1
|
Singh Kakan S, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and tear autoantibodies from NOD and NOR mice as potential diagnostic indicators of local and systemic inflammation in Sjögren's disease. Front Immunol 2025; 15:1516330. [PMID: 39936155 PMCID: PMC11810956 DOI: 10.3389/fimmu.2024.1516330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male non-obese diabetic (NOD) and male non-obese insulitis resistant (NOR) mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Sources of Ig in tears were investigated using scRNA-Seq of the LG (GSE132420). Data were analyzed by R package Limma and Seurat. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Igha and Ighg2b expressing cells were identified in the plasma cell cluster of NOD.H2b LG. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sara Abdelhamid
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Yaping Ju
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - J. Andrew MacKay
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Indu Raman
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Xu J, Si S, Han Y, Zeng L, Zhao J. Genetic insight into dissecting the immunophenotypes and inflammatory profiles in the pathogenesis of Sjogren syndrome. J Transl Med 2025; 23:56. [PMID: 39806364 PMCID: PMC11726950 DOI: 10.1186/s12967-024-05993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS). METHODS Our study leveraged the genetic variants of multi-omics statistics extracted from genome-wide association study (GWAS), the University of Bristol and the FinnGen study. We performed a bidirectional Mendelian randomization and mediation study based on randomly allocated instrumental variables to infer causality, followed by external validation with UK Biobank data and Bayesian colocalization. RESULTS We demonstrated that an elevated level of CD27 on IgD + CD24 + B cell, a subset of B cells expressing both IgD and CD24, was associated with a higher risk of SS (OR = 1.119, 95% CI: 1.061-1.179, P < 0.001), while CD3 on CD45RA + CD4 + Treg was a protective factor (OR = 0.917, 95%CI: 0.877-0.959, P < 0.001). Results of meta-analysis and colocalization further supported the significant results identified in the primary analysis. A total of 4 inflammatory cytokines and 7 circulating proteins exhibited potential causal relationships with SS despite no significant result achieved after FDR correction. Finally, results of mediation analysis indicated that CD40L receptor levels had significant mediating effects (β = 0.0314, 95% CI: 0.0004-0.0624, P = 0.0471) at a mediation proportion of 28% (95% CI: 0.364%-55.6%) in causal relationship between CD27 on IgD + CD24 + B cell and SS. CONCLUSIONS By providing a novel genetic insight into unveiling the roles of autoimmunity and inflammation in Sjogren syndrome, our findings may potentially lead to identifying new clinical biomarkers for disease monitoring and therapeutic targets that offer more effective alternatives for treating this condition. Therefore, our study may provide valuable evidence for future clinical intervention and targeted immunotherapy.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Yijun Han
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China
| | - Lin Zeng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
4
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
5
|
Hasegawa K, Raudales JLM, I T, Yoshida T, Honma R, Iwatake M, Tran SD, Seki M, Asahina I, Sumita Y. Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease. Front Bioeng Biotechnol 2023; 11:1144624. [PMID: 37168614 PMCID: PMC10164970 DOI: 10.3389/fbioe.2023.1144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.
Collapse
Affiliation(s)
- Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshida
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D. Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Depatment of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- *Correspondence: Yoshinori Sumita,
| |
Collapse
|
6
|
Witas R, Rasmussen A, Scofield RH, Radfar L, Stone DU, Grundahl K, Lewis D, Sivils KL, Lessard CJ, Farris AD, Nguyen CQ. Defective Efferocytosis in a Murine Model of Sjögren's Syndrome Is Mediated by Dysfunctional Mer Tyrosine Kinase Receptor. Int J Mol Sci 2021; 22:9711. [PMID: 34575873 PMCID: PMC8466327 DOI: 10.3390/ijms22189711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease primarily involving the exocrine glands in which the involvement of the innate immune system is largely uncharacterized. Mer signaling has been found to be protective in several autoimmune diseases but remains unstudied in SjS. Here, we investigated the role of Mer signaling in SjS. Mer knockout (MerKO) mice were examined for SjS disease criteria. SjS-susceptible (SjSS) C57BL/6.NOD-Aec1Aec2 mice were assessed for defective Mer signaling outcomes, soluble Mer (sMer) levels, A disintegrin and metalloprotease 17 (ADAM17) activity, and Rac1 activation. In addition, SjS patient plasma samples were evaluated for sMer levels via ELISA, and sMer levels were correlated to disease manifestations. MerKO mice developed submandibular gland (SMG) lymphocytic infiltrates, SMG apoptotic cells, anti-nuclear autoantibodies (ANA), and reduced saliva flow. Mer signaling outcomes were observed to be diminished in SjSS mice, as evidenced by reduced Rac1 activation in SjSS mice macrophages in response to apoptotic cells and impaired efferocytosis. Increased sMer was also detected in SjSS mouse sera, coinciding with higher ADAM17 activity, the enzyme responsible for cleavage and inactivation of Mer. sMer levels were elevated in patient plasma and positively correlated with focus scores, ocular staining scores, rheumatoid factors, and anti-Ro60 levels. Our data indicate that Mer plays a protective role in SjS, similar to other autoimmune diseases. Furthermore, we suggest a series of events where enhanced ADAM17 activity increases Mer inactivation and depresses Mer signaling, thus removing protection against the loss of self-tolerance and the onset of autoimmune disease in SjSS mice.
Collapse
Affiliation(s)
- Richard Witas
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32608, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - Robert H. Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Lida Radfar
- Department of Oral Diagnosis and Radiology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Donald U. Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kiely Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - David Lewis
- Department of Oral Pathology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
| | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32608, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL 32611-0880, USA
| |
Collapse
|
7
|
Dela Cruz A, Kartha V, Tilston-Lunel A, Mi R, Reynolds TL, Mingueneau M, Monti S, Jensen JL, Skarstein K, Varelas X, Kukuruzinska MA. Gene expression alterations in salivary gland epithelia of Sjögren's syndrome patients are associated with clinical and histopathological manifestations. Sci Rep 2021; 11:11154. [PMID: 34045583 PMCID: PMC8159963 DOI: 10.1038/s41598-021-90569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex autoimmune disease associated with lymphocytic infiltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fibrotic responses in SS. To define molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non-SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non-SS samples, there was a potential intermediate state overlapping clustering of SS and non-SS samples. Differential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN-γ and JAK/STAT-regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identification of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defined by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may offer novel insights into the signals contributing to SS development and progression.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA
| | - Vinay Kartha
- Department of Medicine, Boston University School of Medicine, Boston, USA
| | | | - Rongjuan Mi
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Stefano Monti
- Department of Medicine, Boston University School of Medicine, Boston, USA
| | | | | | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| | - Maria A Kukuruzinska
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA.
| |
Collapse
|
8
|
Proctor GB, Shaalan AM. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J Dent Res 2021; 100:1201-1209. [PMID: 33870742 PMCID: PMC8461045 DOI: 10.1177/00220345211004842] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the physiological control of salivary secretion has been well studied, the impact of disease on salivary gland function and how this changes the composition and function of saliva is less well understood and is considered in this review. Secretion of saliva is dependent upon nerve-mediated stimuli, which activate glandular fluid and protein secretory mechanisms. The volume of saliva secreted by salivary glands depends upon the frequency and intensity of nerve-mediated stimuli, which increase dramatically with food intake and are subject to facilitatory or inhibitory influences within the central nervous system. Longer-term changes in saliva secretion have been found to occur in response to dietary change and aging, and these physiological influences can alter the composition and function of saliva in the mouth. Salivary gland dysfunction is associated with different diseases, including Sjögren syndrome, sialadenitis, and iatrogenic disease, due to radiotherapy and medications and is usually reported as a loss of secretory volume, which can range in severity. Defining salivary gland dysfunction by measuring salivary flow rates can be difficult since these vary widely in the healthy population. However, saliva can be sampled noninvasively and repeatedly, which facilitates longitudinal studies of subjects, providing a clearer picture of altered function. The application of omics technologies has revealed changes in saliva composition in many systemic diseases, offering disease biomarkers, but these compositional changes may not be related to salivary gland dysfunction. In Sjögren syndrome, there appears to be a change in the rheology of saliva due to altered mucin glycosylation. Analysis of glandular saliva in diseases or therapeutic interventions causing salivary gland inflammation frequently shows increased electrolyte concentrations and increased presence of innate immune proteins, most notably lactoferrin. Altering nerve-mediated signaling of salivary gland secretion contributes to medication-induced dysfunction and may also contribute to altered saliva composition in neurodegenerative disease.
