1
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
2
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
3
|
Zhao T, Xie Z, Xi Y, Liu L, Li Z, Qin D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front Immunol 2022; 13:887460. [PMID: 35693791 PMCID: PMC9174425 DOI: 10.3389/fimmu.2022.887460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by both genetic and environmental factors. At present, rodent models are primarily used to study the pathogenesis and treatment of RA. However, the genetic divergences between rodents and humans determine differences in the development of RA, which makes it necessary to explore the establishment of new models. Compared to rodents, non-human primates (NHPs) are much more closely related to humans in terms of the immune system, metabolic conditions, and genetic make-up. NHPs model provides a powerful tool to study the development of RA and potential complications, as well as preclinical studies in drug development. This review provides a brief overview of the RA animal models, emphasizes the replication methods, pros and cons, as well as evaluates the validity of the rodent and NHPs models.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Liu
- Ge Jiu People’s Hospital, Yunnan Honghe Prefecture Central Hospital, Gejiu, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Ge C, Tong D, Lönnblom E, Liang B, Cai W, Fahlquist-Hagert C, Li T, Kastbom A, Gjertsson I, Dobritzsch D, Holmdahl R. Antibodies to cartilage oligomeric matrix protein are pathogenic in mice and may be clinically relevant in rheumatoid arthritis. Arthritis Rheumatol 2022; 74:961-971. [PMID: 35080151 PMCID: PMC9320966 DOI: 10.1002/art.42072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Objective Cartilage oligomeric matrix protein (COMP) is an autoantigen in rheumatoid arthritis (RA) and experimental models of arthritis. This study was undertaken to investigate the structure, function, and relevance of anti‐COMP antibodies. Methods We investigated the pathogenicity of monoclonal anti‐COMP antibodies in mice using passive transfer experiments, and we explored the interaction of anti‐COMP antibodies with cartilage using immunohistochemical staining. The interaction of the monoclonal antibody 15A11 in complex with its specific COMP epitope P6 was determined by x‐ray crystallography. An enzyme‐linked immunosorbent assay and a surface plasma resonance technique were used to study the modulation of calcium ion binding to 15A11. The clinical relevance and value of serum IgG specific to the COMP P6 epitope and its citrullinated variants were evaluated in a large Swedish cohort of RA patients. Results The murine monoclonal anti‐COMP antibody 15A11 induced arthritis in naive mice. The crystal structure of the 15A11–P6 complex explained how the antibody could bind to COMP, which can be modulated by calcium ions. Moreover, serum IgG specific to the COMP P6 peptide and its citrullinated variants was detectable at significantly higher levels in RA patients compared to healthy controls and correlated with a higher disease activity score. Conclusion Our findings provide the structural basis for binding a pathogenic anti‐COMP antibody to cartilage. The recognized epitope can be citrullinated, and levels of antibodies to this epitope are elevated in RA patients and correlate with higher disease activity, implicating a pathogenic role of anti‐COMP antibodies in a subset of RA patients.
Collapse
Affiliation(s)
- Changrong Ge
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Dongmei Tong
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Erik Lönnblom
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Bibo Liang
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Center for Medical Immunopharmacology Research, Pharmacology School, Southern Medical University, Guangzhou, China
| | - Weiwei Cai
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Cecilia Fahlquist-Hagert
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Medical Inflammation Research, MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Taotao Li
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Alf Kastbom
- Department of Rheumatology in Östergötland, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Doreen Dobritzsch
- Section of Biochemistry, Department of Chemistry-BMC, Uppsala University, 171 23, Uppsala, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Center for Medical Immunopharmacology Research, Pharmacology School, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Zhao Y, Urbonaviciute V, Xu B, Cai W, Sener Z, Ge C, Holmdahl R. Cartilage Oligomeric Matrix Protein Induced Arthritis-A New Model for Rheumatoid Arthritis in the C57BL/6 Mouse. Front Immunol 2021; 12:631249. [PMID: 33708221 PMCID: PMC7940517 DOI: 10.3389/fimmu.2021.631249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
