1
|
Perez-Chada LM, Elman S, Villa-Ruiz C, Armstrong AW, Gottlieb AB, Merola JF. Psoriatic arthritis: A comprehensive review for the dermatologist part I: Epidemiology, comorbidities, pathogenesis, and diagnosis. J Am Acad Dermatol 2025; 92:969-982. [PMID: 38857765 DOI: 10.1016/j.jaad.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 06/12/2024]
Abstract
Psoriatic arthritis (PsA) is an inflammatory seronegative arthritis strongly associated with psoriasis. Recognition of the clinical features of PsA is critical, as delayed detection and untreated disease may result in irreparable joint damage, impaired physical function, and a significantly reduced quality of life. Dermatologists are poised for the early detection of PsA, as psoriasis predates its development in as many as 80% of patients. In an effort to further acquaint dermatologists with PsA, this review provides a detailed overview, emphasizing its epidemiology, comorbidities, etiopathogenesis, and diagnostic features.
Collapse
Affiliation(s)
- Lourdes M Perez-Chada
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott Elman
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Camila Villa-Ruiz
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - April W Armstrong
- Department of Dermatology, University of California, Los Angeles, Los Angeles, California
| | - Alice B Gottlieb
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph F Merola
- Department of Dermatology and Department of Medicine, Division of Rheumatology and O'Donnell School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
2
|
Kim MJ, Yoo HM, Lee YJ, Jang HH, Shim SC, Won EJ, Kim TJ. Clonorchis sinensis excretory/secretory proteins ameliorate inflammation in rheumatoid arthritis and ankylosing spondylitis. Parasit Vectors 2025; 18:85. [PMID: 40038824 DOI: 10.1186/s13071-025-06677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND We aimed to investigate whether substances secreted by Clonorchis sinensis excretory/secretory protein (CS-ESP) have an effect on the inflammation of rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to identify specific peptides through related proteomic analysis to determine which proteins exhibit anti-inflammatory effects more specifically. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from healthy controls (HCs), RA and AS patients. Cytotoxicity of CS-ESP at different doses was assessed by MTS and flow cytometry before performing experiments. Inflammatory cytokine producing cells were analyzed using flow cytometry. To determine the effect of CS-ESP in an arthritis mouse model, 8-week-old SKG mice were injected intraperitoneally with curdlan and treated with CS-ESP; body weight and paw swelling were checked twice a week. Inflammation was evaluated using immunohistochemistry. We conducted proteomic analysis on CS-ESP and identified specific Cs-GT and Cs-Severin proteins. In vitro effect of coculture with Cs-GT and Cs-Severin was determined by inflammatory cytokine measurements. RESULT Treatment with CS-ESP resulted in no reduced cell viability of PBMCs. In experiments culturing PBMCs, the frequencies of IL-17A and GM-CSF producing cells were significantly reduced after CS-ESP treatment. In the SKG mouse model, CS-ESP treatment significantly suppressed clinical score, arthritis and enthesitis. Treatment with Cs-GT and Cs-Severin resulted in no reduced cell viability of HC PBMCs. After Cs-GT and Cs-Severin treatment of HC PBMC, the frequencies of IL-17A and GM-CSF producing cells were significantly reduced. CONCLUSIONS We provide evidence showing that CS-ESP, Cs-GT and Cs-Severin can ameliorate clinical signs and cytokine derangements in AS.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yu Jeong Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Gwangju, 61469, Republic of Korea
| | - Hyun Hee Jang
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Lee SH, Lee KH, Kim D, Jeon C, Whangbo M, Jo HR, Youn J, Lee CH, Choi SH, Park YS, Nam B, Jo S, Kim TH. Targeting osteoclast-derived DPP4 alleviates inflammation-mediated ectopic bone formation in ankylosing spondylitis. Arthritis Res Ther 2025; 27:40. [PMID: 40001226 PMCID: PMC11853818 DOI: 10.1186/s13075-025-03474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/03/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by ectopic bone formation. The anti-inflammatory function of dipeptidyl peptidase-4 (DPP4) inhibitor has been reported in bone metabolism, but its utility in AS has not previously been investigated. METHODS We assessed DPP4 level in serum, synovial fluid, and facet joint tissue of AS patients. Additionally, we investigated the effect of a DPP4 inhibitor in an experimental AS model using curdlan-injected SKG mice. Following curdlan injection, SKG mice were orally administered a DPP4 inhibitor three times per week for 5 weeks and observed clinical arthritis scores, and analyzed by micro-CT. Furthermore, osteoclast precursor cells (OPCs) from curdlan-injected SKG mice were treated with DPP4 inhibitor and evaluated the inhibitory effects of this treatment in vitro. RESULTS Soluble DPP4 level was elevated in the serum and synovial fluid of patients with AS compared to those in the control group. Expression of DPP4 increased gradually during human osteoclastogenesis and was high in mature osteoclasts. Oral administration of a DPP4 inhibitor resulted in a decrease in thickness of the hind paw, clinical arthritis scores, and enthesitis at the ankle in curdlan-injected SKG mice compared to the vehicle group. Micro-CT data revealed a significant reduction in inflammation-induced low bone density in the DPP4 inhibitor group. Moreover, treatment with a DPP4 inhibitor significantly reduced osteoclast differentiation of OPC in addition to decreasing expression of osteoclast differentiation markers. CONCLUSION Our findings suggest that inhibiting DPP4 may have a therapeutic effect on inflammation-mediated ectopic bone formation in AS patients.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea
| | - Kyu Hoon Lee
- Department of Rehabilitation Medicine, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Korea
| | - Dongju Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea
| | - Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea
| | - Min Whangbo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea
| | - Hye-Ryeong Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Hun Lee
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul, 04763, South Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul, 04763, South Korea
| | - Ye-Soo Park
- Department of Orthopaedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11923, South Korea
| | - Bora Nam
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungsin Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan city, Chungcheongnam-do, 31538, Republic of Korea.
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul, 04763, Korea.
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Haacke N, Wang H, Yan S, Barovic M, Li X, Nagai K, Botezatu A, Hatzioannou A, Gercken B, Trimaglio G, Shah AU, Wang J, Ye L, Jaykar MT, Rauner M, Wielockx B, Chung KJ, Netea MG, Kalafati L, Hajishengallis G, Chavakis T. Innate immune training of osteoclastogenesis promotes inflammatory bone loss in mice. Dev Cell 2025:S1534-5807(25)00063-2. [PMID: 40020679 PMCID: PMC7617534 DOI: 10.1016/j.devcel.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
We previously demonstrated that long-term trained immunity (TRIM) involves adaptations that imprint innate immune memory in long-lived myelopoiesis precursors and their progeny, monocytes/macrophages and neutrophils, which thereby acquire enhanced responsiveness to future challenges. Here, we show that a distinct component of myeloid biology, osteoclastogenesis, can also undergo innate immune training. Indeed, β-glucan-induced TRIM was associated with an increased osteoclastogenesis bias in the bone marrow and an expansion of monocytes/osteoclast progenitors in the periphery, resulting in aggravated severity of experimental periodontitis and arthritis. In the setting of trained inflammatory osteoclastogenesis, we observed transcriptomic rewiring in synovial myeloid cells of arthritic mice, featuring prominent upregulation of the transcription factor melanogenesis-associated transcription factor (MITF). Adoptive transfer of splenic monocytes from β-glucan-trained mice to naive recipients exacerbated arthritis in the latter in a strictly MITF-dependent manner. Our findings establish trained osteoclastogenesis as a maladaptive component of TRIM and potentially provide therapeutic targets in inflammatory bone loss disorders.
Collapse
Affiliation(s)
- Nora Haacke
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Yan
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Adelina Botezatu
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Giulia Trimaglio
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Anisha U Shah
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mangesh T Jaykar
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
5
|
Harms JS, Lasarev M, Warner T, Costa Oliveira S, Smith JA. Persistent articular infection and host reactive response contribute to Brucella -induced spondyloarthritis in SKG mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638825. [PMID: 40027658 PMCID: PMC11870484 DOI: 10.1101/2025.02.18.638825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Brucellosis, one of the most prevalent zoonotic diseases worldwide, often results in osteoarticular complications including large joint and axial arthritis mimicking spondyloarthritis. To model this chronic manifestation, we infected autoimmunity-prone SKG mice containing a mutation in the T-cell adaptor ZAP-70 with Brucella species. B. melitensis infection resulted in a fully penetrant, readily scoreable disease involving large joint wrist and foot arthritis, peri-ocular inflammation, and less frequent scaly paw rash. Infection with B. abortus resulted in delayed arthritis onset, and B. neotomae revealed sex differences, with more severe disease and a dose response in females. Heat-killed Brucella did not induce arthritis, evincing a requirement for viable infection. Across species, splenic CFU correlated well with final clinical score at 12 weeks (ρ=0.79 and p<0.001). In vivo imaging using luminescent B. neotomae revealed rapid colonization of the paws by one-week post-infection, more than a month prior to arthritis onset. Paw luminescence levels decreased after 2 weeks and then remained relatively static, even as clinical scores increased. Thus, the degree of arthritis did not strictly correlate with degree of paw infection but suggested an additional reactive component. Further, in examining a Brucella Δ tcpB mutant lacking a Type IV secretion system-dependent mediator, mice displayed an intermediate phenotype without significant differences in splenic CFU. Together these data suggest Brucella induced spondyloarthritis reflects both persistent colonization as well as excess host reactivity. Moreover, the sensitivity of the SKG model to different species and mutants will provide new opportunities for dissecting correlates of Brucella virulence and host immunity. Importance Brucellosis, a bacterial infection acquired from herd animals, remains one of the most common zoonotic diseases worldwide. Chronic infection often results in spondyloarthritis-like complications. Investigation into pathogenesis has been limited by the lack of overt disease in standard lab mice. We addressed this issue using spondyloarthritis-susceptible SKG mice. Upon infection with B. melitensis , SKG mice develop robust, fully penetrant large joint arthritis. Arthritis development required viable bacteria. Moreover, studies of colonization, gene expression and anatomic distribution using bioluminescent bacteria revealed active persistent infection in the mouse paws. However, peak paw infection occurred much earlier than arthritis onset, suggesting an added immune reactive component. Disease onset, severity and manifestations varied upon infection with different Brucella species and mutants. Together these results suggest this new model will be very useful to the scientific community for determining correlates of bacterial virulence leading to clinical disease.
