1
|
Xu F, Lai C, Zhang M, Wang B, Li B, Ma D, Zhou X, Li L, Yan H, Huo X, Liu S, Fu Y, Tang L. Enhanced activation of peroxide to generate singlet oxygen via boron-doped Cu single-atom catalysts for efficient water treatment. J Colloid Interface Sci 2025; 688:421-431. [PMID: 40020481 DOI: 10.1016/j.jcis.2025.02.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The development of advanced oxidation processes (AOPs) for environmental remediation has spurred a growing interest in catalysts that selectively generate non-radical species such as singlet oxygen (1O2). However, the precise engineering of catalytic sites to enhance targeted 1O2 production remains a formidable challenge. This study reports a B-doped graphitic carbon nitride-supported Cu single-atom catalyst (CuBCN) that significantly enhances H2O2 activation for efficient 1O2 production. Through comprehensive experimental and theoretical analysis, revealing that B doping modulates the electronic properties at the Cu active sites. This modification reduces the electron density around Cu, increasing the Cu(II) fraction essential for the formation and subsequent oxidation of ·OOH intermediates. Additionally, B influences the d-band center of Cu, optimizing the adsorption energy of ·OOH, which in turn facilitates selective 1O2 production. The CuBCN/H2O2 system exhibits exceptional Fenton-like performance, producing 1O2 as the principal active species, even in challenging water conditions characterized by high pH, high ionic strength, and high concentrations of humic substances. This work not only highlights the potential of tailored single-atom catalysts in pollution control but also offers significant insights for designing catalysts for efficient H2O2 activation.
Collapse
Affiliation(s)
- Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Biting Wang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 Zhejiang, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 Hunan, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China
| |
Collapse
|
2
|
Yang P, Tang J, Ding Z, Chen Y, Liu Z, Yuan J, Zhu Y, Xie P. Sp-hybridized carbon- facilitated peroxymonosulfate activation for superior phenolic pollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137843. [PMID: 40048779 DOI: 10.1016/j.jhazmat.2025.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Carbocatalysts, widely regarded as eco-friendly catalysts in the field of peroxymonosulfate (PMS) activation for pollutant removal, exhibit significant variations in performance depending on the type of carbon atom hybridization. Notably, the novel graphdiyne (GDY), characterized by its sp-hybridized carbon (sp-C), has recently garnered significant attention. However, the precise mechanistic role of sp-C on PMS activation remains unclear. Herein, we elucidate the role of sp-C on PMS activation and the corresponding mechanism behind enhanced phenolic pollutant degradation over the GDY catalyst. GDY demonstrates exceptional phenolic removal efficiency (97 %), which far exceeds that of traditional sp2-hybridized graphene (2 %). The GDY facilitates pollutant oxidation via a catalyst-mediated electron transfer mechanism. The sp-C provides additional sites for PMS adsorption and donates significantly more electrons from GDY to PMS (0.51 e more than graphene), effectively facilitating PMS activation, intermediate species conversion, and reaction kinetics during phenolic pollutant degradation. By integrating the monolithic GDY catalyst into a flow-through device for continuous phenolic pollutant removal, long-lasting phenolic removal was maintained for over 80 hours, with a removal rate exceeding 85 %. This work highlights that sp-C in GDY effectively enhances PMS activation, providing a pathway for efficient organic pollutant degradation in advanced oxidation processes.
Collapse
Affiliation(s)
- Pan Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jinlan Tang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhuorui Ding
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jianping Yuan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Yuhua Zhu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Li S, Zhang Y, Zhou J, Qiao S. Enhancing 1O 2 Generation Performance by Regulating C and N Coordination for Efficient Fenton-Like Catalytic Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411230. [PMID: 40091301 DOI: 10.1002/smll.202411230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Indexed: 03/19/2025]
Abstract
Singlet oxygen (1O2), a vital reactive species, exhibits excellent organic pollutant degradation selectivity in Fenton-like reactions. Recognizing and controlling the structure-activity relationship of single-atom catalysts (SACs) is essential to achieving the highly efficient and selective generation of 1O2 for various practical applications. Here, three iron single-atom catalysts with different coordination configurations (FeSAC─N4, FeSAC─N3-C1, and FeSAC─N2─C2) are prepared to modulate the selective generation of 1O2 by activating peroxymonosulfate (PMS). Replacing N coordinated to Fe atoms with C increases 1O2 selective generation thus enhancing the Fenton-like reaction activity. Specifically, FeSAC─N2─C2 presents the optimal catalytic activity, high stability, and environmental tolerance. Moreover, the 1O2 selectivity increases as the N coordination number decreases, which is in the order of FeSAC─N4 (73%) < FeSAC─N3─C1 (82%) < FeSAC─N2─C2 (90%). DFT calculations demonstrate that replacing N with C enhances the electrophilicity and electron transfer capacity, optimizes the d-band center, facilitates reactant adsorption, and reduces the energy barrier, thus facilitating 1O2 production and enhancing the Fenton-like reaction activity. This study reveals the underlying catalytic trends and mechanisms of catalyst structure-activity relationships for high selective generation of 1O2 by PMS activation, thus providing guidance for developing catalysts capable of highly selective organic pollutant degradation.
Collapse
Affiliation(s)
- Shuangli Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
4
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Chen T, Zhang G, Sun H, Hua Y, Yang S, Zhou D, Di H, Xiong Y, Hou S, Xu H, Zhang L. Robust Fe-N 4-C 6O 2 single atom sites for efficient PMS activation and enhanced Fe IV = O reactivity. Nat Commun 2025; 16:2402. [PMID: 40064929 PMCID: PMC11894199 DOI: 10.1038/s41467-025-57643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The microenvironment regulation of Fe-N4 single atom catalysts (SACs) critically governs peroxymonosulfate (PMS) activation. Although conventional heteroatom substitution in primary coordination enhances activity, it disrupts Fe-N4 symmetry and compromises stability. Herein, we propose oxygen doping in the secondary coordination shell to construct Fe-N4-C6O2 SAC, which amplifies the localized electric field while preserving the pristine coordination symmetry, thus trading off its activity and stability. This approach suppresses Fe-N bond structural deformation (bond amplitude reduced from 0.875-3.175 Å to 0.925-2.975 Å) during PMS activation by lowering Fe center electron density to strengthen Fe-N bond, achieving extended catalytic durability (>240 h). Simultaneously, the weakened coordination field lowers the Fe=O σ* orbital energy, promoting electrophilic σ-attack of high-valent iron-oxo towards bisphenol A, and increasing its degradation rate by 41.6-fold. This work demonstrates secondary coordination engineering as a viable strategy to resolve the activity-stability trade-off in SAC design, offering promising perspectives for developing environmental catalysts.