Collapse
Affiliation(s)
- G B Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A M Shaalan
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Salivary exosomes as a new therapy to ameliorate diabetes mellitus and combat xerostomia and submandibular salivary glands dysfunction in diabetic rats. J Mol Histol 2021; 52:467-477. [PMID: 33389429 DOI: 10.1007/s10735-020-09935-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023]
Abstract
Diabetes mellitus (DM) is one of the major metabolic diseases. Xerostomia and salivary gland dysfunction are of its common oral complications. Exosomes, as a new therapeutic potential containing nucleic acids, proteins and lipids, act as effective vehicles for target molecules delivery. Accordingly, their therapeutic use is gaining much interest. Therefore, this work aimed to assess the therapeutic efficacy of salivary exosomes in ameliorating DM and combating xerostomia as a complication of salivary gland dysfunction in diabetic rats. In the current study, salivary exosomes were injected intravenously to rats of group II (Salivary Exo-treated group) one week after diabetes induction. Group I (Diabetic group) was left untreated. Blood sugar level was checked weekly. Water intake, salivary flow rate, salivary amylase and serum nitric oxide were assessed before and after diabetes induction and at the end of the study. After 5 weeks from the beginning of the study, salivary gland tissues were dissected and examined histologically and ultrastructurally. Gene expression of the inflammatory markers NFκB/p65 and TNFα was assessed by polymerase chain reaction. The results showed that salivary exosomes reduced blood glucose levels and enhanced salivary glands' function. This was indicated by a decrease in water intake, salivary amylase and serum nitric oxide in addition to an increase in salivary flow rate. This was confirmed histologically, ultrastructurally and via downregulation of NFκB/p65 and TNFα gene expression. Our results concluded that salivary exosomes could be considered as a novel cell free based therapy in treatment of xerostomia and salivary gland dysfunction in DM.
Collapse
|
10
|
Cepeda JR, Sekhar NS, Han J, Xiong W, Zhang N, Yu L, Dai S, Davidson HW, Kappler JW, An Z, Zhang L. A monoclonal antibody with broad specificity for the ligands of insulin B:9-23 reactive T cells prevents spontaneous type 1 diabetes in mice. MAbs 2020; 12:1836714. [PMID: 33151102 PMCID: PMC7668530 DOI: 10.1080/19420862.2020.1836714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of T cells specific for insulin B chain amino acids 9 to 23 (B:9–23) is essential for the initiation of type 1 diabetes (T1D) in non-obese diabetic mice. We previously reported that peptide/MHC complexes containing optimized B:9–23 mimotopes can activate most insulin-reactive pathogenic T cells. A monoclonal antibody (mAb287) targeting these complexes prevented disease in 30–50% of treated animals (compared to 10% of animals given an isotype control). The incomplete protection is likely due to the relatively low affinity of the antibody for its ligand and limited specificity. Here, we report an enhanced reagent, mAb757, with improved specificity, affinity, and efficacy in modulating T1D. Importantly, mAb757 bound with nanomolar affinity to agonists of both “type A” and “type B” cells and suppressed “type B” cells more efficiently than mAb287. When given weekly starting at 4 weeks of age, mAb757 protected ~70% of treated mice from developing T1D for at least 35 weeks, while mAb287 only delayed disease in 25% of animals under the same conditions. Consistent with its higher affinity, mAb757 was also able to stain antigen-presenting cells loaded with B:9–23 mimotopes in vivo. We conclude that monoclonal antibodies that can block the presentation of pathogenic T cell receptor epitopes are viable candidates for antigen-specific immunotherapy for T1D.
Collapse
Affiliation(s)
- Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Nitin S Sekhar
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Junying Han
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| | - Wei Xiong
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Ningyan Zhang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - Shaodong Dai
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver , Aurora, Colorado, USA
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver , Aurora, Colorado, USA
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health , Denver, Colorado, USA
| | - Zhiqiang An
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center , Houston, Texas, USA
| | - Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine , Houston, Texas, USA
| |
Collapse
|
11
|
Lee J, Alam J, Choi E, Ko YK, Lee A, Choi Y. Association of a dysbiotic oral microbiota with the development of focal lymphocytic sialadenitis in IκB-ζ-deficient mice. NPJ Biofilms Microbiomes 2020; 6:49. [PMID: 33127905 PMCID: PMC7599236 DOI: 10.1038/s41522-020-00158-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023] Open
Abstract
Mice lacking IκB-ζ, a protein encoded by the Nfkbiz gene, spontaneously develop a Sjögren’s syndrome-like disease involving the lachrymal glands, but no salivary gland symptoms have been reported. We found that Nfkbiz−/− female mice presented a significantly reduced salivary flow rate, focal lymphocytic sialadenitis (FLS), and a dysbiotic oral microbiota at week 24. To dissect the contributions of genetic and environmental factors to the salivary gland phenotype, Nfkbiz+/+ and Nfkbiz−/− mice were cohoused after weaning and evaluated at week 20. Cohousing alleviated the salivary gland phenotype of Nfkbiz−/− mice but did not induce any disease phenotype in Nfkbiz+/+ mice. Additionally, the oral microbiota in the cohoused mice was synchronized toward that in Nfkbiz+/+ mice. In conclusion, IκB-ζ-deficient mice developed hyposalivation and FLS, in which a dysbiotic oral microbiota played an important role. This finding suggests that the dysbiotic oral microbiota could be a therapeutic target.
Collapse
Affiliation(s)
- Junho Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jehan Alam
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eunji Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yeon Kyeong Ko
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
12
|
Ohno Y, Satoh K, Shitara A, Into T, Kashimata M. Arginase 1 is involved in lacrimal hyposecretion in male NOD mice, a model of Sjögren's syndrome, regardless of dacryoadenitis status. J Physiol 2020; 598:4907-4925. [PMID: 32780506 PMCID: PMC7693353 DOI: 10.1113/jp280090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/01/2020] [Indexed: 01/14/2023] Open
Abstract
Key points Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Abstract Lacrimal fluid (tears) is important for preservation of the ocular surface, and thus lacrimal hyposecretion in Sjögren's syndrome (SS) leads to reduced quality of life. However, the cause(s) of lacrimal hyposecretion remains unknown, even though many studies have been conducted from the perspective of inflammation. Here, we hypothesized that a non‐inflammatory factor induces lacrimal hyposecretion in SS pathology, and to elucidate such a factor, we conducted transcriptome analysis of the lacrimal glands in male non‐obese diabetic (NOD) mice as an SS model. The NOD mice showed inflammatory cell infiltration and decreased pilocarpine‐induced tear secretion at and after 6 weeks of age compared to age‐matched BALB/c mice. RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated, whereas many genes relating to inflammation were upregulated, in the lacrimal glands of male NOD mice after onset of lacrimal hyposecretion and dacryoadenitis (lacrimal gland inflammation). Changes in the level of arginase 1 expression were confirmed by real‐time RT‐PCR and western blot analysis. Furthermore, non‐dacryoadenitis‐type NOD mice were used to investigate the relationships among arginase 1 expression, lacrimal hyposecretion and dacryoadenitis. Interestingly, these NOD mice retained the phenotype of dacryoadenitis with regard to tear secretion and arginase 1 expression level. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. In conclusion, a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. These results shed light on the pathophysiological role of arginase 1 in SS (dry eye). Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan.,Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
13
|
Tulek A, Mulic A, Refsholt Stenhagen K, Galtung HK, Saeed M, Utheim TP, Khuu C, Galteland P, Sehic A. Dental erosion in mice with impaired salivary gland function. Acta Odontol Scand 2020; 78:390-400. [PMID: 32141357 DOI: 10.1080/00016357.2020.1734234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Salivary flow rate exerts an essential impact on the development and progression of dental erosion. In this work, the experimental dental erosion in non-obese diabetic (NOD) mice with reduced salivary flow rate was induced, and the erosive effect of acidic drinks on their dentition was studied.Material and methods: Three acidic drinks (sports drink, cola light drink and sugar containing cola drink) were given to adult NOD mice (groups: N = 11) as the only drink for 6 weeks. Two control groups were included; wild type and NOD control (groups: N = 9). Experimental and control (water) teeth were dissected out and observed by scanning electron microscopy (SEM). Mandibular first molars were subsequently embedded in Epon, ground transversely, observed again by SEM, and the enamel thickness and tooth height were measured.Results: Mandibular molars were considerably more eroded than maxillary molars. The erosive process started at the top of the cusps and subsequently extended in the cervical, mesio-distal, and pulpal direction. Erosive lesions were evident in increased succession from sports drink, cola light to cola drink exposed mandibular molars, with the lingual tooth height being approximately 23%, 26%, and 37% lower, respectively, compared to the control. The lingual enamel was approximately 48% thinner in sports drink molars and 62% thinner in cola light molars. In cola drink molars, the lingual enamel was totally eroded, and significant erosion of dentine was evident.Conclusion: Reduced salivary flow, together with a high consumption of acidic drinks, results in severe erosion of NOD mice molars.