Collapse
|
6
|
Ji Z, Feng X, Han C, Li S, Wu B, Zhang X, Zhu S, Tong W, Xu W. The malic acid inhibiting inflammation in ankylosing spondylitis by interfering M1 macrophage polarization. Int Immunopharmacol 2025; 144:113653. [PMID: 39566386 DOI: 10.1016/j.intimp.2024.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Ankylosing spondylitis (AS) is a motor system immune disease with significant genetic characteristics, resulting in joint fusion, deformity, rigidity, seriously affecting the quality of life of patients. Inflammatory bowel disease (IBD), characterized by intestinal mucosal damage and inflammatory changes, the most common extra-articular manifestation of AS. Due to the limitations of the application of therapeutic drugs, it is urgent to look for new mechanisms and strategies to effectively inhibit AS inflammation is. The content of malic acid (MA) was significantly decreased in peripheral blood of AS patients, and it was significantly negatively correlated with C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). MA dramatically alleviated spinal damage and intestinal inflammation in mouse models of AS induced by β-1, 3-glucan solution. Mechanically, MA suppressed the NF-κB pathway by inhibiting polarization of M1-type macrophages, thereby alleviating spinal and intestinal inflammation. From the perspective of material metabolism, this study explored the mechanism by which MA, an intermediate product of glucose metabolism, reducing M1 polarization of macrophages to inhibit AS inflammation, providing a reliable basis for the pathogenesis research and precise targeted treatment of AS in the later stage.
Collapse
Affiliation(s)
- Zhou Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Changhao Han
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Shuo Li
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Bin Wu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xuchao Zhang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Shanbang Zhu
- Department of Orthopaedics, Nanjing Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Wenwen Tong
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
7
|
Wang K, Lu J, Song C, Qiao M, Li Y, Chang M, Bao H, Qiu Y, Qian B. Extracellular Vesicles Derived from Ligament Tissue Transport Interleukin-17A to Mediate Ligament-To-Bone Crosstalk in Ankylosing Spondylitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406876. [PMID: 39308181 PMCID: PMC11633500 DOI: 10.1002/advs.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Pathological new bone formation is a critical feature of the progression of ankylosing spondylitis (AS), and spine ankylosis is a distinctive feature of this condition. Ligaments are the primary regions of pathological new bone formation in AS. Here, it is demonstrated that ligament tissue-derived extracellular vesicles (EVs) and their interleukin-17A (IL-17A) cargo mediate the communication between the tissue and other cells. The investigation revealed that IL-17A in EVs can activate the JAK-STAT3 pathway, thereby stimulating the expression of MMP14 in AS ligament. Overexpression of MMP14 can lead to changes in the cytoskeleton and mechanical signaling of mesenchymal stem cells and other cells. These alterations in cellular cytoskeleton and mechanical signaling at ligament sites in patients with AS or in stem cells treated with EVs can result in pathological new bone formation. Finally, inhibiting IL-17A activity and EV endocytosis effectively controlled inflammation and pathological new bone formation. Overall, these data suggest that ligament-derived EVs and the enclosed IL-17A have a potential role in driving pathological new bone formation in AS, and targeting EVs may therefore emerge as a novel approach to delaying ectopic ossification in AS.
Collapse
Affiliation(s)
- Kaiyang Wang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Jingshun Lu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Chenyu Song
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Mu Qiao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yao Li
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Menghan Chang
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Hongda Bao
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Yong Qiu
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| | - Bang‐Ping Qian
- Division of Spine SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityZhongshan Road 321Nanjing210008China
| |
Collapse
|
8
|
McCarthy EE, Yu S, Perlmutter N, Nakao Y, Naito R, Lin C, Riekher V, DeRisi J, Ye CJ, Weiss A, Ashouri JF. Endogenous antigens shape the transcriptome and TCR repertoire in an autoimmune arthritis model. J Clin Invest 2024; 135:e174647. [PMID: 39589811 PMCID: PMC11735108 DOI: 10.1172/jci174647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
The development of pathogenic autoreactive CD4+ T cells, particularly in the context of impaired signaling, remains poorly understood. Unraveling how defective signaling pathways contribute to their activation and persistence is crucial for identifying new therapeutic targets. We performed bulk and single-cell RNA-Seq (scRNA-Seq) and single-cell T cell receptor sequencing (scTCR-Seq) to profile a highly arthritogenic subset of naive CD4+ T cells from BALB/c-Zap70*W163C (SKG) mice, which develop CD4+ T cell-mediated autoimmune arthritis driven by a hypomorphic mutation in Zap70 - a key TCR signaling kinase. Despite impaired signaling, these cells exhibited heightened expression of T cell activation and cytokine signaling genes but diminished expression of a subset of tolerogenic markers (Izumo1r, Tnfrsf9, Cd5, S100a11) compared with WT cells. The arthritogenic cells showed an enrichment for TCR variable β (Vβ) chains targeting superantigens (Sags) from the endogenous mouse mammary tumor virus (MMTV) but exhibited diminished induction of tolerogenic markers following peripheral antigen encounter, contrasting with the robust induction of the negative regulators seen in WT cells. In arthritic joints, cells expressing Sag-reactive Vβs expanded alongside detectable MMTV proviruses. Antiretroviral treatment and Sag-reactive T cell depletion curtailed SKG arthritis, suggesting that endogenous retroviruses disrupted peripheral tolerance and promoted the activation and differentiation of autoreactive CD4+ T cells into pathogenic effector cells.
Collapse
MESH Headings
- Animals
- Mice
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- Transcriptome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- CD4-Positive T-Lymphocytes/immunology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Mice, Inbred BALB C
- Mutation, Missense
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/pathology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Elizabeth E. McCarthy
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Department of Epidemiology and Biostatistics, and
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Steven Yu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Noah Perlmutter
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Yuka Nakao
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Ryota Naito
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Charles Lin
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Stanford University, Palo Alto, California, USA
| | - Vivienne Riekher
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Friedrich-Alexander University of Erlangen-Nuremburg, Bavaria, Germany
| | - Joe DeRisi
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| |
Collapse
|
9
|
Yau E, Lim M, Qaiyum Z, Boroojeni SF, Tang M, Pacheco A, Tavasolian F, Inman RD. Effect of Integrin Blockade on Experimental Spondyloarthritis. Biomolecules 2024; 14:1386. [PMID: 39595563 PMCID: PMC11591768 DOI: 10.3390/biom14111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Spondyloarthritis (SpA) describes a group of diseases characterized by chronic inflammation in the spine and peripheral joints. While pathogenesis is still unclear, proinflammatory gut-derived immune cells have been identified in the joints of SpA patients. We previously identified an enriched population of integrin-expressing cells in the joints of SpA patients. Entry of gut-derived cells into joints may be mediated by these integrins. In the current study, we used the SKG murine model of SpA to study the impact of integrin blockade. Mice were injected with antibodies against the integrin α4β7 or the β7 monomer twice a week. Treatment with antibodies against α4β7 reduced disease severity in curdlan-injected SKG mice, with disease scores being comparable between treatment initiation times. Targeting the β7 monomer led to reduced arthritis severity compared to targeting the α4β7 dimer. Treatment with antibodies against α4β7 or β7 decreased expression of these integrins in CD4+ T cells, with the frequency of αE+β7+ T cells in the spleen and lymph nodes correlating with disease severity. In summary, we showed that integrin blockade showed potential for ameliorating disease in a murine model of SpA, lending support for further studies testing integrin blockade in SpA.
Collapse
Affiliation(s)
- Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
| | - Robert D. Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; (E.Y.)
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Chen Y, Liu W, Xu X, Zhen H, Pang B, Zhao Z, Zhao Y, Liu H. The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis. Inflammation 2024; 47:1685-1698. [PMID: 38517649 DOI: 10.1007/s10753-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Ankylosing spondylitis (AS) is a common chronic progressive inflammatory autoimmune disease. T helper 17 (Th17) cells are the major effector cells mediating AS inflammation. Histone 3 Lys 27 trimethylation (H3K27me3) is an inhibitory histone modification that silences gene transcription and plays an important role in Th17 differentiation. The objective of this study was to investigate the expression of H3K27me3 in patients with AS and to explore its epigenetic regulation mechanism of Th17 differentiation during AS inflammation. We collected serum samples from 45 patients with AS at various stages and 10 healthy controls to measure their Interleukin-17 (IL-17) levels using ELISA. A quantitative polymerase chain reaction was used to quantify the mRNA levels of RORc and the signaling molecules of the JAK2/STAT3 pathway, JMJD3, and EZH2. Additionally, Western blot analysis was performed to quantify the protein levels of H3K27me3, RORγt, JAK2, STAT3, JMJD3, and EZH2 in cell protein extracts. The results showed that H3K27me3 expression in peripheral blood mononuclear cells (PBMCs) was significantly lower in patients with active AS compared to both the normal control groups and those with stable AS. Moreover, a significant negative correlation was observed between H3K27me3 expression and the characteristic transcription factor of Th17 differentiation, RORγt. We also discovered that patients with active AS exhibited significantly higher levels of JMJD3, an inhibitor of H3K27 demethylase, compared to the normal control group and patients with stable AS, while the expression of H3K27 methyltransferase (EZH2) was significantly lower. These findings suggest that H3K27me3 may be a dynamic and important epigenetic modification in AS inflammation, and JMJD3/EZH2 regulates the methylation level of H3K27me3, which may be one of the key regulatory factors in the pathogenesis of AS. These findings contribute to our understanding of the role of epigenetics in AS and may have implications for the development of novel therapeutic strategies for AS.
Collapse
Affiliation(s)
- Yuening Chen
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Wanlin Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohan Xu
- Guang'anmen Hospital Jinan, China Academy of Chinese Medical Sciences, Jinan, 250012, China
| | - Hongying Zhen
- Department of Cell Biology, Basic Medical School, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Pang
- Clinical Laboratory, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Zhe Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Yanan Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Hongxiao Liu
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China.
| |
Collapse
|
11
|
Van Mechelen M, Raychaudhuri SP, Raychaudhuri SK, de Vlam K. GRAPPA 2023 Basic Science Workshop: What to Expect From Animal Models for Psoriatic Arthritis and Psoriasis. J Rheumatol 2024; 51:31-32. [PMID: 39009396 DOI: 10.3899/jrheum.2024-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 07/17/2024]
Abstract
Animal models help to drive research into psoriasis and psoriatic arthritis (PsA), particularly when studies in humans are not feasible. There are no animal models that perfectly mimic psoriatic disease (PsD) and so the pros and cons of each existing model must be considered for appropriate experimental design. Roughly, the existing animal models for PsD can be divided into 4 categories: (1) spontaneous models, (2) transgenic models, (3) inducible models, and (4) xenotransplantation models. Animal models in PsD are extremely important for dissecting and understanding molecular mechanisms of the disease process and for developing novel drugs. Animal models remain highly valuable for research in PsD in 2 scenarios. The first scenario is when complex interventions or analyses are required that are not feasible in humans due to technical, safety, or economic reasons. The second is when well-controlled study environments are required, such as dietary modifications, that would be challenging in humans. This topic was presented as part of the basic science workshops during the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2023 annual meeting.
