1
|
Wang F, Deng S, Song C, Fu X, Zhang N, Li Q, Li Y, Zhan J, Jiang Y, Liu M, Chen M, Hu Y, Huang KJ, Yang H, Chen Z, Cai R, Tan W. Pd@Au Nanoframe Hydrogels for Closed-Loop Wound Therapy. ACS NANO 2025; 19:15069-15080. [PMID: 40215083 DOI: 10.1021/acsnano.5c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
In this work, a multifunctional Pd@Au nanoframe hydrogel was designed to detect uric acid (UA) for in situ monitoring of wound infection and enhance wound healing by a chemo-photothermal strategy. In acidic conditions, the Pd@Au nanoframe hydrogels show high peroxidase-like activity by catalyzing H2O2 to produce reactive oxygen species (ROS) to damage RNAs of bacteria and enhance antibacterial activity. Under Near-infrared (NIR) laser irradiation, the Pd@Au nanoframe hydrogels exhibit photothermal conversion performance; i.e., the color of Pd@Au nanoframe hydrogel solution varies from deep blue (0 s, 25.4 °C) to red (300 s, 50.1 °C) in infrared thermography. After loading the antibacterial mupirocin (M), the as-obtained M Pd@Au nanoframe hydrogels show a maximum cumulative release rate exceeding 90% for mupirocin, as controlled by NIR laser irradiation. In antimicrobial experiments in vitro, M Pd@Au nanoframe hydrogels exhibit NIR laser-driven antibacterial ability; i.e., 98% Escherichia coli are effectively killed in 10 min. After coating rabbit wounds with a UA sensing patch of M Pd@Au nanoframe hydrogels, wound status can be monitored in real time by detecting UA concentration, leading to rapid wound healing in 4 days by a new synergistic effect of chemo-photothermal strategy. This approach successfully confirms a closed-loop strategy, i.e., real-time monitoring the status of a wound and efficiently perform chemo-photothermal wound therapy, for wound healing by combining functional hydrogels, NIR laser irradiation, and pharmaceutical antibacterials.
Collapse
Affiliation(s)
- Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Suping Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Changxiao Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaofei Fu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ningbo Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiajun Zhan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuting Jiang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Man Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yueqiang Hu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Hangzhou Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Ran Z, Wang M, Yuan Z, Zhang Y, Liu G, Yang R. Acid-responsive singlet oxygen nanodepots. Chem Sci 2025; 16:1197-1204. [PMID: 39669176 PMCID: PMC11633660 DOI: 10.1039/d4sc06553k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
The singlet oxygen carrier addresses the challenges of traditional photodynamic therapy (PDT), which relies on the presence of oxygen within solid tumors and struggles with light penetration issues. However, the inability to control the release of singlet oxygen has hindered precise treatment applications. Here, we introduce an acid-responsive singlet oxygen nanodepot (aSOND) designed to overcome this limitation. The aSOND is synthesized using a responsive diblock copolymer system that includes a hydrophilic PEG block and a pH-responsive block with singlet oxygen loading sites. In neutral or alkaline environments, the aSOND releases singlet oxygen slowly, ensuring stability in blood circulation. In contrast, in acidic environments such as the tumor microenvironment or intracellular lysosomes, protonation of the tertiary amine group within the pH responsive block increases the hydration of the polymer, triggering a rapid release of singlet oxygen. This feature enables controlled, tumor-specific release of reactive oxygen species (ROS). The aSOND system effectively implements an "OFF-ON" singlet oxygen therapy, demonstrating high spatiotemporal selectivity and independence from both oxygen supply and external light, offering a promising approach for targeted cancer therapy.
Collapse
Affiliation(s)
- Zengwei Ran
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Maolin Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| |
Collapse
|
4
|
Dong L, Wang C, Tong T, Ling B, Liu P, Yang Y, Liu Z, Wang C, Yuan Y. Self-Activated Cascade-Tailored Small Molecule for Cancer Therapy, Companion Diagnostics, and "Theranostic Correlation" Evaluation. Anal Chem 2024; 96:20147-20151. [PMID: 39652365 DOI: 10.1021/acs.analchem.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Companion diagnostics (CDx) have emerged as valuable tools for monitoring biomarkers essential for drug activation and therapeutic response, enabling personalized treatment strategies. However, the current FDA-approved CDx is limited to in vitro testing, making it challenging to assess the real-time drug efficacy. Moreover, evaluation of treatment responses solely based on drug release or activation may disregard tumor heterogeneity. To address these challenges, we have developed a cascade-responsive small molecule Cbl-DEVD-Hcy for simultaneous cancer therapy and the timely evaluation of therapy effectiveness in vivo. Upon cleavage by tumor-cell-overexpressed carboxylesterase, chlorambucil (Cbl) can be released to induce tumor cell apoptosis and activate caspase-3. This activation triggers the production of the near-infrared dye Hcy-NH2, generating both near-infrared fluorescence and photoacoustic signals for monitoring the apoptosis process. The excellent "theranostic correlation" between the imaging signal and therapeutic response, as demonstrated in orthotopic breast tumors, highlights the potential of Cbl-DEVD-Hcy for effective tumor therapy and precise CDx in the body.
Collapse
Affiliation(s)
- Ling Dong
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230061, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenchen Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tong Tong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Ling
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230061, China
| | - Pingping Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanyun Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengjie Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Congxiao Wang
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yue Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Xu W, Jia A, Lei Z, Wang J, Jiang H, Wang S, Wang Q. Stimuli-responsive prodrugs with self-immolative linker for improved cancer therapy. Eur J Med Chem 2024; 279:116928. [PMID: 39362023 DOI: 10.1016/j.ejmech.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Self-immolative prodrugs have gained significant attention as an innovative approach for targeted cancer therapy. These prodrugs are engineered to release the active anticancer agents in response to specific triggers within the tumor microenvironment, thereby improving therapeutic precision while reducing systemic toxicity. This review focuses on the molecular architecture and design principles of self-immolative prodrugs, emphasizing the role of stimuli-responsive linkers and activation mechanisms that enable controlled drug release. Recent advancements in this field include the development of prodrugs that incorporate targeting moieties for enhanced site-specificity. Moreover, the review discusses the incorporation of targeting moieties to achieve site-specific drug delivery, thereby improving the selectivity of treatment. By summarizing key research from the past five years, this review highlights the potential of self-immolative prodrugs to revolutionize cancer treatment strategies and pave the way for their integration into clinical practice.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhixian Lei
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Jianing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongfei Jiang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Shuai Wang
- Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong, China.