Collapse
Affiliation(s)
- Tiantian Chen
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Ganbing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry; Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules; College of Chemistry and Chemical Engineering, Hubei University, Wuhan, PR China.
| | - Hongwei Sun
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yetong Hua
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shu Yang
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Dandan Zhou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Haoxin Di
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yiling Xiong
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shenghuai Hou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Hui Xu
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, National observation and Research Station of Erhai Lake Ecosystem in Yunnan, Yunnan Dali Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
6
|
Lang Z, Wang X, Jabeen S, Cheng Y, Liu N, Liu Z, Gan T, Zhuang Z, Li H, Wang D. Destabilization of Single-Atom Catalysts: Characterization, Mechanisms, and Regeneration Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418942. [PMID: 39828525 DOI: 10.1002/adma.202418942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Numerous in situ characterization studies have focused on revealing the catalytic mechanisms of single-atom catalysts (SACs), providing a theoretical basis for their rational design. Although research is relatively limited, the stability of SACs under long-term operating conditions is equally important and a prerequisite for their real-world energy applications, such as fuel cells and water electrolyzers. Recently, there has been a rise in in situ characterization studies on the destabilization and regeneration of SACs; however, timely and comprehensive summaries that provide the catalysis community with valuable insights and research directions are still lacking. This review summarizes recent advances in the destabilization mechanisms and regeneration strategies of SACs, specifically highlighting various state-of-the-art characterization techniques employed in the studies. The factors that induce destabilization in SACs are identified by discussing the failure of active sites, coordination environments, supports, and reaction conditions under long-term operating scenarios. Next, the primary regeneration strategies for SACs are introduced, including redispersion, surface poison desorption, and exposure of subsurface active sites. Additionally, the advantages and limitations of both in situ and ex situ characterization techniques are discussed. Finally, future research directions are proposed, aimed at constructing structure-stability relationships and guiding the design of more stable SACs.
Collapse
Affiliation(s)
- Zhiquan Lang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Xixi Wang
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Sobia Jabeen
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Yuanyuan Cheng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Naiyun Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemical Engineering, Columbia University, New York, 10027-6902, USA
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Lan L, Wu Y, Pei Y, Wei Y, Hu T, Lützenkirchen-Hecht D, Yuan K, Chen Y. High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417711. [PMID: 39916539 DOI: 10.1002/adma.202417711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
Designing single-atom catalysts (SACs) with high density of accessible sites by improving metal loading and sites utilization is a promising strategy to boost the catalytic activity, but remains challenging. Herein, a high site density (SD) iron SAC (D-Fe-N/C) with 11.8 wt.% Fe-loading is reported. The in situ scanning electrochemical microscopy technique attests that the accessible active SD and site utilization of D-Fe-N/C reach as high as 1.01 × 1021 site g-1 and 79.8%, respectively. Therefore, D-Fe-N/C demonstrates superior oxygen reduction reaction (ORR) activity in terms of a half-wave potential of 0.918 V and turnover frequency of 0.41 e site-1 s-1. The excellent ORR property of D-Fe-N/C is also demonstrated in the liquid zinc-air batteries (ZABs), which exhibit a high peak power density of 306.1 mW cm-2 and an ultra-long cycling stability over 1200 h. Moreover, solid-state laminated ZABs prepared by presetting an air flow layer show a high specific capacity of 818.8 mA h g-1, an excellent cycling stability of 520 h, and a wide temperature-adaptive from -40 to 60 °C. This work not only offers possibilities by improving metal-loading and catalytic site utilization for exploring efficient SACs, but also provides strategies for device structure design toward advanced ZABs.
Collapse
Affiliation(s)
- Liansheng Lan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangfan Pei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuanhao Wei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
8
|
Zhang M, Cao X, Dong J, Zhu X, Zhu Y, Wang L. Unveiling the Mystery of Precision Catalysis: Dual-Atom Catalysts Stealing the Spotlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409560. [PMID: 39726322 DOI: 10.1002/smll.202409560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited. This review systematically explores the structure of DAC, addressing key macroscopic parameters, such as spatial arrangements and interatomic distances, as well as microscopic factors, including local coordination environments and electronic structures. Additionally, metal-support interactions (MSI) and long-range interactions (LSI) are comprehensively analyzed, which play a pivotal yet underexplored role in governing DAC behavior. the integration of tailored functional groups is further discussed to fine-tune DAC properties, thereby optimizing intermediate adsorption, enhancing reaction kinetics, and expanding their multifunctionality in various electrochemical environments. This review offers novel insights into their rational design by elucidating the intricate mechanisms underlying DACs' exceptional performance. Ultimately, DACs are positioned as critical players in precision catalysis, highlighting their potential to drive significant breakthroughs across a broad spectrum of catalytic applications.
Collapse
Affiliation(s)
- Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xiwen Cao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Jie Dong
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Materials Science and Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Ding H, Jiang T, Xie H, Wang J, Xiao P. LaCo 0.95Mo 0.05O 3/CeO 2 composite can promote the effective activation of peroxymonosulfate via Co 3+/Co 2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate. J Colloid Interface Sci 2025; 678:1151-1169. [PMID: 39341146 DOI: 10.1016/j.jcis.2024.09.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Hydroxychloroquine sulfate (HCQ) is extensively utilized due to its numerous therapeutic effects. Because of its properties of high solubility, persistence, bioaccumulation, and biotoxicity, HCQ can potentially affect water bodies and human health. In this study, the LaCo0.95Mo0.05O3-CeO2 material was successfully prepared by the sol-gel process, and it was applied to the experiment of degrading HCQ by activating peroxymonosulfate (PMS). The results of characterization analysis showed that LaCo0.95Mo0.05O3-CeO2 material had good stability, and the problem of particle agglomeration had been solved to some extent. Compared with LaCo0.95Mo0.05O3 material, it had a larger specific surface area and more oxygen vacancies, which was helpful to improve the catalytic activity for PMS. Under optimal conditions, the LaCo0.95Mo0.05O3-CeO2/PMS system degraded 95.5 % of HCQ in 10 min. The singlet oxygen, superoxide radicals, and sulfate radicals were the main radicals for HCQ degradation. The addition of Mo6+/Mo4+ and Ce4+/Ce3+ promoted the redox cycle of Co3+/Co2+ and enhanced the degradation rate of HCQ. Based on density functional theory and experimental analysis, three HCQ degradation pathways were proposed. The analysis of T.E.S.T software showed that the toxicity of HCQ was obviously reduced after degradation. The LaCo0.95Mo0.05O3-CeO2/PMS system displayed excellent reusability and the ability to remove pollutants in a wide range of real-world aqueous environments, with the ability to treat a wide range of pharmaceutical wastewater. In summary, this study provides some ideas for developing heterogeneous catalysts for advanced oxidation systems and provide an efficient, simple, and low-cost method for treating pharmaceutical wastewater that has good practical application potential.