Collapse
Affiliation(s)
- Amela Tulek
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Aida Mulic
- Nordic Institute of Dental Materials (NIOM AS), Oslo, Norway
| | | | - Hilde Kanli Galtung
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Muhammad Saeed
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Cuong Khuu
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Pål Galteland
- Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Alam J, Lee A, Lee J, Kwon DI, Park HK, Park JH, Jeon S, Baek K, Lee J, Park SH, Choi Y. Dysbiotic oral microbiota and infected salivary glands in Sjögren's syndrome. PLoS One 2020; 15:e0230667. [PMID: 32208441 PMCID: PMC7092996 DOI: 10.1371/journal.pone.0230667] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Key events in the pathogenesis of Sjӧgren syndrome (SS) include the change of salivary gland epithelial cells into antigen-presenting cell-like phenotypes and focal lymphocytic sialadenitis (FLS). However, what triggers these features in SS is unknown. Dysbiosis of the gut and oral microbiomes is a potential environmental factor in SS, but its connection to the etiopathogenesis of SS remains unclear. This study aimed to characterize the oral microbiota in SS and to investigate its potential role in the pathogenesis of SS. Oral bacterial communities were collected by whole mouthwash from control subjects (14 without oral dryness and 11 with dryness) and primary SS patients (8 without oral dryness and 17 with dryness) and were analyzed by pyrosequencing. The SS oral microbiota was characterized by an increased bacterial load and Shannon diversity. Through comparisons of control and SS in combined samples and then separately in non-dry and dry conditions, SS-associated taxa independent of dryness were identified. Three SS-associated species and 2 control species were selected and used to challenge human submandibular gland tumor (HSG) cells. Among the selected SS-associated bacterial species, Prevotella melaninogenica uniquely upregulated the expression of MHC molecules, CD80, and IFNλ in HSG cells. Concomitantly, P. melaninogenica efficiently invaded HSG cells. Sections of labial salivary gland (LSG) biopsies from 8 non-SS subjects and 15 SS patients were subjected to in situ hybridization using universal and P. melaninogenica-specific probes. Ductal cells and the areas of infiltration were heavily infected with bacteria in the LSGs with FLS. Collectively, dysbiotic oral microbiota may initiate the deregulation of SGECs and the IFN signature through bacterial invasion into ductal cells. These findings may provide new insights into the etiopathogenesis of SS.
Collapse
Affiliation(s)
- Jehan Alam
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Ahreum Lee
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Junho Lee
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Dong Il Kwon
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Hee Kyung Park
- Departments of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Sumin Jeon
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Keumjin Baek
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| | - Jennifer Lee
- Division of Rheumatology, Internal medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Internal medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Youngnim Choi
- Departments of Immunology and Molecular Microbiology, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
15
|
Hyperglycemia and Salivary Gland Dysfunction in the Non-obese Diabetic Mouse: Caveats for Preclinical Studies in Sjögren's Syndrome. Sci Rep 2019; 9:17969. [PMID: 31784615 PMCID: PMC6884560 DOI: 10.1038/s41598-019-54410-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The Non-obese Diabetic (NOD) mouse model for type I diabetes also develops some features of Sjögren’s syndrome (SS). Since the source of the mice and the environment exert a strong influence on diabetes, this study investigated SS development in NOD mice obtained from two vendors. Female NOD mice from The Jackson Laboratory (JAX) and Taconic Biosciences were monitored for blood glucose and pilocarpine-induced salivation. The gut microbiome was analyzed by 16S rRNA sequencing of stool DNA. At euthanasia, serum cytokines and sialoadenitis severity were evaluated. The onset of diabetes was significantly accelerated in JAX mice compared to Taconic mice. Although the gut microbiome between the two groups was distinct, both groups developed sialoadenitis. There was no correlation between the severity of sialoadenitis and reduced saliva production. Instead, salivary gland dysfunction was associated with hyperglycemia and elevation of serum IL1β, IL16, and CXCL13. Our data suggest that inflammatory pathways linked with hyperglycemia are confounding factors for salivary gland dysfunction in female NOD mice, and might not be representative of the mechanisms operative in SS patients. Considering that NOD mice have been used to test numerous experimental therapies for SS, caution needs to be exerted before advancing these therapeutics for human trials.
Collapse
|
16
|
Cho BJ, Hwang JS, Shin YJ, Kim JW, Chung TY, Hyon JY. Rapamycin Rescues Endoplasmic Reticulum Stress-Induced Dry Eye Syndrome in Mice. Invest Ophthalmol Vis Sci 2019; 60:1254-1264. [PMID: 30924850 DOI: 10.1167/iovs.18-25583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate whether rapamycin protects tear production and the ocular surface during endoplasmic reticulum (ER) stress-induced dry eye syndrome in mice. Methods Tunicamycin was injected intraperitoneally in BALB/c mice without or with rapamycin (TM or RM5 group). Peritoneal injection of PBS performed in vehicle group. Group without injection served as control. Blinking rate, fluorescein staining score (FSS), and phenol red thread tear production test were measured at 4 days, 1 week, and 2 weeks after treatment. Levels of inflammatory and angiogenic cytokines were measured by ELISA. Results Blinking rate and FSS were elevated, and tear production was decreased in TM group compared with controls (P < 0.05 for all), which was ameliorated by rapamycin at 1 and 2 weeks. Levels of inflammatory and angiogenic cytokines in the cornea and lacrimal glands were higher in the TM group than controls, and lower in the RM5 group than the TM group at 1 and 2 weeks (P < 0.05 for all). Conclusion Rapamycin protected tear production and the ocular surface against this dry eye syndrome by ameliorating ER stress-induced vascular damage and inflammation of lacrimal glands and the ocular surface.
Collapse
Affiliation(s)
- Bum-Joo Cho
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Jeong Won Kim
- Department of Pathology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Department of Ophthalmology, Samsung Medical Center, Sungkyukwan University School of Medicine, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| |
Collapse
|
17
|
Scuron MD, Fay B, Oliver J, Smith P. Spontaneous Model of Sjögren's Syndrome in NOD Mice. ACTA ACUST UNITED AC 2019; 86:e65. [DOI: 10.1002/cpph.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Dietrich J, Schrader S. Towards Lacrimal Gland Regeneration: Current Concepts and Experimental Approaches. Curr Eye Res 2019; 45:230-240. [PMID: 31246108 DOI: 10.1080/02713683.2019.1637438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dry eye disease (DED) is a complex and multifactorial disease resulting in a continual cycle of tear hyperosmolarity and inflammation. Patients suffering from DED experience severe pain and visual impairments leading to a reduced quality of life. Aqueous-deficient dry eye (ADDE), mainly caused through a loss of functional lacrimal gland tissue, results in the most severe forms of DED. Despite a high prevalence, the current treatments remain palliative and may be insufficient to alleviate the symptoms. Consequently, investigations on experimental approaches for in situ lacrimal gland regeneration are of great clinical interest. This article reviews the current knowledge about processes involved in lacrimal gland regeneration, about lacrimal gland resident stem cells, and offers deductions about possible concepts for in situ lacrimal gland regeneration. Promising starting points might be the utilization of therapeutic proteins, such as bone morphogenetic protein 7, mesenchymal stem cells (MSC) or MSC-based treatments such as conditioned medium, lyophilized cell extracts or adult acinar cells. This review further summarizes current experimental approaches for the treatment of ADDE in animal models and patients. Approaches investigating side population stem cells, epithelial progenitor cells and MSC showed that the transplantation of these cells had therapeutic effects on ADDE. However, the most promising and best-studied experimental approach is the use of MSC for induction/enhancement of in situ lacrimal gland regeneration. Their immunomodulatory effects, low immunogenicity, promotion of tissue regeneration and involvement during spontaneous lacrimal regeneration are favorable traits for clinical applications. In addition, the efficacy and safety of allogeneic MSC transplantation have already been demonstrated in a small patient cohort.
