysis pathway (N2 → NO3- → NH3) between TiO2 (N2 → NO3-) and Bi (NO3- → NH3). Attractively, the spontaneous NO3- → NO2- step occurs on Bi component to promote the relay pathway performing. Therefore, TiO2/Bi/CC system displays better long-term stability than TiO2/CC, and moreover, it achieves a higher NH3 yield of 8.28 mmol L-1 h-1 g-1 (i.e. 4.14 mmol h-1 m-2) than that 1.46 mmol L-1 h-1 g-1 for TiO2/Bi powder. Importantly, the N2 fixation products by TiO2/Bi/CC effectively promote lettuce growth and enhance lettuce nutrient contents, which further validates the feasibility of this system in large-scale application of crop cultivation.
Collapse
Affiliation(s)
- Yaru Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Rui Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Zijun Sun
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Lijun Guo
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yawen Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaoli Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tao Lei
- College of Hydraulic Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Caimei Fan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jianxin Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
18
|
Zhu S, Ruan Q, Zhu X, Li D, Wang B, Huang C, Liu L, Xiong F, Yi J, Song Y, Liu J, Li H, Chu PK, Xu H. Co single atom coupled oxygen vacancy on W 18O 49 nanowires surface to construct asymmetric active site enhanced peroxymonosulfate activation. J Colloid Interface Sci 2024; 664:736-747. [PMID: 38492375 DOI: 10.1016/j.jcis.2024.02.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Enhancing the activation of peroxymonosulfate (PMS) is essential for generating more reactive oxygen species in advanced oxidation process (AOPs). Nevertheless, improving PMS adsorption and expediting interfacial electron transfer to enhance reaction kinetics pose significant challenges. Herein, we construct confined W18O49 nanowires with asymmetric active centers containing Co-Vo-W (Vo: oxygen vacancy). The design incorporates surface-rich Vo and single-atom Co, and the resulting material is employed for PMS activation in water purification. By coupling unsaturated coordinated electrons in Vo with low-valence Co single atoms to construct an the "electron fountainhead", the adsorption and activation of PMS are enhanced. This results in the generation of more active free radicals (SO4•-, •OH, •O2-) and non-free radicals (1O2) for the decomposition of micropollutants. Thereinto, the degradation rate of bisphenol A (BPA) by Co-W18O49 is 32.6 times faster that of W18O49 monomer, which is also much higher than those of other transition-metal-doped W18O49 composites. This work is expected to help to elucidate the rational design and efficient PMS activation of catalysts with asymmetric active centers.
Collapse
Affiliation(s)
- Shumin Zhu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Dan Li
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Bin Wang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chao Huang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liangliang Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Fangyu Xiong
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Jinyuan Liu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hui Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Cui D, Yang X, Zhang T, Li M, Li F. Construction of Fe(III) Active Sites on Phenanthroline-Grafted g-C 3N 4: Reduced Work Function and Enhanced Intramolecular Charge Transfer for Efficient N 2 Photofixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30040-30054. [PMID: 38813971 DOI: 10.1021/acsami.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocatalytic nitrogen fixation is one of the important pathways for green and sustainable ammonia synthesis, but the extremely high bonding energy of the N≡N triple bond makes it difficult for conventional nitrogen fixation photocatalysts to directly activate and hydrogenate. Given this, we covalently grafted the phenanthroline unit onto graphitic carbon nitride nanosheets (CN) by the simple thermal oxidation method and complexed it with transition metal Fe3+ ions to obtain stable dispersed Fe active sites, which can significantly improve the photocatalytic activity. The Fe(III)-4-P-CN photocatalyst morphology consists of porous lamellar structures internally connected by nanowires. The special morphology of the catalysts gives them excellent nitrogen fixation performance, with an average NH3 yield of 492.9 μmol g-1 h-1, which is 6.5 times higher than that of the pristine CN, as well as better photocatalytic cycling stability. Comprehensive experiments and density-functional theory results show that Fe(III)-4-P-CN is more favorable than pristine CN for *N2 activation, effectively lowering the reaction energy barrier. Moreover, other byproducts (such as nitrate and H2O2) are also produced during the photocatalytic nitrogen fixation process, which also provides a new way for nitrogen-fixing photocatalysts to achieve multifunctional applications.
Collapse
Affiliation(s)
- Donghui Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xue Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tingting Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Meixi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
20
|
Wang X, Fan G, Guo S, Gao R, Guo Y, Han C, Gao Y, Zhang J, Gu X, Wu L. Regulated Dual Defects of Bridging Organic and Terminal Inorganic Ligands in Iron-based Metal-Organic Framework Nodes for Efficient Photocatalytic Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202404258. [PMID: 38454791 DOI: 10.1002/anie.202404258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.