Collapse
Affiliation(s)
- Huiwen Ding
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Tianqi Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Wang S, Yang H, Kang X, Yang Y. Enhanced Fenton-like reactions via interface electron reconstruction in low-crystallinity FeCo bimetallic metal-organic frameworks: Bidirectional control of Fe (III) and Co (II) sites. J Colloid Interface Sci 2025; 678:168-179. [PMID: 39293361 DOI: 10.1016/j.jcis.2024.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
In this study, the activity and stability of Fenton-like reactions are enhanced by constructing a low-crystallinity FeCo bimetallic metal-organic framework (FeCox-BDC (BDC denotes as terephthalic acid)) through interface electron reconstruction. However, the specific origins and mechanisms of their enhanced activity, particularly in Fenton-like reactions, remains unclear. Systematic analysis revealed that the isomorphic substitution of Co (II) reduces the coordination number and d-electron count at local Fe (III) sites, shifting the d-band centers (-1.59 eV) closer to the Fermi level. Additionally, Co 3d-orbitals can accept electrons, improving the occupation of antibonding orbitals. Notably, Fe (III) and Co (II) sites exhibit a synergistic effect: Fe (III) sites strongly adsorbed the Oα point of the peroxy bond (lOαOβ), while Co (II) sites efficiently activated Oβ. Within 5 min, FeCo1/3-BDC achieved a 98 % reduction in Rhodamine-B (RhB), surpassing Fe-BDC by a factor of 76 and homogeneous Fenton catalytic systems (Co (II)/peroxymonosulfate (PMS) and Fe (III)/Co (II)/PMS). This work provides a profound understanding of interface electron reconstruction, offering valuable insights into guiding Fenton-like mechanisms.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xudong Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuankun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Chen X, Guo T, Yan T, Dai Y, Yin L. Selective generation of hydroxyl and sulfate radicals under electric field regulation for micropollutants degradation: Mechanism and structure-activity relationship. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136513. [PMID: 39556908 DOI: 10.1016/j.jhazmat.2024.136513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Peroxymonosulfate (PMS) activation generates potent reactive oxygen species (ROS) such as sulfate radical (SO4·-) and hydroxyl radical (·OH), which play a key role in organic pollutant degradation. However, controlling the generation of these free radicals remains challenging. In this study, various metal (Co, Ni, and Cu)-doped nitrogen carbon compounds (NCs) were synthesized, and their performance in PMS activation under electric field regulation was explored to modulate ROS production for selective pollutant degradation. Bisphenol A (BPA), a readily degradable compound, and ibuprofen (IBU), a recalcitrant pollutant, were chosen as model pollutants to assess degradation efficiency. All catalysts achieved over 95 % BPA removal without the electric field, but the application of an electric field significantly accelerated BPA degradation, achieving complete removal within 3 min. In contrast, IBU degradation showed significant variation depending on the catalyst used and the electric field intensity, with Cu-NC demonstrating the highest performance, enhancing the degradation rate by 3.78-fold. Mechanistic studies revealed that the electric field altered the electron density on the catalyst surface, shifting ROS production from SO4·- to·OH in Co-NC systems. The findings could provide valuable insights into PMS activation under electric field regulation, offering a novel strategy for enhancing micropollutant removal through controlled ROS generation.
Collapse
Affiliation(s)
- Xiang Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Tao Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Tiezhu Yan
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 100083, Beijing, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
12
|
Huang Y, Xiong J, Zou Z, Chen Z. Emerging Strategies for the Synthesis of Correlated Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312182. [PMID: 38335933 DOI: 10.1002/adma.202312182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Indexed: 02/12/2024]
Abstract
People have been looking for an energy-efficient and sustainable method to produce future chemicals for decades. Heterogeneous single-atom catalysts (SACs) with atomic dispersion of robust, well-characterized active centers are highly desirable. In particular, correlated SACs with cooperative interaction between adjacent single atoms allow the switching of the single-site pathway to the dual or multisite pathway, thus promoting bimolecular or more complex reactions for the synthesis of fine chemicals. Herein, the structural uniqueness of correlated SACs, including the intermetal distance and electronic interaction in homo/heteronuclear metal sites is featured. Recent advances in the production methods of correlated SACs, showcasing the research status and challenges in traditional methods (such as pyrolysis, wet impregnation, and confined synthesis) for building a comprehensive multimetallic SAC library, are summarized. Emerging strategies such as process automation and continuous-flow synthesis are highlighted, minimizing the inconsistency in laboratory batch production and allowing high throughput screening and upscaling toward the next-stage chemical production by correlated SACs.
Collapse
Affiliation(s)
- Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
13
|
Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO 2 to C 2H 4 Under Neutral Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415101. [PMID: 39548939 DOI: 10.1002/adma.202415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Synthesis of high-loading atomic-level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host-guest strategy is employed, by using a metal-azolate framework (MAF-4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen-doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF-4-Cu2-21 (21.2 wt%), NPCMAF-4-Cu2-11 (10.6 wt%), and NPCMAF-4-Cu2-7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm-2. In a 0.1 m KHCO3 electrolyte, at -1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF-4-Cu2-21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm-2. Such performance can be attributed to the presence of ultrahigh-loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF-4 with nanocages is conducive to the preparation of high-loading atomic-level catalysts.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
14
|
Liang J, Dong Z, Xu N, Chen T, Liang J, Xia M, Wang F. A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment. TOXICS 2024; 12:926. [PMID: 39771141 PMCID: PMC11728651 DOI: 10.3390/toxics12120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts have been made in the world to monitor organophosphorus pesticides and solve the issues caused by them. Nanozymes, as one kind of enzyme mimic that is artificially designed to simulate the function of natural enzymes, have aroused a lot of attention due to their unparalleled advantages. Nanozymes inherit both the unique properties of nanomaterials and catalytic functions, which could overcome the limitations inherent in natural enzymes and have great versatile and adaptable application prospects. This review presents a recent advancement in synthesizing multifunctional nanozymes with enzymatic-like activities by using various nanomaterials to degrade and detect organophosphorus pesticides. It mainly encompasses metal-based nanozymes, carbon-based nanozymes, metal-organic-framework-based nanozymes, and single-atom-based nanozymes. Additionally, this paper discusses the potential of nanozymes as novel functional environmental materials.
Collapse
Affiliation(s)
- Jijia Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.L.); (Z.D.); (N.X.)
| | - Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.L.); (Z.D.); (N.X.)
| | - Ning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.L.); (Z.D.); (N.X.)
| | - Tao Chen
- China Ordnance Equipment Group Automation Research Institute Co., Ltd., Mianyang 621000, China; (T.C.); (J.L.)
| | - Jie Liang
- China Ordnance Equipment Group Automation Research Institute Co., Ltd., Mianyang 621000, China; (T.C.); (J.L.)
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.L.); (Z.D.); (N.X.)