Collapse
Affiliation(s)
- Margot Van Mechelen
- M. Van Mechelen, MD, PhD, Department of Immunology, Allergology and Rheumatology, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Siba P Raychaudhuri
- S.P. Raychaudhuri, MD, PhD, School of Medicine, and Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis/Sacramento VA Medical Center, Davis, California, USA
| | - Smriti K Raychaudhuri
- S.K. Raychaudhuri, MD, School of Medicine, University of California Davis/Sacramento VA Medical Center, Davis, California, USA
| | - Kurt de Vlam
- K. de Vlam, MD, PhD, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, and Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Lee SH, Nam B, Youn J, Lee KH, Jo S. Swimming exercise alleviates pathological bone features in curdlan-injected SKG mice by inducing irisin expression. Life Sci 2024; 352:122894. [PMID: 38971365 DOI: 10.1016/j.lfs.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This study assessed the therapeutic potential of swimming exercise in the curdlan-injected SKG mouse model and investigated the modulatory effects of irisin on inflammation. Curdlan-injected SKG were randomly assigned to either a home-cage group or a swimming group for 6 weeks. Changes in clinical arthritis scores and ankle thickness were measured weekly. Post-swimming program, mice were anesthetized for collection of vastus lateralis muscle and blood, which was followed by histological analysis, micro-CT imaging of the ankle joints, and the measurement of pro-inflammatory cytokines and irisin levels. Additionally, curdlan-injected SKG mice were intravenously injected with recombinant irisin protein and observed. Finally, serum levels of irisin in healthy control and ankylosing spondylitis (AS) patient groups were measured by ELISA. The swimming group of curdlan-injected SKG mice exhibited significant improvements in arthritis and enthesitis compared to the home-cage group. In particular, micro-CT and histological analyses revealed a notable reduction in pathological bone features in the swimming group compared to the home-cage group. Muscle endurance was also enhanced in the swimming group compared to the home-cage group, as determined by the wire-hanging test. Intriguingly, irisin levels not only were statistically increased in the swimming group but, also, TNF-α, IL-1β, and IL-6 levels were decreased. Additionally, injection of irisin protein slightly attenuated both arthritis and enthesitis in curdlan-injected SKG mice. Meanwhile, irisin serum levels were declined in AS patients. Overall, we found that swimming exercise attenuated pathological bone features in an AS animal model, potentially mediated by increased irisin serum levels with associated anti-inflammatory effects.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Bora Nam
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyu Hoon Lee
- Department of Rehabilitation Medicine, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Republic of Korea.
| |
Collapse
|
13
|
Nakamura A, Jo S, Nakamura S, Aparnathi MK, Boroojeni SF, Korshko M, Park YS, Gupta H, Vijayan S, Rockel JS, Kapoor M, Jurisica I, Kim TH, Haroon N. HIF-1α and MIF enhance neutrophil-driven type 3 immunity and chondrogenesis in a murine spondyloarthritis model. Cell Mol Immunol 2024; 21:770-786. [PMID: 38839914 PMCID: PMC11214626 DOI: 10.1038/s41423-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L, 2V6, Canada.
- Translational Institute of Medicine, School of Medicine, Queen's University, Kingston, ON, K7L 2V6, Canada.
- Division of Rheumatology, Kingston Health Science Centre, Kingston, ON, K7L 2V6, Canada.
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mansi K Aparnathi
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mariia Korshko
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11293, Republic of Korea
| | - Himanshi Gupta
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Sandra Vijayan
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Comp. Science and Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 85410, Bratislava, Slovakia
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Srinath A, Nakamura A, Haroon N. Sequence of Events in the Pathogenesis of Axial Spondyloarthritis: A Current Review-2023 SPARTAN Meeting Proceedings. Curr Rheumatol Rep 2024; 26:133-143. [PMID: 38324125 DOI: 10.1007/s11926-024-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Over the past two decades, significant progress has been made to untangle the etiology of inflammation and new bone formation (NBF) associated with axial spondyloarthritis (axSpA). However, exact mechanisms as to how the disease initiates and develops remain elusive. RECENT FINDINGS Type 3 immunity, centered around the IL-23/IL-17 axis, has been recognized as a key player in the pathogenesis of axSpA. Multiple hypotheses associated with HLA-B*27 have been proposed to account for disease onset and progression of axSpA, potentially by driving downstream T cell responses. However, HLA-B*27 alone is not sufficient to fully explain the development of axSpA. Genome-wide association studies (GWAS) identified several genes that are potentially relevant to disease pathogenesis leading to a better understanding of the immune activation seen in axSpA. Furthermore, gut microbiome studies suggest an altered microbiome in axSpA, and animal studies suggest a pathogenic role for immune cells migrating from the gut to the joint. Recent studies focusing on the pathogenesis of new bone formation (NBF) have highlighted the importance of endochondral ossification, mechanical stress, pre-existing inflammation, and activated anabolic signaling pathways during the development of NBF. Despite the complex etiology of axSpA, recent studies have shed light on pivotal pieces that could lead to a better understanding of the pathogenic events in axSpA.
Collapse
Affiliation(s)
- Archita Srinath
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada
- School of Medicine, Translational Institute of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Science Centre, Kingston, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Lee JH, Lee SH, Jeon C, Han J, Kim SH, Youn J, Park YS, Kim TJ, Kim JS, Jo S, Kim TH, Son CN. The complement factor H-related protein-5 (CFHR5) exacerbates pathological bone formation in ankylosing spondylitis. J Mol Med (Berl) 2024; 102:571-583. [PMID: 38418621 DOI: 10.1007/s00109-024-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease, characterized by excessive new bone formation. We previously reported that the complement factor H-related protein-5 (CFHR5), a member of the human factor H protein family, is significantly elevated in patients with AS compared to other rheumatic diseases. However, the pathophysiological mechanism underlying new bone formation by CFHR5 is not fully understood. In this study, we revealed that CFHR5 and proinflammatory cytokines (TNF, IL-6, IL-17A, and IL-23) were elevated in the AS group compared to the HC group. Correlation analysis revealed that CFHR5 levels were not significantly associated with proinflammatory cytokines, while CFHR5 levels in AS were only positively correlated with the high CRP group. Notably, treatment with soluble CFHR5 has no effect on clinical arthritis scores and thickness at hind paw in curdlan-injected SKG, but significantly increased the ectopic bone formation at the calcaneus and tibia bones of the ankle as revealed by micro-CT image and quantification. Basal CFHR5 expression was upregulated in AS-osteoprogenitors compared to control cells. Also, treatment with CFHR5 remarkedly induced bone mineralization status of AS-osteoprogenitors during osteogenic differentiation accompanied by MMP13 expression. We provide the first evidence demonstrating that CFHR5 can exacerbate the pathological bone formation of AS. Therapeutic modulation of CFHR5 could be promising for future treatment of AS. KEY MESSAGES: Serum level of CFHR5 is elevated and positively correlated with high CRP group of AS patients. Recombinant CFHR5 protein contributes to pathological bone formation in in vivo model of AS. CFHR5 is highly expressed in AS-osteoprogenitors compared to disease control. Recombinant CFHR5 protein increased bone mineralization accompanied by MMP13 in vitro model of AS.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Rheumatology, Eulji Rheumatology Research Institute, Eulji University School of Medicine, 712 Dongil-Ro, Uijeongbu, Gyeonggi-Do, 11759, Republic of Korea
- Rheumarker Bio Inc, Daegu, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinil Han
- Gencurix Inc, Seoul, Republic of Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-Do, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungcheongnam-do, 31358, Republic of Korea.
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Chang-Nam Son
- Department of Rheumatology, Eulji Rheumatology Research Institute, Eulji University School of Medicine, 712 Dongil-Ro, Uijeongbu, Gyeonggi-Do, 11759, Republic of Korea.
- Rheumarker Bio Inc, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Won EJ, Lee YJ, Kim MJ, Lee HI, Jang HH, Kim SH, Yoo HM, Cho N, Shim SC, Kim TJ. A potential role of protein extractions from Metagonimus yokogawai in amelionating inflammation in patients with ankylosing spondylitis. Exp Parasitol 2024; 259:108718. [PMID: 38369180 DOI: 10.1016/j.exppara.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Helminth infections and their components has been recognized to have a positive impact on the immune system. This study aimed to investigate the potential of Metagonimus yokogawai-derived proteins (MYp) to provide protection against ankylosing spondylitis (AS) through modulation of immune responses. The cytotoxicity of MYp at various doses was first assessed using MTS and flow cytometry. Peripheral blood mononuclear cells (PBMCs) were collected from AS patients, and the production of inflammatory cytokines was analyzed through flow cytometry. In the experiments with SKG mice, MYp or vehicle was administered and inflammation was evaluated through immunohistochemistry and enzyme-linked immunosorbent assay. The results showed that MYp did not decrease cell viability of PBMCs even after 48 h. Additionally, the frequencies of IFN-γ and IL-17A producing cells were significantly reduced after MYp treatment in the PBMC cultures. Furthermore, MYp treatment significantly suppressed arthritis and enthesitis in the SKG mouse model. The results suggest the first evidence that MYp can effectively alleviate clinical symptoms and restore cytokine balance in patients with AS.
Collapse
Affiliation(s)
- Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yu Jeong Lee
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Republic of Korea; Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae-In Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun Hee Jang
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Republic of Korea; Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Hoon Kim
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Republic of Korea; Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee Min Yoo
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Tae-Jong Kim
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Republic of Korea; Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
18
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
19
|
Rosenzweig HL, Vance EE, Asare-Konadu K, Koney KV, Lee EJ, Deodhar AA, Sen R, Caplan L, Napier RJ. Card9/neutrophil signalling axis promotes IL-17A-mediated ankylosing spondylitis. Ann Rheum Dis 2024; 83:214-222. [PMID: 37813481 PMCID: PMC10850635 DOI: 10.1136/ard-2022-223146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Polymorphisms in the antifungal signalling molecule CARD9 are associated with ankylosing spondylitis (AS). Here, we investigated the cellular mechanism by which CARD9 controls pathogenic Th17 responses and the onset of disease in both experimental murine AS and patients. METHODS Experiments in SKG, Card9-/-SKG, neutrophil-deplete SKG mice along with in vitro murine, neutrophil and CD4+ T cell cocultures examined Card9 function in neutrophil activation, Th17 induction and arthritis in experimental AS. In AS patients the neutrophil: Bath Ankylosing Spondylitis Functional Index relationship was analysed. In vitro studies with autologous neutrophil: T cell cocultures examined endogenous CARD9 versus the AS-associated variant (rs4075515) of CARD9 in T cellular production of IL-17A. RESULTS Card9 functioned downstream of Dectin-1 and was essential for induction of Th17 cells, arthritis and spondylitis in SKG mice. Card9 expression within T cells was dispensable for arthritis onset in SKG mice. Rather, Card9 expression controlled neutrophil function; and neutrophils in turn, were responsible for triggering Th17 expansion and disease in SKG mice. Mechanistically, cocultures of zymosan prestimulated neutrophils and SKG T cells revealed a direct cellular function for Card9 within neutrophils in the potentiation of IL-17 production by CD4+ T cells on TCR-ligation. The clinical relevance of the neutrophil-Card9-coupled mechanism in Th17-mediated disease is supported by a similar observation in AS patients. Neutrophils from HLA-B27+ AS patients expanded autologous Th17 cells in vitro, and the AS-associated CARD9S12N variant increased IL-17A. CONCLUSIONS These data reveal a novel neutrophil-intrinsic role for Card9 in arthritogenic Th17 responses and AS pathogenesis. These data provide valuable utility in our future understanding of CARD9-specific mechanisms in spondyloarthritis .