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China.
| |
Collapse
|
6
|
Yang Y, Zhang B, Xu Y, Zhu W, Zhu Z, Zhang X, Wu W, Chen J, Yu Z. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma. Bioact Mater 2024; 42:178-193. [PMID: 39285910 PMCID: PMC11402546 DOI: 10.1016/j.bioactmat.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death. In addition, GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment, recruiting more tumor-infiltrating T lymphocytes. GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance. Benefiting from the amplified systemic antitumor immunity, GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors. Moreover, GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections, thereby promoting postsurgical wound healing. Hence, this immunotherapeutic hydrogel booster, as a facile and effective postoperative adjuvant, possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Bo Zhang
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yangtao Xu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenxiang Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zinian Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Xibo Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Jierong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| |
Collapse
|
7
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Li Z, Liu H, Zhang XB. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem Soc Rev 2024; 53:11207-11227. [PMID: 39363873 DOI: 10.1039/d4cs00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.
Collapse
Affiliation(s)
- Zhe Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Guo Y, Li Y, Zhang M, Ma R, Wang Y, Weng X, Zhang J, Zhang Z, Chen X, Yang W. Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy. Nat Commun 2024; 15:8586. [PMID: 39362879 PMCID: PMC11450208 DOI: 10.1038/s41467-024-53010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
The limited efficacy of cancer immunotherapy occurs due to the lack of spatiotemporal orchestration of adaptive immune response stimulation and immunosuppressive tumor microenvironment modulation. Herein, we report a nanoplatform fabricated using a pH-sensitive triblock copolymer synthesized by reversible addition-fragmentation chain transfer polymerization enabling in situ tumor vaccination and tumor-associated macrophages (TAMs) polarization. The nanocarrier itself can induce melanoma immunogenic cell death (ICD) via tertiary amines and thioethers concentrating on mitochondria to regulate metabolism in triggering endoplasmic reticulum stress and upregulating gasdermin D for pyroptosis as well as some features of ferroptosis and apoptosis. After the addition of ligand cyclic arginine-glycine-aspartic acid (cRGD) and mannose, the mixed nanocarrier with immune adjuvant resiquimod encapsulation can target B16F10 cells for in situ tumor vaccination and TAMs for M1 phenotype polarization. In vivo studies indicate that the mixed targeting nanoplatform elicits tumor ICD, dendritic cell maturation, TAM polarization, and cytotoxic T lymphocyte infiltration and inhibits melanoma volume growth. In combination with immune checkpoint blockade, the survival time of mice is markedly prolonged. This study provides a strategy for utilizing immunoactive materials in the innate and adaptive immune responses to augment cancer therapy.
Collapse
Affiliation(s)
- Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongjuan Li
- The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore.
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
10
|
Li C, Tu L, Xu Y, Li M, Du J, Stang PJ, Sun Y, Sun Y. A NIR-Light-Activated and Lysosomal-Targeted Pt(II) Metallacycle for Highly Potent Evoking of Immunogenic Cell Death that Potentiates Cancer Immunotherapy of Deep-Seated Tumors. Angew Chem Int Ed Engl 2024; 63:e202406392. [PMID: 38775364 DOI: 10.1002/anie.202406392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/02/2024]
Abstract
Though platinum (Pt)-based complexes have been recently exploited as immunogenic cell death (ICD) inducers for activating immunotherapy, the effective activation of sufficient immune responses with minimal side effects in deep-seated tumors remains a formidable challenge. Herein, we propose the first example of a near-infrared (NIR) light-activated and lysosomal targeted Pt(II) metallacycle (1) as a supramolecular ICD inducer. 1 synergistically potentiates immunomodulatory response in deep-seated tumors via multiple-regulated approaches, involving NIR light excitation, boosted reactive oxygen species (ROS) generation, good selectivity between normal and tumor cells, and enhanced tumor penetration/retention capabilities. Specifically, 1 has excellent depth-activated ROS production (~7 mm), accompanied by strong anti-diffusion and anti-ROS quenching ability. In vitro experiments demonstrate that 1 exhibits significant cellular uptake and ROS generation in tumor cells as well as respective multicellular tumor spheroids. Based on these advantages, 1 induces a more efficient ICD in an ultralow dose (i.e., 5 μM) compared with the clinical ICD inducer-oxaliplatin (300 μM). In vivo, vaccination experiments further demonstrate that 1 serves as a potent ICD inducer through eliciting CD8+/CD4+ T cell response and Foxp3+ T cell depletion with negligible adverse effects. This study pioneers a promising avenue for safe and effective metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Chonglu Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Le Tu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Yuling Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Meiqin Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| | - Jiaxing Du
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, 450046, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA
| | - Yan Sun
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, 450046, China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China, Normal University, Wuhan, 430079, China
| |
Collapse
|
11
|
Zhang X, Zhang B, Zhang Y, Ding Y, Zhang Z, Liu Q, Yang Z, Wang L, Gao J. Copper-Induced Supramolecular Peptide Assemblies for Multi-Pathway Cell Death and Tumor Inhibition. Angew Chem Int Ed Engl 2024; 63:e202406602. [PMID: 38837577 DOI: 10.1002/anie.202406602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Although self-assembly has emerged as an effective tool for fabricating biomaterials, achieving precise control over the morphologies and functionalities of the resultant assemblies remains an ongoing challenge. Inspired by the copper peptide naturally present in human plasma, in this study, we designed a synthetic precursor, FcGH. FcGH can self-assemble via two distinct pathways: spontaneous and Cu2+-induced. These two assembly pathways enabled the formation of assemblies with tunable morphologies by adjusting the amount of added Cu2+. We found that the nanoparticles formed by Cu2+-induced self-assembly exhibited a significantly higher cellular uptake efficiency than the wormlike fibers formed spontaneously. Moreover, this Cu2+-induced assembly process occurred spontaneously at a 1 : 1 molar ratio of Cu2+ to FcGH, avoiding the excessive use of Cu2+ and a tedious preparation procedure. By co-assembling with 10-hydroxycamptothecin (HCPT)-conjugated FcGH, Cu2+-induced supramolecular nanodrugs elicited multiple cell death modalities in cancer cells with elevated immunogenicity, enhancing the therapeutic effect compared to free HCPT. This study highlights Cu2+-induced self-assembly as an efficient tool for directing the assembly of nanodrugs and for synergistic tumor therapy.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Buyue Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Zhenghao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University Xuzhou, Jiangsu, 221002, China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
12
|