Collapse
Affiliation(s)
- Xiaosong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Shoujun Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Rong Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chenhui Han
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yuliang Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Limin Wu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Bao T, Xi Y, Zhang C, Du P, Xiang Y, Li J, Yuan L, Yu C, Liu C. Highly efficient nitrogen fixation over S-scheme heterojunction photocatalysts with enhanced active hydrogen supply. Natl Sci Rev 2024; 11:nwae093. [PMID: 38577667 PMCID: PMC10989659 DOI: 10.1093/nsr/nwae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Photocatalytic N2 fixation is a promising strategy for ammonia (NH3) synthesis; however, it suffers from relatively low ammonia yield due to the difficulty in the design of photocatalysts with both high charge transfer efficiency and desirable N2 adsorption/activation capability. Herein, an S-scheme CoSx/ZnS heterojunction with dual active sites is designed as an efficient N2 fixation photocatalyst. The CoSx/ZnS heterojunction exhibits a unique pocket-like nanostructure with small ZnS nanocrystals adhered on a single-hole CoSx hollow dodecahedron. Within the heterojunction, the electronic interaction between ZnS and CoSx creates electron-deficient Zn sites with enhanced N2 chemisorption and electron-sufficient Co sites with active hydrogen supply for N2 hydrogenation, cooperatively reducing the energy barrier for N2 activation. In combination with the promoted photogenerated electron-hole separation of the S-scheme heterojunction and facilitated mass transfer by the pocket-like nanostructure, an excellent N2 fixation performance with a high NH3 yield of 1175.37 μmol g-1 h-1 is achieved. This study provides new insights into the design of heterojunction photocatalysts for N2 fixation.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Zhang H, Bao L, Zhou Q, Pan Y, Ge J, Du J. Modulating band structure through introducing Cu 0/Cu xO composites for the improved visible light driven ammonia synthesis. J Colloid Interface Sci 2024; 661:271-278. [PMID: 38301465 DOI: 10.1016/j.jcis.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
The photocatalytic performance of ceria-based materials can be tuned by adjusting the surface structures with decorating the transition-metal, which are considered as the important active sites. Herein, cuprous oxide-metallic copper composite-doped ceria nanorods were assembled through a simple hydrothermal reduction method. The photocatalytic ammonia synthesis rates exhibit an inverted "V-shaped" trend with increasing Cu0/CuxO mole ratio. The best ammonia production rate, approximately 900 or 521 µmol·gcal-1·h-1 under full-spectra or visible light, can be achieved when the Cu0/CuxO ratio is approximately 0.16, and this value is 8 times greater than that of the original sample. The absorption edge of the as-prepared samples shifted towards visible wavelengths, and they also had appropriate ammonia synthesis levels. This research provides a strategy for designing noble metal-free photocatalysts through introducing the metal/metallic oxide compositesto the catalysts.
Collapse
Affiliation(s)
- Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingyuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
23
|
Fang Y, Cao Y, Chen Q. Asymmetric Fe-O 2-Ti structures accelerate reduced-layer-Fe II "electron" conversion: Facilitating photocatalytic nitrogen fixation. J Colloid Interface Sci 2024; 658:401-414. [PMID: 38118187 DOI: 10.1016/j.jcis.2023.12.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
As a green and sustainable method for ammonia production, solar photocatalytic nitrogen fixation (PNRR) provides a new approach to slowing down the consumption of non-renewable energy resources. Given the extremely huge energy required to activate inert nitrogen, a rational design of efficient nitrogen fixation catalytic materials is essential. This study constructs defective Ti3+-Ti3C2Ox to regulate the NH2-MIL-101(Fe) reduced layer-FeII 'electron' transition; meanwhile, the heterojunction interface electronic structure formed by coupling promotes catalytic charges' transfer/separation, while the interface-asymmetric Fe-O2-Ti structure accelerates the response with nitrogen. It is shown that the heterojunction NM-101(FeII/FeIII)-1.5 exhibits a 75.1 % FeII enrichment (FeII:FeIII), which successfully impedes the fouling relationship between the two (FeII/FeIII). Mössbauer spectroscopy analysis demonstrates that the presence of D1-high spin state FeIII and D2-low/medium spin state FeII structures in the heterojunction boosts the PNRR activity. Furthermore, it is found that the defective state Ti3+-Ti3C2Ox modulation enhances the reduced nitrogen fixation capacity of the heterojunction (CB = -0.84 eV) and decreases the interfacial charge transfer resistance, yielding 450 umol·g-1·h-1 ammonia. Furthermore, this study modulates the charge ration of the catalyst reduction layer by constructing a charge-asymmetric structure with Ti3+-deficient carriers; this method provides a potential opportunity for enhancing photocatalytic nitrogen fixation in the future.