Collapse
Affiliation(s)
- Holly L Rosenzweig
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Emily E Vance
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Kofi Asare-Konadu
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Ellen J Lee
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Atul A Deodhar
- Div Arthritis/Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | - Rouhin Sen
- University of Colorado, Denver, Colorado, USA
- VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Liron Caplan
- VA Eastern Colorado Health Care System, Aurora, Colorado, USA
- Rheumatology Division, University of Colorado, Denver, Colorado, USA
| | - Ruth J Napier
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
- Div Arthritis/Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Zhao M, Kronenberg M. Innate-like T Cells: Connecting the Dots Linking Microscopic Intestinal Inflammation to Spondyloarthritis. Arthritis Rheumatol 2023; 75:1907-1909. [PMID: 37488948 PMCID: PMC10615776 DOI: 10.1002/art.42660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Meng Zhao
- Oklahoma Medical Research Foundation, Oklahoma City
| | | |
Collapse
|
21
|
Choi JS, Kim JY, Ahn MJ, Jang H, Song S, Choi SH, Park YS, Jo S, Kim TH, Shim SC. Angiotensin receptor blockers, but not angiotensin-converting enzyme inhibitors, inhibit abnormal bone changes in spondyloarthritis. Exp Mol Med 2023; 55:2346-2356. [PMID: 37907743 PMCID: PMC10689434 DOI: 10.1038/s12276-023-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 11/02/2023] Open
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that results in bone ankylosis. The tissue renin-angiotensin system (RAS) is an emerging pathway potentially implicated in SpA-associated bone changes. The aim of the present study was to determine the mechanisms underlying this relationship. Sakaguchi (SKG) mice injected with curdlan (SKGc), animal models for SpA, were treated with RAS modulators, angiotensin II receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEis). Disease activity was assessed using clinical scores and computed tomography scans. Mouse primary bone marrow monocytes (BMMs), osteoblast (OB) progenitor cells, peripheral blood monocytes (PBMCs), and bone-derived cells (BdCs) from patients with radiographic axial SpA (r-axSpA) were used to investigate the role of RAS in SpA pathogenesis. The expression of RAS components was significantly increased in SKGc mouse joints, and ARBs significantly reduced erosion and systemic bone loss, whereas ACEis did not. Osteoclast (OC) differentiation from primary BMMs, mediated by TRAF6, was inhibited by ARBs but promoted by ACEis; the modulators also exerted opposite effects on OB differentiation. Expression of RAS molecules was higher in PBMCs and BdCs of patients with r-axSpA than in control participants. ARBs inhibited OB differentiation in the BdCs of patients with r-axSpA, whereas ACEis did not. Neither ARBs nor ACEis affected OB differentiation in the control participants. In SpA, a condition characterized by RAS overexpression, ARBs, but not ACEis, inhibited OC and OB differentiation and bone progression. The findings should be taken into account when treating patients with SpA using RAS modulators.
Collapse
Affiliation(s)
- Jin Sun Choi
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Ji-Young Kim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Min-Joo Ahn
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Hanbit Jang
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Seungtaek Song
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11923, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
22
|
Kim YE, Lee JH, Lee EJ, Kim DH, Jeong MR, Hong S, Lee CK, Yoo B, Youn J, Chang EJ, Kim YG. The Expression of the Alpha7 Nicotinic Acetylcholine Receptor and the Effect of Smoking in Curdlan-Administered SKG Mice. Biomedicines 2023; 11:2757. [PMID: 37893130 PMCID: PMC10603960 DOI: 10.3390/biomedicines11102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotine, an abundant molecule in tobacco, has immunomodulatory effects on inflammatory diseases, primarily due to the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR). We aim to evaluate the expression of the α7 nAChR+ cells in joint tissue and the effect of smoking on immune cells and peripheral arthritis in curdlan-administered SKG mice, a murine model of spondyloarthropathy (SpA). The SKG mice were injected with curdlan two times at 2-week intervals and were divided into two groups; one exposed to cigarette smoke and the other not exposed. We found that the α7 nAChR+ cells increased in the joint tissue of curdlan-administered SKG mice compared to in the wild type. Furthermore, the peripheral arthritis scores and histological scores for synovial inflammation were lower in smoke-exposed curdlan-administered SKG mice than in mice not exposed to smoke. Immunofluorescence staining of the α7 nAChR+ and IL-17A+ cells was lower in the synovia of smoke-exposed mice than the control mice. The proportions of α7 nAChR+IL-17A+ and α7 nAChR+IL-17A+FOXP3+ cells also decreased in the synovia of smoke-exposed mice compared with the controls. We observed an increase in the α7 nAChR+ cells within the joint tissue of curdlan-administered SKG mice and that cigarette smoke had an influence on both peripheral arthritis and immune cell population, especially α7 nAChR+ cells. Thus, exposure to cigarette smoke after arthritogenic stimuli may have an anti-arthritogenic effect in curdlan-administered SKG mice.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jae-Hyun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Eun-Ju Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Do Hoon Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Mi Ryeong Jeong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Seokchan Hong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Chang-Keun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Bin Yoo
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Yong-Gil Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| |
Collapse
|
23
|
Thiran A, Petta I, Blancke G, Thorp M, Planckaert G, Jans M, Andries V, Barbry K, Gilis E, Coudenys J, Hochepied T, Vanhove C, Gracey E, Dumas E, Manuelo T, Josipovic I, van Loo G, Elewaut D, Vereecke L. Sterile triggers drive joint inflammation in TNF- and IL-1β-dependent mouse arthritis models. EMBO Mol Med 2023; 15:e17691. [PMID: 37694693 PMCID: PMC10565626 DOI: 10.15252/emmm.202317691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Arthritis is the most common extra-intestinal complication in inflammatory bowel disease (IBD). Conversely, arthritis patients are at risk for developing IBD and often display subclinical gut inflammation. These observations suggest a shared disease etiology, commonly termed "the gut-joint-axis." The clinical association between gut and joint inflammation is further supported by the success of common therapeutic strategies and microbiota dysbiosis in both conditions. Most data, however, support a correlative relationship between gut and joint inflammation, while causative evidence is lacking. Using two independent transgenic mouse arthritis models, either TNF- or IL-1β dependent, we demonstrate that arthritis develops independently of the microbiota and intestinal inflammation, since both lines develop full-blown articular inflammation under germ-free conditions. In contrast, TNF-driven gut inflammation is fully rescued in germ-free conditions, indicating that the microbiota is driving TNF-induced gut inflammation. Together, our study demonstrates that although common inflammatory pathways may drive both gut and joint inflammation, the molecular triggers initiating such pathways are distinct in these tissues.
Collapse
|
24
|
Scrivo R, D'Angelo S, Carriero A, Castellani C, Perrotta FM, Conti F, Vecellio M, Selmi C, Lubrano E. The Conundrum of Psoriatic Arthritis: a Pathogenetic and Clinical Pattern at the Midpoint of Autoinflammation and Autoimmunity. Clin Rev Allergy Immunol 2023; 65:72-85. [PMID: 35040085 DOI: 10.1007/s12016-021-08914-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 02/06/2023]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory condition characterized by psoriasis, synovitis, enthesitis, spondylitis, and the possible association with other extra-articular manifestations and comorbidities. It is a multifaceted and systemic disorder sustained by complex pathogenesis, combining aspects of autoinflammation and autoimmunity. Features of PsA autoinflammation include the role of biomechanical stress in the onset and/or exacerbation of the disease; the evidence of involvement of the innate immune response mediators in the skin, peripheral blood and synovial tissue; an equal gender distribution; the clinical course which may encounter periods of prolonged remission and overlapping features with autoinflammatory syndromes. Conversely, the role of autoimmunity is evoked by the association with class I major histocompatibility complex alleles, the polyarticular pattern of the disease which sometimes resembles rheumatoid arthritis and the presence of serum autoantibodies. Genetics also provide important insights into the pathogenesis of PsA, particularly related to class I HLA being associated with psoriasis and PsA. In this review, we provide a comprehensive review of the pathogenesis, genetics and clinical features of PsA that endorse the mixed nature of a disorder at the crossroads of autoinflammation and autoimmunity.
Collapse
Affiliation(s)
- Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna Delle Grazie Hospital of Matera, Potenza, Italy
| | - Antonio Carriero
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna Delle Grazie Hospital of Matera, Potenza, Italy
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| | - Chiara Castellani
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Massimo Perrotta
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Center, Oxford, UK
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Ennio Lubrano
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
25
|
Zheng G, Peng X, Zhang Y, Wang P, Xie Z, Li J, Liu W, Ye G, Lin Y, Li G, Liu H, Zeng C, Li L, Wu Y, Shen H. A novel Anti-ROS osteoblast-specific delivery system for ankylosing spondylitis treatment via suppression of both inflammation and pathological new bone formation. J Nanobiotechnology 2023; 21:168. [PMID: 37231465 DOI: 10.1186/s12951-023-01906-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Ankylosing spondylitis (AS) is a common rheumatic disorder distinguished by chronic inflammation and heterotopic ossification at local entheses sites. Currently available medications, including nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs) and TNF inhibitors, are limited by side effects, high costs and unclear inhibitory effects on heterotopic ossification. Herein, we developed manganese ferrite nanoparticles modified by the aptamer CH6 (CH6-MF NPs) that can efficiently scavenge ROS and actively deliver siRNA into hMSCs and osteoblasts in vivo for effective AS treatment. CH6-MF NPs loaded with BMP2 siRNA (CH6-MF-Si NPs) effectively suppressed abnormal osteogenic differentiation under inflammatory conditions in vitro. During their circulation and passive accumulation in inflamed joints in the Zap70mut mouse model, CH6-MF-Si NPs attenuated local inflammation and rescued heterotopic ossification in the entheses. Thus, CH6-MF NPs may be an effective inflammation reliever and osteoblast-specific delivery system, and CH6-MF-Si NPs have potential for the dual treatment of chronic inflammation and heterotopic ossification in AS.
Collapse
Affiliation(s)
- Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Yucong Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Guojian Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China.