The most commonly used strains in experimental research, including genetically modified strains, are C57BL/6 mice. However, so far, no reliable model for rheumatoid arthritis is available, mainly due to the restriction by the MHC class II haplotype H-2b. Collagen-induced arthritis (CIA) is the most widely used animal model of rheumatoid arthritis, but C57BL/6 strain is resistant to CIA because there is no collagen II peptide associated with H-2b. To establish a rheumatoid arthritis model in C57BL/6 mice, we immunized C57BL/6NJ (B6N) mice with human cartilage oligomeric matrix protein (COMP), which induced severe arthritis with high incidence, accompanied by a strong auto-antibody response. Native COMP was required, as denatured COMP lost its ability to induce arthritis in B6N mice. An immunodominant COMP peptide was identified as the key T cell epitope, with a perfect fit into the Ab class II peptide binding pocket. A critical amino acid in this peptide was found to be phenylalanine at position 95. Recombinant COMP mutated at position 95 (COMP_F95S) lost its ability to induce arthritis or a strong immune response in the B6N mice. In conclusion, A new model for RA has been established using C57BL/6 mice through immunization with COMP, which is dependent on a COMP specific peptide binding Ab, thus in similarity with CIA in Aq expressing strains.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Weiwei Cai
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zeynep Sener
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Damerau A, Gaber T. Modeling Rheumatoid Arthritis In Vitro: From Experimental Feasibility to Physiological Proximity. Int J Mol Sci 2020; 21:ijms21217916. [PMID: 33113770 PMCID: PMC7663779 DOI: 10.3390/ijms21217916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown, demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed against modified self-epitopes. Although many models already exist for RA for preclinical research, many current model systems of arthritis have limited predictive value because they are either based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture conditions. These limitations pose considerable challenges for preclinical research and therefore clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used in vitro models of RA and discuss their experimental feasibility and physiological proximity to the pathophysiology of human RA to highlight new human-based avenues in RA research to increase our knowledge on human pathophysiology and develop effective targeted therapies.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
7
|
Hoffmann MH, Griffiths HR. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med 2018; 125:62-71. [PMID: 29550327 DOI: 10.1016/j.freeradbiomed.2018.03.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Department of Medicine 3, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsklinikum Erlangen, Germany.
| | | |
Collapse
|
8
|
Ruthard J, Hermes G, Hartmann U, Sengle G, Pongratz G, Ostendorf B, Schneider M, Höllriegl S, Zaucke F, Wagener R, Streichert T, Klatt AR. Identification of antibodies against extracellular matrix proteins in human osteoarthritis. Biochem Biophys Res Commun 2018; 503:1273-1277. [PMID: 30001809 DOI: 10.1016/j.bbrc.2018.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 12/30/2022]
Abstract
We investigated the presence of autoantibodies against the extracellular matrix proteins thrombospondin-4 (TSP-4), cartilage oligomeric matrix protein (COMP), C-type lectin domain family 3 member A (CLEC3A), collagen II, collagen VI, matrilin-3, and fibrillin-2 in the serum of osteoarthritis (OA) patients. We compared those results with the presence of such antibodies in rheumatoid arthritis (RA) patients and in healthy donors (HD). Our study examines whether antibodies against extracellular proteins can be used as potential biomarkers to support the clinical diagnosis of OA. 10 OA, 10 RA patients and 10 HD were enrolled in this explorative cross-sectional study. SDS-PAGE and immunoblot were used to investigate the presence of antibodies against extracellular matrix proteins. The serum of 5/10 OA patients but 0/10 HD exhibited TSP-4 IgG isotype antibodies (P = 0.033). The serum of 8/10 OA patients but only 1/10 HD exhibited IgG isotype antibodies against TSP-4 or COMP (P = 0.005). The serum of 9/10 OA patients but only 1/10 HD exhibited IgG isotype antibodies against TSP-4, COMP or CLEC3A (P = 0.005). We found strong evidence for the presence of IgG isotype autoantibodies against the cartilage extracellular matrix proteins TSP-4, COMP and CLEC3A in OA. The detection of IgG isotype autoantibodies against TSP-4, COMP and CLEC3A may support the clinical diagnosis of OA. OA with autoantibodies against cartilage extracellular matrix proteins defines a new OA subgroup suggesting that patients with high concentrations of autoantibodies may benefit from an immune suppressive therapy.
