1
|
Tavakoli S, Kocatürkmen A, Oommen OP, Varghese OP. Ultra-Fine 3D Bioprinting of Dynamic Hyaluronic Acid Hydrogel for in Vitro Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500315. [PMID: 40357760 DOI: 10.1002/adma.202500315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/11/2025] [Indexed: 05/15/2025]
Abstract
3D bioprinting bridges tissue engineering and additive manufacturing, however developing bioinks with balanced biological and physical properties remains a challenge. Hyaluronic acid (HA) is a promising base material due to its biocompatibility and cell-recognition features. An HA-based bioink is designed using dynamic disulfide-crosslinking at physiological pH by modifying HA with cysteine moieties. To overcome the slow gelation kinetics typical of disulfide-crosslinked hydrogels, potassium iodide (KI) is introduced, accelerating gelation in a concentration-dependent manner. KI not only enhances gelation but also provides radical scavenging properties while maintaining hydrogel integrity. A low KI concentration (50 mm) offers more than a 3 h printing window, ensures cell viability, and facilitates the use of fine needles (32G, 108 µm inner diameter). This enables the fabrication of large (>3 cm) and complex 3D structures. Using this bioink, an osteoarthritis disease model is developed to investigate interactions between human mesenchymal stromal cells (hMSCs) and chondrocytes, demonstrating the immunomodulatory effect of hMSCs on inflammation-induced chondrocytes. Overall, the HA-based bioink addresses critical challenges in 3D bioprinting, providing a robust platform for constructing innovative in vitro models and supporting advancements in disease modeling and precision medicine.
Collapse
Affiliation(s)
- Shima Tavakoli
- Translational Chemical Biology Group, Division of Macromolecular Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala, SE75121, Sweden
| | - Aybike Kocatürkmen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| | - Oommen P Oommen
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Oommen P Varghese
- Translational Chemical Biology Group, Division of Macromolecular Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala, SE75121, Sweden
| |
Collapse
|
2
|
Zhao Z, Geng P, An M, Zhao Y, Guo Z, Gao H, Zhu H, Li Z, Wei M, Li C. Days 7 to 14 May Represent an Optimal Window for Stem Cell-Based Treatment in a Rat Model of Anterior Cruciate Ligament Transection-Induced Posttraumatic Osteoarthritis. Am J Sports Med 2025:3635465251326499. [PMID: 40336188 DOI: 10.1177/03635465251326499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND The concept of early intervention at the appropriate time has been recognized for treating posttraumatic osteoarthritis (PTOA). However, the optimal intervention timing to achieve superior therapeutic efficacy remains unclear. In addition, there is a lack of direct evidence regarding therapeutic efficacies achieved at different time points. HYPOTHESIS The administration schedule of stem/stromal cells can significantly influence their ability to improve function and slow progression of PTOA. There may exist an appropriate time window for achieving superior therapeutic efficacy. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 Sprague Dawley rats were included in this study. Anterior cruciate ligament transection (ACLT) was performed to induce PTOA. Animals in the control group underwent ACLT alone, whereas those in the sham group underwent knee articular capsulotomy alone. Bone marrow mesenchymal stem/stromal cells or phosphate-buffered saline (PBS) was intra-articularly administered on days 3, 7, 14, and 28 after ACLT (n = 6). Bioluminescence imaging was used to detect the retention of stem cells administered at different time points (n = 3). At the end of the experiment (8 weeks), gait analysis was conducted using CatWalk to compare the recovery of knee function between the 2 groups. Micro-computed tomography (CT) was performed to assess general appearance and quantify the microstructure of subchondral bone. Histological staining was used to evaluate the whole-joint pathology. Semiquantitative evaluations were conducted using Osteoarthritis Research Society International and Mankin scores. RESULTS PBS administration at different time points had no therapeutic effects on lower limb function or PTOA progression. Gait analysis suggested that stem cell administration significantly improved the general function of knee joints compared with the control group at all time points. However, the duty cycle was significantly higher on days 7 and 14 after ACLT. Micro-CT and histopathological staining of the knee samples suggested that although stem cell administration significantly ameliorated the progression of PTOA, the therapeutic efficacy was significantly better on days 7 and 14. After stem cell administration, the articular surface was considerably smoother with few scattered osteophytes, the deposition of cartilage extracellular matrix was more abundant, subchondral bone remodeling was significantly alleviated, and the synovium was less hyperplastic with reduced inflammatory cell infiltration. The general retention time of stem cells did not differ significantly at different administration time points. CONCLUSION This study suggests that the intervention schedule is significantly correlated with the therapeutic efficacy of stem cells for PTOA, with the best effects observed on days 7 and 14 after ACLT. CLINICAL RELEVANCE Days 7 to 14 after trauma may be the appropriate intervention timing for clinical prevention and treatment of PTOA.