Collapse
Affiliation(s)
- Yu Fang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; School of Materials and Construction Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qianlin Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Yang T, Qu J, Yang X, Cai Y, Hu J. Recent advances in ambient-stable black phosphorus materials for artificial catalytic nitrogen cycle in environment and energy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123522. [PMID: 38331240 DOI: 10.1016/j.envpol.2024.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen cycle is crucial for the Earth's ecosystem and human-nature coexistence. However, excessive fertilizer use and industrial contamination disrupt this balance. Semiconductor-based artificial nitrogen cycle strategies are being actively researched to address this issue. Black phosphorus (BP) exhibits remarkable performance and significant potential in this area due to its unique physical and chemical properties. Nevertheless, its practical application is hindered by ambient instability. This review covers the synthesis methods of BP materials, analyzes their instability factors under environmental conditions, discusses stability improvement strategies, and provides an overview of the applications of ambient-stable BP materials in nitrogen cycle, including N2 fixation, NO3- reduction, NOx removal and nitrides sensing. The review concludes by summarizing the challenges and prospects of BP materials in the nitrogen cycle, offering valuable guidance to researchers.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Xiao L, Mou S, Dai W, Yang W, Cheng Q, Liu S, Dong F. Identification of Cu(111) as Superior Active Sites for Electrocatalytic NO Reduction to NH 3 with High Single-Pass Conversion Efficiency. Angew Chem Int Ed Engl 2024; 63:e202319135. [PMID: 38185758 DOI: 10.1002/anie.202319135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Opting for NO as an N source in electrocatalytic NH3 synthesis presents an intriguing approach to tackle energy and environmental challenges. However, blindly pursuing high NH3 synthesis rates and Faradaic efficiency (FE) while ignoring the NO conversion ratio could result in environmental problems. Herein, Cu nanosheets with exposed (111) surface is fabricated and exhibit a NO-to-NH3 yield rate of 371.89 μmol cm-2 h-1 (flow cell) and the highest FE of 93.19±1.99 % (H-type cell). The NO conversion ratio is increased to the current highest value of 63.74 % combined with the development of the flow cell. Additionally, Crystal Orbital Hamilton Population (COHP) clearly reveals that the "σ-π* acceptance-donation" is the essence of the interaction between the Cu and NO as also supported by operando attenuated total reflection infrared spectroscopy (ATR-IRAS) in observing the key intermediate of NO- . This work not only achieves a milestone NO conversion ratio for electrocatalytic NO-to-NH3 , but also proposes a new descriptor that utilizes orbital hybridization between molecules and metal centers to accurately identify the real active sites of catalysts.
Collapse
Affiliation(s)
- Lei Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Shiyong Mou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Weidong Dai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Weiping Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qin Cheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Siyuan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Research Center for Carbon-Neutral Environmental & Energy Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
26
|
Cui D, Wang S, Yang X, Xu L, Li F. Fabrication of Ultrafine Cu 2 O Nanoparticles on W 18 O 49 Ultra-Thin Nanowires by In-Situ Reduction for Highly Efficient Photocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306229. [PMID: 37922531 DOI: 10.1002/smll.202306229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1 h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.
Collapse
Affiliation(s)
- Donghui Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shiyu Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
27
|
Yuan J, Feng W, Zhang Y, Xiao J, Zhang X, Wu Y, Ni W, Huang H, Dai W. Unraveling Synergistic Effect of Defects and Piezoelectric Field in Breakthrough Piezo-Photocatalytic N 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303845. [PMID: 37638643 DOI: 10.1002/adma.202303845] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/27/2023] [Indexed: 08/29/2023]
Abstract
Piezo-photocatalysis is a frontier technology for converting mechanical and solar energies into crucial chemical substances and has emerged as a promising and sustainable strategy for N2 fixation. Here, for the first time, defects and piezoelectric field are synergized to achieve unprecedented piezo-photocatalytic nitrogen reduction reaction (NRR) activity and their collaborative catalytic mechanism is unraveled over BaTiO3 with tunable oxygen vacancies (OVs). The introduced OVs change the local dipole state to strengthen the piezoelectric polarization of BaTiO3 , resulting in a more efficient separation of photogenerated carrier. Ti3+ sites adjacent to OVs promote N2 chemisorption and activation through d-π back-donation with the help of the unpaired d-orbital electron. Furthermore, a piezoelectric polarization field could modulate the electronic structure of Ti3+ to facilitate the activation and dissociation of N2 , thereby substantially reducing the reaction barrier of the rate-limiting step. Benefitting from the synergistic reinforcement mechanism and optimized surface dynamics processes, an exceptional piezo-photocatalytic NH3 evolution rate of 106.7 µmol g-1 h-1 is delivered by BaTiO3 with moderate OVs, far surpassing that of previously reported piezocatalysts/piezo-photocatalysts. New perspectives are provided here for the rational design of an efficient piezo-photocatalytic system for the NRR.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, P. R. China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianyu Xiao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yinting Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenkang Ni
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
28
|