Zhang W, Chen G, Chen Z, Yang X, Zhang B, Wang S, Li Z, Yang Y, Wu Y, Liu Z, Yu Z. Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer. J Control Release 2024; 371:470-483. [PMID: 38849094 DOI: 10.1016/j.jconrel.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Ziqi Chen
- Hong Yang, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yifen Wu
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| |
Collapse
|
13
|
Yang J, Ren B, Yin X, Xiang L, Hua Y, Huang X, Wang H, Mao Z, Chen W, Deng J. Expanded ROS Generation and Hypoxia Reversal: Excipient-free Self-assembled Nanotheranostics for Enhanced Cancer Photodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402720. [PMID: 38734937 DOI: 10.1002/adma.202402720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The efficacy of photodynamic therapy (PDT)-related cancer therapies is significantly restricted by two irreconcilable obstacles, i.e., low reactive oxygen species (ROS) generation capability and hypoxia which constrains the immune response. Herein, this work develops a self-assembled clinical photosensitizer indocyanine green (ICG) and the HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) nanoparticles (ISDN) without any excipient. This work discovers that the hydrophobic interaction forces between ICG and 17-DMAG promote the photostability of ICG and its intersystem crossing (ISC) process, thereby improving the ROS quantum yield from 0.112 to 0.46. Augmented ROS generation enhances PDT efficacy and further enhances immunogenic cell death (ICD) effects. 17-DMAG inhibits the HSP90/hypoxia-inducible factor 1α (HIF-1α) axis to dramatically reverse the immunosuppressive tumor microenvironment caused by PDT-aggravated hypoxia. In a mouse model of pancreatic cancer, ISDN markedly improve cytotoxic T lymphocyte infiltration and MHC I and MHC II activation, demonstrating the superior ICD effects in situ tumor and the powerful systematic antitumor immunity generation, eventually achieving vigorous antitumor and recurrence resistance. This study proposes an unsophisticated and versatile strategy to significantly improve PDT efficacy for enhancing systemic antitumor immunity and potentially extending it to multiple cancers.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Lunli Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - YanQiu Hua
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xue Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
14
|
Huang W, Zeng W, Huang Z, Fang D, Liu H, Feng M, Mao L, Ye D. Ratiometric Afterglow Luminescent Imaging of Matrix Metalloproteinase-2 Activity via an Energy Diversion Process. Angew Chem Int Ed Engl 2024; 63:e202404244. [PMID: 38639067 DOI: 10.1002/anie.202404244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Ratiometric afterglow luminescent (AGL) probes are attractive for in vivo imaging due to their high sensitivity and signal self-calibration function. However, there are currently few ratiometric AGL probes available for imaging enzymatic activity in living organisms. Here, we present an energy diversion (ED) strategy that enables the design of an enzyme-activated ratiometric AGL probe (RAG-RGD) for in vivo afterglow imaging. The ED process provides RAG-RGD with a radiative transition for an 'always on' 520-nm AGL signal (AGL520) and a cascade three-step energy transfer (ET) process for an 'off-on' 710-nm AGL signal (AGL710) in response to a specific enzyme. Using matrix metalloproteinase-2 (MMP-2) as an example, RAG-RGD shows a significant ~11-fold increase in AGL710/AGL520 toward MMP-2. This can sensitively detect U87MG brain tumors through ratiometric afterglow imaging of MMP-2 activity, with a high signal-to-background ratio and deep imaging depth. Furthermore, by utilizing the self-calibration effect of ratiometric imaging, RAG-RGD demonstrated a strong negative correlation between the AGL710/AGL520 value and the size of orthotopic U87MG tumor, enabling accurate monitoring of orthotopic glioma growth in vivo. This ED process may be applied for the design of other enzyme-activated ratiometric afterglow probes for sensitive afterglow imaging.
Collapse
Affiliation(s)
- Weijing Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Daqing Fang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Yin L, Zhao B, Zhou J, Huang Y, Ma H, Zhou T, Mou J, Min P, Chen J, Ge G, Qian X, Luo X, Yang Y. A Carbon-Caged Rhodamine Generating Nitrosoperoxycarbonate for Photoimmunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402949. [PMID: 38644342 DOI: 10.1002/anie.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Zhou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
16
|
Zhao M, Lai W, Li B, Bai T, Liu C, Lin Y, An S, Guo L, Li L, Wang J, Zhang F. NIR-II Fluorescence Sensor Based on Steric Hindrance Regulated Molecular Packing for In Vivo Epilepsy Visualization. Angew Chem Int Ed Engl 2024; 63:e202403968. [PMID: 38637949 DOI: 10.1002/anie.202403968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Fluorescence sensing is crucial to studying biological processes and diagnosing diseases, especially in the second near-infrared (NIR-II) window with reduced background signals. However, it's still a great challenge to construct "off-on" sensors when the sensing wavelength extends into the NIR-II region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quencher (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQs can competitively pack with fluorophores and prevent their self-aggregation. Based on this quenching mechanism, a novel activatable "off-on" sensing method is achieved via bio-analyte responsive invalidation of SHQ, namely the Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO--sensitive SHQ lead to the bright NIR-II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real-time visualization of ClO- generation process in living epileptic mice.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Weiping Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Tianwen Bai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Chunyan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Shixuan An
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Jianbo Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Tian J, Li B, Wu C, Li Z, Tang H, Song W, Qi GB, Tang Y, Ping Y, Liu B. Programmable Singlet Oxygen Battery for Automated Photodynamic Therapy Enabled by Pyridone-Pyridine Tautomer Engineering. J Am Chem Soc 2024. [PMID: 38753624 DOI: 10.1021/jacs.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The efficacy of photodynamic therapy is hindered by the hypoxic environment in tumors and limited light penetration depth. The singlet oxygen battery (SOB) has emerged as a promising solution, enabling oxygen- and light-independent 1O2 release. However, conventional SOB systems typically exhibit an "always-ON" 1O2 release, leading to potential 1O2 leakage before and after treatment. This not only compromises therapeutic outcomes but also raises substantial biosafety concerns. In this work, we introduce a programmable singlet oxygen battery, engineered to address all the issues discussed above. The concept is illustrated through the development of a tumor-microenvironment-responsive pyridone-pyridine switch, PyAce, which exists in two tautomeric forms: PyAce-0 (pyridine) and PyAce (pyridone) with different 1O2 storage half-lives. In its native state, PyAce remains in the pyridone form, capable of storing 1O2 (t1/2 = 18.5 h). Upon reaching the tumor microenvironment, PyAce is switched to the pyridine form, facilitating rapid and thorough 1O2 release (t1/2 = 16 min), followed by quenched 1O2 release post-therapy. This mechanism ensures suppressed 1O2 production pre- and post-therapy with selective and rapid 1O2 release at the tumor site, maximizing therapeutic efficacy while minimizing side effects. The achieved "OFF-ON-OFF" 1O2 therapy showed high spatiotemporal selectivity and was independent of the oxygen supply and light illumination.