Collapse
Affiliation(s)
- Zhidong Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Geng
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Mingyang An
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yanpeng Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zheng Guo
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Huayi Gao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhongli Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Min Wei
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chunbao Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Deptula P, McCullough M, Brown T, Singh D, Tanabe K, Tsai E, Kulber D. Preservation Arthroplasty for Basal Joint Arthritis Using Arthroscopy and Autologous Fat Grafting With Platelet-rich Plasma. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6720. [PMID: 40275905 PMCID: PMC12020691 DOI: 10.1097/gox.0000000000006720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Background Prior studies have shown that intra-articular injection of autologous fat may be a viable, less invasive approach for the treatment of carpometacarpal (CMC) joint arthritis, compared with trapeziecetomy. Small joint arthroscopy has also been found to be a useful tool in evaluation and treatment of arthritis. The authors present a treatment for CMC arthritis combining a minimally invasive approach for arthroscopic debridement with autologous fat grafting and platelet-rich plasma (PRP) injection. Methods Patients with Eaton stage II-IV CMC osteoarthritis underwent arthroscopic debridement and injection of autologous fat and PRP into the joint. Pre- and postoperative pain scores, functional outcomes, radiographic improvement in joint subluxation, patient satisfaction, and complications were evaluated. Results Forty-eight thumb CMC joint arthroscopies with fat grafting and PRP were performed. No intraoperative or immediate postoperative complications were experienced. No patients required revision surgery. Average preoperative pain scores with activity improved from 8.9 ± 0.9 to 3.3 ± 2.2 (P < 0.0001) and at rest improved from 5.0 ± 2.5 to 1.0 ± 1.3 (P < 0.0001). M1M2 overlap was used to measure radiographic subsidence. This improved from 4.4 ± 2.8 mm preoperatively to 6.8 ± 2.3 mm postoperatively, reflecting a relative improvement of 70% (P < 0.0042). High patient satisfaction was noted. CONCLUSIONS Treatment of the CMC joint using arthroscopic technique combined with autologous fat and PRP is effective in treating pain and joint subluxation. Additional prospective studies are underway for comparison to traditional arthroplasty techniques and to evaluate this technique's potential for other small joint pathology.
Collapse
Affiliation(s)
- Peter Deptula
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Meghan McCullough
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Theodore Brown
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dylan Singh
- Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA
| | - Kylie Tanabe
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Eugene Tsai
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - David Kulber
- From the Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Ivanovska A, Mancuso P, Burke A, Hennessy C, Raman S, Dooley C, McLoughlin S, Shaw G, Mukeria E, Reilly J, O’Brien A, Ritter T, Ryan AE, Kamath R, Levesque MC, Riet DV, English K, Hawthorne I, Johnstone B, Morris DW, Barry F, Murphy JM. Identification of disease-stage therapeutic responses of mesenchymal stromal cells retrieved from murine osteoarthritic joints. Front Cell Dev Biol 2025; 13:1521437. [PMID: 40206403 PMCID: PMC11980424 DOI: 10.3389/fcell.2025.1521437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 04/11/2025] Open
Abstract
Objective Osteoarthritis (OA) is a widespread and debilitating joint disease characterized by synovial inflammation, cartilage degeneration, and chronic joint pain. Mesenchymal stromal cells (MSCs) have shown therapeutic efficacy for many diseases with a strong inflammatory profile, including OA. However, the disease-specific mechanisms of action underpinning the effects of post-local MSC delivery remain unaddressed. In this study, we aimed to characterize the disease-induced profile of MSCs following exposure to the in vivo osteoarthritis environment. Methods Murine syngeneic GFP + bone marrow-derived MSCs (BM-MSCs) were delivered via intra-articular injection in a mouse collagenase-induced osteoarthritis (CIOA) model (n = 8). BM-MSCs were retrieved by cell sorting on days 14 and 56, following whole mouse knee digestions. The retrieved cells were expanded in culture and characterized based on their phenotype, immunomodulatory effects on lymphocytes and macrophages, and transcriptomic profile. Results Retrieved BM-MSCs (1.33%) had minimal effects on lymphocyte proliferation but induced macrophage anti-inflammatory activity. Surviving retrieved BM-MSCs activated various pathways, with their secretome impacting immune system regulation and extracellular matrix organization, correlating with the disease stage. Data comparing the transcriptomic profiles of retrieved and in vitro-licensed BM-MSCs suggested a chondroprogenitor profile and identified BRINP3 as a novel factor in MSC function for potential OA modulation. Conclusion The beneficial effects of BM-MSCs in OA post-local delivery could be attributed to a specific subset of cells able to resist the micro-inflammatory milieu and contribute to cartilage healing and suppression of associated synovial inflammation. Furthermore, data suggest a paradigm of environmentally guided plasticity associated with MSCs upon local delivery in both early and late OA.