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.L.); (Z.D.); (N.X.)
| |
Collapse
|
15
|
Yao Y, Xiao C, Guo X, Liu C, Zhao W, Yang X, Gao J, Zhu Z, Yang Y, Zhou Y, Qi J, Li J. Turning Microenvironments of Porous Co─N─C Catalysts Enable Efficient Fenton-Like Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407427. [PMID: 39402770 DOI: 10.1002/smll.202407427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Indexed: 12/28/2024]
Abstract
Metal nitrogen carbon (MNC)-based Fenton reactions leveraged with robust peroxymonosulfate (PMS) interaction effectively guarantee the elimination of refractory contaminants, yet the precise design of local microenvironment of MNC to couple with the multiple PMS activation pose major challenges. Herein, a porous Co single-atom catalyst (SAC) with nitrogen defects (Nv) (MCo/NC-6) is fabricated to initiate PMS oxidation reaction. The weaker but richer coordination between Co and N in the precursor facilitates the formation of Nv and porous structure during pyrolysis, achieving simultaneously electronic structure and spatial distribution tuning. Compared with the Co SAC (ZCo/NC-6), the optimized MCo/NC-6 significantly increase the bisphenol A (BPA) reactivity (k = 0.63 min-1), PMS utilization (78%), and singlet oxygen (1O2) yield (100%) by 15.3, 2.4, and 2.6 times, respectively. Experimental analyses and theoretical calculations reveal that the Co─N─C coordination regulated by both micro space and neighboring Nv is endowed high-mobility electrons, thus synergistically facilitating rapid generation and efficient utilization of 1O2. This work promises new opportunities for the design of local microenvironments-regulated SACs, and charts new trajectories in complex Fenton-like systems.
Collapse
Affiliation(s)
- Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xin Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chuquan Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Wenyu Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xuran Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianmin Gao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
16
|
Zhong H, Gong Z, Yu J, Hou Y, Tao Y, Fu Q, Yang H, Xiao X, Cao X, Wang J, Ouyang G. Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404958. [PMID: 39258821 PMCID: PMC11538648 DOI: 10.1002/advs.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Collapse
Affiliation(s)
- Huajie Zhong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xinzhe Xiao
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Xingzhong Cao
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Junhui Wang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
- College of Chemistry & Molecular EngineeringCenter of Advanced Analysis and Computational ScienceZhengzhou UniversityZhengzhou450001P. R. China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous ChemicalsGuangdong Institute of Analysis (China National Analytical Center Guangzhou)Guangdong Academy of Science100 Xianlie Middle RoadGuangzhou510070P. R. China
| |
Collapse
|
17
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
18
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
20
|
Ma Z, Wang B, Yang X, Ma C, Wang W, Chen C, Liang F, Zhang N, Zhang H, Chu Y, Zhuang Z, Xu H, Wang Y, Liu J. P-Block Aluminum Single-Atom Catalyst for Electrocatalytic CO 2 Reduction with High Intrinsic Activity. J Am Chem Soc 2024; 146:29140-29149. [PMID: 39382968 DOI: 10.1021/jacs.4c11326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Atomically dispersed transition metal sites on nitrogen-doped carbon catalysts hold great potential for the electrochemical CO2 reduction reaction (CO2RR) to CO due to their encouraging selectivity. However, their intrinsic activity is restricted by the hurdle of the high energy barrier of either *COOH formation or *CO desorption due to the scaling relationship. Herein, we discover a p-block aluminum single-atom catalyst (Al-NC) featuring an Al-N4 site that enables disentangling this hurdle, which endows a moderate reaction kinetic barrier for *COOH formation and *CO desorption, as validated by in situ attenuated total reflection infrared spectroscopy and theoretical simulations. As a result, the developed Al-NC shows a CO Faradaic efficiency (FECO) of up to 98.76% at -0.65 V vs RHE and an intrinsic catalytic turnover frequency of 3.60 s-1 at -0.99 V vs RHE, exceeding those of the state-of-the-art Ni-NC and Fe-NC counterparts. Moreover, it also delivers a partial CO current of 309 mA·cm-2 at 93.65% FECO and 605 mA at >85% FECO in a flow cell and membrane electrode assembly (MEA), respectively. Strikingly, when using low-concentration CO2 (30%) as the feedstock, this catalyst can still deliver a partial CO current of 240 mA at >80% FECO in the MEA. Considering the earth-abundant character of the Al element and the high intrinsic activity of the Al-NC catalyst, it is a promising alternative to today's transition metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zhanshuai Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fangkui Liang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nian Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hui Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yongheng Chu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Liu Y, Yu X, Li X, Liu X, Ye C, Ling T, Wang X, Zhu Z, Shan J. Selective Synthesis of Organonitrogen Compounds via Electrochemical C-N Coupling on Atomically Dispersed Catalysts. ACS NANO 2024; 18:23894-23911. [PMID: 39160683 DOI: 10.1021/acsnano.4c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The C-N coupling reaction demonstrates broad application in the fabrication of a wide range of high value-added organonitrogen molecules including fertilizers (e.g., urea), chemical feedstocks (e.g., amines, amides), and biomolecules (e.g., amino acids). The electrocatalytic C-N coupling pathways from waste resources like CO2, NO3-, or NO2- under mild conditions offer sustainable alternatives to the energy-intensive thermochemical processes. However, the complex multistep reaction routes and competing side reactions lead to significant challenges regarding low yield and poor selectivity toward large-scale practical production of target molecules. Among diverse catalyst systems that have been developed for electrochemical C-N coupling reactions, the atomically dispersed catalysts with well-defined active sites provide an ideal model platform for fundamental mechanism elucidation. More importantly, the intersite synergy between the active sites permits the enhanced reaction efficiency and selectivity toward target products. In this Review, we systematically assess the dominant reaction pathways of electrocatalytic C-N coupling reactions toward various products including urea, amines, amides, amino acids, and oximes. To guide the rational design of atomically dispersed catalysts, we identify four key stages in the overall reaction process and critically discuss the corresponding catalyst design principles, namely, retaining NOx/COx reactants on the catalyst surface, regulating the evolution pathway of N-/C- intermediates, promoting C-N coupling, and facilitating final hydrogenation steps. In addition, the advanced and effective theoretical simulation and characterization technologies are discussed. Finally, a series of remaining challenges and valuable future prospects are presented to advance rational catalyst design toward selective electrocatalytic synthesis of organonitrogen molecules.
Collapse
Affiliation(s)
- Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiaoyong Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Liu
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Ling
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jieqiong Shan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
22
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
23
|
Lu B, Fang Z, Tsang PE. Key role of Phyllanthus emblica L. fruit extract promotes ZVI/H 2O 2 process: rich titratable acid, suitable chelating ability, and antioxidant capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55422-55436. [PMID: 39230818 DOI: 10.1007/s11356-024-34644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Phyllanthus emblica L. fruit extract (PFE) was introduced to improve ZVI/H2O2 technology, and the efficiency and mechanism of PFE promoting ZVI/H2O2 technology were explored. With the introduction of PFE, the Norfloxacin (NOR) removal rate and kobs of the process were improved by 41.17% and 5.08 times, respectively. In the ZVI/H2O2/PFE process, the degradation of NOR by the attack of ROS is the main pathway for decontamination and is dominated by the heterogeneous reaction on the catalyst surface. PFE contains 13.92 g/L titratable acid and has good complexing ability and antioxidant ability. The mechanism of PFE promoting ZVI/H2O2 technology was based on lowering the pH, complemented by chelation and antioxidant capacity. With the introduction of PFE, the utilization rate of the reagent was significantly increased (7.56 times for ZVI and 3.21 times for H2O2), the applicable pH range was widened (6-9) and the iron sludge was reduced (32.80%). Meanwhile, the concept of UPR is proposed for the first time. The result is the key role to the selection of green promoters in the ZVI/H2O2 process depends on the abundance of titratable acid, followed by a certain chelating ability and antioxidant capacity.