Collapse
Affiliation(s)
- Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Guo-Bin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| |
Collapse
|
18
|
Zhang G, Ma Y, Wang Z, Zhang X, Wang X, Lo SL, Wang Z. Identification of Microorganism in Infected Wounds by Positively Charged Selective Sensor Array and Deep Learning Algorithm. Anal Chem 2024; 96:7787-7796. [PMID: 38702857 DOI: 10.1021/acs.analchem.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Microorganism are ubiquitous and intimately connected with human health and disease management. The accurate and fast identification of pathogenic microorganisms is especially important for diagnosing infections. Herein, three tetraphenylethylene derivatives (S-TDs: TBN, TPN, and TPI) featuring different cationic groups, charge numbers, emission wavelengths, and hydrophobicities were successfully synthesized. Benefiting from distinct cell wall binding properties, S-TDs were collectively utilized to create a sensor array capable of imaging various microorganisms through their characteristic fluorescent signatures. Furthermore, the interaction mechanism between S-TDs and different microorganisms was explored by calculating the binding energy between S-TDs and cell membrane/wall constituents, including phospholipid bilayer and peptidoglycan. Using a combination of the fluorescence sensor array and a deep learning model of residual network (ResNet), readily differentiation of Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi, and their mixtures was achieved. Specifically, by extensive training of two ResNet models with large quantities of images data from 14 kinds of microorganism stained with S-TDs, identification of microorganism was achieved at high-level accuracy: over 92.8% for both Gram species and antibiotic-resistant species, with 90.35% accuracy for the detection of mixed microorganism in infected wound. This novel method provides a rapid and accurate method for microbial classification, potentially aiding in the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zirui Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuefei Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sio-Long Lo
- Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Wang H, Jiao D, Feng D, Liu Q, Huang Y, Hou J, Ding D, Zhang W. Transformable Supramolecular Self-Assembled Peptides for Cascade Self-Enhanced Ferroptosis Primed Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311733. [PMID: 38339920 DOI: 10.1002/adma.202311733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Immunotherapy has received widespread attention for its effective and long-term tumor-eliminating ability. However, for immunogenic "cold" tumors, such as prostate cancer (PCa), the low immunogenicity of the tumor itself is a serious obstacle to efficacy. Here, this work reports a strategy to enhance PCa immunogenicity by triggering cascade self-enhanced ferroptosis in tumor cells, turning the tumor from "cold" to "hot". This work develops a transformable self-assembled peptide TEP-FFG-CRApY with alkaline phosphatase (ALP) responsiveness and glutathione peroxidase 4 (GPX4) protein targeting. TEP-FFG-CRApY self-assembles into nanoparticles under aqueous conditions and transforms into nanofibers in response to ALP during endosome/lysosome uptake into tumor cells, promoting lysosomal membrane permeabilization (LMP). On the one hand, the released TEP-FFG-CRAY nanofibers target GPX4 and selectively degrade the GPX4 protein under the light irradiation, inducing ferroptosis; on the other hand, the large amount of leaked Fe2+ further cascade to amplify the ferroptosis through the Fenton reaction. TEP-FFG-CRApY-induced immunogenic ferroptosis improves tumor cell immunogenicity by promoting the maturation of dendritic cells (DCs) and increasing intratumor T-cell infiltration. More importantly, recovered T cells further enhance ferroptosis by secreting large amounts of interferon-gamma (IFN-γ). This work provides a novel strategy for the molecular design of synergistic molecularly targeted therapy for immunogenic "cold" tumors.
Collapse
Affiliation(s)
- He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dexiang Feng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
20
|
Ma G, Dirak M, Liu Z, Jiang D, Wang Y, Xiang C, Zhang Y, Luo Y, Gong P, Cai L, Kolemen S, Zhang P. Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots. Angew Chem Int Ed Engl 2024; 63:e202400658. [PMID: 38446006 DOI: 10.1002/anie.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
As one of the self-luminescence imaging approaches that require pre-illumination instead of real-time light excitation, afterglow luminescence imaging has attracted increasing enthusiasm to circumvent tissue autofluorescence. In this work, we developed organic afterglow luminescent nanoprobe (nanotorch), which could emit persistent luminescence more than 10 days upon single light excitation. More importantly, the nanotorch could be remote charged by 660 nm light in a non-invasive manner, which showed great potential for real-time tracing the location of macrophage cell-based microrobots.
Collapse
Affiliation(s)
- Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Musa Dirak
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Zhongke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Postdoctoral lnnovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuding Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
21
|
Tu L, Li C, Ding Q, Sharma A, Li M, Li J, Kim JS, Sun Y. Augmenting Cancer Therapy with a Supramolecular Immunogenic Cell Death Inducer: A Lysosome-Targeted NIR-Light-Activated Ruthenium(II) Metallacycle. J Am Chem Soc 2024; 146:8991-9003. [PMID: 38513217 DOI: 10.1021/jacs.3c13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 μM) compared to the conventional anticancer agent, oxaliplatin (300 μM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82A, Mohali, Punjab 140306, India
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
22
|
Guo W, Chen Z, Wu Q, Tan L, Ren X, Fu C, Cao F, Gu D, Meng X. Prepared MW-Immunosensitizers Precisely Release NO to Downregulate HIF-1α Expression and Enhance Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308055. [PMID: 38037766 DOI: 10.1002/smll.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.
Collapse
Affiliation(s)
- Wenna Guo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
23
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
24
|
Zhu J, Chen W, Yang L, Zhang Y, Cheng B, Gu W, Li Q, Miao Q. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Angew Chem Int Ed Engl 2024; 63:e202318545. [PMID: 38247345 DOI: 10.1002/anie.202318545] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Afterglow imaging holds great promise for ultrasensitive bioimaging due to its elimination of autofluorescence. Self-sustaining afterglow molecules (SAMs), which enable all-in-one photon sensitization, chemical defect formation and afterglow generation, possess a simplified, reproducible, and efficient superiority over commonly used multi-component systems. However, there is a lack of SAMs, particularly those with much brighter near-infrared (NIR) emission and structural flexibility for building high-contrast activatable imaging probes. To address these issues, this study for the first time reports a methylene blue derivative-based self-sustaining afterglow agent (SAN-M) with brighter NIR afterglow chemiluminescence peaking at 710 nm. By leveraging the structural flexibility and tunability, an activatable nanoprobe (SAN-MO) is customized for simultaneously activatable fluoro-photoacoustic and afterglow imaging of peroxynitrite (ONOO- ), notably with a superior activation ratio of 4523 in the afterglow mode, which is at least an order of magnitude higher than other reported activatable afterglow systems. By virtue of the elimination of autofluorescence and ultrahigh activation contrast, SAN-MO enables early monitoring of the LPS-induced acute inflammatory response within 30 min upon LPS stimulation and precise image-guided resection of tiny metastatic tumors, which is unattainable for fluorescence imaging.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoliang Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Jiang Y, Zhao M, Miao J, Chen W, Zhang Y, Miao M, Yang L, Li Q, Miao Q. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat Commun 2024; 15:2124. [PMID: 38459025 PMCID: PMC10923940 DOI: 10.1038/s41467-024-46436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Activatable afterglow luminescence nanoprobes enabling switched "off-on" signals in response to biomarkers have recently emerged to achieve reduced unspecific signals and improved imaging fidelity. However, such nanoprobes always use a biomarker-interrupted energy transfer to obtain an activatable signal, which necessitates a strict distance requisition between a donor and an acceptor moiety (<10 nm) and hence induces low efficiency and non-feasibility. Herein, we report organic upconversion afterglow luminescence cocktail nanoparticles (ALCNs) that instead utilize acidity-manipulated singlet oxygen (1O2) transfer between a donor and an acceptor moiety with enlarged distance and thus possess more efficiency and flexibility to achieve an activatable afterglow signal. After in vitro validation of acidity-activated afterglow luminescence, ALCNs achieve in vivo imaging of 4T1-xenograft subcutaneous tumors in female mice and orthotopic liver tumors in male mice with a high signal-to-noise ratio (SNR). As a representative targeting trial, Bio-ALCNs with biotin modification prove the enhanced targeting ability, sensitivity, and specificity for pulmonary metastasis and subcutaneous tumor imaging via systemic administration of nanoparticles in female mice, which also implies the potential broad utility of ALCNs for tumor imaging with diverse design flexibility. Therefore, this study provides an innovative and general approach for activatable afterglow imaging with better imaging performance than fluorescence imaging.