Collapse
Affiliation(s)
- Johannes Ruthard
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Gabriele Hermes
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Georg Pongratz
- Institute for Rheumatology, Hiller Research Unit for Rheumatology, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Benedikt Ostendorf
- Institute for Rheumatology, Hiller Research Unit for Rheumatology, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias Schneider
- Institute for Rheumatology, Hiller Research Unit for Rheumatology, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Stefan Höllriegl
- Sana-Dreifaltigkeitskrankenhaus, Aachener Str. 445, 50933, Cologne, Germany
| | - Frank Zaucke
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopädische Universitätsklinik Friedrichsheim gGmbH, Marienburgstr. 2, 60528, Frankfurt am Main, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Andreas R Klatt
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.
| |
Collapse
|
9
|
Hagert C, Sareila O, Kelkka T, Nandakumar KS, Collin M, Xu B, Guérard S, Bäcklund J, Jalkanen S, Holmdahl R. Chronic Active Arthritis Driven by Macrophages Without Involvement of T Cells: A Novel Experimental Model of Rheumatoid Arthritis. Arthritis Rheumatol 2018. [PMID: 29513929 DOI: 10.1002/art.40482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To develop a new chronic rheumatoid arthritis model that is driven by the innate immune system. METHODS Injection of a cocktail of 4 monoclonal antibodies against type II collagen, followed on days 5 and 60 by intraperitoneal injections of mannan (from Saccharomyces cerevisiae), was used to induce development of chronic arthritis in B10.Q mice. The role of the innate immune system as compared to the adaptive immune system in this arthritis model was investigated using genetically modified mouse strains. RESULTS A new model of chronic relapsing arthritis was characterized in B10.Q mice, in which a persistently active, chronic disease was found. This relapsing disease was driven by macrophages lacking the ability to mount a reactive oxygen species response against pathogens, and was associated with the classical/alternative pathway, but not the lectin pathway, of complement activation. The disease was independent of Fcγ receptor type III, and also independent of the activity of adaptive immune cells (B and T cells), indicating that the innate immune system, involving complement activation, could be the sole driver of chronicity. CONCLUSION Chronic active arthritis can be driven innately by macrophages without the involvement of T and B cells in the adaptive immune system.
Collapse
Affiliation(s)
- Cecilia Hagert
- Medicity, University of Turku and the National Doctoral Programme in Informational and Structural Biology, Turku, Finland
| | - Outi Sareila
- Medicity, University of Turku, Turku, Finland.,Karolinska Institute, Stockholm, Sweden
| | - Tiina Kelkka
- Medicity, University of Turku and the Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | | | | | - Bingze Xu
- Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Rikard Holmdahl
- Karolinska Institute, Stockholm, Sweden.,Southern Medical University, Guangzhou, China.,Lund University, Lund, Sweden.,Medicity, University of Turku, The National Doctoral Programme in Informational and Structural Biology, and The Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| |
Collapse
|
10
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
11
|
Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:193-200. [PMID: 29433367 DOI: 10.1080/08923973.2018.1434793] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune systemic disorder of unknown etiology and is characterized by chronic inflammation and synovial infiltration of immune cells. RA is associated with decreased life expectancy and quality of life. The research on RA is greatly simplified by animal models that help us to investigate the complex system involving inflammation, immunological tolerance and autoimmunity. The animal models of RA with a proven track record of predictability for efficacy in humans include: collagen type II induced arthritis in rats as well as mice, adjuvant induced arthritis in rats and antigen induced arthritis in several species. The development of novel treatments for RA requires the interplay between clinical observations and studies in animal models. However, each model features a different mechanism driving the disease expression; the benefits of each should be evaluated carefully in making the appropriate choice for the scientific problem to be investigated. In this review article, we focus on animal models of arthritis induced in various species along with the genetic models. The review also discussed the similarity and dissimilarities with respect to human RA.
Collapse
Affiliation(s)
- Narayan Choudhary
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| | - Lokesh K Bhatt
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| | - Kedar S Prabhavalkar
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| |
Collapse
|
12
|
Abstract
In vivo mouse models of inflammatory arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven joint damage. Two commonly utilized models include collagen-induced arthritis (CIA) and methylated bovine serum albumin (mBSA) antigen-induced arthritis (AIA). These offer unique advantages for modeling different aspects of human disease. CIA involves breach of immunological tolerance resulting in systemic autoantibody-driven arthritis, while AIA results in local resolving inflammatory flares and articular T cell-mediated damage. Despite limitations that apply to all animal models of human disease, CIA and AIA have been instrumental in identifying pathogenic mediators, immune cell subsets and stromal cell responses that determine disease onset, progression, and severity. Moreover, these models have enabled investigation of disease phases not easily studied in patients and have served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized rheumatoid arthritis treatment.