Zhang S, Wang R, Wang K, Wang M, He Z, Chen H, Ho SH. Aeration-Free In Situ Fenton-like Reaction: Specific Adsorption and Activation of Oxygen on Heterophase Oxygen Vacancies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1921-1933. [PMID: 38233045 DOI: 10.1021/acs.est.3c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Aeration accounts for 35-51% of the overall energy consumption in wastewater treatment processes and results in an annual energy consumption of 5-7.5 billion kWh. Herein, a solar-powered continuous-flow device was designed for aeration-free in situ Fenton-like reactions to treat wastewater. This system is based on the combination of TiO2-x/W18O49 featuring heterophase oxygen vacancy interactions with floating reduced graphene/polyurethane foam, which produces hydrogen peroxide in situ at the rates of up to 4.2 ppm h-1 with degradation rates of more than 90% for various antibiotics. The heterophase oxygen vacancies play an important role in the stretching of the O-O bond by regulating the d-band center of TiO2-x/W18O49, promoting the hydrogenation of *·O2- or *OOH by H+ enrichment, and accelerating the production of reactive oxygen species by spontaneous adsorption of hydrogen peroxide. Furthermore, the degradation mechanisms of antibiotics and the treatment of actual wastewater were thoroughly investigated. In short, the study provides a meaningful reference for potentially undertaking the "aeration-free" in situ Fenton reaction, which can help reduce or even completely eradicate the aeration costs and energy requirements during the treatment of wastewater.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Zixiang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Honglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
29
|
Verma A, Fu YP. The prospect of Cu xO-based catalysts in photocatalysis: From pollutant degradation, CO 2 reduction, and H 2 production to N 2 fixation. ENVIRONMENTAL RESEARCH 2024; 241:117656. [PMID: 37980987 DOI: 10.1016/j.envres.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The topic of photocatalysis and CuxO-based materials has been intertwined for quite a long time. Its relatively high abundance in the earth's crust makes it an important target for researchers around the globe. One of the properties exploited by researchers is its ability to exist in different oxidation states (Cu0, Cu+, Cu2+, and Cu3+) and its implications on photocatalytic efficiency improvement. Recently, they have been extensively used as photocatalytic materials for dye and pollutant degradation. However, it has almost reached saturation levels, therefore, currently, they are being mostly utilized for CO2 reduction and H2 evolution. Hence, this review will discuss the evolution (in application) of CuxO-based photocatalysts, relating to their past, present, and future. Moreover, photocatalytic efficiency improvement strategies such as doping, heterojunction formation, and carbonaceous construction with other materials will also be touched upon. Finally, the prospect of Cu2O-based photocatalysts will be discussed in the field of photocatalytic N2 fixation to ammonia. The significance of N2 chemisorption on photocatalysts to maximize ammonia production will also be given importance.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| |
Collapse
|
30
|
Yu J, Tian H, Lai G, Wang J, Zhao J, Tang G, Gao J, Yu XF, Qu G, Zhang H, Jiang G. Accelerating the environmental applications of black phosphorus: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167829. [PMID: 37852486 DOI: 10.1016/j.scitotenv.2023.167829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Since its rediscovery in 2014, layered black phosphorus (BP) has received extensive attention as a new two-dimensional semiconductor. BP is a promising material with properties of a large surface-to-volume ratio, wide light absorption range, tunable band gap, and high charge carrier mobility. These unique characteristics of BP make it a promising contender for various applications, particularly in the realm of environmental applications. This literature review provides a comprehensive discussion and overview of the latest developments in utilizing BP for environmental purposes. The review starts with the applications of BP in photocatalysis including photodegradation of refractory pollutants, H2 evolution reaction (HER), and reduction of CO2 and N2. In the following section, Environmental electrocatalysis of HER and N2 reduction reaction (NRR) is discussed. In addition, BP-based environmental sensing (detection of heavy metal ions, antibiotics, mycotoxins, NOx) and eco-friendly halogen-free flame retardant are summarized as well. Finally, a thorough comprehension of the current state and potential future trends of BP-based nanomaterials for various environmental applications are presented.
Collapse
Affiliation(s)
- Jiachen Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Yang L, Chen Z, Cao Q, Liao H, Gao J, Zhang L, Wei W, Li H, Lu J. Structural Regulation of Photocatalyst to Optimize Hydroxyl Radical Production Pathways for Highly Efficient Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306758. [PMID: 37865887 DOI: 10.1002/adma.202306758] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.
Collapse
Affiliation(s)
- Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengxi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huarong Liao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
32
|
Chen Z, Shahid MZ, Jiang X, Zhang M, Pan D, Xu H, Jiang G, Wang J, Li Z. Regulating the Active Sites of Cs 2 AgBiCl 6 by Doping for Efficient Coupling of Photocatalytic CO 2 Reduction and Benzyl Alcohol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304756. [PMID: 37653605 DOI: 10.1002/smll.202304756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Halide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO2 reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs2 AgBiCl6 (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO2 reduction and BA oxidation. The Fe-doped CABC (Fe: CABC) exhibits an enhanced visible-light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO2 reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO2 reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g-1 h-1 ) and BD (1.1 mmol g-1 h-1 ) generation, which surpasses most of the state-of-the-art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.