Collapse
Affiliation(s)
- Baizhou Lu
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China.
- Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| |
Collapse
|
24
|
Wei S, Ma W, Sun M, Xiang P, Tian Z, Mao L, Gao L, Li Y. Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity. Nat Commun 2024; 15:6888. [PMID: 39134525 PMCID: PMC11319669 DOI: 10.1038/s41467-024-51022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Pan Xiang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
25
|
Xiong Z, Pan Z, Wu Z, Huang B, Lai B, Liu W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules 2024; 29:3719. [PMID: 39202799 PMCID: PMC11357653 DOI: 10.3390/molecules29163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted extensive attention due to their unique catalytic properties and wide range of applications. Advanced characterization techniques, such as energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and X-ray absorption fine-structure spectroscopy, have been used to investigate the elemental compositions, structural morphologies, and chemical bonding states of SACs in detail, aiming at unraveling the catalytic mechanism. Meanwhile, theoretical calculations, such as quantum chemical calculations and kinetic simulations, were used to predict the catalytic reaction pathways, active sites, and reaction kinetic behaviors of SACs, providing theoretical guidance for the design and optimization of SACs. This review overviews advanced characterization techniques and theoretical calculations for SACs in Fenton-like chemistry. Moreover, this work highlights the importance of advanced characterization techniques and theoretical calculations in the study of SACs and provides perspectives on the potential applications of SACs in the field of environmental remediation and the challenges of practical engineering.
Collapse
Affiliation(s)
- Zhaokun Xiong
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Zhicheng Pan
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
| | - Zelin Wu
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bingkun Huang
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
| |
Collapse
|
26
|
Fan Y, Wang M, Liu Z, Gao G, Qi H, Huang W, Ma L, Qu Z, Yan N, Xu H. Lattice-Strain Engineering in Ni-Ru Heterostructures for Efficient Acetylene Hydrochlorination toward Vinyl Chloride. ACS NANO 2024. [PMID: 39056445 DOI: 10.1021/acsnano.4c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ru-based catalysts have emerged as promising alternatives to HgCl2 in vinyl chloride monomer (VCM) production by acetylene hydrochlorination. However, poor C2H2 activation and the generation of key intermediates (*CH2═CH) have posed grand challenges for enhanced catalytic performances. Herein, we synthesized a Ni-intercalated Ru heterostructure using a lattice-strain engineering strategy, resulting in the desired electronic and chemical environments. The collaboration of Ni splits the adsorption centers of C2H2 and HCl by weakening the strong steric hindrance, and it also promotes the activation of the linear C≡C configurations. The well-controlled lattice strain enables strong d-d hybridization interactions between Ni and Ru, resulting in an upshift of the d-band center from -3.72 eV (for Ru/C) to -3.49 eV and electronic delocalization. This optimized local Ni-Ru/C structure thus enhances *H adsorption while weakening the energy barrier for generating *CH2═CH intermediates. Furthermore, the energy barrier for VCM formation was simultaneously reduced. Accordingly, the Ni-Ru/C heterostructures achieve improved performance in pilot-scale trials, with a conversion of >99.2% and stability for over 500 h. These performances significantly surpass most reported Ru-based moieties and the traditional Hg catalysts, offering a promising avenue for C2H2 activation in industrial applications.
Collapse
Affiliation(s)
- Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyuan Qi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Song J, Cai X, Chen Z, Wang T, Xi S, Hu Q, Yan N, Loh KP. Expedient alkyne semi-hydrogenation by using a bimetallic AgCu-C 3N 4 single atom catalyst. Chem Sci 2024; 15:10577-10584. [PMID: 38994434 PMCID: PMC11234819 DOI: 10.1039/d4sc02469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Metal-catalyzed semi-hydrogenation of alkynes is an important step in organic synthesis to produce diverse chemical compounds. However, conventional noble metal catalysts often suffer from poor selectivity owing to over-hydrogenation. Here, we demonstrate a high-loading bimetallic AgCu-C3N4 single-atom catalyst (SAC) for alkyne semi-hydrogenation. The AgCu-C3N4 SACs exhibit higher activity and selectivity (99%) than their low-loading variants due to the synergistic interaction of heteronuclear Ag-Cu sites at small inter-site distances. Using a combination of techniques such as phenylacetylene-DRIFTS, H2-temperature programmed desorption and DFT calculations, we showed that the cooperative bimetallic interaction during alkyne semi-hydrogenation was achieved by isolated Ag centers as hydrogen activation sites and isolated Cu centers as alkyne activation sites. Our work highlights the importance of achieving high catalyst loading to reduce the inter-site distance in bimetallic SACs for cooperative interactions, which can potentially open new catalytic pathways for synthesizing fine chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jingting Song
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Tie Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585 Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Qikun Hu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585 Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
28
|
Zhou D, Li Z, Hu X, Chen L, Zhu M. Single Atom Catalyst in Persulfate Oxidation Reaction: From Atom Species to Substance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311691. [PMID: 38440836 DOI: 10.1002/smll.202311691] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Indexed: 03/06/2024]
Abstract
With maximum utilization of active metal sites, more and more researchers have reported using single atom catalysts (SACs) to activate persulfate (PS) for organic pollutants removal. In SACs, single metal atoms (Fe, Co, Cu, Mn, etc.) and different substrates (porous carbon, biochar, graphene oxide, carbon nitride, MOF, MoS2, and others) are the basic structural. Metal single atoms, substances, and connected chemical bonds all have a great influence on the electronic structures that directly affect the activation process of PS and degradation efficiency to organic pollutants. However, there are few relevant reviews about the interaction between metal single atoms and substances during PS activation process. In this review, the SACs with different metal species and substrates are summarized to investigate the metal-support interaction and evaluate their effects on PS oxidation reaction process. Furthermore, how metal atoms and substrates affect the reactive species and degradation pathways are also discussed. Finally, the challenges and prospects of SACs in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Daixi Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
29
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
30
|
Wang Z, Yi Z, Wong LW, Tang X, Wang H, Wang H, Zhou C, He Y, Xiong W, Wang G, Zeng G, Zhao J, Xu P. Oxygen Doping Cooperated with Co-N-Fe Dual-Catalytic Sites: Synergistic Mechanism for Catalytic Water Purification within Nanoconfined Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404278. [PMID: 38743014 DOI: 10.1002/adma.202404278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Atom-site catalysts, especially for graphitic carbon nitride-based catalysts, represents one of the most promising candidates in catalysis membrane for water decontamination. However, unravelling the intricate relationships between synthesis-structure-properties remains a great challenge. This study addresses the impacts of coordination environment and structure units of metal central sites based on Mantel test, correlation analysis, and evolution of metal central sites. An optimized unconventional oxygen doping cooperated with Co-N-Fe dual-sites (OCN Co/Fe) exhibits synergistic mechanism for efficient peroxymonosulfate activation, which benefits from a significant increase in charge density at the active sites and the regulation in the natural population of orbitals, leading to selective generation of SO4 •-. Building upon these findings, the OCN-Co/Fe/PVDF composite membrane demonstrates a 33 min-1 ciprofloxacin (CIP) rejection efficiency and maintains over 96% CIP removal efficiency (over 24 h) with an average permeance of 130.95 L m-2 h-1. This work offers a fundamental guide for elucidating the definitive origin of catalytic performance in advance oxidation process to facilitate the rational design of separation catalysis membrane with improved performance and enhanced stability.