Collapse
MESH Headings
- Animals
- Antigens/adverse effects
- Arthritis, Experimental/etiology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cytokines/metabolism
- Disease Models, Animal
- Humans
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/immunology
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - David G Hill
- Division of Infection and Immunity, Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Katie Sime
- Division of Infection and Immunity, Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Anwen S Williams
- Division of Infection and Immunity, Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
13
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Geng H, Nandakumar KS, Xiong L, Jie R, Dong J, Holmdahl R. Incomplete B Cell Tolerance to Cartilage Oligomeric Matrix Protein in Mice. ACTA ACUST UNITED AC 2013; 65:2301-9. [DOI: 10.1002/art.38046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Geng
- Central China Normal University; Wuhan China
- Karolinska Institute; Stockholm Sweden
| | | | - Li Xiong
- Central China Normal University; Wuhan China
| | - Rui Jie
- Central China Normal University; Wuhan China
| | - Jiahui Dong
- Central China Normal University; Wuhan China
| | | |
Collapse
|
15
|
Ishida K, Acharya C, Christiansen BA, Yik JHN, DiCesare PE, Haudenschild DR. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone 2013; 55:23-35. [PMID: 23528838 DOI: 10.1016/j.bone.2013.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) are effective for bone regeneration, and are used clinically. However, supraphysiological doses are required, which limits their use. Cartilage oligomeric matrix protein is an extracellular matrix protein, which we have previously shown can bind to growth factors of the TGFs family, suggesting that COMP may also bind to BMP-2. Rather than being a passive component of the matrix, COMP may serve as an "instructive matrix" component capable of increasing local growth factor concentration, slowing the diffusion of growth factors, and promoting their biological activity. The purpose of this investigation was to determine whether COMP binds to BMP-2, and whether it promotes the biological activity of BMP-2 with respect to osteogenesis. We found that COMP binds BMP-2, and characterized the biochemical nature of the binding interaction. COMP binding enhanced BMP-2-induced intracellular signaling through Smad proteins, increased the levels of BMP receptors, and up-regulated the luciferase activity from a BMP-2-responsive reporter construct. COMP binding enhanced BMP-2-dependent osteogenesis in vitro, in the C2C12 cell line and in primary human bone mesenchymal stem cells, as measured by alkaline phosphatase activity, matrix mineralization, and gene expression. Finally, we found that COMP enhanced BMP-2-dependent ectopic bone formation in a rat model assessed histologically, by alkaline phosphatase activity, gene expression, and micro-CT. In summary, this study demonstrates that COMP enhances the osteogenic activity of BMP-2, both in-vitro and in-vivo.
Collapse
Affiliation(s)
- Kazunari Ishida
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bäcklund J, Li C, Jansson E, Carlsen S, Merky P, Nandakumar KS, Haag S, Ytterberg J, Zubarev RA, Holmdahl R. C57BL/6 mice need MHC class II Aq to develop collagen-induced arthritis dependent on autoreactive T cells. Ann Rheum Dis 2013; 72:1225-32. [PMID: 23041839 DOI: 10.1136/annrheumdis-2012-202055] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Collagen-induced arthritis (CIA) has traditionally been performed in MHC class II A(q)-expressing mice, whereas most genetically modified mice are on the C57BL/6 background (expressing the b haplotype of the major histocompatibility complex (MHC) class II region). However, C57BL/6 mice develop arthritis after immunisation with chicken-derived collagen type II (CII), but arthritis susceptibility has been variable, and the immune specificity has not been clarified. OBJECTIVE To establish a CIA model on the C57BL/6 background with a more predictable and defined immune response to CII. RESULTS Both chicken and rat CII were arthritogenic in C57BL/6 mice provided they were introduced with high doses of Mycobacterium tuberculosis adjuvant. However, contaminating pepsin was strongly immunogenic and was essential for arthritis development. H-2(b)-restricted T cell epitopes on chicken or rat CII could not be identified, but expression of A(q) on the C57BL/6 background induced T cell response to the CII260-270 epitope, and also prolonged the arthritis to be more chronic. CONCLUSIONS The putative (auto)antigen and its arthritogenic determinants in C57BL/6 mice remains undisclosed, questioning the value of the model for addressing T cell-driven pathological pathways in arthritis. To circumvent this impediment, we recommend MHC class II congenic C57BL/6N.Q mice, expressing A(q), with which T cell determinants have been thoroughly characterised.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Chickens
- Collagen Type II/immunology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Genes, MHC Class II/genetics
- Haplotypes
- Immunization
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mycobacterium/immunology
- Rats
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Johan Bäcklund
- Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Happonen KE, Heinegård D, Saxne T, Blom AM. Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 2013; 217:1088-96. [PMID: 22964234 DOI: 10.1016/j.imbio.2012.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling disease affecting all structures of the joint. Understanding the pathology behind the development of RA is essential for developing targeted therapeutic strategies as well as for developing novel markers to predict disease onset. Several molecules normally hidden within the cartilage tissue are exposed to complement components in the synovial fluid upon cartilage breakdown. Some of these have been shown to activate complement and toll-like receptors, which may enhance an already existing inflammatory response, thereby worsening the course of disease. Other cartilage-resident molecules have in contrast shown to possess complement-inhibitory properties. Knowledge about mechanisms behind pathological complement activation in the joints will hopefully lead to methods which allow us to distinguish patients with pathological complement activation from those where other inflammatory pathways are predominant. This will help to elucidate which patients will benefit from complement inhibitory therapies, which are thought to aid a specific subset of patients or patients at a certain stage of disease. Future challenges are to target the complement inhibition specifically to the joints to minimize systemic complement blockade.
Collapse
Affiliation(s)
- Kaisa E Happonen
- Department of Laboratory Medicine, Division of Medical Protein Chemistry, Wallenberg Laboratory, Skåne University Hospital, Lund University, Sweden
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Geng and colleagues consolidate and detail the role of cartilage oligomeric matrix protein (COMP) as a (potential) autoantigen in experimental and human arthritis, a finding also supported by the detection of COMP fragments and anti-COMP antibodies in rheumatoid arthritis serum and/or synovial fluid and by synovial B-cell responses against COMP. The reactivity to COMP is yet another example of how, in addition to collagen II and the large aggregating proteoglycan, cartilage-specific proteins can induce arthritis and contribute to autoimmunity. Progression of cartilage damage and degradation in disease is believed to promote the autoimmune reaction to cartilage components. However, Geng and colleagues show that anti-COMP mAbs bind in vivo to undamaged cartilage, as previously also observed for anti-collagen II antibodies. Whether this autoimmunity also involves modifications of cartilage matrix proteins, such as citrullination, remains to be further investigated. Latent, subpathogenic (auto)immune reactions directed against cartilage matrix proteins may thus eventually contribute to the outbreak of human arthritis.
Collapse
|
20
|
Geng H, Nandakumar KS, Pramhed A, Aspberg A, Mattsson R, Holmdahl R. Cartilage oligomeric matrix protein specific antibodies are pathogenic. Arthritis Res Ther 2012; 14:R191. [PMID: 22906101 PMCID: PMC3580587 DOI: 10.1186/ar4022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP-specific monoclonal antibodies (mAbs). Methods B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated and the pathogenicity of mAbs was investigated by passive transfer experiments. Results B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis in naive mice. Conclusions We have identified the specificities of mAbs to COMP and their contribution to the development of arthritis. These findings will further improve our understanding of the autoantibody mediated immunopathologies occurring widely in rheumatoid arthritis (RA), as well as in other autoimmune disorders.
Collapse
|
21
|
IL-17 producing T cells in mouse models of multiple sclerosis and rheumatoid arthritis. J Mol Med (Berl) 2012; 90:613-24. [PMID: 22231742 DOI: 10.1007/s00109-011-0841-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022]
Abstract
Multiple Sclerosis (MS) and Rheumatoid Arthritis (RA) are amongst the most common autoimmune diseases in the northern hemisphere. There is mounting evidence that in both afflictions, not only environmental and genetic factors influence disease, but cellular components such as autoreactive T cells also contribute to pathology. Animal models are key in the study and subsequent therapeutic development for human autoimmune diseases. As patient material is often difficult to obtain and in some cases--as in MS, where the central nervous system (CNS) is concerned--even not accessible, animal models provide a multifaceted tool to explore disease-underlying mechanisms. The pro-inflammatory T cell cytokine IL-17 has recently moved to center stage due to its crucial role in autoimmune diseases including MS and RA. A plethora of studies in animal models has sustained the relevance of this cytokine pathway for the development of autoimmunity and shed light on its cellular sources and patho-mechanisms. This review addresses the role of IL-17 producing T lymphocytes, in particular CD4(+) and γδ T cells, in three commonly used mouse models for MS and RA, namely experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis (CIA), and antigen-induced arthritis (AIA). Comparing and combining knowledge gained from different animal models will broaden our understanding of the IL-17 biology and facilitate the translation to the human diseases.