Collapse
Affiliation(s)
- Jana Dietrich
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
19
|
Wieczorek G, Bigaud M, Pfister S, Ceci M, McMichael K, Afatsawo C, Hamburger M, Texier C, Henry M, Cojean C, Erard M, Mamber N, Rush JS. Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren's syndrome. Ann Rheum Dis 2019; 78:974-978. [PMID: 30902822 DOI: 10.1136/annrheumdis-2018-213929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To examine the role of CD40-CD154 costimulation and effects of therapeutic pathway blockade in the non-obese diabetic (NOD/ShiLtJ) model of Sjögren's syndrome (SS). METHODS We assessed leucocyte infiltration in salivary glands (SGs) from NOD/ShiLtJ mice by immunohistochemistry and examined transcriptomics data of SG tissue from these animals for evidence of a CD40 pathway gene signature. Additionally, we dosed MR1 (anti-CD154 antibody) in NOD mice after the onset of SS-like disease and examined the effects of MR1 treatment on sialadenitis, autoantibody production, SG leucocyte infiltration, gene expression downstream of CD40 and acquaporin 5 (AQP5) expression. RESULTS We could detect evidence of CD40 expression and pathway activation in SG tissue from NOD mice. Additionally, therapeutic treatment with MR1 suppressed CD40 pathway genes and sialadenitis, inhibited ectopic lymphoid structure formation and autoantibody production, as well as decreased the frequency of antibody-secreting cells in SGs but had minimal effects on AQP5 expression in NOD/ShiLtJ SGs. CONCLUSION CD40-CD154 interactions play an important role in key pathological processes in a mouse model of SS, suggesting that blockade of this costimulatory pathway in the clinic may have beneficial therapeutic effects in patients suffering from this autoimmune exocrinopathy.
Collapse
Affiliation(s)
- Grazyna Wieczorek
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Marc Bigaud
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Sabina Pfister
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Melanie Ceci
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Katriona McMichael
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Catherine Afatsawo
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Meike Hamburger
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Celine Texier
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Maurane Henry
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Celine Cojean
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Marinette Erard
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - Nadja Mamber
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| | - James S Rush
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research Basel, Basel, Switzerland
| |
Collapse
|
20
|
Kim JW, Kim SM, Park JS, Hwang SH, Choi J, Jung KA, Ryu JG, Lee SY, Kwok SK, Cho ML, Park SH. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren's syndrome. Arthritis Res Ther 2019; 21:136. [PMID: 31164166 PMCID: PMC6549273 DOI: 10.1186/s13075-019-1904-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Activated T and B cells participate in the development and progression of Sjögren’s syndrome (SS). Metformin, a first-line anti-diabetic drug, exerts anti-inflammatory and immunomodulatory effects by activating AMPK. We investigated the therapeutic effect of metformin in non-obese diabetic (NOD)/ShiLtJ mice, an animal model of SS. Methods Metformin or vehicle was administered orally to the mice for 9 weeks. The salivary flow rate was measured at 11, 13, 15, 17, and 20 weeks. Histological analysis of the salivary glands from vehicle- and metformin-treated mice was conducted. CD4+ T and B cell differentiation in the peripheral blood and/or spleen was determined by flow cytometry. Serum total IgG, IgG1, and IgG2a levels were determined by enzyme-linked immunosorbent assay. Results Metformin reduced salivary gland inflammation and restored the salivary flow rate. Moreover, metformin reduced the interleukin (IL)-6, tumor necrosis factor-α, IL-17 mRNA, and protein levels in the salivary glands. Metformin reduced the Th17 and Th1 cell populations and increased the regulatory T cell population in the peripheral blood and spleen and modulated the balance between Tfh and follicular regulatory T cells. In addition, metformin reduced B cell differentiation into germinal center B cells, decreased the serum immunoglobulin G level, and maintained the balance between IL-10- and IL-17-producing B cells. Conclusion Metformin suppresses effector T cells, induces regulatory T cells, and regulates B cell differentiation in an animal model of SS. In addition, metformin ameliorates salivary gland inflammation and hypofunction, suggesting that it has potential for the treatment of SS. Electronic supplementary material The online version of this article (10.1186/s13075-019-1904-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Sung-Min Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ah Jung
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Geol Ryu
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Klinngam W, Fu R, Janga SR, Edman MC, Hamm-Alvarez SF. Cathepsin S Alters the Expression of Pro-Inflammatory Cytokines and MMP-9, Partially through Protease-Activated Receptor-2, in Human Corneal Epithelial Cells. Int J Mol Sci 2018; 19:E3530. [PMID: 30423938 PMCID: PMC6274678 DOI: 10.3390/ijms19113530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Cathepsin S (CTSS) activity is increased in tears of Sjögren's syndrome (SS) patients. This elevated CTSS may contribute to ocular surface inflammation. Human corneal epithelial cells (HCE-T cells) were treated with recombinant human CTSS at activity comparable to that in SS patient tears for 2, 4, 8, and 24 h. Acute CTSS significantly increased HCE-T cell gene and protein expression of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) from 2 to 4 h, while matrix metalloproteinase 9 (MMP-9), CTSS, and protease-activated receptor-2 (PAR-2) were increased by chronic CTSS (24 h). To investigate whether the increased pro-inflammatory cytokines and proteases were induced by CTSS activation of PAR-2, HCE-T cells were transfected with PAR-2 siRNA, reducing cellular PAR-2 by 45%. Cells with reduced PAR-2 expression showed significantly reduced release of IL-6, TNF-α, IL-1β, and MMP-9 into culture medium in response to acute CTSS, while IL-6, TNF-α, and MMP-9 were reduced in culture medium, and IL-6 and MMP-9 in cell lysates, after chronic CTSS. Moreover, cells with reduced PAR-2 expression showed reduced ability of chronic CTSS to induce gene expression of pro-inflammatory cytokines and proteases. CTSS activation of PAR-2 may represent a potential therapeutic target for amelioration of ocular surface inflammation in SS patients.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
22
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Sisto M, Lorusso L, Ingravallo G, Tamma R, Nico B, Ribatti D, Ruggieri S, Lisi S. Reduced myofilament component in primary Sjögren's syndrome salivary gland myoepithelial cells. J Mol Histol 2018; 49:111-121. [PMID: 29302763 DOI: 10.1007/s10735-017-9751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/30/2017] [Indexed: 02/07/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a solitary poorly understood autoimmune inflammatory disease by involvement of the salivary and lacrimal glands resulting in dry mouth and dry eyes. Myoepithelial cells (MECs) are cells knowing for its hybrid epithelial and mesenchymal phenotype that are important components of the salivary gland (SGs) structure aiding the expulsion of saliva from acinar lobules. In this study we investigate possible alteration in the myofilament component of MECs in SGs specimens obtained from pSS patients in comparison with healthy subjects, to evaluate MECs hypothetical involvement in the pathogenesis of pSS. The expression of alpha-smooth muscle actin (α-SMA) and p63, as MECs markers, was evaluated in bioptic specimens from pSS and healthy labial SGs through immunohistochemistry and immunofluorescence analyses; the distribution of MECs markers was quantified using Aperio ScanScope and ImageScope software to provide quantitative assessments of staining levels. Our observations demonstrated that p63 nuclear labeling in pSS MECs is preserved whereas α-SMA cytoplasmic staining is strongly and significantly reduced when compared with healthy SGs; the digital images analysis quantification of the expression of labeled α-SMA and p63 protein in the healthy and pSS MECs salivary tissues, led to results suggesting a loss of mechanical support for acini and ducts in pSS, correlated, probably, with the reduction of salivary flow that features one important aspect of pSS disease.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy.
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, University of Bari "Aldo Moro", Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy.,National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", piazza Giulio Cesare 1, 70124, Bari, Italy
| |
Collapse
|
24
|
Munemasa T, Mukaibo T, Kondo Y, Masaki C, Kusuda Y, Miyagi Y, Tsuka S, Hosokawa R, Nakamoto T. Salivary gland hypofunction in KK-A y type 2 diabetic mice. J Diabetes 2018; 10:18-27. [PMID: 28299899 DOI: 10.1111/1753-0407.12548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/27/2017] [Accepted: 03/12/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Hypofunction of different organs in the body is associated with diabetes, including in the oral cavity. Diabetes is often associated with xerostomia, but the underlying mechanism is not well characterized. Thus, the mechanisms underlying diabetes-induced xerostomia were investigated in this study in KK-A y mice as an experimental model of type 2 diabetes. METHODS The mechanisms involved in diabetes-induced xerostomia were investigated using the ex vivo glandular perfusion technique, histological analysis, and immunohistochemical and intracellular signaling analyses. RESULTS Ex vivo submandibular gland secretions from KK-Ay mice decreased by 30% following stimulation with 0.3 μmol/L carbachol (CCh), a cholinergic agonist. Acinar cell weight was comparable between KK-Ay and control mice, whereas duct cell weight was significantly greater in KK-Ay mice. Concentrations of Na+ and Cl- in the secreted saliva decreased significantly in KK-Ay mice, supporting the finding of increased ductal tissue in KK-Ay mice. Immunohistochemistry revealed no significant differences between KK-Ay and control mice in terms of the expression of Cl- and water channels, Na+ -K+ -2Cl- cotransporters, and membrane proteins critical for fluid secretion. Cellular signaling analysis revealed that the increase in [Ca2+ ]i in response to 0.3 μmol/L CCh was reduced by 30% in KK-Ay mice, although there was no significant difference in the thapsigargin (1.0 μmol/L)-induced increase in store-depleted calcium between KK-Ay and control mice. CONCLUSIONS These results demonstrate that submandibular fluid secretion is diminished in KK-Ay mice because of a diminished increase in [Ca2+ ]i . Duct cell weight increased in KK-Ay mice, possibly leading to increased ion reabsorption and thus decreased Na+ and Cl- concentrations in the secreted saliva.