Collapse
Affiliation(s)
- Ziwei Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
31
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
32
|
Chen M, Jiang J, Guan W, Zhang Z, Zhang X, Shi W, Lin L, Zhao K, Yu G. Sustainable and Rapid Water Purification at the Confined Hydrogel Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311416. [PMID: 38253376 DOI: 10.1002/adma.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Emerging organic contaminants in water matrices have challenged ecosystems and human health safety. Persulfate-based advanced oxidation processes (PS-AOPs) have attracted much attention as they address potential water purification challenges. However, overcoming the mass transfer constraint and the catalyst's inherent site agglomeration in the heterogeneous system remains urgent. Herein, the abundant metal-anchored loading (≈6-8 g m-2) of alginate hydrogel membranes coupled with cross-flow mode as an efficient strategy for water purification applications is proposed. The organic flux of the confined hydrogel interfaces sharply enlarges with the reduction of the thickness of the boundary layer via the pressure field. The normalized property of the system displays a remarkable organic (sulfonamides) elimination rate of 4.87 × 104 mg min-1 mol-1. Furthermore, due to the fast reaction time (<1 min), cross-flow mode only reaches a meager energy cost (≈2.21 Wh m-3) under the pressure drive field. It is anticipated that this finding provides insight into the novel design with ultrafast organic removal performance and low techno-economic cost (i.e., energy operation cost, material, and reagent cost) for the field of water purification under various PS-AOPs challenging scenarios.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Jun Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhijian Zhang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xin Zhang
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, 639141, Singapore
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Centre for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
33
|
Wang Y, Wei M, Ding Q, Li H, Ma W. Identification of Intersite Distance Effects in Au-Ag Single-Atom Alloy Catalysts Using Single Nanoparticle Collision Electrochemistry. NANO LETTERS 2024. [PMID: 38620010 DOI: 10.1021/acs.nanolett.3c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.
Collapse
Affiliation(s)
- Yixiao Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mengdan Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Huimin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
34
|
Liu T, Chen Y, Xu A, Liu X, Liu D, Li S, Huang H, Xu L, Jiang S, Luo Q, Ding T, Yao T. Regulating atomic Fe-Rh site distance for efficient oxygen reduction reaction. Sci China Chem 2024; 67:1352-1359. [DOI: 10.1007/s11426-023-1889-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2025]
|
35
|
Chen J, Zhang D, Liu B, Zheng K, Li Y, Xu Y, Li Z, Liu X. Photoinduced Precise Synthesis of Diatomic Ir 1 Pd 1 -In 2 O 3 for CO 2 Hydrogenation to Methanol via Angstrom-Scale-Distance Dependent Synergistic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202401168. [PMID: 38336924 DOI: 10.1002/anie.202401168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The atomically dispersed metal catalysts with full atomic utilization and well-defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo-induced neighbour-deposition strategy for the precise synthesis of diatomic Ir1 Pd1 on In2 O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record-breaking space-time yield to methanol (187.1 gMeOH gmetal -1 hour-1 ). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H-spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual-site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd-to-Ir distance increased. The average dual-site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dongjian Zhang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ke Zheng
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zaijun Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
36
|
Chen C, Wang J, Wang Z, Ren W, Khairunnisa S, Xiao P, Yang L, Chen F, Wu XL, Chen J. Paint sludge derived activated carbon encapsulating with cobalt nanoparticles for non-radical activation of peroxymonosulfate. J Colloid Interface Sci 2024; 658:209-218. [PMID: 38103471 DOI: 10.1016/j.jcis.2023.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiOx), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation. Compared to pure AC, the Co-AC exhibited significant enhanced performance for degradation of tetracycline hydrochloride (TCH) via PMS activation. Mechanism studies by in situ Raman spectroscopy, Fourier infrared spectroscopy, electrochemical analysis and electron paramagnetic resonance suggested that surface-bonded PMS (PMS*) and singlet oxygen (1O2) are the dominant reactive species for TCH oxidation. The non-radical species can efficiently oxidize electron-rich pollutants with high efficiency, which minimized the consumption of PMS and the catalyst. The removal percentages of TCH reached 97 % within 5 min and ∼ 99 % within 15 min in the Co-AC/PMS system. The Co active sites facilitated PMS adsorption to form the PMS* and the TiAlSiOx impurities provided abundant oxygen vacancy for generation of the 1O2. In addition, the Co-AC/PMS system achieved high efficiency and stability for oxidation of the target pollutants over a long-term continuous operation. This work not only offers a cost-effective approach for recycling industrial waste but also provides new insights into the application of waste-derived catalyst for environmental remediation.
Collapse
Affiliation(s)
- Chaofa Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Juan Wang
- Zhejiang Anammox Environmental Technology Co., Ltd., Hangzhou, 310013, China
| | - Zhixing Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Weiting Ren
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Silva Khairunnisa
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lining Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
37
|
Liu HZ, Shu XX, Huang M, Wu BB, Chen JJ, Wang XS, Li HL, Yu HQ. Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization. Nat Commun 2024; 15:2327. [PMID: 38485966 PMCID: PMC10940690 DOI: 10.1038/s41467-024-46739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.
Collapse
Affiliation(s)
- Hong-Zhi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao-Xuan Shu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Mingjie Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Bing-Bing Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Hui-Lin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
38
|
Yu D, Xu L, Fu K, Liu X, Wang S, Wu M, Lu W, Lv C, Luo J. Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H 2O 2 activation. Nat Commun 2024; 15:2241. [PMID: 38472214 DOI: 10.1038/s41467-024-46653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Electronic structure modulation of active sites is critical important in Fenton catalysis as it offers a promising strategy for boosting H2O2 activation. However, efficient generation of hydroxyl radicals (•OH) is often limited to the unoptimized coordination environment of active sites. Herein, we report the rational design and synthesis of iron oxyfluoride (FeOF), whose iron sites strongly coordinate with the most electronegative fluorine atoms in a characteristic moiety of F-(Fe(III)O3)-F, for effective H2O2 activation with potent •OH generation. Results demonstrate that the fluorine coordination plays a pivotal role in lowering the local electron density and optimizing the electronic structures of iron sites, thus facilitating the rate-limiting H2O2 adsorption and subsequent peroxyl bond cleavage reactions. Consequently, FeOF exhibits a significant and pH-adaptive •OH yield (~450 µM) with high selectivity, which is 1 ~ 3 orders of magnitude higher than the state-of-the-art iron-based catalysts, leading to excellent degradation activities against various organic pollutants at neutral condition. This work provides fundamental insights into the function of fluorine coordination in boosting Fenton catalysis at atomic level, which may inspire the design of efficient active sites for sustainable environmental remediation.