Collapse
Affiliation(s)
- Zhihao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Malik Zeeshan Shahid
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xinyan Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Meng Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Danrui Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Hongpeng Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Guocan Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Zhejiang Institute of Photonelectronic, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| |
Collapse
|
33
|
Xia Y, Xia X, Zhu S, Liang R, Yan G, Chen F, Wang X. Synergistic Spatial Confining Effect and O Vacancy in WO 3 Hollow Sphere for Enhanced N 2 Reduction. Molecules 2023; 28:8013. [PMID: 38138503 PMCID: PMC10745342 DOI: 10.3390/molecules28248013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Visible-light-driven N2 reduction into NH3 in pure H2O provides an energy-saving alternative to the Haber-Bosch process for ammonia synthesizing. However, the thermodynamic stability of N≡N and low water solubility of N2 remain the key bottlenecks. Here, we propose a solution by developing a WO3-x hollow sphere with oxygen vacancies. Experimental analysis reveals that the hollow sphere structure greatly promotes the enrichment of N2 molecules in the inner cavity and facilitates the chemisorption of N2 onto WO3-x-HS. The outer layer's thin shell facilitates the photogenerated charge transfer and the full exposure of O vacancies as active sites. O vacancies exposed on the surface accelerate the activation of N≡N triple bonds. As such, the optimized catalyst shows a NH3 generation rate of 140.08 μmol g-1 h-1, which is 7.94 times higher than the counterpart WO3-bulk.
Collapse
Affiliation(s)
- Yuzhou Xia
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; (Y.X.); (X.X.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (G.Y.)
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Xinghe Xia
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; (Y.X.); (X.X.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (G.Y.)
| | - Shuying Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; (Y.X.); (X.X.)
| | - Ruowen Liang
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (G.Y.)
| | - Guiyang Yan
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (G.Y.)
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (G.Y.)
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
34
|
Shi Y, Zhao Z, Yang D, Tan J, Xin X, Liu Y, Jiang Z. Engineering photocatalytic ammonia synthesis. Chem Soc Rev 2023; 52:6938-6956. [PMID: 37791542 DOI: 10.1039/d2cs00797e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Photocatalytic ammonia synthesis (PAS) is an emerging zero carbon emission technology, which is critical for mitigating energy crises and achieving carbon neutrality. Herein, we summarize the recent advances and challenges in PAS from an engineering perspective based on its whole chain process, i.e., materials engineering, structure engineering and reaction engineering. For materials engineering, we discuss the commonly used photocatalytic materials including metal oxides, bismuth oxyhalides and graphitic carbon nitride and emerging materials, such as organic frameworks, along with the analysis of their characteristics and regulation methods to enhance the PAS performance. For structure engineering, the design of photocatalysts is described in terms of morphology, vacancy and band, corresponding to the crystal, atom and electron scales, respectively. Moreover, the structure-performance relationship of photocatalysts has been deeply explored in this section. For reaction engineering, we identify three key processes from the chemical reaction and mass transfer, i.e., nitrogen activation, molecule transfer and electron transfer, to intensify and optimize the PAS reaction. Hopefully, this review will provide a novel paradigm for the design and preparation of high-efficiency ammonia synthesis photocatalysts and inspire the practical application of PAS.
Collapse
Affiliation(s)
- Yonghui Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhanfeng Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dong Yang
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiangdan Tan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xin Xin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yongqi Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
35
|
Ma Y, Lang J. Efficient charge separation and transfer in a one-dimensional carbon nanotube/tungsten oxide p-n heterojunction composite for solar energy conversion. Phys Chem Chem Phys 2023; 25:23222-23232. [PMID: 37606635 DOI: 10.1039/d3cp02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient and cost-effective photocatalysts for solar energy conversion represent a rapidly advancing and compelling area of research. In our study, we employed theoretical calculations to design a novel composite material consisting of a one-dimensional (1D) carbon nanotube (CNT) and tungsten oxide (W18O49) p-n heterojunction. This composite material was successfully synthesized using a straightforward solvothermal method, and we thoroughly investigated the charge separation and transfer mechanism. Our findings revealed that the composite material exhibited a superior photocurrent response. Notably, the CNTs/W18O49-2 sample demonstrated a significantly higher photocurrent under both AM 1.5G and infrared light irradiation, outperforming the individual components under AM 1.5G by a substantial factor of 30. This remarkable enhancement in performance can be attributed to the efficient charge separation and transfer facilitated by the built-in electric field created at the interface through the p-n heterojunction. Our study introduces a pioneering integration of CNTs and 1D tungsten oxide, resulting in a composite structure with a p-n heterojunction-a concept that has not been extensively explored previously. The results confirmed the formation of this unique one-dimensional structure and a p-n heterojunction, which has outstanding properties for various applications. These findings provide a robust foundation for the design of photocatalytic interfaces and offer a fresh approach to the development of high-performance photocatalysts.