- Future Technology Research Institute, South China Normal University, 55 Zhongshan Dadao, Tianhe District, Guangzhou, P.R. China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, P.R. China.
| |
Collapse
|
26
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
27
|
Tang C, Sun H, Kadoki M, Han W, Ye X, Makusheva Y, Deng J, Feng B, Qiu D, Tan Y, Wang X, Guo Z, Huang C, Peng S, Chen M, Adachi Y, Ohno N, Trombetta S, Iwakura Y. Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat Commun 2023; 14:1493. [PMID: 36932082 PMCID: PMC10023663 DOI: 10.1038/s41467-023-37229-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Dectin-1 (gene Clec7a), a receptor for β-glucans, plays important roles in the host defense against fungi and immune homeostasis of the intestine. Although this molecule is also suggested to be involved in the regulation of tumorigenesis, the role in intestinal tumor development remains to be elucidated. In this study, we find that azoxymethane-dextran-sodium-sulfate-induced and ApcMin-induced intestinal tumorigenesis are suppressed in Clec7a-/- mice independently from commensal microbiota. Dectin-1 is preferentially expressed on myeloid-derived suppressor cells (MDSCs). In the Clec7a-/- mouse colon, the proportion of MDSCs and MDSC-derived prostaglandin E2 (PGE2) levels are reduced, while the expression of IL-22 binding protein (IL-22BP; gene Il22ra2) is upregulated. Dectin-1 signaling induces PGE2-synthesizing enzymes and PGE2 suppresses Il22ra2 expression in vitro and in vivo. Administration of short chain β-glucan laminarin, an antagonist of Dectin-1, suppresses the development of mouse colorectal tumors. Furthermore, in patients with colorectal cancer (CRC), the expression of CLEC7A is also observed in MDSCs and correlated with the death rate and tumor severity. Dectin-1 signaling upregulates PGE2-synthesizing enzyme expression and PGE2 suppresses IL22RA2 expression in human CRC-infiltrating cells. These observations indicate a role of the Dectin-1-PGE2-IL-22BP axis in regulating intestinal tumorigenesis, suggesting Dectin-1 as a potential target for CRC therapy.
Collapse
Affiliation(s)
- Ce Tang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China.
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan.
| | - Haiyang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Motohiko Kadoki
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Xiaoqi Ye
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Jianping Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Bingbing Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Ding Qiu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Ying Tan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Xinying Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Zehao Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Sergio Trombetta
- Boehringer Ingelheim USA, 900 Ridgebury Rd, Ridgefield, CT, 06877, USA
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan.
| |
Collapse
|
28
|
Harrison SR, Marzo-Ortega H. Have Therapeutics Enhanced Our Knowledge of Axial Spondyloarthritis? Curr Rheumatol Rep 2023; 25:56-67. [PMID: 36652160 PMCID: PMC9958165 DOI: 10.1007/s11926-023-01097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW An overview of how the treatment landscape of axial spondyloarthritis (axSpA) has shaped our understanding of the disease. RECENT FINDINGS Prior to the millennium, non-steroidal anti-inflammatory drugs (NSAIDs) were the only treatment for axSpA, yet only 30% of patients responded and many developed side effects. In 2003, the first biological disease-modifying drug (bDMARD) was licensed for axSpA which substantially improved outcomes in comparison to NSAIDs. In 2022, there are now several bDMARDs for axSpA; however, they too are not universally efficacious in treating axial inflammation and may have deleterious effects on extramusculoskeletal manifestations. Nevertheless, successful or not, each bDMARD gives invaluable insight into axSpA immunobiology. This review discusses how much we have learned from the use of bDMARDs in axSpA, how this has redefined our understanding of the disease, and how we might use this knowledge to develop new and better treatments for axSpA in the future.
Collapse
Affiliation(s)
- S R Harrison
- The University of Leeds, Leeds Institute for Rheumatic and Musculoskeletal Medicine (LIRMM), NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- The University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, the LIGHT building, Clarendon Way, Leeds, UK
| | - H Marzo-Ortega
- The University of Leeds, Leeds Institute for Rheumatic and Musculoskeletal Medicine (LIRMM), NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK.
| |
Collapse
|
29
|
Macleod T, Bridgewood C, McGonagle D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. THE LANCET. RHEUMATOLOGY 2023; 5:e47-e57. [PMID: 38251507 DOI: 10.1016/s2665-9913(22)00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Neutrophilic inflammation is a pervasive characteristic common to spondyloarthropathies and related disorders. This inflammation manifests as Munro's microabscesses of the skin and osteoarticular neutrophilic inflammation in patients with psoriatic arthritis, intestinal crypt abscesses in patients with inflammatory bowel disease, ocular hypopyon in anterior uveitis, and neutrophilic macroscopic and microscopic inflammation in patients with Behçet's disease. Strong MHC class I associations are seen in these diseases, which represent so-called MHC-I-opathies, and these associations indicate an involvement of CD8 T-cell immunopathology that is not yet well understood. In this Personal View, we highlight emerging data suggesting that the T-cell-neutrophil axis involves both a T-cell-mediated and interleukin (IL)-17-mediated (type 17) recruitment and activation of neutrophils, and also a sequestration of activated neutrophils at disease sites that might directly amplify type 17 T-cell responses. This amplification likely involves neutrophilic production of IL-23 and proteases as well as other feedback mechanisms that could be regulated by local microbiota, pathogens, or tissue damage. This crosstalk between innate and adaptive immunity offers a novel explanation for how bacterial and fungal microbes at barrier sites could innately control type 17 T-cell development, with the aim of restoring tissue homoeostasis, and could potentially explain features of clinical disease and treatment response, such as the fast-onset action of the IL-23 pathway blockade in certain patients. This axis could be crucial to understanding non-response to IL-23 inhibitors among patients with ankylosing spondylitis, as the axial skeleton is a site rich in neutrophils and a site of haematopoiesis with myelopoiesis in adults.
Collapse
Affiliation(s)
- Tom Macleod
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK.
| |
Collapse
|
30
|
Sen R, Caplan L. Current treatment and molecular targets for axial spondyloarthritis: Evidence from randomized controlled trials. Curr Opin Pharmacol 2022; 67:102307. [PMID: 36335714 DOI: 10.1016/j.coph.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that predominantly affects the axial skeleton and is characterized by inflammatory back pain. While much has been published regarding non-steroidal anti-inflammatory drugs and tumor necrosis factor inhibitors, other classes of medications which leverage alternate molecular mechanisms receive less attention. In this review, we summarize a few of the novel targets in axSpA, review the putative mechanism of action of therapies that focus on these targets, and reference the germane recently completed, ongoing, or proposed randomized controlled clinical trials. The agents addressed include inhibitors of interleukin-23, interleukin-17, janus kinases, granulocyte-macrophage colony-stimulating factor, macrophage migration inhibitory factor, antibodies recognizing T cell receptor beta variable 9 gene positive clones, as well as inhibitors of mitogen-activated protein kinase-activated protein kinase-2.
Collapse
Affiliation(s)
- Rouhin Sen
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | - Liron Caplan
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
31
|
Rosine N, Rogge L, McGonagle D, Miceli-Richard C. Reply. Arthritis Rheumatol 2022; 74:2046-2047. [PMID: 35762825 DOI: 10.1002/art.42277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Nicolas Rosine
- Institut Pasteur, Immunoregulation Unit and Department of Immunology, Université de Paris, Paris, France
| | - Lars Rogge
- Institut Pasteur, Immunoregulation Unit and Department of Immunology, Université de Paris, Paris, France
| | - Dennis McGonagle
- Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Leeds, UK
| | - Corinne Miceli-Richard
- Institut Pasteur, Immunoregulation Unit and Department of Immunology, Université de Paris and Service de Rhumatologie Hôpital Cochin Port Royal, AP-HP, Paris, France
| |
Collapse
|
32
|
So J, De Craemer AS, Elewaut D, Tam LS. Spondyloarthritis: How far are we from precision medicine? Front Med (Lausanne) 2022; 9:988532. [PMID: 36160128 PMCID: PMC9492940 DOI: 10.3389/fmed.2022.988532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Spondyloarthritis (SpA) is a family of heterogenous diseases consisting of different phenotypes. The exact disease mechanism remains unclear but evidence shows the complex pathophysiology with interplay between genome, microbiome, and immunome. Biologic DMARDs have markedly improved patients' disease control and quality of life. However, treatment response varies among patients. There is a growing need to identify biomarkers for the diagnosis, prognosis, prevention, and treatment of SpA. Genomic studies have been the research focus in the past two decades and have identified important genes involved in SpA. In recent years, emerging evidence supports the link between gut and joint inflammation in SpA, in which the role of gut microbiome in SpA is of great interest. Herein, potential genetic and gut microbial biomarkers for predicting treatment response are discussed. Novel strategies targeting dysbiosis in SpA are also summarized. These results represent a significant step toward precision medicine for patients with SpA.
Collapse
Affiliation(s)
- Jacqueline So
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Ann-Sophie De Craemer
- Division of Rheumatology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, VIB-UGent, Zwijnaarde, Belgium
| | - Dirk Elewaut
- Division of Rheumatology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, VIB-UGent, Zwijnaarde, Belgium
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lai-Shan Tam
| |
Collapse
|
33
|
Moon J, Lee SY, Na HS, Lee AR, Cho KH, Choi JW, Park SH, Cho ML. Ezetimibe ameliorates clinical symptoms in a mouse model of ankylosing spondylitis associated with suppression of Th17 differentiation. Front Immunol 2022; 13:922531. [PMID: 36059546 PMCID: PMC9428320 DOI: 10.3389/fimmu.2022.922531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes spinal inflammation and fusion. Although the cause of AS is unknown, genetic factors (e.g., HLA-B27) and environmental factors (e.g., sex, age, and infection) increase the risk of AS. Current treatments for AS are to improve symptoms and suppress disease progression. There is no way to completely cure it. High blood cholesterol and lipid levels aggravate the symptoms of autoimmune diseases. We applied hyperlipidemia drugs ezetimibe and rosuvastatin to AS mice and to PBMCs from AS patients. Ezetimibe and rosuvastatin was administered for 11 weeks to AS model mice on the SKG background. Then, the tissues and cells of mice were performed using flow cytometry, computed tomography, immunohistochemistry, and immunofluorescence. Also, the normal mouse splenocytes were cultured in Th17 differentiation conditions for in vitro analysis such as flow cytometry, ELISA and RNA sequencing. The 10 AS patients’ PBMCs were treated with ezetimibe and rosuvastatin. The patients’ PBMC were analyzed by flow cytometry and ELISA for investigation of immune cell type modification. Ezetimibe caused substantial inhibition for AS. The present study showed that ezetimibe inhibits Th17 cell function, thereby slowing the progression of AS. It is well known that statins are more effective in reducing blood lipid concentrations than ezetimibe, however, our results that ezetimibe had a better anti-inflammatory effect than rosuvastatin in AS. This data suggests that ezetimibe has an independent anti-inflammatory effect independent of blood lipid reduction. To investigate whether ezetimibe has its anti-inflammatory effect through which signaling pathway, various in vitro experiments and RNA sequencing have proceeded. Here, this study suggests that ezetimibe can be an effective treatment for AS patients by inhibiting Th17 differentiation-related genes such as IL-23R and IL-1R. Thus, this study suggests that ezetimibe has therapeutic potential for AS through inhibition of Th17 differentiation and the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho,
| |
Collapse
|
34
|
Tabuchi Y, Katsushima M, Nishida Y, Shirakashi M, Tsuji H, Onizawa H, Kitagori K, Akizuki S, Nakashima R, Murakami K, Murata K, Yoshifuji H, Tanaka M, Morinobu A, Hashimoto M. Oral dextran sulfate sodium administration induces peripheral spondyloarthritis features in SKG mice accompanied by intestinal bacterial translocation and systemic Th1 and Th17 cell activation. Arthritis Res Ther 2022; 24:176. [PMID: 35879738 PMCID: PMC9310491 DOI: 10.1186/s13075-022-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spondyloarthritis (SpA) is an autoimmune and autoinflammatory musculoskeletal disease characterised by systemic enthesitis. Recent research has focused on subclinical inflammatory bowel disease (IBD) in SpA pathogenesis. SKG mice, harbouring the Zap70 W163C mutation, increase autoreactive Th17 cells intrinsically, and in a conventional environment, they exhibit spontaneous arthritis with fungal factors. Under SPF conditions, they show SpA features, including enteritis, after peritoneal injection of β-1,3-glucan. This study aimed to clarify whether oral dextran sulfate sodium (DSS) administration, utilised in IBD model mice, can provoke SpA features in SKG mice under SPF conditions, focusing on the relationship between gut microorganisms and SpA pathogenesis. METHODS BALB/c and SKG mice were administered oral DSS, and their body weights, arthritis, and enthesitis scores were recorded. In another cohort, antibiotics (meropenem and vancomycin) or an anti-fungal agent (amphotericin B) was administered orally before DSS administration. The splenic Th1 and Th17 cell populations were examined before and after DSS administration using flow cytometry. Furthermore, the amount of circulating bacterial DNA in whole blood was measured by absolute quantitative polymerase chain reaction (qPCR), and the number and characteristics of bacterial species corresponding to these circulating DNA were analysed by next-generation sequencing (NGS). RESULTS Ankle enthesitis as a peripheral SpA feature was elicited in half of DSS-administered SKG mice, and none of the BALB/c mice. Pre-administration of antibiotics suppressed enthesitis, whilst an anti-fungal agent could not. Th1 and Th17 cell levels in the spleen increased after DSS administration, and this was suppressed by pre-administration of antibiotics. SKG mice have a larger amount of bacterial DNA in whole blood than BALB/c mice before and 1 day after the initiation of DSS administration. The number of bacterial species in whole blood increased after DSS administration in BALB/c and SKG mice. Some genera and species significantly specific to the DSS-treated SKG mouse group were also detected. CONCLUSION Oral DSS administration alone elicited peripheral enthesitis in SKG mice with bacterial translocation accompanied by increased splenic Th1 and Th17 cell levels. Pre-administration of antibiotics ameliorated these DSS-induced SpA features. These findings suggest that intestinal bacterial leakage plays a pivotal role in SpA pathogenesis.