Collapse
Affiliation(s)
- Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Licong Xu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Shanli Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Wangyang Lu
- School of Material Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
39
|
Liu HJ, Zhang S, Qiao WZ, Fan RY, Liu B, Wang ST, Hu H, Chai YM, Dong B. Bimetallic metal-organic framework-derived bamboo-like N-doped carbon nanotube-encapsulated Ni-doped MoC nanoparticles for water oxidation. J Colloid Interface Sci 2024; 657:208-218. [PMID: 38039881 DOI: 10.1016/j.jcis.2023.11.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Molybdenum carbide materials with unique electronic structures have received special attention as water-splitting catalysts, but their structural stability in the alkaline water electrolysis process is not satisfactory. This study reports an in situ pyrolysis method for preparing NiMo-based metal-organic framework (MOF)-derived chain-mail oxygen evolution reaction (OER) electrocatalysts and bamboo-like N-doped carbon nanotube (NCNT)-encapsulated Ni-doped MoC nanoparticles (NiMoC-NCNTs). The NCNTs can provide chain mail shells to protect the inner highly reactive Ni-doped MoC cores from electrochemical corrosion by the alkaline electrolyte and regulate their catalytic properties through charge redistribution. Benefiting from high N-doping with abundant pyridinic moieties and abundant active sites of the periodic bamboo-like nodes, the as-prepared NiMoC-NCNTs display an outstanding activity for the OER with an overpotential of 310 mV at 10 mA cm-2 and a superior long-term stability of 50 h. Density functional theory calculations reveal that the excellent electrocatalytic activity of NiMoC-NCNTs comes from the electron transfer from NiMoC nanoparticles to NCNTs, resulting in a decrease in the local work function at the carbon surface and optimized free efficiencies of OER intermediates on C sites. This work provides an effective approach to improve the structural stability of fragile catalysts by equipping them with carbon-based chain.
Collapse
Affiliation(s)
- Hai-Jun Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wei-Zhen Qiao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruo-Yao Fan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
40
|
Chen F, Sun YJ, Huang XT, Bai CW, Zhang ZQ, Duan PJ, Chen XJ, Yang Q, Yu HQ. Embedding electronic perpetual motion into single-atom catalysts for persistent Fenton-like reactions. Proc Natl Acad Sci U S A 2024; 121:e2314396121. [PMID: 38236736 PMCID: PMC10823243 DOI: 10.1073/pnas.2314396121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024] Open
Abstract
In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Qi Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha410082, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230036, China
| |
Collapse
|
41
|
Guo J, Wang Y, Shang Y, Yin K, Li Q, Gao B, Li Y, Duan X, Xu X. Fenton-like activity and pathway modulation via single-atom sites and pollutants comediates the electron transfer process. Proc Natl Acad Sci U S A 2024; 121:e2313387121. [PMID: 38190529 PMCID: PMC10801885 DOI: 10.1073/pnas.2313387121] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yujie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao266590, People’s Republic of China
| | - Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao266237, People’s Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| |
Collapse
|
42
|
Li R, Zhao J, Liu B, Wang D. Atomic Distance Engineering in Metal Catalysts to Regulate Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308653. [PMID: 37779465 DOI: 10.1002/adma.202308653] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
It is very important to understand the structure-performance relationship of metal catalysts by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an essential influence on the composition of the environment of active metal atom, which is a key factor for the design of targeted catalysts with desired function. In this review, we discuss and summarize strategies for changing the atomic distance from three aspects and relate their effects on the reactivity of catalysts. First, the effects of regulating bond length between metal and coordination atom at one single-atom site on the catalytic performance are introduced. The bond lengths are affected by the strain effect of the support and high-shell doping and can evolve during the reaction. Next, the influence of the distance between single-atom sites on the catalytic performance is discussed. Due to the space matching of adsorption and electron transport, the catalytic performance can be adjusted with the shortening of site distance. In addition, the effect of the arrangement spacing of the surface metal active atoms on the catalytic performance of metal nanocatalysts is studied. Finally, a comprehensive summary and outlook of the relationship between atomic distance and catalytic performance is given.
Collapse
Affiliation(s)
- Runze Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| | - Jie Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Baozhong Liu
- Henan Polytechnic University, College of Chemistry and Chemical Engineering, 2001 Century Ave, Jiaozuo, Henan, 454000, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| |
Collapse
|
43
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
44
|
Xin S, Ni L, Zhang P, Tan H, Song M, Li T, Gao Y, Hu C. Electron Delocalization Realizes Speedy Fenton-Like Catalysis over a High-Loading and Low-Valence Zinc Single-Atom Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304088. [PMID: 37840391 DOI: 10.1002/advs.202304088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Indexed: 10/17/2023]
Abstract
A zinc (Zn)-based single-atom catalyst (SAC) is recently reported as an active Fenton-like catalyst; however, the low Zn loading greatly restricts its catalytic activity. Herein, a molecule-confined pyrolysis method is demonstrated to evidently increase the Zn loading to 11.54 wt.% for a Zn SAC (ZnSA -N-C) containing a mixture of Zn-N4 and Zn-N3 coordination structures. The latter unsaturated Zn-N3 sites promote electron delocalization to lower the average valence state of Zn in the mix-coordinated Zn-Nx moiety conducive to interaction of ZnSA -N-C with peroxydisulfate (PDS). A speedy Fenton-like catalysis is thus realized by the high-loading and low-valence ZnSA -N-C for PDS activation with a specific activity up to 0.11 min L-1 m-2 , outstripping most Fenton-like SACs. Experimental results reveal that the formation of ZnSA -N-C-PDS* complex owing to the strong affinity of ZnSA -N-C to PDS empowers intense direct electron transfer from the electron-rich pollutant toward this complex, dominating the rapid bisphenol A (BPA) elimination. The electron transfer pathway benefits the desirable environmental robustness of the ZnSA -N-C/PDS system for actual water decontamination. This work represents a new class of efficient and durable Fenton-like SACs for potential practical environmental applications.
Collapse
Affiliation(s)
- Shaosong Xin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Luning Ni
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haobin Tan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingyang Song
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yaowen Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
45
|
Peng Y, Zhang Q, Ren W, Duan X, Ding L, Jing Y, Shao P, Xiao X, Luo X. Thermodynamic and Kinetic Behaviors of Persulfate-Based Electron-Transfer Regime in Carbocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19012-19022. [PMID: 37599507 DOI: 10.1021/acs.est.3c02675] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A carbon-based advanced oxidation process is featured for the nonradical electron-transfer pathway (ETP) from electron-donating organic compounds to activated persulfate complexes, enabling it as a green technology for the selective oxidation of organic pollutants in complex water environments. However, the thermodynamic and kinetic behaviors of the nonradical electron-transfer regime had been ambiguous due to a neglect of the influence of pH on the mechanisms. In this study, three kinds of organic pollutants were divided in the carbon-based ETP regime: (i) physio-adsorption, (ii) adsorption-dominated ETP (oxidation rate slightly surpasses adsorption rate), and (iii) oxidation-dominated ETP (oxidation rate outpaces the adsorption rate). The differential kinetic behaviors were attributed to the physicochemical properties of the organic pollutants. For example, the hydrophobicity, molecular radius, and positive electrostatic potential controlled the mass-transfer process of the adsorption stage of the reactants (peroxydisulfate (PDS) and organics). Meanwhile, other descriptors, including the Fukui index, oxidation potential, and electron cloud density regulated the electron-transfer processes and thus the kinetics of oxidation. Most importantly, the oxidation pathways of these organic pollutants could be altered by adjusting the water chemistry. This study reveals the principles for developing efficient nonradical systems to selectively remove and recycle organic pollutants in wastewater.