Collapse
Affiliation(s)
- Ana Ivanovska
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Patrizio Mancuso
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Amy Burke
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Conor Hennessy
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Swarna Raman
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Claire Dooley
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Steven McLoughlin
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Georgina Shaw
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Eka Mukeria
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Jamie Reilly
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Aisling O’Brien
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Thomas Ritter
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Aideen E. Ryan
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Raj Kamath
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | | | | - Karen English
- Cellular Immunology Lab, Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Ian Hawthorne
- Cellular Immunology Lab, Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Derek W. Morris
- Discipline of Biochemistry, Center for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Frank Barry
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - J. Mary Murphy
- School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Aabling RR, Rusan M, Møller AMJ, Munk-Pedersen N, Holm C, Elmengaard B, Pedersen M, Møller BK. A Narrative Review on Manufacturing Methods Employed in the Production of Mesenchymal Stromal Cells for Knee Osteoarthritis Therapy. Biomedicines 2025; 13:509. [PMID: 40002922 PMCID: PMC11853043 DOI: 10.3390/biomedicines13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Knee osteoarthritis (OA) is a chronic, progressive, inflammatory, and degenerative whole-joint disease. Early-stage OA treatments typically include physiotherapy, weight-loss, pain relief medications, and intra-articular knee injections, such as corticosteroids, hyaluronic acid, or platelet-rich plasma. These treatments primarily provide symptomatic relief rather than reversing or halting disease progression. Recently, mesenchymal stromal cell (MSC) injections have garnered attention due to their immunomodulatory and regenerative capacities. MSCs, which can be derived from sources such as bone marrow, umbilical cord, or adipose tissue, and can be allogeneic or autologous, have demonstrated promising results in both animal models and several human studies. However, different protocols have been employed, presenting challenges for comparing outcomes. In this review, we address these variable settings, evaluate current practices, and identify key factors critical in optimizing MSC-based therapies by critically reviewing clinical trials of ex vivo expanded MSC therapies for OA undertaken between 2008 and 2023. Specific attention was given to two key aspects: (1) the cell culture process employed in manufacturing of autologous or allogeneic MSC products, and (2) the post-culture methods employed in storage, reconstitution and administration of the MSCs. Our findings suggest that standardizing MSC production for clinical applications remains a significant challenge, primarily due to variations in tissue sources, harvesting techniques, and manufacturing protocols, and due to broad discrepancies in reporting. Thus, we propose a set of minimal reporting criteria to guide future clinical trials. A common reporting guideline is a critical step towards a more standardized MSC production across different laboratories and clinical settings, thereby enhancing reproducibility and advancing the field of regenerative medicine for knee OA, as well as other disease settings.
Collapse
Affiliation(s)
- Rasmus Roost Aabling
- Comparative Medicine Lab, SDCA-Steno Diabetes Center Aarhus, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99 and 11, DK-8200 Aarhus, Denmark
| | - Maria Rusan
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgårdsvej 21A, DK-8200 Aarhus, Denmark;
- Department of Clinical Pharmacology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Anaïs Marie Julie Møller
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Naija Munk-Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Carsten Holm
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Brian Elmengaard
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Bjarne Kuno Møller
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| |
Collapse
|
6
|
Pumberger P, Wechselberger G, Schwaiger K, Zimmermann V. The Use of Stromal Vascular Fraction, Platelet-rich Plasma, and Stem Cells in the Treatment of Thumb Carpometacarpal Osteoarthritis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6481. [PMID: 40027470 PMCID: PMC11868437 DOI: 10.1097/gox.0000000000006481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/25/2024] [Indexed: 03/05/2025]
Abstract
Background Thumb function is integral to hand movement and overall hand function. Impairment, often caused by carpometacarpal (CMC) arthritis, reduces the quality of life. Here, we explored a novel approach using a mixture of the stromal vascular fraction, adipose-derived stem cells, and platelet-rich plasma to treat symptomatic trapeziometacarpal osteoarthritis. Methods Retrospective data from 30 hands of 19 patients classified as Eaton and Littler stages 1-4 were analyzed. Platelet-rich plasma and fat were collected under sterile conditions, followed by centrifugation, stem cell extraction, and injection of the mixture into the thumb CMC joint under x-ray guidance. The measurement parameters included the visual analog scale pain score, grip strength, pinch strength, and Thumb Disability Examination (TDX) score. Statistical analysis was performed using paired t tests to evaluate the outcomes across the entire group, individual stages, and early/late stages. Results We examined 30 hands of 19 patients with trapeziometacarpal osteoarthritis. Pain reduction was significant at 6 and 24 months for all stages, particularly stages 2 and 3. Substantial pain reduction was also observed at the early and late stages. The TDX score decreased significantly in all groups after 6 and 24 months. Hand function notably improved with significant gains in tip-to-tip pinch strength at 24 months and palmar pinch strength at 6 and 24 months. No complications were observed. Conclusions The intra-articular injection of autologous conditioned plasma/stromal vascular fraction in patients with thumb CMC arthritis, in all stages, helps to improve pain symptoms and postpone potential resection arthroplasty with minimal surgical intervention and risks.