Collapse
Affiliation(s)
- Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
26
|
Bai Y, Hua J, Zhao J, Wang S, Huang M, Wang Y, Luo Y, Zhao S, Liang H. A Silver-Induced Absorption Red-Shifted Dual-Targeted Nanodiagnosis-Treatment Agent for NIR-II Photoacoustic Imaging-Guided Photothermal and ROS Simultaneously Enhanced Immune Checkpoint Blockade Antitumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306375. [PMID: 38161215 PMCID: PMC10953570 DOI: 10.1002/advs.202306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Indexed: 01/03/2024]
Abstract
Tumor metastasis remains a leading factor in the failure of cancer treatments and patient mortality. To address this, a silver-induced absorption red-shifted core-shell nano-particle is developed, and surface-modified with triphenylphosphonium bromide (TPP) and hyaluronic acid (HA) to obtain a novel nanodiagnosis-treatment agent (Ag@CuS-TPP@HA). This diagnosis-treatment agent can dual-targets cancer cells and mitochondria, and exhibits maximal light absorption at 1064 nm, thereby enhancing nesr-infrared II (NIR-II) photoacoustic (PA) signal and photothermal effects under 1064 nm laser irradiation. Additionally, the silver in Ag@CuS-TPP@HA can catalyze the Fenton-like reactions with H2 O2 in the tumor tissue, yielding reactive oxygen species (ROS). The ROS production, coupled with enhanced photothermal effects, instigates immunogenic cell death (ICD), leading to a substantial release of tumor-associated antigens (TAAs) and damage-associated molecular patterns, which have improved the tumor immune suppression microenvironment and boosting immune checkpoint blockade therapy, thus stimulating a systemic antitumor immune response. Hence, Ag@CuS-TPP@HA, as a cancer diagnostic-treatment agent, not only accomplishes targeted the NIR-II PA imaging of tumor tissue and addresses the challenge of accurate diagnosis of deep cancer tissue in vivo, but it also leverages ROS/photothermal therapy to enhance immune checkpoint blockade, thereby eliminating primary tumors and effectively inhibiting distant tumor growth.
Collapse
Affiliation(s)
- Yulong Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
- School of MedicineShanghai Research Institute for Intelligent Autonomous SystemsTongji UniversityShanghai200092China
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Mengjiao Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Yang Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical ScienceGuangxi Normal UniversityGuilin541004China
| |
Collapse
|
27
|
Yang L, Zhao M, Chen W, Zhu J, Xu W, Li Q, Pu K, Miao Q. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202313117. [PMID: 38018329 DOI: 10.1002/anie.202313117] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108 p/s/cm2 /sr at a low concentration of 10 μM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weina Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Zhao HY, Li KH, Wang DD, Zhang ZL, Xu ZJ, Qi MH, Huang SW. A mitochondria-targeting dihydroartemisinin derivative as a reactive oxygen species -based immunogenic cell death inducer. iScience 2024; 27:108702. [PMID: 38205260 PMCID: PMC10776928 DOI: 10.1016/j.isci.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Immunogenic cell death (ICD) can activate the anticancer immune response and its occurrence requires high reliance on oxidative stress. Inducing mitochondrial reactive oxygen species (ROS) is a desirable capability for ICD inducers. However, in the category of ICD-associated drugs, numerous reported ICD inducers are a series of anthracyclines and weak in ICD induction. Herein, a mitochondria-targeting dihydroartemisinin derivative (T-D) was synthesized by conjugating triphenylphosphonium (TPP) to dihydroartemisinin (DHA). T-D can selectively accumulate in mitochondria to trigger ROS generation, leading to the loss of mitochondrial membrane potential (ΔΨm) and ER stress. Notably, T-D exhibits far more potent ICD-inducing properties than its parent compound. In vivo, T-D-treated breast cancer cell vaccine inhibits metastasis to the lungs and tumor growth. These results indicate that T-D is an excellent ROS-based ICD inducer with the specific function of trigging vigorous ROS in mitochondria and sets an example for incorporating artemisinin-based drugs into the ICD field.
Collapse
Affiliation(s)
- Hong-Yang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Heng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dan-Dan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Li Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zi-Jian Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ming-Hui Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
29
|
Miao Z, Li J, Zeng S, Lv Y, Jia S, Ding D, Li W, Liu Q. Endoplasmic Reticulum-Targeting AIE Photosensitizers to Boost Immunogenic Cell Death for Immunotherapy of Bladder Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:245-260. [PMID: 38113527 DOI: 10.1021/acsami.3c14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bladder cancer is characterized by high rates of recurrence and multifocality. Immunogenic cell death (ICD) of cancer cells has emerged as a promising strategy to improve the immunogenicity of tumor cells for enhanced cancer immunotherapy. Although photosensitizer-based photodynamic therapy (PDT) has been validated as capable of inducing ICD in cancer cells, the photosensitizers with a sufficient ICD induction ability are still rare, and there have been few reports on the development of advanced photosensitizers to strongly evoke the ICD of bladder cancer cells for eliciting potent antitumor immune responses and eradicating bladder carcinoma in situ. In this work, we have synthesized a new kind of endoplasmic reticulum (ER)-targeting aggregation-induced emission (AIE) photosensitizer (named DPASCP-Tos), which could effectively anchor to the cellular ER and trigger focused reactive oxygen species (ROS) production within the ER, thereby boosting ICD in bladder cancer cells. Furthermore, we have demonstrated that bladder cancer cells killed by ER-targeted PDT could serve as a therapeutic cancer vaccine to elicit a strong antitumor immunity. Prophylactic vaccination of the bladder cancer cells killed by DPASCP-Tos under light irradiation promoted the maturation of dendritic cells (DCs) and the expansion of tumor antigen-specific CD8+ T cells in vivo and protected mice from subsequent in situ bladder tumor rechallenge and extended animal survival. In summary, the ER-targeted AIEgens developed here significantly amplified the ICD of bladder cells through focused ROS-based ER oxidative stress and transformed bladder cancer cells into the therapeutic vaccine to enhance immunogenicity against orthotopic bladder cancer, providing valuable insights for bladder carcinoma treatment.