Collapse
Affiliation(s)
- Yuli Ma
- Institute of Marine Equipment, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China.
| |
Collapse
|
36
|
Liu Z, Zhang J, Li X, Cui R, Ma J, Sun R. Simultaneous photocatalytic biomass conversion and CO 2 reduction over high crystalline oxygen-doped carbon nitride. iScience 2023; 26:107416. [PMID: 37564699 PMCID: PMC10410522 DOI: 10.1016/j.isci.2023.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Simultaneous photocatalytic biorefinery and CO2 reduction to co-produce fuels and high value-added chemicals have recently attracted significant attention; however, comprehensive studies are still lacking. Herein, we report the preparation of highly crystalline oxygen-doped carbon nitride nanotubes (O-CNNTs-x) using an ammonium fluoride-assisted hydrothermal/calcination strategy. The hollow structure, high crystallinity, and O incorporation endowed the O-CNNTs-x with photocatalytic activity by considerably improving optical absorption and modulating the charge carrier motion. The lactic acid yield and CO evolution rate over O-CNNTs-2.0 reached 82.08% and 67.95 μmol g-1 h-1, which are 1.57- and 7.37-fold times higher than those of CN, respectively. Moreover, ·OH plays a key role in the oxidation half-reaction. This study offers a facile approach for fabricating highly crystalline element-doped CN with a customizable morphology and electronic properties and demonstrates the viability of co-photocatalytic CO2 reduction and biomass selective oxidation.
Collapse
Affiliation(s)
- Zhendong Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Junqiang Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinze Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Rui Cui
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
37
|
Meena S, Sethi M, Meena S, Saini P, Kumar K, Saini S, Shekhawat S, Meena ML, Dandia A, Lin SD, Parewa V. Dopant-driven recombination delay and ROS enhancement in nanoporous Cd 1-xCu xS heterogeneous photocatalyst for the degradation of DR-23 dye under visible light irradiation. ENVIRONMENTAL RESEARCH 2023; 231:116181. [PMID: 37207730 DOI: 10.1016/j.envres.2023.116181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Developing an efficient heterogeneous photocatalyst for environmental remediation and treatment strategies using visible light harvesting processes is promising but challenging. Herein, Cd1-xCuxS materials have been synthesized and characterized by precise analytical tools. Cd1-xCuxS materials exhibited excellent photocatalytic activity for direct Red 23 (DR-23) dye degradation in visible light irradiation. The operational parameters, like dopant concentration, photocatalyst dose, pH, and initial concentration of dye were investigated during the process. The photocatalytic degradation process follows pseudo-first-order kinetics. As compared to other tested materials, 5% Cu doped CdS material revealed superior photocatalytic performance for the degradation of DR-23 (k = 13.96 × 10-3 min-1). Transient absorption spectroscopy, EIS, PL, and transient photocurrent indicated that adding copper to the CdS matrix improved the separation of photo-generated charge carriers by lowering the recombination rate. Spin-trapping experiments recognized the photodegradation primarily based on secondary redox products, i.e., hydroxyl and superoxide radicals. According to by Mott-Schottky curves, photocatalytic mechanism and photo-generated charge carrier density were elucidated regarding dopant-induced valence and conduction bands shifting. Thermodynamic probability of radical formation in line with the altered redox potentials by Cu doping has been discussed in the mechanism. The identification of intermediates by mass spectrometry study also showed a plausible breakdown mechanism for DR-23. Moreover, samples treated with nanophotocatalyst displayed excellent results when tested for water quality metrics such as DO, TDS, BOD, and COD. Developed nanophotocatalyst shows high recyclability with superior heterogeneous nature. 5% Cu-doped CdS also exhibit strong photocatalytic activity for the degradation of colourless pollutant bisphenol A (BPA) under visible light (k = 8.45 × 10-3 min-1). The results of this study offer exciting opportunities to alter semiconductors' electronic band structures for visible-light-induced photocatalytic activity for wastewater treatment.
Collapse
Affiliation(s)
- Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India; Friedrich Schiller Univ Jena, Inst Anorgan & Analyt Chem, Humboldt Str 8, D-07743, Jena, Germany
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Sumita Shekhawat
- Department of Physics, Kanoria PG Mahila Mahavidyalaya, Jaipur, India
| | - Mohan Lal Meena
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Shawn D Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.