Collapse
Affiliation(s)
- Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Yuichiro Kusuda
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Yuta Miyagi
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Shintaro Tsuka
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Tetsuji Nakamoto
- Department of Prosthodontics, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
25
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
26
|
Affiliation(s)
- Ana Raquel Rodrigues
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
| | - Raquel Soares
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Elghanam GA, Liu Y, Khalili S, Fang D, Tran SD. Compact Bone-Derived Multipotent Mesenchymal Stromal Cells (MSCs) for the Treatment of Sjogren's-like Disease in NOD Mice. Methods Mol Biol 2017; 1553:25-39. [PMID: 28229405 DOI: 10.1007/978-1-4939-6756-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Compact bone (cortical or dense bone) is among the organs that contain multipotent mesenchymal stromal cells (MSCs). Unlike bone marrow plugs where MSCs were initially isolated, compact bone has minimal (amount of) hematopoietic cells and thus facilitates the MSCs isolation process. In vitro, MSCs from compact bone show multipotency and differentiation into mesenchymal tissues such as bone, adipose, and cartilage, under certain conditions. MSCs therapy has been promising in preclinical and clinical studies against autoimmune diseases. Not only can MSCs replace the lost tissue through their regenerative properties, but they can also control the autoimmune attacks by immunoregulatory cytokines. This protocol describes the use of compact bone-derived MSCs to preserve salivary function (saliva flow/output) in the NOD (nonobese diabetic) mouse model affected with Sjogren's-like disease.
Collapse
Affiliation(s)
- Ghada Abu Elghanam
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, QC, Canada
- University of Jordan, Amman, Jordan
| | - Younan Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, QC, Canada
| | | | - Dongdong Fang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, QC, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, QC, Canada.
| |
Collapse
|
28
|
Ittichaicharoen J, Apaijai N, Tanajak P, Sa-Nguanmoo P, Chattipakorn N, Chattipakorn SC. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats. Appl Physiol Nutr Metab 2016; 42:420-429. [PMID: 28177730 DOI: 10.1139/apnm-2016-0545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jitjiroj Ittichaicharoen
- a Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pongpan Tanajak
- c Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piangkwan Sa-Nguanmoo
- c Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- c Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- a Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
29
|
Multiple Roles for B-Lymphocytes in Sjogren's Syndrome. J Clin Med 2016; 5:jcm5100087. [PMID: 27740602 PMCID: PMC5086589 DOI: 10.3390/jcm5100087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Sjogren’s syndrome (SS) is a complex heterogeneous autoimmune disease resulting in loss of salivary gland and lacrimal gland function that may include multiple systemic manifestations including lymphoma. Multiple cell types participate in disease pathogenesis. This review discusses evidence for abnormal B cell subpopulations in patients with SS, critical roles of B cells in SS and the status of B cell–directed therapies in the management of patients with SS.
Collapse
|
30
|
Inoue H, Kishimoto A, Ushikoshi-Nakayama R, Hasaka A, Takahashi A, Ryo K, Muramatsu T, Ide F, Mishima K, Saito I. Resveratrol improves salivary dysfunction in a non-obese diabetic (NOD) mouse model of Sjögren's syndrome. J Clin Biochem Nutr 2016; 59:107-112. [PMID: 27698537 PMCID: PMC5018577 DOI: 10.3164/jcbn.16-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a natural polyphenol produced by plants in response to environmental stress. This compound has been shown to have pharmacological effects against a wide range of diseases including neurological, hepatic, cardiovascular and autoimmune conditions. The non-obese diabetic (NOD) mouse, in which loss of lacrimal and salivary gland function occurs, has been studied as an animal model for Sjögren’s syndrome. In this study, we confirmed that administration of resveratrol results in increased secretion of saliva in NOD mice. Although resveratrol enhanced Sirt1 activity, inflammatory cell infiltration was not affected. Moreover, expression of the anti-inflammatory cytokine IL-10 in salivary glands was enhanced in the resveratrol-administered group. Thus, we confirmed a novel therapeutic effect for resveratrol on salivary dysfunction in Sjögren’s syndrome.
Collapse
Affiliation(s)
- Hiroko Inoue
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Department of Pharmacotherapy, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kita-Adachi-gun, Saitama 362-0806, Japan
| | - Atsuhiro Kishimoto
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ryoko Ushikoshi-Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ayaka Hasaka
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ayako Takahashi
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Koufuchi Ryo
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Takashi Muramatsu
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Department of Endodontics and Clinical Cariology, Tokyo Dental Collage, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Fumio Ide
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Kenji Mishima
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
31
|
Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity–insulin resistance? Arch Oral Biol 2016; 64:61-71. [DOI: 10.1016/j.archoralbio.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
|
32
|
Review: The Lacrimal Gland and Its Role in Dry Eye. J Ophthalmol 2016; 2016:7542929. [PMID: 27042343 PMCID: PMC4793137 DOI: 10.1155/2016/7542929] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 01/15/2023] Open
Abstract
The human tear film is a 3-layered coating of the surface of the eye and a loss, or reduction, in any layer of this film may result in a syndrome of blurry vision and burning pain of the eyes known as dry eye. The lacrimal gland and accessory glands provide multiple components to the tear film, most notably the aqueous. Dysfunction of these glands results in the loss of aqueous and other products required in ocular surface maintenance and health resulting in dry eye and the potential for significant surface pathology. In this paper, we have reviewed products of the lacrimal gland, diseases known to affect the gland, and historical and emerging dry eye therapies targeting lacrimal gland dysfunction.
Collapse
|
33
|
Szyszko EA, Aqrawi LA, Jonsson R, Brokstad KA, Skarstein K. Non-proliferating plasma cells detected in the salivary glands and bone marrow of autoimmune NOD.B10.H2b mice, a model for primary Sjögren's syndrome. Autoimmunity 2015; 49:41-9. [PMID: 26324998 DOI: 10.3109/08916934.2015.1079820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoantibody secreting plasma cells (PCs) are essential contributors in the development of autoimmune conditions such as primary Sjögren's syndrome (pSS). Particularly, the long-lived PC subset residing in the bone marrow has shown to continuously produce autoantibodies, whilst remaining unaffected by immunosuppressive treatment. We have previously shown accumulation of potentially long-lived PCs in chronically inflamed salivary glands of pSS patients. In this study, we aimed to characterise the PC compartment in the salivary glands (the target organ for pSS) and bone marrow before the onset of the murine pSS like disease versus advanced diseases progression. Bromodeoxyuridine (BrdU) was incorporated to distinguish the long-lived PCs. Double immunohistochemical staining and immunofluorescence were then conducted on submandibular gland and bone marrow sections from 8- and 40-week-old mice to identify BrdU and CD138. BrdU(+) cells were detected in the submandibular glands of 8-week-old mice, and observed within all focal infiltrates by 40 weeks of age. Most CD138(+) PCs were however BrdU(-) and located predominantly on the periphery of these infiltrates. This observation was verified through immunofluorescence. A comparable staining pattern was observed in the bone marrow of 8- and 40-week-old NOD.B10.H2b mice, where some of the CD138(+) cells also expressed BrdU. Interestingly, megakaryocytes in the bone marrow of NOD.B10.H2b mice were detected in close proximity to CD138(+) cells, illustrating a possible presence of PC survival niches. Our results demonstrate the presence and accumulation of potentially long-lived PCs in NOD.B10.H2b mice as the disease advances.