Collapse
Affiliation(s)
- Zhizhao Miao
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| | - Jisen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300384, China
| | - Yonghui Lv
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Li W, Liang M, Qi J, Ding D. Semiconducting Polymers for Cancer Immunotherapy. Macromol Rapid Commun 2023; 44:e2300496. [PMID: 37712920 DOI: 10.1002/marc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 09/16/2023]
Abstract
As a monumental breakthrough in cancer treatment, immunotherapy has attracted tremendous attention in recent years. However, one challenge faced by immunotherapy is the low response rate and the immune-related adverse events (irAEs). Therefore, it is important to explore new therapeutic strategies and platforms for boosting therapeutic benefits and decreasing the side effects of immunotherapy. In recent years, semiconducting polymer (SP), a category of organic materials with π-conjugated aromatic backbone, has been attracting considerable attention because of their outstanding characteristics such as excellent photophysical features, good biosafety, adjustable chemical flexibility, easy fabrication, and high stability. With these distinct advantages, SP is extensively explored for bioimaging and photo- or ultrasound-activated tumor therapy. Here, the recent advancements in SP-based nanomedicines are summarized for enhanced tumor immunotherapy. According to the photophysical properties of SPs, the cancer immunotherapies enabled by SPs with the photothermal, photodynamic, or sonodynamic functions are highlighted in detail, with a particular focus on the construction of combination immunotherapy and activatable nanoplatforms to maximize the benefits of cancer immunotherapy. Herein, new guidance and comprehensive insights are provided for the design of SPs with desired photophysical properties to realize maximized effectiveness of required biomedical applications.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
32
|
Zhang J, Wang M, He D, Zhang L, Liu T, Wang K. Synergetic regulation of cancer cells and exhausted T cells to fight cold tumors with a fluorinated EGCG-based nanocomplex. J Nanobiotechnology 2023; 21:420. [PMID: 37957632 PMCID: PMC10644671 DOI: 10.1186/s12951-023-02205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Immune therapy that targets PD-L1 (programmed cell death-ligand 1) is attractive to augment immune response by breaking the programmed cell death-1 (PD-1)/PD-L1 axis. However, T cell exhaustion associated with insufficient T cells infiltration may diminish the efficacy of cancer therapy. Here, we report a novel delivery system of FEGCG/FPEI@siTOX composed of fluorinated EGCG (FEGCG) and fluorinated polyethyleneimine (FPEI) for delivery of small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) to treat tumor and metastasis. In this way, the reduction in PD-L1 expression by FEGCG can promote T-cell function, while inhibition of TOX expression with siTOX can alleviate T-cell exhaustion. FPEI are designed to deliver siRNA with high efficiency and low toxicity compared to classical PEI. Integrating FEGCG, FPEI and siTOX into such a novel system resulted in excellent anti-tumor and antimetastatic effects. It is a promising delivery system and potential strategy for the treatment of "cold" tumors.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Mingyue Wang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Doudou He
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Liang Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Kaikai Wang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
33
|
Lei L, Yang F, Meng X, Xu L, Liang P, Ma Y, Dong Z, Wang Y, Zhang XB, Song G. Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold. J Am Chem Soc 2023; 145:24386-24400. [PMID: 37883689 DOI: 10.1021/jacs.3c09473] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemotherapeutic resistance poses a significant challenge in cancer treatment, resulting in the reduced efficacy of standard chemotherapeutic agents. Abnormal metabolism, particularly increased anaerobic glycolysis, has been identified as a major contributing factor to chemotherapeutic resistance. To address this issue, noninvasive imaging techniques capable of visualizing tumor glycolysis are crucial. However, the currently available methods (such as PET, MRI, and fluorescence) possess limitations in terms of sensitivity, safety, dynamic imaging capability, and autofluorescence. Here, we present the de novo design of a unique afterglow molecular scaffold based on hemicyanine and rhodamine dyes, which holds promise for low-background optical imaging. In contrast to previous designs, this scaffold exhibits responsive "OFF-ON" afterglow signals through spirocyclization, thus enabling simultaneous control of photodynamic effects and luminescence efficacy. This leads to a larger dynamic range, broader detection range, higher signal enhancement ratio, and higher sensitivity. Furthermore, the integration of multiple functionalities simplifies probe design, eliminates the need for spectral overlap, and enhances reliability. Moreover, we have expanded the applications of this afterglow molecular scaffold by developing various probes for different molecular targets. Notably, we developed a water-soluble pH-responsive afterglow nanoprobe for visualizing glycolysis in living mice. This nanoprobe monitors the effects of glycolytic inhibitors or oxidative phosphorylation inhibitors on tumor glycolysis, providing a valuable tool for evaluating the tumor cell sensitivity to these inhibitors. Therefore, the new afterglow molecular scaffold presents a promising approach for understanding tumor metabolism, monitoring chemotherapeutic resistance, and guiding precision medicine in the future.
Collapse
Affiliation(s)
- Lingling Lei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fengrui Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xin Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Li Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhe Dong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youjuan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
34
|
Diao S, Liu Y, Guo Z, Xu Z, Shen J, Zhou W, Xie C, Fan Q. Prolonging Treatment Window of Photodynamic Therapy with Self-Amplified H 2 O 2 -Activated Photodynamic/Chemo Combination Therapeutic Nanomedicines. Adv Healthc Mater 2023; 12:e2301732. [PMID: 37548967 DOI: 10.1002/adhm.202301732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach to cancer therapy. However, the relatively short tumor retention time of photosensitizers (PSs) makes it difficult to catch the optimal treatment time and restricts multiple PDT within a single injection. In this study, a tumor-specific phototheranostic nanomedicine (DPPa NP) is developed for photodynamic/chemo combination therapy with a prolonged PDT treatment window. DPPa NP is prepared via encapsulating a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable PS DPPa with amphiphilic H2 O2 -activatable chlorambucil (CL) prodrug mPEG-TK-CL. The released CL under H2 O2 treatment can not only kill tumor cells but also upregulate reactive oxygen species levels within tumor cells, leading to the almost full release of cargoes. The released DPPa may conjugate with overexpressed BSA-SOH, which results in the recovery of the fluorescence signal and photodynamic effect. More importantly, such conjugation transfers DPPa from a small molecule PS into a macromolecular PS with a long tumor retention time and treatment window of PDT, which enables multiple PDT. This study thus provides an effective strategy to prolong the treatment window of PDT and enables tumor-specific fluorescence imaging-guided combination therapy.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yaxin Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zixin Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinlong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
35
|
Zhang L, Wang YC, Liao Y, Zhang Q, Liu X, Zhu D, Feng H, Bryce MR, Ren L. Near-Infrared Afterglow ONOO --Triggered Nanoparticles for Real-Time Monitoring and Treatment of Early Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45574-45584. [PMID: 37729542 PMCID: PMC10561133 DOI: 10.1021/acsami.3c08033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Early detection and drug intervention with the appropriate timing and dosage are the main clinical challenges for ischemic stroke (IS) treatment. The conventional therapeutic agents relay fluorescent signals, which require real-time external light excitation, thereby leading to inevitable autofluorescence and poor tissue penetration. Herein, we report endogenous peroxynitrite (ONOO-)-activated BDP-4/Cur-CL NPs that release NIR afterglow signals (λmax 697 nm) for real-time monitoring of the progression of ischemia reperfusion (I/R) brain injury while releasing curcumin for the safe treatment of IS. The BDP-4/Cur-CL NPs exhibited bright NIR afterglow luminescence (maximum 732-fold increase), superb sensitivity (LOD = 82.67 nM), high energy-transfer efficiency (94.6%), deep tissue penetration (20 mm), outstanding antiapoptosis, and anti-inflammatory effects. The activated NIR afterglow signal obtained in mice with middle cerebral artery occlusion (MCAO) showed three functions: (i) the BDP-4/Cur-CL NPs are rapidly activated by endogenous ONOO-, instantly illuminating the lesion area, distinguishing I/R damage from normal areas, which can be successfully used for endogenous ONOO- detection in the early stage of IS; (ii) real-time reporting of in situ generation and dynamic fluctuations of endogenous ONOO- levels in the lesion area, which is of great value in monitoring the evolutionary mechanisms of IS; and (iii) dynamic monitoring of the release of curcumin drug for safe treatment. Indeed, the released curcumin effectively decreased apoptosis, enhanced survival, alleviated neuroinflammation, reduced brain tissue loss, and improved the cognition of MCAO stroke mice. This work is the first example of afterglow luminescence for early diagnosis, real-time reporting, drug tracing, and treatment for IS.