Collapse
Affiliation(s)
- Peter Pumberger
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital of St. John of God, Salzburg, Austria
| | - Gottfried Wechselberger
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital of St. John of God, Salzburg, Austria
| | - Karl Schwaiger
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital of St. John of God, Salzburg, Austria
| | - Valentin Zimmermann
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital of St. John of God, Salzburg, Austria
| |
Collapse
|
7
|
Wang C, Mao Z, Gomchok D, Li X, Liu H, Shao J, Cao H, Xue G, Lv L, Duan J, Wuren T, Wang H. Small extracellular vesicles derived from miRNA-486 overexpressed dental pulp stem cells mitigate high altitude pulmonary edema through PTEN/PI3K/AKT/eNOS pathway. Heliyon 2025; 11:e41960. [PMID: 39906863 PMCID: PMC11791212 DOI: 10.1016/j.heliyon.2025.e41960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
High altitude pulmonary edema (HAPE) is a life-threatening, non-cardiogenic pulmonary edema characterized by rapid onset and high mortality. Extracellular vesicles of mesenchymal stem cells are used in the treatment of a variety of lung diseases, but their use in HAPE remains underreported. This study explores the therapeutic potential of miRNA-486 modified extracellular vesicles from dental pulp stem cells (sEVmiR-486) against HAPE, aiming to decipher the associated molecular mechanisms. The rat HAPE model was established by exposing subjects to a simulated high-altitude, low-oxygen environment within a specialized chamber. The HAPE-afflicted rats received sEVNull and sEVmiR-486 intravenously, and the therapeutic effect was assessed through histopathological analysis, pulmonary artery pressure, lung water content, as well as markers of oxidative stress and inflammation. To supplement in vivo findings, pulmonary microvascular endothelial cells (PMVEC) were stressed with cobalt chloride to emulate hypoxic damage, and then treated with sEVNull and sEVmiR-486 to unravel the mechanism of action. The sEVNull mitigated pathological changes in the lungs, reduced pulmonary artery pressure and lung water content, and alleviated oxidative stress and inflammatory responses in cases of HAPE. Moreover, sEVNull enhanced vascular reactivity and restored pulmonary permeability and tight junction integrity, these effects were intensified by miRNA-486 overexpression. Notably, sEVmiR-486 attenuated oxidative damage in hypoxic PMVEC cells by modulating the PTEN/PI3K/Akt/eNOS signaling pathway. miRNA-486 fortified DPSC-sEVs intervention as a novel and potent treatment strategy for HAPE.
Collapse
Affiliation(s)
- Changyao Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Drolma Gomchok
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Jingyuan Shao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hu Cao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guanzhen Xue
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junzhao Duan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Hua Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
8
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
10
|
Evans CH, Ghivizzani SC, Robbins PD. The 2024 OREF Clinical Research Award: Progress Toward a Gene Therapy for Arthritis. J Am Acad Orthop Surg 2024; 32:1052-1060. [PMID: 39284030 DOI: 10.5435/jaaos-d-24-00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent, disabling, incurable, and expensive disease that is difficult to treat nonsurgically. The pharmacokinetics of drug delivery to joints are such that it is not possible to target antiarthritic agents, especially biologics, to individual joints with OA at sustained, therapeutic concentrations. More than 30 years ago, we proposed that local, intra-articular gene transfer can overcome this barrier to therapy by engineering articular cells to synthesize antiarthritic gene products endogenously. This article summarizes the progress toward this goal. Initially, a retroviral vector was used to deliver cDNA encoding the interleukin-1 receptor antagonist (IL-1Ra) to the joints of experimental animals. Using an ex vivo strategy, cultures of autologous synovial fibroblasts were genetically modified in cell culture and introduced into joints by means of intra-articular injection. Successful development of this technology led to the first-in-human gene therapy trial for arthritis. This Phase I study targeted metacarpophalangeal joints with rheumatoid arthritis. Although successful, for various reasons, subsequent research targeted OA and used adeno-associated virus as a vector to deliver IL-1Ra by direct in vivo injection into the joint. A Phase I human clinical trial has just been completed successfully in subjects with mid-stage OA of the knee, leading to a Phase Ib study that is in progress.
Collapse
Affiliation(s)
- Christopher H Evans
- From the Departments of Physical Medicine & Rehabilitation, Orthopedic Surgery and Molecular Medicine, Mayo Clinic, Rochester, NY (Evans), the Department of Orthopedics and Rehabilitation, University of Florida College of Medicine, Gainesville, FL (Ghivizzani), and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN (Robbins)
| | | | | |
Collapse
|
11
|
Khazeni S, Ghavimi M, Mesgari-Abbasi M, Roshangar L, Abedi S, Pourlak T. Therapeutic effects of mesenchymal stem cells derived from bone marrow and adipose tissue in a rat model of temporomandibular osteoarthritis. J Oral Biosci 2024; 66:107-115. [PMID: 39059718 DOI: 10.1016/j.job.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To examine the potential of intra-articular administration of mesenchymal stem cells (MSCs) derived from bone marrow or adipose tissue to mitigate synovial inflammation in a rat model of temporomandibular joint (TMJ) osteoarthritis (OA). METHODS In this experimental study, 40 rats were divided into 4 groups: (1) Control group; (2) Untreated TMJ-OA group; (3) TMJ-OA group treated with bone marrow-derived MSCs; (4) TMJ-OA group treated with adipose tissue-derived MSCs. The TMJ-OA model was established by inducing synovial inflammation through the intra-articular administration of complete Freund's adjuvant (CFA). After 8 weeks of TMJ-OA establishment, the animals were sacrificed and each mandibular condyle was extracted for histological evaluation. RESULTS The untreated TMJ-OA group had significantly higher synovial inflammation, as indicated microscopically by higher grades of synovial membrane hyperplasia and adhesion, vascular vasodilation, and fibrin deposition than the control group (p < 0.001). Both TMJ-OA groups treated with MSCs had lower grades of synovial inflammation and less severe synovitis than the untreated TMJ-OA group (p < 0.001). The TMJ-OA group treated with adipose tissue-derived MSCs showed lower grades of synovial membrane hyperplasia and higher grades of fibrin deposition than the that treated with bone marrow-derived MSCs (p < 0.001). Other indicators of synovial inflammation and synovitis severity were comparable between the two treatment groups. CONCLUSIONS Administration of CFA to the TMJ-OA rat model augmented synovial inflammation. Intra-articular administration of MSCs derived from either bone marrow or adipose tissue attenuated the microscopic manifestations of this inflammation, indicating the therapeutic potential of this treatment for TMJ-OA.