| |
Collapse
|
38
|
Wang J, Zhao C, Yuan S, Li X, Zhang J, Hu X, Lin H, Wu Y, He Y. One-step fabrication of Cu-doped Bi 2MoO 6 microflower for enhancing performance in photocatalytic nitrogen fixation. J Colloid Interface Sci 2023; 638:427-438. [PMID: 36758255 DOI: 10.1016/j.jcis.2023.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
This study enhances the photocatalytic N2 immobilization performance of Bi2MoO6 through Cu doping. Cu-doped Bi2MoO6 was synthesized via a simple solvothermal method. Various characterizations were implemented to examine the influence of Cu doping on the properties of Bi2MoO6. Results indicated that the doped Cu element had a valence state of + 2 and substituted the position of Bi3+. Cu doping exerted minimal effect on the morphology of Bi2MoO6 but largely influenced the energy band structure. The band gap was slightly narrowed, and the conduction band was raised, such that Cu-doped Bi2MoO6 could generate more electrons with stronger reducibility. Moreover, importantly, Cu doping reduced work function and improved charge separation efficiency, which was considered the major cause of enhanced photoactivity. In addition, the Cu-Bi2MoO6 catalyst exhibited higher capability in the adsorption and activation of N2. Under the combined effects of the aforementioned changes, Cu-Bi2MoO6 demonstrated considerably higher photocatalytic efficiency than Bi2MoO6. The optimized NH3 generation rate reached 302 μmol/L g-1h-1 and 157 μmol/L g-1h-1 under simulated solar light and visible light, respectively, both achieving about 2.2 times higher than that of Bi2MoO6. This work provides a successful example of improving photocatalytic N2 fixation, and it may show some light on the design and preparation of heteroatom-doped semiconductor photocatalysts for N2-to-NH3 conversion.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Shude Yuan
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xiaojing Li
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Jiayu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China; Key Laboratory of Solid State Optoelectronic Devices of Zhejiang province, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| |
Collapse
|
39
|
Liu T, Xiong Y, Wang X, Xue Y, Liu W, Ding X, Xing C, Tian J. 1D/1D W 18O 49/Cd 0.9Zn 0.1S S-scheme heterojunction with spatial charge separation for high-yield photocatalytic H 2 evolution. J Colloid Interface Sci 2023; 637:465-476. [PMID: 36716670 DOI: 10.1016/j.jcis.2023.01.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Semiconductor photocatalytic water splitting is a green way to convert solar energy into chemical energy, but the recombination of electron and hole pairs and the low utilization of sunlight restrict the development of photocatalytic technology. By comparing the morphologies and hydrogen production properties of different proportions of solid solutions (CdxZn1-xS), one-dimensional (1D) Cd0.9Zn0.1S nanorods (NRs) with the best photocatalytic properties are obtained. In addition, 1D W18O49 nanowires are assembled on the surface of 1D Cd0.9Zn0.1S NRs to construct a novel 1D/1D step-scheme (S-scheme) W18O49/Cd0.9Zn0.1S heterojunction photocatalyst. The W18O49/Cd0.9Zn0.1S heterojunction expands the optical absorption capacity of Cd0.9Zn0.1S NRs to provide more energy for the photoexcitation of electrons. The optimal hydrogen production rate of W18O49/Cd0.9Zn0.1S NRs with W18O49 content of 9 wt% is as high as 66.3 mmol·h-1·g-1, which is 5.7 times and 1.6 times higher than that of Cd0.9Zn0.1S NRs and 1 wt% Pt/Cd0.9Zn0.1S NRs. The apparent quantum efficiency (AQE) of 9 wt% W18O49/Cd0.9Zn0.1S reaches 56.0 % and 25.9 % under light wavelength irradiation at 370 and 456 nm, respectively. After the 20 h cycle stability test, the activity of photocatalytic hydrogen evolution does not decrease, due that the severe photo-corrosion of Cd0.9Zn0.1S NRs is efficiently inhibited. This work not only provides a simple and controllable synthesis method for the preparation of heterojunction structure, but also opens up a new way to improve the hydrogen evolution activity and stability of sulfur compounds.
Collapse
Affiliation(s)
- Teng Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ya Xiong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wendi Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyan Ding
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
40
|
Hu L, Liu K, Guo Y, Feng J, Ding X, Li W, Su X, Gao M, Li Z, Zhang H, Ren Y, Wei T. Oxygen vacancies-rich Cu-W 18O 49 nanorods supported on reduced graphene oxide for electrochemical reduction ofN 2to NH 3. J Colloid Interface Sci 2023; 644:285-294. [PMID: 37120877 DOI: 10.1016/j.jcis.2023.04.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
High-performance nitrogen fixation is severely limited by the efficiency and selectivity of a catalyst of electrochemical nitrogen reduction reaction (NRR) under ambient conditions. Here, the RGO/WOCu (reduced graphene oxide and Cu-doping W18O49) composite catalysts with abundant oxygen vacancies are prepared by the hydrothermal method. The obtained RGO/WOCu achieves an enhanced NRR performance (NH3 yield rate:11.4 μg h-1 mgcat-1, Faradaic efficiency: 4.4%) at -0.6 V (vs. RHE) in 0.1 mol L-1 Na2SO4 solution. Furthermore, the NRR performance of the RGO/WOCu still keeps at 95% after four cycles, demonstrating its excellent stability. The Cu+-doping increases the concentration of oxygen vacancies, which is conducive to the adsorption and activation of N2. Meanwhile, the introduction of RGO further improves the electrical conductivity and reaction kinetics of the RGO/WOCu due to the high specific surface area and conductivity. This work provides a simple and effective method for efficient electrochemical reduction ofN2.