Collapse
|
22
|
Happonen KE, Saxne T, Aspberg A, Mörgelin M, Heinegård D, Blom AM. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2010; 62:3574-83. [PMID: 20737467 PMCID: PMC4576017 DOI: 10.1002/art.27720] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthritis (OA). This study was undertaken to investigate the ability of COMP to regulate complement, a capacity that has previously been shown for some other cartilage proteins. METHODS Regulation of complement by COMP was studied using functional in vitro assays. Inter-actions between complement proteins and COMP were investigated by direct binding assay and electron microscopy. Circulating COMP and COMP-C3b complexes in serum and synovial fluid from RA and OA patients and healthy controls were measured with a novel enzyme-linked immunosorbent assay. RESULTS We found in vivo evidence of complement activation by released COMP in the general circulation of patients with RA, but not patients with OA. COMP induced activation and deposition of C3b and C9 specifically via the alternative pathway of complement, which was attributable to direct interaction between COMP and properdin. Furthermore, COMP inhibited the classical and the lectin complement pathways due to direct interaction with the stalk region of C1q and mannose-binding lectin, respectively. CONCLUSION COMP is the first extracellular matrix protein for which an active role in inflammation has been demonstrated in vivo. It can activate one complement pathway at the same time as it has the potential to inhibit another. The net outcome of these interactions is most likely determined by the type of released COMP fragments, which may be disease specific.
Collapse
|
23
|
A broad screen for targets of immune complexes decorating arthritic joints highlights deposition of nucleosomes in rheumatoid arthritis. Proc Natl Acad Sci U S A 2009; 106:15867-72. [PMID: 19720992 DOI: 10.1073/pnas.0908032106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deposits of Ig and complement are abundant in affected joints of patients with rheumatoid arthritis (RA) and in animal models of RA in which antibodies are demonstrably pathogenic. To identify molecular targets of the Igs deposited in arthritic joints, which may activate local inflammation, we used a combination of mass spectrometry (MS) and protein microarrays. Immune complexes were affinity-purified from surgically removed joint tissues of 26 RA and osteoarthritis (OA) patients. Proteins complexed with IgG were identified by proteomic analysis using tandem MS. A striking diversity of components of the extracellular matrix, and some intracellular components, copurified specifically with IgG from RA and OA tissues. A smaller set of autoantigens was observed only in RA eluates. In complementary experiments, IgG fractions purified from joint immune complexes were tested on protein microarrays against a range of candidate autoantigens. These Igs bound a diverse subset of proteins and peptides from synovium and cartilage, different from that bound by normal serum Ig. One type of intracellular protein detected specifically in RA joints (histones H2A/B) was validated by immunohistology and found to be deposited on the cartilage surface of RA but not OA joints. Thus, autoantibodies to many determinants (whether deposited as "neoantigens" or normal constituents of the extracellular matrix) have the potential to contribute to arthritic inflammation.
Collapse
|
24
|
Nandakumar KS. Pathogenic antibody recognition of cartilage. Cell Tissue Res 2009; 339:213-20. [DOI: 10.1007/s00441-009-0816-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/05/2009] [Indexed: 12/16/2022]
|
25
|
Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res Ther 2009; 11:226. [PMID: 19490601 PMCID: PMC2714094 DOI: 10.1186/ar2600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For a long time, genetic studies of complex diseases were most successfully conducted in animal models. However, the field of genetics is now rapidly evolving, and human genetics has also started to produce strong candidate genes for complex diseases. This raises the question of how to continue gene-finding attempts in animals and how to use animal models to enhance our understanding of gene function. In this review we summarize the uses and advantages of animal studies in identification of disease susceptibility genes, focusing on rheumatoid arthritis. We are convinced that animal genetics will remain a valuable tool for the identification and investigation of pathways that lead to disease, well into the future.
Collapse
Affiliation(s)
- Emma Ahlqvist
- Medical Inflammation Research, Lund University, C12 BMC, 221 84 Lund, Sweden.
| | | | | |
Collapse
|