Collapse
Affiliation(s)
- Ewa A Szyszko
- a Broegelmann Research Laboratory, Department of Clinical Science , University of Bergen , Bergen , Norway .,b Gade Laboratory for Pathology, Department of Clinical Medicine , University of Bergen , Bergen , Norway , and
| | - Lara A Aqrawi
- a Broegelmann Research Laboratory, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Roland Jonsson
- a Broegelmann Research Laboratory, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Karl A Brokstad
- a Broegelmann Research Laboratory, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Kathrine Skarstein
- b Gade Laboratory for Pathology, Department of Clinical Medicine , University of Bergen , Bergen , Norway , and.,c Department of Pathology , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
34
|
Gervais EM, Desantis KA, Pagendarm N, Nelson DA, Enger T, Skarstein K, Liaaen Jensen J, Larsen M. Changes in the Submandibular Salivary Gland Epithelial Cell Subpopulations During Progression of Sjögren's Syndrome-Like Disease in the NOD/ShiLtJ Mouse Model. Anat Rec (Hoboken) 2015; 298:1622-34. [PMID: 26179322 DOI: 10.1002/ar.23190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sjögren's syndrome (SS), an autoimmune exocrinopathy, is associated with dysfunction of the secretory salivary gland epithelium, leading to xerostomia. The etiology of SS disease progression is poorly understood as it is typically not diagnosed until late stage. Since mouse models allow the study of disease progression, we investigated the NOD/ShiLtJ mouse to explore temporal changes to the salivary epithelium. In the NOD/ShiLtJ model, SS presents secondary to autoimmune diabetes, and SS disease is reportedly fully established by 20 weeks. We compared epithelial morphology in the submandibular salivary glands (SMG) of NOD/ShiLtJ mice with SMGs from the parental strain at 12, 18, and 22 weeks of age and used immunofluorescence to detect epithelial proteins, including the acinar marker, aquaporin 5, ductal cell marker, cytokeratin 7, myoepithelial cell marker, smooth muscle α-actin, and the basal cell marker, cytokeratin 5, while confirming immune infiltrates with CD45R. We also compared these proteins in the labial salivary glands of human SS patients with control tissues. In the NOD/ShiLtJ SMG, regions of lymphocytic infiltrates were not associated with widespread epithelial tissue degradation; however, there was a decrease in the area of the gland occupied by secretory epithelial cells in favor of ductal epithelial cells. We observed an expansion of cells expressing cytokeratin 5 within the ducts and within the smooth muscle α-actin(+) basal myoepithelial population. The altered acinar/ductal ratio within the NOD/ShiLtJ SMG likely contributes to salivary hypofunction, while the expansion of cytokeratin 5 positive-basal cells may reflect loss of function or indicate a regenerative response.
Collapse
Affiliation(s)
- Elise M Gervais
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York.,Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, New York
| | - Kara A Desantis
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York.,Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, New York
| | - Nicholas Pagendarm
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| | - Deirdre A Nelson
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| | - Tone Enger
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Melinda Larsen
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| |
Collapse
|
35
|
Aqrawi LA, Kvarnström M, Brokstad KA, Jonsson R, Skarstein K, Wahren-Herlenius M. Ductal epithelial expression of Ro52 correlates with inflammation in salivary glands of patients with primary Sjögren's syndrome. Clin Exp Immunol 2014; 177:244-52. [PMID: 24673429 DOI: 10.1111/cei.12341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 11/28/2022] Open
Abstract
Ro52 is an E3 ubiquitin ligase with a prominent regulatory role in inflammation. The protein is a common target of circulating autoantibodies in rheumatic autoimmune diseases, particularly Sjögren's syndrome (SS). In this study we aimed to investigate the expression of the SS target autoantigen Ro52 in salivary glands of patients with primary Sjögren's syndrome (pSS). Ro52 expression was assessed by immunohistochemical staining of paraffin-embedded and frozen salivary gland biopsies from 28 pSS patients and 19 non-pSS controls from Swedish and Norwegian registries, using anti-human Ro52 monoclonal antibodies. The degree and pattern of staining and inflammation was then evaluated. Furthermore, secreted Ro52 protein was measured in saliva and serum samples from the same individuals through a catch-enzyme-linked immunosorbent assay (ELISA). Ro52 was highly expressed in all the focal infiltrates in pSS patients. Interestingly, a significantly higher degree of Ro52 expression in ductal epithelium was observed in the patients compared to the non-pSS controls (P < 0·03). Moreover, the degree of ductal epithelial expression of Ro52 correlated with the level of inflammation (Spearman's r = 0·48, P < 0·0120). However, no secreted Ro52 protein could be detected in serum and saliva samples of these subjects. Ro52 expression in ductal epithelium coincides with degree of inflammation and is up-regulated in pSS patients. High expression of Ro52 might result in the breakage of tolerance and generation of Ro52 autoantibodies in genetically susceptible individuals. We conclude that the up-regulation of Ro52 in ductal epithelium might be a triggering factor for disease progression in SS.
Collapse
Affiliation(s)
- L A Aqrawi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Compromised central tolerance of ICA69 induces multiple organ autoimmunity. J Autoimmun 2014; 53:10-25. [PMID: 25088457 DOI: 10.1016/j.jaut.2014.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/23/2022]
Abstract
For reasons not fully understood, patients with an organ-specific autoimmune disease have increased risks of developing autoimmune responses against other organs/tissues. We identified ICA69, a known β-cell autoantigen in Type 1 diabetes, as a potential common target in multi-organ autoimmunity. NOD mice immunized with ICA69 polypeptides exhibited exacerbated inflammation not only in the islets, but also in the salivary glands. To further investigate ICA69 autoimmunity, two genetically modified mouse lines were generated to modulate thymic ICA69 expression: the heterozygous ICA69(del/wt) line and the thymic medullary epithelial cell-specific deletion Aire-ΔICA69 line. Suboptimal central negative selection of ICA69-reactive T-cells was observed in both lines. Aire-ΔICA69 mice spontaneously developed coincident autoimmune responses to the pancreas, the salivary glands, the thyroid, and the stomach. Our findings establish a direct link between compromised thymic ICA69 expression and autoimmunity against multiple ICA69-expressing organs, and identify a potential novel mechanism for the development of multi-organ autoimmune diseases.
Collapse
|
37
|
Seo Y, Ji YW, Lee SM, Shim J, Noh H, Yeo A, Park C, Park MS, Chang EJ, Lee HK. Activation of HIF-1α (hypoxia inducible factor-1α) prevents dry eye-induced acinar cell death in the lacrimal gland. Cell Death Dis 2014; 5:e1309. [PMID: 24967971 PMCID: PMC4611733 DOI: 10.1038/cddis.2014.260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
The pathogenesis of immune-mediated lacrimal gland (LG) dysfunction in Sjögren's syndrome has been thoroughly studied. However, the majority of dry eye (DE) is not related to Sjögren type, and its pathophysiology remains unclear. The purpose of this study was to determine and investigate the protective mechanisms against DE stress in mice. DE induced prominent blood vessel loss without apoptosis or necrosis in the LG. Autophagic vacuoles, distressed mitochondria, and stressed endoplasmic reticulum were observed via electron microscopy. Immunoblotting confirmed the increase in autophagic markers. Glycolytic activities were enhanced with increasing levels of succinate and malate that, in turn, activated hypoxia-inducible factor (HIF)-1α. Interestingly, the areas of stable HIF-1α expression overlapped with COX-2 and MMP-9 upregulation in LGs of DE-induced mice. We generated HIF-1α conditional knockout (CKO) mice in which HIF-1α expression was lost in the LG. Surprisingly, normal LG polarities and morphologies were completely lost with DE induction, and tremendous acinar cell apoptosis was observed. Similar to Sjögren's syndrome, CD3+ and CD11b+ cells infiltrated HIF-1α CKO LGs. Our results show that DE induced the expression of HIF-1α that activated autophagy signals to prevent further acinar cell damage and to maintain normal LG function.
Collapse
Affiliation(s)
- Y Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Y W Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - S M Lee
- 1] Schephens Eye Research Institute, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, Korea
| | - J Shim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - H Noh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - A Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - C Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - M S Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - E J Chang
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - H K Lee
- 1] Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea [2] Institute of Corneal Dystrophy Research, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
38
|
Mongini PKA, Kramer JM, Ishikawa TO, Herschman H, Esposito D. Candidate chromosome 1 disease susceptibility genes for Sjogren's syndrome xerostomia are narrowed by novel NOD.B10 congenic mice. Clin Immunol 2014; 153:79-90. [PMID: 24685748 DOI: 10.1016/j.clim.2014.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022]
Abstract
Sjogren's syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD.B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD.B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia.
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| | - Jill M Kramer
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| | - Tomo-O Ishikawa
- David Geffen School of Medicine at UCLA, 341 Boyer Hall (MBI), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Harvey Herschman
- David Geffen School of Medicine at UCLA, 341 Boyer Hall (MBI), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Donna Esposito
- Charles River Laboratories, Genetic Testing Services, 185 Jordan Road, Troy, NY 12180, USA.
| |
Collapse
|
39
|
|
40
|
Effects of muscarinic acetylcholine 3 receptor(208-227) peptide immunization on autoimmune response in nonobese diabetic mice. Clin Dev Immunol 2013; 2013:485213. [PMID: 24382973 PMCID: PMC3872023 DOI: 10.1155/2013/485213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
The second extracellular loop (LFWQYFVGKRTVPPGECFIQFLSEPTITFGTAI, aa 205-237) of muscarinic acetylcholine 3 receptor (M3R) has been reported to be an epitope for autoantibodies generated during certain autoimmune disorders, including Sjögren's syndrome (SS). Autoantibodies against M3R(228-237) have been shown to interfere with the function of M3R. However, few studies have been performed on the M3R(205-227) peptide of the second extracellular loop. In the current study, we sought to investigate the effect of M3R(208-227) peptide immunization on autoimmune response in NOD/LtJ mice. We synthesized the M3R(208-227) peptide and immunized NOD/LtJ mice to investigate whether peptide-specific antibodies could be generated and whether immunization would lead to changes in autoimmune response in NOD/LtJ mice. Our results demonstrate that the secretions of Th-1, Th-2, and Th-17 cytokines are downregulated and lymphocytic infiltration is improved in the salivary glands and lacrimal glands following immunization with M3R(208-227) peptide in NOD/LtJ mice, suggesting that peptide immunotherapy using the M3R(208-227) peptide may represent a potential therapeutic alternative.