Collapse
Affiliation(s)
- Saba Khazeni
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Ghavimi
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Leila Roshangar
- Anatomical Science Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tannaz Pourlak
- Department of Oral and Maxillofacial Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Boulestreau J, Maumus M, Bertolino Minani G, Jorgensen C, Noël D. Anti-aging effect of extracellular vesicles from mesenchymal stromal cells on senescence-induced chondrocytes in osteoarthritis. Aging (Albany NY) 2024; 16:13252-13270. [PMID: 39578049 PMCID: PMC11719114 DOI: 10.18632/aging.206158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Age is the most important risk factor for degenerative diseases such as osteoarthritis (OA). It is associated with the accumulation of senescent cells in joint tissues that contribute to the pathogenesis of OA, in particular through the release of senescence-associated secretory phenotype (SASP) factors. Mesenchymal stromal cells (MSCs) and their derived extracellular vesicles (EVs) are promising treatments for OA. However, the senoprotective effects of MSC-derived EVs in OA have been poorly investigated. Here, we used EVs from human adipose tissue-derived MSCs (ASC-EVs) in two models of inflammaging (IL1β)- and DNA damage (etoposide)-induced senescence in OA chondrocytes. We showed that the addition of ASC-EVs was effective in reducing senescence parameters, including the number of SA-β-Gal-positive cells, the accumulation of γH2AX foci in nuclei and the secretion of SASP factors. In addition, ASC-EVs demonstrated therapeutic efficacy when injected into a murine model of OA. Several markers of senescence, inflammation and oxidative stress were decreased shortly after injection likely explaining the therapeutic efficacy. In conclusion, ASC-EVs exert a senoprotective function both in vitro, in two models of induced senescence in OA chondrocytes and, in vivo, in the murine model of collagenase-induced OA.
Collapse
Affiliation(s)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Department of Rheumatology, Clinical Immunology and Osteoarticular Disease Therapeutic Unit, CHU de Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Department of Rheumatology, Clinical Immunology and Osteoarticular Disease Therapeutic Unit, CHU de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
14
|
Seo JH, Kim WK, Kang KW, Lee S, Kang BJ. Anti-inflammatory effects of polydeoxyribonucleotide and adipose tissue-derived mesenchymal stem cells in a canine cell model of osteoarthritis. J Vet Sci 2024; 25:e68. [PMID: 39363656 PMCID: PMC11450397 DOI: 10.4142/jvs.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
IMPORTANCE A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment. OBJECTIVE This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA. METHODS To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B. RESULTS PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects. CONCLUSIONS AND RELEVANCE The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.
Collapse
Affiliation(s)
- Ju-Hui Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea
| | - Kyu-Won Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Lee SB, Abdal Dayem A, Kmiecik S, Lim KM, Seo DS, Kim HT, Kumar Biswas P, Do M, Kim DH, Cho SG. Efficient improvement of the proliferation, differentiation, and anti-arthritic capacity of mesenchymal stem cells by simply culturing on the immobilized FGF2 derived peptide, 44-ERGVVSIKGV-53. J Adv Res 2024; 62:119-141. [PMID: 37777063 PMCID: PMC11331723 DOI: 10.1016/j.jare.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION The stem cell microenvironment has been evidenced to robustly affect its biological functions and clinical grade. Natural or synthetic growth factors, especially, are essential for modulating stem cell proliferation, metabolism, and differentiation via the interaction with specific extracellular receptors. Fibroblast growth factor-2 (FGF-2) possesses pleiotropic functions in various tissues and organs. It interacts with the FGF receptor (FGFR) and activates FGFR signaling pathways, which involve numerous biological functions, such as angiogenesis, wound healing, cell proliferation, and differentiation. OBJECTIVES Here, we aim to explore the molecular functions, mode of action, and therapeutic activity of yet undetermined function, FGF-2-derived peptide, FP2 (44-ERGVVSIKGV-53) in promoting the proliferation, differentiation, and therapeutic application of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) in comparison to other test peptides, canofin1 (FP1), hexafin2 (FP3), and canofin3 (FP4) with known functions. METHODS The immobilization of test peptides that are fused with mussel adhesive proteins (MAP) on the culture plate was carried out via EDC/NHS chemistry. Cell Proliferation assay, colony-forming unit, western blotting analysis, gene expression analysis, RNA-Seq. analysis, osteogenic, and chondrogenic differentiation capacity were applied to test the activity of the test peptides. We additionally utilized three-dimensional (3D) structural analysis and artificial intelligence (AI)-based AlphaFold2 and CABS-dock programs for receptor interaction prediction of the peptide receptor. We also verified the in vivo therapeutic capacity of FP2-cultured hWJ-MSCs using an osteoarthritis mice model. RESULTS Culture of hWJ-MSC onto an FP2-immobilized culture plate showed a significant increase in cell proliferation (n = 3; *p < 0.05, **p < 0.01) and the colony-forming unit (n = 3; *p < 0.05, **p < 0.01) compared with the test peptides. FP2 showed a significantly upregulated phosphorylation of FRS2α and FGFR1 and activated the AKT and ERK signaling pathways (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Interestingly, we detected efficient FP2 receptor binding that was predicted using AI-based tools. Treatment with an AKT inhibitor significantly abrogated the FP2-mediated enhancement of cell differentiation (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Intra-articular injection of FP2-cultured MSCs significantly mitigated arthritis symptoms in an osteoarthritis mouse model, as shown through the functional tests (n = 10; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), modulation of the expression level of the pro-inflammatory and anti-inflammatory genes, and improved osteochondral regeneration as demonstrated by tissue sections. CONCLUSION Our study identified the FGF-2-derived peptide FP2 as a promising candidate peptide to improve the therapeutic potential of hWJ-MSCs, especially in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Sik Seo
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Hyeong-Taek Kim
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Endo N, Matsumoto T, Kazama T, Kano K, Shimizu M, Ryu K, Tokuhashi Y, Nakanishi K. Therapeutic potential of dedifferentiated fat cells in a rat model of osteoarthritis of the knee. Regen Ther 2024; 26:50-59. [PMID: 38859891 PMCID: PMC11163150 DOI: 10.1016/j.reth.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Mature adipocyte-derived dedifferentiated fat cells (DFATs) represent a subtype of multipotent cells that exhibit comparable phenotypic and functional characteristics to adipose-derived stem cells (ASCs). In this study, we assessed the chondroprotective properties of intra-articularly administrated DFATs in a rat model of osteoarthritis (OA). We also investigated in vitro the expression of anti-inflammatory and chondroprotective genes in DFATs prepared from the infrapatellar fat pad (IFP) and subcutaneous adipose-tissue (SC) of human origin. Methods In the cell transplantation experiment, rats were assigned to the DFAT and Control group (n = 10 in each group) and underwent anterior cruciate ligament transection (ACLT) accompanied by medial meniscus resection (MMx) to induce OA. One week later, they received intra-articular injections of 1 × 106 DFATs (DFAT group) or PBS (control group) four times, with a weekly administration frequency. Macroscopic and microscopic evaluations were conducted five weeks post-surgery. In the in vitro experiments. DFATs derived from the IFP (IFP-DFATs) and SC (SC-DFATs) were prepared from donor-matched tissue samples (n = 3). The gene expression of PTGS2, TNFAIP6, PRG4, BMP2, and BMP6 under TNF-α or IFN-γ stimulation in these cells was evaluated using RT-PCR. Furthermore, the effect of co-culturing synovial fibroblasts with DFATs on the gene expression of ADAMTS4 and IL-6 were evaluated. Results Intra-articular injections of DFATs significantly inhibited cartilage degeneration in the rat OA model induced by ACLT and MMx. RT-PCR analysis revealed that both IFP-DFATs and SC-DFATs upregulated the expression of genes involved in immune regulation, anti-inflammation, and cartilage protection such as PTGS2, TNFAIP6, and BMP2, under stimulation by inflammatory cytokines. Co-culture with DFATs suppressed the expression of ADAMTS4 and IL6 in synovial fibroblasts. Conclusions The intra-articular injection of DFATs resulted in chondroprotective effects in the rat OA model. Both SC-DFATs and IFP-DFATs induced the expression of anti-inflammatory and chondroprotective genes in vitro. These results indicate that DFATs appear to possess therapeutic potential in inhibiting cartilage degradation and could serve as a promising cellular resource for OA treatment.
Collapse
Affiliation(s)
- Noriyuki Endo
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Manabu Shimizu
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Keinosuke Ryu
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Théron A, Maumus M, Biron-Andreani C, Sirvent N, Jorgensen C, Noël D. What is the rationale for mesenchymal stromal cells based therapies in the management of hemophilic arthropathies? Osteoarthritis Cartilage 2024; 32:634-642. [PMID: 38160743 DOI: 10.1016/j.joca.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Hemophilia A and B are rare X-linked genetic bleeding disorders due to a complete or partial deficiency in the coagulation factors VIII or IX, respectively. The main treatment for hemophilia is prophylactic and based on coagulation factor replacement therapies. These treatments have significantly reduced bleeding and improved the patients' quality of life. Nevertheless, repeated joint bleedings (hemarthroses), even subclinical hemarthroses, can lead to hemophilic arthropathy (HA). This disabling condition is characterized by chronic pain due to synovial inflammation, cartilage and bone destruction requiring ultimately joint replacement. HA resembles to rheumatoid arthritis because of synovitis but HA is considered as having similarities with osteoarthritis as illustrated by the migration of immune cells, production of inflammatory cytokines, synovial hypertrophy and cartilage damage. Various drugs have been evaluated for the management of HA with limited success. The objective of the review is to discuss new therapeutic approaches with a special focus on the studies that have investigated the potential of using mesenchymal stromal cells (MSCs) in the management of HA. A systematic review of the literature has been made. Most of the studies have focused on the interest of MSCs for the delivery of missing factors VIII or IX but in some studies, more insight on the effect of MSC injection on synovial inflammation or cartilage structure were provided and put in perspective for possible clinical applications.