Collapse
Affiliation(s)
- Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Yunpeng Jing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| |
Collapse
|
46
|
Wei S, Sun Y, Qiu YZ, Li A, Chiang CY, Xiao H, Qian J, Li Y. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N 4 sites by carbon-defect engineering. Nat Commun 2023; 14:7549. [PMID: 37985662 PMCID: PMC10662205 DOI: 10.1038/s41467-023-43040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Carbon-defect engineering in metal single-atom catalysts by simple and robust strategy, boosting their catalytic activity, and revealing the carbon defect-catalytic activity relationship are meaningful but challenging. Herein, we report a facile self-carbon-thermal-reduction strategy for carbon-defect engineering of single Fe-N4 sites in ZnO-Carbon nano-reactor, as efficient catalyst in Fenton-like reaction for degradation of phenol. The carbon vacancies are easily constructed adjacent to single Fe-N4 sites during synthesis, facilitating the formation of C-O bonding and lowering the energy barrier of rate-determining-step during degradation of phenol. Consequently, the catalyst Fe-NCv-900 with carbon vacancies exhibits a much improved activity than the Fe-NC-900 without abundant carbon vacancies, with 13.5 times improvement in the first-order rate constant of phenol degradation. The Fe-NCv-900 shows high activity (97% removal ratio of phenol in only 5 min), good recyclability and the wide-ranging pH universality (pH range 3-9). This work not only provides a rational strategy for improving the Fenton-like activity of metal single-atom catalysts, but also deepens the fundamental understanding on how periphery carbon environment affects the property and performance of metal-N4 sites.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yun-Ze Qiu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
- School of Environmental Engineering, Wuxi University, Jiangsu, 214105, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Lv W, Deng J, Wu D, He B, Tang G, Ma D, Jia Y, Lv P. Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts. J Chem Phys 2023; 159:164704. [PMID: 37873963 DOI: 10.1063/5.0162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Double-atom catalysts (DACs) for harmful nitrate (NO3-) electroreduction to valuable ammonia (eNO3RR) is attractive for both environmental remediation and energy transformation. However, the limited metal loading in most DACs largely hinders their applications in practical catalytic applications. Therefore, exploring ultrahigh-density (UHD) DACs with abundant active metal centers and excellent eNO3RR activity is highly desired under the site-distance effect. Herein, starting from the experimental M2N6 motif deposited on graphene, we firstly screened the low-density (LD) Mn2N6 and Fe2N6 DACs with high eNO3RR activity and then established an appropriate activity descriptor for the LD-DAC system. By utilizing this descriptor, the corresponding Mn2N6 and Fe2N6 UHD-DACs with dynamic, thermal, thermodynamic, and electrochemical stabilities, are identified to locate at the peak of activity volcano, exhibiting rather-low limiting potentials of -0.25 and -0.38 V, respectively. Further analysis in term of spin state and orbital interaction, confirms that the electronic state effect similar to that of LD-DACs enable the excellent eNO3RR activity to be maintained in the UHD-DACs. These findings highlight the promising application of Mn2N6 and Fe2N6 UHD-DACs in nitrate electroreduction for NH3 production and provide impetus for further experimental exploration of ultrahigh-density DACs based on their intrinsic electronic states.
Collapse
Affiliation(s)
- Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Jianming Deng
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Bingling He
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
48
|
Huang B, Wu Z, Wang X, Song X, Zhou H, Zhang H, Zhou P, Liu W, Xiong Z, Lai B. Coupled Surface-Confinement Effect and Pore Engineering in a Single-Fe-Atom Catalyst for Ultrafast Fenton-like Reaction with High-Valent Iron-Oxo Complex Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15667-15679. [PMID: 37801403 DOI: 10.1021/acs.est.3c05509] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The nanoconfinement effect in Fenton-like reactions shows great potential in environmental remediation, but the construction of confinement structure and the corresponding mechanism are rarely elucidated systematically. Herein, we proposed a novel peroxymonosulfate (PMS) activation system employing the single Fe atom supported on mesoporous N-doped carbon (FeSA-MNC, specific surface area = 1520.9 m2/g), which could accelerate the catalytic oxidation process via the surface-confinement effect. The degradation activity of the confined system was remarkably increased by 34.6 times compared to its analogue unconfined system. The generation of almost 100% high-valent iron-oxo species was identified via 18O isotope-labeled experiments, quenching tests, and probe methods. The density functional theory illustrated that the surface-confinement effect narrows the gap between the d-band center and Fermi level of the single Fe atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for PMS activation. The surface-confinement system exhibited excellent pollutant degradation efficiency, robust resistance to coexisting matter, and adaptation of a wide pH range (3.0-11.0) and various temperature environments (5-40 °C). Finally, the FeSA-MNC/PMS system could achieve 100% sulfamethoxazole removal without significant performance decline after 10,000-bed volumes. This work provides novel and significant insights into the surface-confinement effect in Fenton-like chemistry and guides the design of superior oxidation systems for environmental remediation.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinyu Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
49
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
50
|
He D, Li T, Dai X, Liu S, Cui X, Shi F. Construction of Highly Active and Selective Molecular Imprinting Catalyst for Hydrogenation. J Am Chem Soc 2023; 145:20813-20824. [PMID: 37722009 DOI: 10.1021/jacs.3c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Surface molecular imprinting (MI) is one of the most efficient techniques to improve selectivity in a catalytic reaction. Heretofore, a prerequisite to fabricating selective catalysts by MI strategies is to sacrifice the number of surface-active sites, leading to a remarkable decrease of activity. Thus, it is highly desirable to design molecular imprinting catalysts (MICs) in which both the catalytic activity and selectivity are significantly enhanced. Herein, a series of MICs are prepared by sequentially adsorbing imprinting molecules (nitro compounds, N) and imprinting ligand (1,10-phenanthroline, L) over the copper surface of Cu/Al2O3. The resulting Cu/Al2O3-N-L MICs not only offer promoted catalytic selectivity but also enhance catalytic activity for nitro compounds hydrogenation by an creating imprinting cavity derived from the presorption of N and forming new active Cu-N sites at the interface of the copper sites and L. Characterizations by means of various experimental investigations and DFT calculations disclose that the molecular imprinting effect (promoted activity and selectivity) originates from the formation of new active Cu-N sites and precise imprinting cavities, endowing promoted catalytic selectivity and activity on the hydrogenation of nitro compounds.
Collapse
Affiliation(s)
- Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Shujuan Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|