Collapse
|
41
|
Su YC, Xiang RL, Zhang Y, Ding C, Cong X, Guo XH, Yang NY, Hua H, Wu LL, Yu GY. Decreased submandibular adiponectin is involved in the progression of autoimmune sialoadenitis in non-obese diabetic mice. Oral Dis 2013; 20:744-55. [PMID: 24134190 DOI: 10.1111/odi.12197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/29/2013] [Accepted: 10/12/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate a possible role of adiponectin in the pathogenesis of autoimmune sialoadenitis in non-obese diabetic (NOD) mouse model of Sjögren's syndrome. MATERIALS AND METHODS Expression of adiponectin and its receptors (AdipoR1/2) was detected by PCR, immunoblotting, or immunofluorescence. The level of adiponectin was quantified by ELISA. Adiponectin-related signaling molecules and pro-inflammatory cytokines were examined by PCR or immunoblotting. Apoptosis was evaluated by TUNEL staining, flow cytometry, and caspase 3 activation. RESULTS Adiponectin and AdipoR1/2 mRNA and protein were expressed in submandibular glands. Adiponectin immunostaining was widely diffused in the cytoplasm of acinar and ductal cells. AdipoR1 was mainly distributed in acinar cytoplasm, while AdipoR2 was predominantly located at acinar cell membrane. Submandibular adiponectin levels were reduced during the progression of autoimmune sialoadenitis in 7-, 14-, and 21-week-old NOD mice, while AdipoR1/2 levels were unchanged. The levels of phosphorylated adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase were decreased, while interferon (IFN)-γ and glandular apoptosis were temporally increased at all time points. Moreover, exogenous adiponectin supplement inhibited, whereas neutralizing endogenous adiponectin by its antibody promoted IFN-γ-induced apoptosis and caspase 3 activation in cultured submandibular acinar cells. CONCLUSIONS Adiponectin plays a protective role on submandibular cells. Decreased adiponectin might promote glandular destruction in autoimmune sialoadenitis.
Collapse
Affiliation(s)
- Y-C Su
- Department of Physiology and Pathophysiology, Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hauk V, Azzam S, Calo G, Gallino L, Paparini D, Franchi A, Ramhorst R, Leirós CP. Vasoactive Intestinal Peptide Induces an Immunosuppressant Microenvironment in the Maternal-Fetal Interface ofNon-Obese DiabeticMice and Improves Early Pregnancy Outcome. Am J Reprod Immunol 2013; 71:120-30. [DOI: 10.1111/aji.12167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/18/2013] [Indexed: 12/12/2022] Open
Affiliation(s)
- Vanesa Hauk
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Sofía Azzam
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Guillermina Calo
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Lucila Gallino
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Daniel Paparini
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Ana Franchi
- Facultad de Medicina; Universidad de Buenos Aires; CEFYBO-CONICET; Buenos Aires Argentina
| | - Rosanna Ramhorst
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Claudia Pérez Leirós
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| |
Collapse
|
43
|
Xuan J, Shen L, Malyavantham K, Pankewycz O, Ambrus JL, Suresh L. Temporal histological changes in lacrimal and major salivary glands in mouse models of Sjogren's syndrome. BMC Oral Health 2013; 13:51. [PMID: 24093879 PMCID: PMC4015998 DOI: 10.1186/1472-6831-13-51] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/26/2013] [Indexed: 12/04/2022] Open
Abstract
Background Evidence in imaging studies suggests that there may be differences in glandular involvement in Sjogren’s syndrome (SS) depending on the stage of the disease. No detailed histological studies are available to show if there are any such difference in glandular involvement at various time periods and stages of SS. This cross sectional study examines the inflammatory changes in mouse models of SS at various ages. Methods The histological changes in major salivary and lacrimal glands were studied at ages of 3, 6, 9, 12, 15 and 18 months in both sexes in well characterized mouse models of SS, non-obese diabetes mouse and Interleukin-14 alpha-transgenic mice. Results Our results indicate that early inflammation concurrently occur in submandibular and lacrimal glands around the age of 6 weeks. Parotid glands are involved much later in the course of SS with less severe inflammation. Sublingual glands are rarely involved. Conclusions Our conclusions are that SS may be an organ specific disease with early inflammation occurring in submandibular and lacrimal glands, followed by the parotid. Non organ specific events occur in later courses of the disease. The understanding of the disease progression is important in tailoring early local therapeutic interventions before complete destruction of salivary and lacrimal glands.
Collapse
Affiliation(s)
- Jingxiu Xuan
- IMMCO Diagnostics Inc,, 60 Pineview Drive, 14228 Buffalo, NY, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Li CL, He J, Li ZG, Zheng LW, Hua H. Effects of total glucosides of paeony for delaying onset of Sjogren's syndrome: an animal study. J Craniomaxillofac Surg 2013; 41:610-5. [PMID: 23333492 DOI: 10.1016/j.jcms.2012.11.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effectiveness of total glucosides of paeony (TGP) on Sjogren's syndrome (SS) using non-obese diabetic (NOD) mice model. STUDY DESIGN Twenty-seven 8-week-old female NOD mice were assigned into TGP group, hydroxychloroquine (HCQ) group and normal saline (NS) group, receiving corresponding drugs respectively and sacrificed at 24-week-old. Saliva flow rate (SFR), ration of regulatory T cells, level of anti-SSA/SSB, histological changes in submandibular glands (SMG) and microarray analysis were assessed. The data were analyzed using SPSS. RESULTS Compared to NS group, in TGP group, SFR, SMG index and the ration of regulatory T cells were significantly higher, while anti-SSA/SSB and lymphocytic foci were significantly lower. HCQ group demonstrated similar results except SMG index. Altered gene expression was found in 10.71% of TGP and 13.09% of HCQ of the profile. CONCLUSION TGP demonstrated a similar effectiveness as HCQ in delaying the onset of SS-like disease in NOD mice.
Collapse
Affiliation(s)
- Chun Lei Li
- Department of Oral Medicine and Traditional Chinese Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | |
Collapse
|
45
|
Analysis of age-related changes in the functional morphologies of salivary glands in mice. Arch Oral Biol 2013; 58:1635-42. [PMID: 24112729 DOI: 10.1016/j.archoralbio.2013.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Salivary glands in the elderly commonly exhibit salivary dysfunction resulting dry mouth, poor oral hygiene, and dental caries. However, in vivo changes of salivary glands during aging have not been well documented in the literature. This study was undertaken to determine age-related morphometric and functional changes of salivary glands using an aging mouse model. METHODS Male C57BL/6 mice were divided into three groups, group A (10 weeks old; n=10), group B (30 weeks old; n=10), and group C (90 weeks old; n=10). Body weights, salivary gland weights, salivary flow rates, and salivary lag times were measured and compared. Histomorphometric examinations and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed. In addition, changes in salivary uptake and excretion were observed by single-photon emission computed tomography (SPECT). RESULTS Body and gland weights increased with age. Gland weight was significantly higher in group B than in groups A and C. Salivary lag time was significantly greater in group C than in groups A and B, and salivary flow rate was significantly greater in group B than in groups A and C. Histologic evaluations exhibited acinar cell atrophy, cytoplasmic vacuolization, lymphocyte infiltration, small mucin component and more periductal fibrosis in salivary glands of group C. TUNEL assays revealed that apoptotic salivary epithelial cells were significantly more numerous in group C than in groups A and B. (99m)Tc-pertechnetate excretion rate was significantly lower in group C than in groups A and B in SPECT. CONCLUSION Various morphometric and histopathological changes were observed in the salivary glands of aging mouse as well as relevant functional alterations, such as, decreased saliva production and excretion. Increased number of apoptotic salivary epithelial cells may contribute to the observed functional deterioration.