Collapse
Affiliation(s)
- Alexandre Théron
- IRMB, University of Montpellier, INSERM, Montpellier, France; Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France; Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Christine Biron-Andreani
- Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France
| | - Nicolas Sirvent
- Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Boulestreau J, Maumus M, Bertolino GM, Toupet K, Jorgensen C, Noël D. Extracellular vesicles from senescent mesenchymal stromal cells are defective and cannot prevent osteoarthritis. J Nanobiotechnology 2024; 22:255. [PMID: 38755672 PMCID: PMC11097483 DOI: 10.1186/s12951-024-02509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Giuliana M Bertolino
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Daniéle Noël
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Lin F, Zhang X, Cui C. Mesenchymal stem cells and platelet rich plasma therapy for knee osteoarthritis: an umbrella review of systematic reviews with meta-analysis. Ann Saudi Med 2024; 44:195-211. [PMID: 38853480 PMCID: PMC11268471 DOI: 10.5144/0256-4947.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
The effect of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) therapy on knee osteoarthritis (KOA) has been contradictory in previous meta-analyses. This umbrella review on published meta-analyses aimed to investigate the effect of MSCs and PRP on KOA. We systematically searched Scopus, PubMed, and Cochrane databases to include related meta-analyses. The outcome included studies reporting visual analog scale scores, the Western Ontario and McMaster Universities Osteoarthritis Index, Whole-Organ Magnetic Resonance Imaging Scores, International Knee Documentation Committee scores, and the Knee injury and Osteoarthritis Outcome Score. A total of 28 meta-analyses with 32 763 participants. MSCs and PRP therapies were significantly associated with an improvement in KOA scores. This umbrella meta-analysis supports the beneficial health effects of MSCs and PRP in KOA.
Collapse
Affiliation(s)
- Feng Lin
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinguang Zhang
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cunbao Cui
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
20
|
Scalzone A, Sanjurjo-Rodríguez C, Berlinguer-Palmini R, Dickinson AM, Jones E, Wang XN, Crossland RE. Functional and Molecular Analysis of Human Osteoarthritic Chondrocytes Treated with Bone Marrow-Derived MSC-EVs. Bioengineering (Basel) 2024; 11:388. [PMID: 38671809 PMCID: PMC11047960 DOI: 10.3390/bioengineering11040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1β on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics.
Collapse
Affiliation(s)
- Annachiara Scalzone
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Centre for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | - Clara Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | | | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
21
|
Ding Z, Yan Z, Yuan X, Tian G, Wu J, Fu L, Yin H, He S, Ning C, Zheng Y, Zhang Z, Sui X, Hao L, Niu Y, Liu S, Guo W, Guo Q. Apoptotic extracellular vesicles derived from hypoxia-preconditioned mesenchymal stem cells within a modified gelatine hydrogel promote osteochondral regeneration by enhancing stem cell activity and regulating immunity. J Nanobiotechnology 2024; 22:74. [PMID: 38395929 PMCID: PMC10885680 DOI: 10.1186/s12951-024-02333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zhengang Ding
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zineng Yan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xun Yuan
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiang Wu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Han Yin
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Songlin He
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chao Ning
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yazhe Zheng
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhichao Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Libo Hao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuting Niu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Quanyi Guo
- Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
22
|
Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol 2024; 257:128593. [PMID: 38056750 DOI: 10.1016/j.ijbiomac.2023.128593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The simultaneous regeneration of articular cartilage and subchondral bone is a major challenge. Bioinspired scaffolds with distinct regions resembling stratified anatomical architecture provide a potential strategy for osteochondral defect repair. Here, we report the development of an injectable and bilayered hydrogel scaffold with a strong interface binding force. In this bilayer hydrogel, composed of carbonyl hydrazide grafted collagen (COL-CDH) and oxidized chondroitin sulfate (OCS), which are derivatives of osteochondral tissue components, in combination with poly (ethylene glycol) diacrylate (PEGDA), functions as a cartilage layer; while zinc-doped hydroxyapatite acts as a subchondral bone layer that is based on the cartilage layer. The strong interface between the two layers involves dynamic amide bonds formed between COL-CDH and OCS, and permanent CC bonds formed by PEGDA radical reactions. This bilayer hydrogel can be used to inoculate adipose mesenchymal stem cells which can then differentiate into chondrocytes and osteoblasts, secreting glycosaminoglycan, and promoting calcium deposition. This accelerates the regeneration of cartilage and subchondral bone. Micro-CT and tissue staining revealed an increase in the amount of bone present in new subchondral bone, and new tissues with a structure similar to normal cartilage. This study therefore demonstrates that injectable bilayer hydrogels are a promising scaffold for repairing osteochondral defects.