Collapse
Affiliation(s)
- Liping Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Ya-chao Wang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Yuqi Liao
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Qian Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Xia Liu
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Dongxia Zhu
- Key
Laboratory of Nanobiosensing and Nanobioanalysis at Universities of
Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Haixing Feng
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Martin R. Bryce
- Department
of Chemistry Durham, University Durham, Durham DH1 3LE, U.K.
| | - Lijie Ren
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| |
Collapse
|
36
|
Tao Y, Yan C, Wu Y, Li D, Li J, Xie Y, Cheng Y, Xu Y, Yang K, Zhu W, Guo Z. Uniting Dual‐Modal MRI/Chemiluminescence Nanotheranostics: Spatially and Sensitively Self‐Reporting Photodynamic Therapy in Oral Cancer. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 01/22/2025]
Abstract
AbstractUnpredictable in vivo therapeutic feedback of reactive oxygen species (ROS) efficiency is the major bottleneck of photodynamic therapy (PDT). Herein, novel PDT‐based nanotheranostics Pa–Mn&CH‐A@P are elaborately constructed for in vivo tracking biodistribution and in situ self‐reporting PDT, which innovatively unites magnetic resonance imaging (MRI) and chemiluminescence (CL) signals. Taking advantages of the versatility of lanthanide coordination chemistry and flash nanoprecipitation (FNP) technology, photosensitizers, MRI, and CL agents are unprecedently integrated within a stable and uniform nanotheranostic. Specifically, MRI signal offers detailed dose distribution of nanotheranostics with high‐spatial resolution, and CL signal timely performs in situ evaluation of ROS generation with high sensitivity. This dual‐modal MRI/CL nanotheranostic makes a breakthrough in high fidelity feedback for oral tumor, conquering the inherent unpredictable obstacles on spatially and sensitively reporting PDT.
Collapse
Affiliation(s)
- Yining Tao
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Chenxu Yan
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yue Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Juan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yuchen Xie
- Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Yingsheng Cheng
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kai Yang
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Wei‐Hong Zhu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Zhiqian Guo
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| |
Collapse
|
37
|
Yuan H, Ma J, Huang W, Gong P, Shi F, Xu X, Fu C, Wang X, Wong YK, Long Y, Sun X, Li W, Li Z, Wang J. Antitumor Effects of a Distinct Sonodynamic Nanosystem through Enhanced Induction of Immunogenic Cell Death and Ferroptosis with Modulation of Tumor Microenvironment. JACS AU 2023; 3:1507-1520. [PMID: 37234112 PMCID: PMC10206594 DOI: 10.1021/jacsau.3c00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Sonodynamic therapy (SDT) holds great promise to be applied for cancer therapy in clinical settings. However, its poor therapeutic efficacy has limited its applications owing to the apoptosis-resistant mechanism of cancer cells. Moreover, the hypoxic and immunosuppressive tumor microenvironment (TME) also weakens the efficacy of immunotherapy in solid tumors. Therefore, reversing TME remains a formidable challenge. To circumvent these critical issues, we developed an ultrasound-augmented strategy to regulate the TME by utilizing an HMME-based liposomal nanosystem (HB liposomes), which can synergistically promote the induction of ferroptosis/apoptosis/immunogenic cell death (ICD) and initiate the reprograming of TME. The RNA sequencing analysis demonstrated that apoptosis, hypoxia factors, and redox-related pathways were modulated during the treatment with HB liposomes under ultrasound irradiation. The in vivo photoacoustic imaging experiment showed that HB liposomes enhanced oxygen production in the TME, alleviated TME hypoxia, and helped to overcome the hypoxia of the solid tumors, consequently improving the SDT efficiency. More importantly, HB liposomes extensively induced ICD, resulting in enhanced T-cell recruitment and infiltration, which normalizes the immunosuppressive TME and facilitates antitumor immune responses. Meanwhile, the HB liposomal SDT system combined with PD1 immune checkpoint inhibitor achieves superior synergistic cancer inhibition. Both in vitro and in vivo results indicate that the HB liposomes act as a sonodynamic immune adjuvant that is able to induce ferroptosis/apoptosis/ICD via generated lipid-reactive oxide species during the SDT and reprogram TME due to ICD induction. This sonodynamic nanosystem integrating oxygen supply, reactive oxygen species generation, and induction of ferroptosis/apoptosis/ICD is an excellent strategy for effective TME modulation and efficient tumor therapy.