Collapse
|
46
|
Hoshikawa S, Nakagawa Y, Ozaki H, Takahashi Y, Ito S, Yoshida K, Mori K. Effects of green tea polyphenols on iodide-induced autoimmune thyroiditis in nonobese diabetic mice. Immunol Invest 2013; 42:235-46. [PMID: 23461615 DOI: 10.3109/08820139.2012.753611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because green tea polyphenols (GTPs) possess anti-inflammatory properties and are effective in inhibiting autoimmune diseases in experimental settings, we examined whether GTPs prevented the development of autoimmune thyroiditis in iodide-treated nonobese diabetic (NOD) mice, an animal model of Hashimoto's thyroiditis (HT). Mice were given 0.05% iodide water or iodide water supplemented with 0.2% GTPs for 8 weeks. GTPs administration led to an enhanced production of interleukin-10 by concanavalin A-stimulated splenocytes but did not interfere with thyroiditis development. Serum thyroxine levels were not influenced by GTPs. Our data suggest that administration of GTPs may not be an effective strategy for the prevention of HT.
Collapse
Affiliation(s)
- Saeko Hoshikawa
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Khalili S, Liu Y, Kornete M, Roescher N, Kodama S, Peterson A, Piccirillo CA, Tran SD. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjögren's-like disease. PLoS One 2012; 7:e38615. [PMID: 22685592 PMCID: PMC3369846 DOI: 10.1371/journal.pone.0038615] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 05/07/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Non-obese diabetic (NOD) mice develop Sjögren's-like disease (SS-like) with loss of saliva flow and increased lymphocytic infiltrates in salivary glands (SGs). There are recent reports using multipotent mesenchymal stromal cells (MSCs) as a therapeutic strategy for autoimmune diseases due to their anti-inflammatory and immunomodulatory capabilities. This paper proposed a combined immuno- and cell-based therapy consisting of: A) an injection of complete Freund's adjuvant (CFA) to eradicate autoreactive T lymphocytes, and B) transplantations of MSCs to reselect lymphocytes. The objective of this was to test the effectiveness of CD45(-)/TER119(-) cells (MSCs) in re-establishing salivary function and in reducing the number of lymphocytic infiltrates (foci) in SGs. The second objective was to study if the mechanisms underlying a decrease in inflammation (focus score) was due to CFA, MSCs, or CFA+MSCs combined. METHODOLOGY/PRINCIPAL FINDINGS Donor MSCs were isolated from bones of male transgenic eGFP mice. Eight week-old female NOD mice received one of the following treatments: insulin, CFA, MSC, or CFA+MSC (combined therapy). Mice were followed for 14 weeks post-therapy. CD45(-)/TER119(-) cells demonstrated characteristics of MSCs as they were positive for Sca-1, CD106, CD105, CD73, CD29, CD44, negative for CD45, TER119, CD11b, had high number of CFU-F, and differentiated into osteocytes, chondrocytes and adipocytes. Both MSC and MSC+CFA groups prevented loss of saliva flow and reduced lymphocytic infiltrations in SGs. Moreover, the influx of T and B cells decreased in all foci in MSC and MSC+CFA groups, while the frequency of Foxp3(+) (T(reg)) cell was increased. MSC-therapy alone reduced inflammation (TNF-α, TGF-β), but the combination of MSC+CFA reduced inflammation and increased the regenerative potential of SGs (FGF-2, EGF). CONCLUSIONS/SIGNIFICANCE The combined use of MSC+CFA was effective in both preventing saliva secretion loss and reducing lymphocytic influx in salivary glands.
Collapse
Affiliation(s)
- Saeed Khalili
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mara Kornete
- Department of Microbiology and Immunology, and FOCIS Centre of Excellence, Centre, Montreal, Quebec, Canada
| | - Nienke Roescher
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Alan Peterson
- Molecular Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, and FOCIS Centre of Excellence, Centre, Montreal, Quebec, Canada
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
48
|
Liu H, Liu G, Gong L, Zhang Y, Jiang G. Local suppression of IL-21 in submandibular glands retards the development of Sjögren's syndrome in non-obese diabetic mice. J Oral Pathol Med 2012; 41:728-35. [PMID: 22643047 DOI: 10.1111/j.1600-0714.2012.01175.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The aim of this study was to verify the validity of IL-21 local suppression in submandibular glands of preventing the development of Sjögren's syndrome in non-obese diabetic (NOD) mice and figure out the mechanism. METHODS IL-21 levels in submandibular glands were suppressed by ductal cannulation of IL-21 shRNA lentivirus. Then, saliva flow rates (SFR) and histopathologic changes of submandibular glands were measured to assess the severity of disease development. Real-time PCR, flow cytometry, and immunohistochemistry were used to detect the changes of T helper cells and related cytokines. RESULTS The reduction in SFRs in NOD mice was significantly alleviated from 9 to 17 weeks of age along with the suppression of IL-21 in submandibular glands. Lymphocytic infiltration was also milder than control NOD mice. Moreover, the lower level of IL-21 led to the down-regulation of follicular helper T (Tfh) cells. CONCLUSIONS Local suppression of IL-21 in submandibular glands could retard the development of Sjögren's syndrome in NOD mice. IL-21 might contribute to the development of B-cell disorder in Sjögren's syndrome via Tfh cells pathway.
Collapse
Affiliation(s)
- Hao Liu
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
49
|
Hauk V, Calafat M, Larocca L, Fraccaroli L, Grasso E, Ramhorst R, Leirós CP. Vasoactive intestinal peptide/vasoactive intestinal peptide receptor relative expression in salivary glands as one endogenous modulator of acinar cell apoptosis in a murine model of Sjögren's syndrome. Clin Exp Immunol 2012; 166:309-16. [PMID: 22059987 DOI: 10.1111/j.1365-2249.2011.04478.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by a progressive oral and ocular dryness that correlates poorly with the autoimmune damage of the glands. It has been proposed that a loss of homeostatic equilibrium in the glands is partly responsible for salivary dysfunction with acinar cells involved actively in the pathogenesis of SS. The non-obese diabetic (NOD) mouse model of Sjögren's syndrome develops secretory dysfunction and early loss of glandular homeostatic mechanisms, with mild infiltration of the glands. Based on the vasodilator, prosecretory and trophic effects of the vasoactive intestinal peptide (VIP) on acini as well as its anti-inflammatory properties we hypothesized that the local expression of VIP/vasoactive intestinal peptide receptor (VPAC) system in salivary glands could have a role in acinar cell apoptosis and macrophage function thus influencing gland homeostasis. Here we show a progressive decline of VIP expression in submandibular glands of NOD mice with no changes in VPAC receptor expression compared with normal mice. The deep loss of endogenous VIP was associated with a loss of acinar cells through apoptotic mechanisms that could be induced further by tumour necrosis factor (TNF)-α and reversed by VIP through a cyclic adenosine-5'-monophosphate (cAMP)/protein kinase A (PKA)-mediated pathway. The clearance of apoptotic acinar cells by macrophages was impaired for NOD macrophages but a shift from inflammatory to regulatory phenotype was induced in macrophages during phagocytosis of apoptotic acinar cells. These results support that the decline in endogenous VIP/VPAC local levels might influence the survival/apoptosis intracellular set point in NOD acinar cells and their clearance, thus contributing to gland homeostasis loss.
Collapse
Affiliation(s)
- V Hauk
- Laboratorio de Inmunofarmacología. Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
50
|
Vosters JL, Roescher N, Illei GG, Chiorini JA, Tak PP. TACI-Fc gene therapy improves autoimmune sialadenitis but not salivary gland function in non-obese diabetic mice. Oral Dis 2011; 18:365-74. [PMID: 22212434 DOI: 10.1111/j.1601-0825.2011.01885.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Patients with Sjögren's syndrome (SS) show aberrant expression of the B cell-related mediators, B cell-activating factor (BAFF), and a proliferation-inducing ligand (APRIL) in serum and salivary glands (SGs). We studied the biological effect of neutralizing these cytokines by local gene transfer of the common receptor transmembrane activator and CAML interactor (TACI) in an animal model of SS. MATERIAL AND METHODS A recombinant serotype 2 adeno-associated virus (rAAV2) encoding TACI-Fc was constructed, and its efficacy was tested in the SGs of non-obese diabetic mice. Ten weeks later, SG inflammation was evaluated and serum and SG tissue were analyzed for inflammatory markers including immunoglobulins (Ig) and cytokines. RESULTS AAV2-TACI-Fc gene therapy significantly reduced the number of inflammatory foci in the SG, owing to a decrease in IgD(+) cells and CD138(+) cells. Moreover, IgG and IgM levels, but not IgA levels, were reduced in the SG. Overall expression of mainly proinflammatory cytokines tended to be lower in AAV2-TACI-Fc-treated mice. Salivary flow was unaffected. CONCLUSION Although local expression of soluble TACI-Fc reduced inflammation and immunoglobulin levels in the SG, further research will have to prove whether dual blockade of APRIL and BAFF by TACI-Fc can provide a satisfying treatment for the clinical symptoms of patients.
Collapse
Affiliation(s)
- J L Vosters
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|