Collapse
Affiliation(s)
- Yuya Tabuchi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Katsushima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yuri Nishida
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan. .,Department of Clinical Immunology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan.
| |
Collapse
|
35
|
Variants of beta-glucan polysaccharides downregulate autoimmune inflammation. Commun Biol 2022; 5:449. [PMID: 35551269 PMCID: PMC9098905 DOI: 10.1038/s42003-022-03376-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Common infections and polysaccharides, from bacteria and yeasts, could trigger psoriasis and psoriatic arthritis (PsA), and possibly rheumatoid arthritis (RA). The objective of this study was to investigate the effects of β-glucan polysaccharides in the effector phase of arthritis and as regulators of psoriasis and PsA-like symptoms in mice. Collagen antibody induced arthritis was studied as a model of RA and mannan-induced psoriasis (MIP) was used as model for psoriasis and PsA, using mice with a mutation of Ncf1 on the B10.Q genetic background, making them highly disease susceptible. The mice were exposed to three common variants: 1,6-β-glucan, 1,3-β-glucan and 1,3-1,6-β-glucan. These β-glucans down-regulated disease in mice if administered simultaneously, before or after mannan. Interestingly, the protection was macrophage mannose receptor (MMR/CD206) dependent with a more pronounced protection long-term than short-term. The number of resident peritoneal macrophages decreased after in vivo challenge with β-glucan and mannan compared to mannan alone, whereas the numbers of infiltrating cells correspondingly increased, further indicating macrophages as key for β-glucan mediated regulation. At the doses tested, β-glucans could not induce arthritis, psoriasis or PsA in wild-type mice. However, β-glucans could ameliorate the PsA-like symptoms representing a new unforeseen possibility to explore for future clinical treatment. β-glucan exerted anti-inflammatory activities in a murine model of psoriasis and psoriatic arthritis is, at least in part, mediated via the activation of CD206 on macrophages
Collapse
|
36
|
Lems W, Miceli-Richard C, Haschka J, Giusti A, Chistensen GL, Kocijan R, Rosine N, Jørgensen NR, Bianchi G, Roux C. Bone Involvement in Patients with Spondyloarthropathies. Calcif Tissue Int 2022; 110:393-420. [PMID: 35066596 DOI: 10.1007/s00223-021-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 11/02/2022]
Abstract
Spondyloarthropathies (SpA) are common systemic inflammatory rheumatic diseases, in which, as in other rheumatic diseases, levels of markers of bone resorption are elevated, leading to bone loss and elevated risk of vertebral fractures. However, the diseases are also associated with new bone formation in the spine, the so-called syndesmophytes. We tried to unravel the pathogenesis of formation and growth of syndesmophytes and evaluated new diagnostic and treatment options. After a successful meeting of the Working Group on Rheumatic Diseases at the ECTS 2020, we (WL and CR) were excited about the quality of the speakers (CM, JH, AG, and GL) and their complimentary lectures. Given the relative lack of reviews on spondyloarthropathies and bone, we decided to work together on a comprehensive review that might be interesting for basic scientists and clinically relevant for clinicians. Radiographic progression in axSpA is linked to several risk factors, like male sex, smoking, HLA-B-27, increased levels of CRP, presence of syndesmophytes, and marked inflammation on MRI. The potential role of mechanical stress in the context of physically demanding jobs has been also suggested to promote structural damages. Different treatment options from NSAIDs to biologic agents like TNF inhibitors (TNFi) or IL-17inhibitors (IL-17i) result in a reduction of inflammation and symptoms. However, all these different treatment options failed to show clear and reproducible results on inhibition on syndesmophyte formation. The majority of data are available on TNFi, and some studies suggested an effect in subgroups of patients with ankylosing spondylitis. Less information is available on NSAIDs and IL-17i. Since IL-17i have been introduced quite recently, more studies are expected. IL-17 inhibitors (Il-17i) potently reduce signs and symptoms, but serum level of IL-17 is not elevated, therefore, IL-17 probably has mainly a local effect. The failure of anti-IL-23 in axSpA suggests that IL-17A production could be independent from IL-23. It may be upregulated by TNFα, resulting in lower expression of DKK1 and RANKL and an increase in osteogenesis. In active AS markers of bone resorption are increased, while bone formation markers can be increased or decreased. Bone Turnover markers and additional markers related to Wnt such as DKK1, sclerostin, and RANKL are valuable for elucidating bone metabolism on a group level and they are not (yet) able to predict individual patient outcomes. The gold standard for detection of structural lesions in clinical practice is the use of conventional radiographics. However, the resolution is low compared to the change over time and the interval for detecting changes are 2 years or more. Modern techniques offer substantial advantages such as the early detection of bone marrow edema with MRI, the fivefold increased detection rate of new or growing syndesmophytes with low-dose CT, and the decrease in 18F-fluoride uptake during treatment with TNFα-inhibitors (TNFi) in a pilot study in 12 AS patients. Detection of bone involvement by new techniques, such as low-dose CT, MRI and 18-Fluoride PET-scans, and bone turnover markers, in combination with focusing on high-risk groups such as patients with early disease, elevated CRP, syndesmophytes at baseline, male patients and patients with HLA-B27 + are promising options for the near future. However, for optimal prevention of formation of syndesmophytes we need more detailed insight in the pathogenesis of bone formation in axSpA and probably more targeted therapies.
Collapse
Affiliation(s)
- Willem Lems
- Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands.
| | - Corinne Miceli-Richard
- INSERM U 1153, Université de Paris-APHP.Centre, Service de Rhumatologie, Hopital Cochin, Paris, France
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France
| | - Judith Haschka
- I Medical Department, Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK & Hanusch Hospital Vienna, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
- Karl Landsteiner Institute for Rheumatology and Gastroenterology, Rheuma-Zentrum Wien-Oberlaa, 1100, Vienna, Austria
| | - Andrea Giusti
- Rheumatology Unit, Department of Medical Specialties, Local Health Trust 3, Via Missolungi 14, 16147, Genoa, Italy
| | | | - Roland Kocijan
- Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, Freudplatz 1, 1020, Vienna, Austria
| | - Nicolas Rosine
- INSERM U 1153, Université de Paris-APHP.Centre, Service de Rhumatologie, Hopital Cochin, Paris, France
- Sorbonne Université, Service de Rhumatologie Hôpital Pitié Salpêtrière, APHP, Paris, France
| | | | - Gerolamo Bianchi
- Rheumatology Unit, Department of Medical Specialties, Local Health Trust 3, Via Missolungi 14, 16147, Genoa, Italy
| | - Christian Roux
- INSERM U 1153, Université de Paris-APHP.Centre, Service de Rhumatologie, Hopital Cochin, Paris, France
| |
Collapse
|
37
|
Zhang Y, Tu B, Sha Q, Qian J. Bone marrow mesenchymal stem cells-derived exosomes suppress miRNA-5189-3p to increase fibroblast-like synoviocyte apoptosis via the BATF2/JAK2/STAT3 signaling pathway. Bioengineered 2022; 13:6767-6780. [PMID: 35246006 PMCID: PMC8973596 DOI: 10.1080/21655979.2022.2045844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ankylosing spondylitis (AS) is characterized by inflammation of the sacroiliac joint and the attachment point of the spine. Herein, we aimed to investigate the effect of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on apoptosis of fibroblast-like synoviocytes (FLSs) and explored its molecular mechanism. Exosomes were isolated from BMSCs and verified by transmission electron microscope and nanoparticle tracking analysis. FLSs were isolated and co-incubated with BMSC exosomes. Cell apoptosis was assessed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis and flow cytometry. The results showed that BMSC exosomes increased apoptosis of FLSs. MiR-5189-3p was downregulated, while basic leucine zipper transcription factor ATF-like 2 (BATF2) was upregulated in FLSs by treatment of BMSC exosomes. As a direct target of miR-5189-3p, BATF2 inactivates the JAK2/STAT3 pathway. MiR-5189-3p suppressed apoptosis of FLSs and BATF2 exerted an opposite effect. In conclusion, BMSCs-derived exosomes suppress miR-5189-3p to facilitate the apoptosis of FLSs via the BATF2/JAK2/STAT3 signaling pathway, which facilitates the understanding of the therapeutic effect of BMSCs on AS and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Spine Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bizhi Tu
- Department of Spine Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi Sha
- Department of Spine Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Qian
- Department of Spine Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
38
|
Vitronectin-derived bioactive peptide prevents spondyloarthritis by modulating Th17/Treg imbalance in mice with curdlan-induced spondyloarthritis. PLoS One 2022; 17:e0262183. [PMID: 34986165 PMCID: PMC8730421 DOI: 10.1371/journal.pone.0262183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. Methods SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. Results The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. Conclusions VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.