Collapse
Affiliation(s)
- Haitao Yuan
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Wei Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Ping Gong
- Department
of Emergency, Shenzhen People’s Hospital, The First Affiliated
Hospital, Southern University of Science
and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Fei Shi
- Department
of Infectious Disease, Shenzhen People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaolong Xu
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xiaoxian Wang
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Yin Kwan Wong
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ying Long
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xin Sun
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Weihua Li
- Medical
Imaging Department, Shenzhen Second People’s
Hospital/the First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen 518035, P. R. China
| | - Zhijie Li
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jigang Wang
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
38
|
Jia S, Ji S, Zhao J, Lv Y, Wang J, Sun D, Ding D. A Fluorinated Supramolecular Self-Assembled Peptide as Nanovaccine Adjuvant for Enhanced Cancer Vaccine Therapy. SMALL METHODS 2023; 7:e2201409. [PMID: 36802205 DOI: 10.1002/smtd.202201409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Indexed: 05/17/2023]
Abstract
Adjuvants play an important role in enhancing vaccine-induced immune protection. Adequate cellular uptake, robust lysosomal escape, and subsequent antigen cross-presentation are critical steps for vaccine adjuvants to effectively elicit cellular immunity. Here, a fluorinated supramolecular strategy to generate a series of peptide adjuvants by using arginine (R) and fluorinated diphenylalanine peptide (DP) is adopted. It is found that the self-assembly ability and antigen-binding affinity of these adjuvants increase with the number of fluorine (F) and can be regulated by R. By comparison, 4RDP(F5) shows the strongest binding affinity with model antigen ovalbumin (OVA) and the best performance in dendritic cells maturation and antigen's lysosomal escape, which contributes to the subsequent antigen cross-presentation. As a consequence, 4RDP(F5)-OVA nanovaccine generates a strong cellular immunity in a prophylactic OVA-expressing EG7-OVA lymphoma model, leading to long-term immune memory for resisting tumor challenge. What's more, 4RDP(F5)-OVA nanovaccine in combination with anti-programmed cell death ligand-1 (anti-PD-L1) checkpoint blockade could effectively elicit anti-tumor immune responses and inhibit tumor growth in a therapeutic EG7-OVA lymphoma model. Overall, this study demonstrates the simplicity and effectiveness of fluorinated supramolecular strategies for constructing adjuvants and might provide an attractive vaccine adjuvant candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shenglu Ji
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yonghui Lv
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiayang Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
39
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
40
|
Tang Q, Sun S, Wang P, Sun L, Wang Y, Zhang L, Xu M, Chen J, Wu R, Zhang J, Gong M, Chen Q, Liang X. Genetically Engineering Cell Membrane-Coated BTO Nanoparticles for MMP2-Activated Piezocatalysis-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300964. [PMID: 36809650 DOI: 10.1002/adma.202300964] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Tumor immunotherapy based on immune checkpoint blockade (ICB) still suffers from low host response rate and non-specific distribution of immune checkpoint inhibitors, greatly compromising the therapeutic efficiency. Herein, cellular membrane stably expressing matrix metallopeptidase 2 (MMP2)-activated PD-L1 blockades is engineered to coat ultrasmall barium titanate (BTO) nanoparticle for overcoming the immunosuppressive microenvironment of tumors. The resulting M@BTO NPs can significantly promote the BTO's tumor accumulation, while the masking domains on membrane PD-L1 antibodies are cleaved when exposure to MMP2 highly expressed in tumor. With ultrasound (US) irradiation, M@BTO NPs can simultaneously generate reactive oxygen species (ROS) and O2 based on BTO mediated piezocatalysis and water splitting, significantly promoting the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) and improving the PD-L1 blockade therapy to the tumor, resulting in effective tumor growth inhibition and lung metastasis suppression in a melanoma mouse model. This nanoplatform combines MMP2-activated genetic editing cell membrane with US responsive BTO for both immune stimulation and specific PD-L1 inhibition, providing a safe and robust strategy in enhancing immune response against tumor.
Collapse
Affiliation(s)
- Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
41
|
Zheng Z, Yang T, Li D, Cao H, Gong J, Liu H, Zhou C, Liu L, Wei P, Gu X, Lu P, Qian J, Tang BZ. Molecular and Aggregate Synergistic Engineering of Aggregation-Induced Emission Luminogens to Manipulate Optical/Electronic Properties for Efficient and Diversified Functions. ACS NANO 2023; 17:8782-8795. [PMID: 37074290 DOI: 10.1021/acsnano.3c02134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The optical/electronic properties of organic luminescent materials can be regulated by molecular structure modification, which not only requires sophisticated and time-consuming synthesis but also is unable to accurately afford the optical properties of materials in the aggregate state. Herein, a facile strategy of molecular and aggregate synergistic engineering is proposed to manipulate the optical/electronic properties of a luminogen, ACIK, in the solid state for efficient and diversified functions. ACIK is facilely synthesized and exhibits three polymorphic states (ACIK-Y, ACIK-R, and ACIK-N) with a large emission difference of 102 nm from yellow to near-infrared (NIR). Their structure-property relationships were investigated by crystallographic analyses and computational studies. ACIK-Y, with the most twisted structure, exhibits an intriguing color-tuned fluorescence between yellow and NIR in the solid state in response to multiple stimuli. Shuttle-like ACIK-R microcrystals exhibit an optical waveguide property with a low optical loss coefficient of 19 dB mm-1. ACIK dots display bright NIR-I emission, large Stokes shift, and strong NIR-II two-photon absorption. ACIK dots show specific lipid droplets-targeting capability and can be successfully applied for two-photon fluorescence imaging of mouse brain vasculature with deep penetration and high spatial resolution. This study will inspire more insights in developing advanced optical/electronic materials based on a single chromophore for practical applications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
- School of Optical and Electronic Information-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Cao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haixiang Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, China
| | - Peifa Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230093, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
42
|
Dai J, Wei S, Xu J, Xue H, Chen Z, Wu M, Chen W, Lou X, Xia F, Wang S. Microneedle Device Delivering Aggregation-Induced Emission Photosensitizers for Enhanced Metronomic Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16526-16538. [PMID: 36966512 DOI: 10.1021/acsami.3c01682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metronomic photodynamic therapy (mPDT), which induces cancer cell death by prolonged intermittent continuous irradiation at lower light power, has profoundly promising applications. However, the photobleaching sensitivity of the photosensitizer (PS) and the difficulty of delivery pose barriers to the clinical application of mPDT. Here, we constructed a microneedle-based device (Microneedles@AIE PSs) that combined with aggregation-induced emission (AIE) PSs to achieve enhanced mPDT for cancer. Due to the strong anti-photobleaching property of the AIE PS, it can maintain superior photosensitivity even after long-time light exposure. The delivery of the AIE PS to the tumor through a microneedle device allows for greater uniformity and depth. This Microneedles@AIE PSs-based mPDT (M-mPDT) offers better treatment outcomes and easier access, and combining M-mPDT with surgery or immunotherapy can also significantly improve the effectiveness of these clinical therapies. In conclusion, M-mPDT offers a promising strategy for the clinical application of PDT due to its better efficacy and convenience.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| |
Collapse
|
43
|
Jiang G, Wang J, Zhong Tang B. Anion-π Type Aggregation-Induced Emission Luminogens. ChemMedChem 2023; 18:e202200697. [PMID: 36653309 DOI: 10.1002/cmdc.202200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
As a type of important non-covalent interactions that can efficiently prohibit π-π interaction to avoid quenching of luminescence, anion-π interactions are receiving growing attention for the fabrication of aggregation-induced emission luminogens (AIEgens) since 2017. The obtained anion-π type AIEgens can be applied in the fields of wash-free bioimaging and long-term tracking of subcellular organelle, photodynamic anti-cancer and anti-bacterial therapy due to their good water solubility, superior photostability and excellent reactive oxygen species generation ability. Moreover, anion-π type AIEgens were also further constructed for room temperature phosphorescence by taking advantages of the heavy-atom participated anion-π interactions. This concept article provides a brief summary of this field, mainly focusing on the design strategy, photophysical properties and applications of anion-π type AIEgens.
Collapse
Affiliation(s)
- Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| |
Collapse
|