Collapse
Affiliation(s)
- Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Kening Liu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yanming Guo
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - Xuejiao Ding
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Weixia Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaojiang Su
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Mingming Gao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Zhiyong Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yueming Ren
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
41
|
Zhang J, Yue L, Zeng Z, Zhao C, Fang L, Hu X, Lin H, Zhao L, He Y. Preparation of NaNbO 3 microcube with abundant oxygen vacancies and its high photocatalytic N 2 fixation activity in the help of Pt nanoparticles. J Colloid Interface Sci 2023; 636:480-491. [PMID: 36652823 DOI: 10.1016/j.jcis.2023.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In this study, the photocatalytic N2 immobilization performance of NaNbO3 is enhanced via oxygen vacancy introduction and Pt loading. The designed Pt-loaded NaNbO3 with rich oxygen defects (Pt/O-NaNbO3) is synthesized by combining ion-exchange and photodeposition methods. Characterization result indicates that the O-NaNbO3 has hollow microcube morphology and higher surface area than NaNbO3. The introduced oxygen defects greatly affect the energy band structure. The band gap is slightly narrowed and the conduction band is raised, allowing O-NaNbO3 to generate electrons with strong reducibility. Moreover, the oxygen defects reduced the work function of NaNbO3, leading to increased charge separation in the bulk phase. The loaded Pt nanoparticles can further increase the surface charge separation via the formed Schottky barriers between Pt and O-NaNbO3, which was thought to be the primary cause of the increased photocatalytic activity. Additionally, the oxygen vacancies and metal Pt also contribute to the adsorption and activation of N2. Under the combined effect of the above changes, Pt/O-NaNbO3 presents much higher photoactivity than NaNbO3. The optimized NH3 production rate reaches 293.3 μmol/L g-1h-1 under simulated solar light, which is approximately 2.2 and 20.2 times higher than that of O-NaNbO3 and NaNbO3, respectively. This research offers a successful illustration of how to improve photocatalytic N2 fixation and may shed some light on how to design and construct efficient photocatalysts by combining several techniques.
Collapse
Affiliation(s)
- Jiayu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Lin Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Zhihao Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Linjiang Fang
- Department of Arts and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Leihong Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China; Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| |
Collapse
|
42
|
Zhang H, Chen Y, Pan Y, Bao L, Ge JY. Multicomponent hydroxides supported Cu/Cu2O nanoparticles for high efficient photocatalytic ammonia synthesis. J Colloid Interface Sci 2023; 642:470-478. [PMID: 37023518 DOI: 10.1016/j.jcis.2023.03.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Environmentally friendly photocatalytic N2 fixation process has attracted considerable attention. Developing efficient photocatalysts with high electron-hole separation rates and gas adsorption capacities remains quite challenging. Herein, a facile fabrication strategy of Cu-Cu2O and multicomponent hydroxide S-scheme heterojunctions with carbon dot charge mediators is reported. The rational heterostructurebrings excellent N2 absorption ability and high photoinduced electron/hole separation efficiency, and the ammonia produced yield reach above 210 µmol·gcal-1·h-1 during the nitrogen photofixation process. More superoxide and hydroxyl radicals are generated simultaneously in the as-prepared samples under light illumination. This work offers a reasonable construction method to further develop suitable photocatalysts for ammonia synthesis.
Collapse
|
43
|
Review on the Energy Transformation Application of Black Phosphorus and Its Composites. Catalysts 2022. [DOI: 10.3390/catal12111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Black phosphorus (BP) is a unique two-dimensional material with excellent conductivity, and a widely tunable bandgap. In recent years, its application in the field of energy has attracted extensive attention, in terms of energy storage, due to its high theoretical specific capacity and excellent conductivity, black phosphorus is widely used as electrode material in battery and supercapacitors, while for energy generating, it has been also used as photocatalyst and electrocatalysts to split water and produce hydrogen. Black phosphorus demonstrates even better stability and catalytic performance through further construction, doping, or heterojunction. This review briefly summarizes the latest research progress of black phosphorus and its composites in energy preparation and storage, as well as ammonia nitrogen fixation, and also looks into the possible development directions in the future.
Collapse
|
44
|
Hu B, Wang BH, Chen L, Bai ZJ, Zhou W, Guo JK, Shen S, Xie TL, Au CT, Jiang LL, Yin SF. Electronic Modulation of the Interaction between Fe Single Atoms and WO 2.72–x for Photocatalytic N 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biao Hu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Bing-Hao Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. China
| | - Zhang-Jun Bai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wei Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jun-Kang Guo
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Sheng Shen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting-Liang Xie
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Li-Long Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|