Collapse
|
39
|
Holers VM, La Rosa FG, Banda NK. A Potential New Mouse Model of Axial Spondyloarthritis Involving the Complement System. Immune Netw 2022; 21:e45. [PMID: 35036032 PMCID: PMC8733187 DOI: 10.4110/in.2021.21.e45] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
Many mouse models of rheumatoid arthritis have been identified, but only a limited number are present for axial spondyloarthritis (AxSpA). Collagen Ab-induced arthritis (CAIA) is one of the most widely used mouse models of arthritis, and it is complement-dependent. We found that mice developing CAIA also developed spinal lesions similar to those found in AxSpA. To induce CAIA, mice were injected intraperitoneally at day 0 with anti-collagen Abs, followed by LPS injection at day 3. CAIA mice demonstrated a significant kyphosis through the spine, as well as hypertrophic cartilage and osseous damage of the intravertebral joints. Immunohistochemical staining of the kyphotic area revealed increased complement C3 deposition and macrophage infiltration, with localization to the intravertebral joint margins. Near Infrared (NIR) in vivo imaging showed that anti-collagen Abs conjugated with IRDye® 800CW not only localized to cartilage surface in the joints but also to the spine in arthritic mice. We report here a novel preclinical mouse model in which, associated with the induction of CAIA, mice also exhibited salient features of AxSpA; this new experimental model of AxSpA may allow investigators to shed light on the local causal mechanisms of AxSpA bone and soft tissue changes as well as treatment.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francisco G La Rosa
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Stavre Z, Bridgewood C, Zhou Q, Maeda Y, Huang TT, Karman J, Khan A, Giryes S, Sharif K, McGonagle D, Gravallese EM. A role for neutrophils in early enthesitis in spondyloarthritis. Arthritis Res Ther 2022; 24:24. [PMID: 35039073 PMCID: PMC8762869 DOI: 10.1186/s13075-021-02693-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neutrophils are present in the early phases of spondyloarthritis-related uveitis, skin and intestinal disease, but their role in enthesitis, a cardinal musculoskeletal lesion in spondyloarthritis, remains unknown. We considered the role of neutrophils in the experimental SKG mouse model of SpA and in human axial entheses. Methods Early inflammatory infiltrates in the axial and peripheral entheseal sites in SKG mice were evaluated using immunohistochemistry and laser capture microdissection of entheseal tissue. Whole transcriptome analysis was carried out using Affymetrix gene array MTA 1.0, and data was analyzed via IPA. We further isolated neutrophils from human peri-entheseal bone and fibroblasts from entheseal soft tissue obtained from the axial skeleton of healthy patients and determined the response of these cells to fungal adjuvant. Results Following fungal adjuvant administration, early axial and peripheral inflammation in SKG mice was characterized by prominent neutrophilic entheseal inflammation. Expression of transcripts arising from neutrophils include abundant mRNA for the alarmins S100A8 and S100A9. In normal human axial entheses, neutrophils were present in the peri-entheseal bone. Upon fungal stimulation in vitro, human neutrophils produced IL-23 protein, while isolated human entheseal fibroblasts produced chemokines, including IL-8, important in the recruitment of neutrophils. Conclusion Neutrophils with inducible IL-23 production are present in uninflamed human entheseal sites, and neutrophils are prominent in early murine spondyloarthritis-related enthesitis. We propose a role for neutrophils in the early development of enthesitis. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02693-7.
Collapse
Affiliation(s)
- Zheni Stavre
- Department of Medicine/Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Charles Bridgewood
- The Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Qiao Zhou
- The Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK.,Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yukiko Maeda
- Department of Medicine/Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ting-Ting Huang
- Department of Medicine/Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jozsef Karman
- Abbvie Cambridge Research Center, Cambridge, MA, 02139, USA
| | - Almas Khan
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sami Giryes
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Kassem Sharif
- The Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK.,Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dennis McGonagle
- The Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | - Ellen M Gravallese
- Department of Medicine/Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Bridgewood C, Newton D, Bragazzi N, Wittmann M, McGonagle D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin Immunol 2021; 58:101520. [PMID: 34799224 DOI: 10.1016/j.smim.2021.101520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The IL-23/IL-17 cytokine axis is related to spondyloarthropathy (SpA) pattern diseases that target the skin, eye, gut and joints. These share overlapping target tissues with Th2 type or allergic diseases, including the skin, eye and gut but SpA diseases exhibit distinct microanatomical topography, molecular characteristics, and clinical features including uveitis, psoriasis, apical pulmonary involvement, lower gastrointestinal involvement with colitis, and related arthritides including psoriatic arthritis and ankylosing spondylitis. Inflammatory arthritis is conspicuously absent from the Th2 diseases which are characterised IL-4/IL-13 dependent pathway activation including allergic rhino-conjunctivitis, atopic eczema, allergic asthma and food allergies. This traditional understanding of non-overlap of musculoskeletal territory between that atopic diseases and the IL-17 -mediated SpA diseases is undergoing a critical reappraisal with the recent demonstration of IL-4/IL-13 blockade, may be associated with the development of SpA pattern arthritis, psoriasiform skin disease and occasional anterior uveitis. Given the known plasticity within Th paradigm pathways, these findings suggest dynamic Th2 cytokine and Th17 cytokine counter regulation in vivo in humans. Unexpected, this is the case in peripheral enthesis and when the IL-4/13 immunological brake on IL-23/17 cytokines is removed, a SpA phenotype may emerge. We discuss hitherto unexpected observations in SpA, showing counter regulation between the Th17 and Th2 pathways at sites including the entheses that collectively indicate that the emergent reverse translational therapeutic data is more than coincidental and offers new insights into the "Th paradigms" in atopy and SpA.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
| | - Darren Newton
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Nicola Bragazzi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
42
|
Nakamura A, Zeng F, Nakamura S, Reid KT, Gracey E, Lim M, Leng L, Jo S, Park YS, Kusuda M, Machhar R, Boroojeni SF, Wu B, Rossomacha E, Kim TH, Ciccia F, Rockel JS, Kapoor M, Inman RD, Jurisica I, Crome SQ, Bucala R, Haroon N. Macrophage migration inhibitory factor drives pathology in a mouse model of spondyloarthritis and is associated with human disease. Sci Transl Med 2021; 13:eabg1210. [PMID: 34669443 DOI: 10.1126/scitranslmed.abg1210] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Fanxing Zeng
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Eric Gracey
- Unit Molecular Immunology and Inflammation, Inflammation Research Institute, VIB-Ghent University, 9000 Ghent, Belgium.,Department of Rheumatology, Universitair Ziekenhuis Ghent, University of Gent, 9000 Ghent, Belgium
| | - Melissa Lim
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Lin Leng
- Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sungsin Jo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopaedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri 11293, Republic of Korea
| | - Masaki Kusuda
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Rohan Machhar
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Shaghayegh F Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian Wu
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Evgeny Rossomacha
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Francesco Ciccia
- Department of Precision Medicine, University della Campania L. Vanvitelli, 80131 Naples, Italy
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, 85410 Bratislava, Slovakia
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Richard Bucala
- Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Lubrano E, Luchetti MM, Benfaremo D, Mauro D, Ciccia F, Perrotta FM. Inflammatory bowel disease manifestations in spondyloarthritis: considerations for the clinician. Expert Rev Clin Immunol 2021; 17:1199-1209. [PMID: 34622735 DOI: 10.1080/1744666x.2021.1991315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spondyloarthropathies (SpA) are a group of inflammatory arthritis that can involve the spine and/or peripheral joints. Extra-articular manifestations, such as inflammatory bowel disease (IBD), are frequently observed within the clinical manifestations of SpA and are part of the SpA classification criteria. Evidence of IBD is observed in about 6-7% of SpA patients, and a silent, microscopic gut inflammation, could be present in up to 50% of patients. From a pathogenetic point of view, dysregulated microbiome and migration of T lymphocytes and other cells from gut to the joint ('gut-joint' axis) has been recognized, in the context of a common genetic background. AREAS COVERED The aim of this paper is to narratively review the recent evidences on the epidemiology, classification, clinical findings, pathogenesis, diagnosis, and treatment of IBD in patients with SpA and to provide advices for both rheumatologist and gastroenterologist in the management of IBD in SpA. EXPERT OPINION IBD manifestations in SpA frequently increase the burden of the disease and represent a clinical challenge, especially for the diagnosis, assessment, and treatment of patients affected by those conditions. New treatment strategies targeting both articular and intestinal manifestations are now available and may lead to a better outcome.
Collapse
Affiliation(s)
- Ennio Lubrano
- Dipartimento Di Medicina E Scienze Della Salute "Vincenzo Tiberio", Università Degli Studi Del Molise, Campobasso, Italy
| | - Michele Maria Luchetti
- Dipartimento Scienze Cliniche E Molecolari, Università Politecnica Delle Marche & Polo Didattico Ospedaliero "Umberto I-g.m. Lancisi-G.Salesi ", Ancona, Italy
| | - Devis Benfaremo
- Dipartimento Scienze Cliniche E Molecolari, Università Politecnica Delle Marche & Polo Didattico Ospedaliero "Umberto I-g.m. Lancisi-G.Salesi ", Ancona, Italy
| | - Daniele Mauro
- Dipartimento Di Medicina Di Precisione, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Ciccia
- Dipartimento Di Medicina Di Precisione, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabio Massimo Perrotta
- Dipartimento Di Medicina E Scienze Della Salute "Vincenzo Tiberio", Università Degli Studi Del Molise, Campobasso, Italy
| |
Collapse
|
44
|
Romero-López JP, Elewaut D, Pacheco-Tena C, Burgos-Vargas R. Inflammatory Foot Involvement in Spondyloarthritis: From Tarsitis to Ankylosing Tarsitis. Front Med (Lausanne) 2021; 8:730273. [PMID: 34692724 PMCID: PMC8531414 DOI: 10.3389/fmed.2021.730273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Spondyloarthritis (SpA) is a group that includes a wide spectrum of clinically similar diseases manifested by oligoarticular arthritis and axial or peripheral ankylosis. Although axial SpA is predominant in Caucasians and adult-onset patients, juvenile-onset and Latin American patients are characterized by severe peripheral arthritis and particularly foot involvement. The peripheral involvement of SpA can vary from tarsal arthritis to the most severe form named ankylosing tarsitis (AT). Although the cause and etiopathogenesis of axSpA are often studied, the specific characteristics of pSpA are unknown. Several animal models of SpA develop initial tarsitis and foot ankylosis as the main signs, emphasizing the role of foot inflammation in the overall SpA spectrum. In this review, we attempt to highlight the clinical characteristics of foot involvement in SpA and update the knowledge regarding its pathogenesis, focusing on animal models and the role of mechanical forces in inflammation.
Collapse
Affiliation(s)
- José Pablo Romero-López
- Laboratorio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
- Laboratorio de Inmunología Clínica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional de México, Ciudad de México, Mexico
| | - Dirk Elewaut
- Ghent University Hospital, Ghent University, Ghent, Belgium
| | - César Pacheco-Tena
- Facultad de Medicina, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| |
Collapse
|
45
|
TNF-α-mediated m 6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun 2021; 12:5373. [PMID: 34508078 PMCID: PMC8433149 DOI: 10.1038/s41467-021-25710-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a type of rheumatic disease characterized by chronic inflammation and pathological osteogenesis in the entheses. Previously, we demonstrated that enhanced osteogenic differentiation of MSC from AS patients (AS-MSC) resulted in pathological osteogenesis, and that during the enhanced osteogenic differentiation course, AS-MSC induced TNF-α-mediated local inflammation. However, whether TNF-α in turn affects AS-MSC remains unknown. Herein, we further demonstrate that a high-concentration TNF-α treatment triggers enhanced directional migration of AS-MSC in vitro and in vivo, which enforces AS pathogenesis. Mechanistically, TNF-α leads to increased expression of ELMO1 in AS-MSC, which is mediated by a METTL14 dependent m6A modification in ELMO1 3′UTR. Higher ELMO1 expression of AS-MSC is found in vivo in AS patients, and inhibiting ELMO1 in SKG mice produces therapeutic effects in this spondyloarthritis model. This study may provide insight into not only the pathogenesis but also clinical therapy for AS. Abnormal functions of mesenchymal stem cells (MSC) contribute into the pathogenensis of ankylosing spondylitis (AS). Here, the authors show that TNF-α at high concentration induces enhances migration of AS-MSC through METTL14 mediated m6A modification of the ELMO1 3′ UTR.
Collapse
|
46
|
Wang R, Maksymowych WP. Targeting the Interleukin-23/Interleukin-17 Inflammatory Pathway: Successes and Failures in the Treatment of Axial Spondyloarthritis. Front Immunol 2021; 12:715510. [PMID: 34539646 PMCID: PMC8446672 DOI: 10.3389/fimmu.2021.715510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The IL-23/IL-17 pathway has been implicated in the etiopathogenesis of axial spondyloarthritis through studies of genetic polymorphisms associated with disease, an animal model with over-expression of IL-23 that resembles human disease, and observations that cytokines in this pathway can be found at the site of disease in both humans and animal models. However, the most direct evidence has emerged from clinical trials of agents targeting cytokines in this pathway. Monoclonal antibodies targeting IL-17A have been shown to ameliorate signs and symptoms, as well as MRI inflammation in the spine and sacroiliac joints, in patients with radiographic and non-radiographic axial spondyloarthritis. This was evident in patients refractory to non-steroidal anti-inflammatory agents as well as patients failing treatment with tumor necrosis factor inhibitor therapies. Treatment with a bispecific antibody targeting both IL-17A and IL-17F was also effective in a phase II study. Post-hoc analyses have even suggested a potential disease-modifying effect in reducing development of spinal ankylosis. However, benefits for extra-articular manifestations were limited to psoriasis and did not extend to colitis and uveitis. Conversely, trials of therapies targeting IL-23 did not demonstrate any significant impact on signs, symptoms, and MRI inflammation in axial spondyloarthritis. These developments coincide with recent observations that expression of these cytokines is evident in many different cell types with roles in innate as well as adaptive immunity. Moreover, evidence has emerged for the existence of both IL-23-dependent and IL-23-independent pathways regulating expression of IL-17, potentially associated with different roles in intestinal and axial skeletal inflammation.
Collapse
Affiliation(s)
- Runsheng Wang
- Division of Rheumatology, Columbia University Irving Medical Center, New York, NY, United States
- Garden State Rheumatology Consultants, Union, NJ, United States
| | - Walter P. Maksymowych
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- CARE Arthritis, Edmonton, AB, Canada
| |
Collapse
|
47
|
Lim DH, Lee EJ, Lee HS, Kim DH, Lee JH, Jeong MR, Hong S, Lee CK, Yoo B, Youn J, Kim YG. Acetylated Diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol in Autoimmune Arthritis and Interstitial Lung Disease in SKG Mice. Biomedicines 2021; 9:1095. [PMID: 34572282 PMCID: PMC8465505 DOI: 10.3390/biomedicines9091095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Acetylated diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is a lipid molecule from the antlers of sika deer that might reduce inflammation by effectively controlling neutrophil infiltration, endothelial permeability and inflammatory chemokine production. Therefore, we evaluated the modulatory effect of PLAG on arthritis and interstitial lung disease (ILD) in an autoimmune arthritis model. We injected curdlan into SKG mice and PLAG was orally administered every day from 3 weeks to 20 weeks after the curdlan injection. The arthritis score was measured every week after the curdlan injection. At 20 weeks post-injection, the lung specimens were evaluated with H&E, Masson's trichrome and multiplexed immunofluorescent staining. Serum cytokines were also analyzed using a Luminex multiple cytokine assay. PLAG administration decreased the arthritis score until 8 weeks after the curdlan injection. However, the effect was not sustained thereafter. A lung histology revealed severe inflammation and fibrosis in the curdlan-induced SKG mice, which was attenuated in the PLAG-treated mice. Furthermore, immunofluorescent staining of the lung tissue showed a GM-CSF+ neutrophil accumulation and a decreased citrullinated histone 3 expression after PLAG treatment. PLAG also downregulated the levels of IL-6 and TNF-α and upregulated the level of sIL-7Rα, an anti-fibrotic molecule. Our results indicate that PLAG might have a preventative effect on ILD development through the resolution of NETosis in the lung.
Collapse
Affiliation(s)
- Doo-Ho Lim
- Division of Rheumatology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Eun-Ju Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
| | - Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
| | - Do Hoon Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jae-Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Mi Ryeong Jeong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea;
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
48
|
Jo S, Won EJ, Kim MJ, Lee YJ, Jin SH, Park PR, Song HC, Kim J, Choi YD, Kim JY, Shim SC, Choi SH, Park YS, Kim TH, Kim TJ. STAT3 phosphorylation inhibition for treating inflammation and new bone formation in ankylosing spondylitis. Rheumatology (Oxford) 2021; 60:3923-3935. [PMID: 33237331 DOI: 10.1093/rheumatology/keaa846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE AS is a rheumatic disease characterized by chronic inflammation and bony ankylosis. This study was to evaluate whether a signal transducer and activator of transcription 3 phosphorylation inhibitor (stat3-p Inh) could treat both chronic inflammation and bone formation in AS. METHODS Primary AS osteoprogenitor cells and spinal entheseal cells were examined for osteogenic differentiation. SF mononuclear cells (SFMCs) and lamina propria mononuclear cells (LPMCs) were obtained from AS patients. Inflammatory cytokine-producing cells were analysed using flow cytometry and ELISA. Female SKG mice were treated with stat3-p Inh, IL-17A blocker or vehicle. Inflammation and new bone formation were evaluated using immunohistochemistry, PET and micro-CT. RESULTS In the SKG mouse model, stat3-p Inh significantly suppressed arthritis, enthesitis, spondylitis and ileitis. In experiments culturing SFMCs and LPMCs, the frequencies of IFN-γ-, IL-17A- and TNF-α-producing cells were significantly decreased after stat3-p Inh treatment. When comparing current treatments for AS, stat3-p Inh showed a comparable suppression effect on osteogenesis to Janus kinase inhibitor or IL-17A blocker in AS-osteoprogenitor cells. Stat3-p Inh suppressed differentiation and mineralization of AS-osteoprogenitor cells and entheseal cells toward osteoblasts. Micro-CT analysis of hind paws revealed less new bone formation in stat3-p Inh-treated mice than vehicle-treated mice (P = 0.005). Hind paw and spinal new bone formation were similar between stat3-p Inh- and anti-IL-17A-treated SKG mice (P = 0.874 and P = 0.117, respectively). CONCLUSION Stat-3p inhibition is a promising treatment for both inflammation and new bone formation in AS.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Eun Jeong Won
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yu Jeong Lee
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - So-Hee Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Pu-Reum Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ji-Young Kim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.,Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
49
|
Harrison SR, Marzo-Ortega H. Ixekizumab: an IL-17A inhibitor for the treatment of axial Spondylarthritis. Expert Rev Clin Immunol 2021; 17:1059-1071. [PMID: 34407705 DOI: 10.1080/1744666x.2021.1970534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Axial spondyloarthritis (axSpA) is an inflammatory arthritis which affects primarily the entheses of the spine and sacroiliac joints with peripheral joint synovitis and extra-articular manifestations. In 2017, the first IL-17A inhibitor (IL-17Ai) secukinumab was approved for the treatment of radiographic axSpA not responding adequately to conventional therapies, and this was followed in 2019 by a second IL-17Ai, ixekizumab. These agents represent the first alternative class of biological treatments after the TNF inhibitor which dominated the therapeutic landscape of axSpA for over a decade. AREAS COVERED This review discusses the role of IL-17Ais in the treatment in axSpA focusing on the newest IL-17Ai ixekizumab. It provides a detailed overview of the drug pharmacodynamic, pharmacokinetics, and clinical trial data, including areas of future research needed in the post-marketing era. EXPERT OPINION Early trials of ixekizumab for axSpA have shown encouraging results and an acceptable safety profile. Future phase IV trials should focus on direct head-to-head comparisons between ixekizumab and other biologic drugs, and stratify patients according to important disease characteristics known to affect treatment response including sex, HLA-B27 status, presence of MRI bone marrow edema at baseline, disease duration and any extra-articular manifestations.
Collapse
Affiliation(s)
- Stephanie R Harrison
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Helena Marzo-Ortega
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
50
|
Ma M, Li H, Wang P, Yang W, Mi R, Zhuang J, Jiang Y, Lu Y, Shen X, Wu Y, Shen H. ATF6 aggravates angiogenesis-osteogenesis coupling during ankylosing spondylitis by mediating FGF2 expression in chondrocytes. iScience 2021; 24:102791. [PMID: 34296071 PMCID: PMC8281657 DOI: 10.1016/j.isci.2021.102791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Although angiogenesis-osteogenesis coupling is important in ankylosing spondylitis (AS), therapeutic agents targeting the vasculature remain elusive. Here, we identified activating transcription factor 6 (ATF6) as an important regulator of angiogenesis in the pathogenesis of AS. First, we found that ATF6 and fibroblast growth factor 2 (FGF2) levels were higher in SKG mice and in cartilage of pateints with AS1. The proangiogenic activity of human chondrocytes was enhanced by the activation of the ATF6-FGF2 axis following 7 days of stimulation with inflammatory factors, e.g., tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ) or interleukin-17 (IL-17). Mechanistically, ATF6 interacted with the FGF2 promotor and promoted its transcription. Treatment with the ATF6 inhibitor Ceapin-A7 inhibited angiogenesis in vitro and angiogenesis-osteogenesis coupling in vivo. ATF6 may aggravate angiogenesis-osteogenesis coupling during AS by mediating FGF2 transcription in chondrocytes, implying that ATF6 represents a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|