Collapse
Affiliation(s)
- Yongjian Cao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Haijie Zhang
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mengjie Qiu
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
23
|
Fayed HM, Khairy MA, Eldahshan D, Sabry D, Ahmed WA. Bone marrow aspirate concentrate - A novel approach to alter the course of temporomandibular joint osteoarthritis (a clinical study). JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101644. [PMID: 37748708 DOI: 10.1016/j.jormas.2023.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION TMJ OA is characterized by severe osteocartilaginous degradation of the joint structure resulting in severe deterioration of both joint function as well as joint structure. bone marrow aspirate concentrate (BMAC) gained wide acceptance as an auspicious addition for regenerative medicine as it is confirmed to be a rich source of pluripotent mesenchymal stem cells and growth factors that produce promising relief of clinical symptoms with significant repair of the joint structure. Thus, the study aims at assessing the efficacy of bone marrow aspirate concentrate (BMAC) as a treatment modality for TMJ osteoarthritis and compare its efficacy with that of hyaluronic acid (HA). METHODS 24 patients were included in the present study and divided into 12 patients in each group. Joint arthrocentesis was performed to all patients followed by intra-articular BMAC injection in Group I. While Group II received HA acid injection RESULTS: A trend towards long term joint repair at 12 and 18 months follow up period was observed in the bone marrow aspirate concentrate (BMAC) group as a therapeutic modality for TMJ OA by providing necessary growth factors and anti-inflammatories that impedes the progression of the osteoarthritic degeneration. On the contrary to the viscosupplementary action of hyaluronic acid (HA) that showed relapse of patients conditions. CONCLUSION Bone marrow aspirate concentrate (BMAC) is able to reverse the degenerative effects of TMJ OA however,further studies are mandatory with larger population and longer follow-up time.
Collapse
Affiliation(s)
- Heba Mohamed Fayed
- oral and Maxillofacial surgery, Faculty of Dentistry, October 6 University, Egypt.
| | - Maggie A Khairy
- oral and Maxillofacial Surgery, Faculty of Dentistry, October 6 University, Egypt
| | - Dina Eldahshan
- Clinical & Chemical Pathology, Faculty of Medicine, Beni-Sueif University, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Waheed A Ahmed
- oral and Maxillofacial surgery, Faculty of Dentistry, October 6 University, Egypt
| |
Collapse
|
24
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
25
|
Chen CF, Chen YC, Fu YS, Tsai SW, Wu PK, Chen CM, Chen WM, Wu HTH, Lee CH, Chang CL, Lin PC, Kao YC, Chen CH, Chuang MH. Safety and Tolerability of Intra-Articular Injection of Adipose-Derived Mesenchymal Stem Cells GXCPC1 in 11 Subjects With Knee Osteoarthritis: A Nonrandomized Pilot Study Without a Control Arm. Cell Transplant 2024; 33:9636897231221882. [PMID: 38205679 PMCID: PMC10785714 DOI: 10.1177/09636897231221882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The current study aimed to determine the safety profile of intra-articular-injected allogeneic adipose-derived mesenchymal stem cells (ADSCs) GXCPC1 in subjects with knee osteoarthritis (OA) and its preliminary efficacy outcome. The 3 + 3 phase I study was designed with two dose-escalation cohorts: low dose (6.7 × 106 GXCPC1, N = 5) and high dose (4 × 107 GXCPC1, N = 6). The primary endpoint was safety, which was evaluated by recording adverse events throughout the trial; the secondary endpoints included total, pain, stiffness, and function subscales of the Western Ontario and McMaster Universities Arthritis Index (WOMAC), Visual Analogue Scale (VAS) for pain, and 12-Item Short Form (SF-12) health survey questionnaire. The GXCPC1 treatment was found to be safe after 1 year of follow-up with no treatment-related severe adverse events observed. When compared to baseline, subjects in both the low- and high-dose cohorts demonstrated improving trends in pain and knee function after receiving GXCPC1 treatment. Generally, the net change in pain (95% confidence interval (CI) = -7.773 to -2.561t at 12 weeks compared to baseline) and knee function (95% CI = -24.297 to -10.036t at 12 weeks compared to baseline) was better in subjects receiving high-dose GXCPC1. Although this study included a limited number of subjects without a placebo arm, it showed that the intra-articular injection of ADSCs was safe and well-tolerated in subjects with therapeutic alternatives to treat knee OA. However, a larger scale study with an appropriate control would be necessary for clinical efficacy in the following study.
Collapse
Affiliation(s)
- Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shang-Wen Tsai
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Po-Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chao-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Therapeutical and Research Center of Musculoskeletal Tumor, Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hung-Ta Hondar Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Radiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Hsin Lee
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chao-Liang Chang
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Yong-Cheng Kao
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Chun-Hung Chen
- Gwo Xi Stem Cell Applied Technology Co., Ltd., Hsinchu, Taiwan, ROC
| | - Ming-Hsi Chuang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Management, Chung Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
26
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
27
|
Nogoceke R, Josino R, Robert AW, Stimamiglio MA. Evaluation of a Peptide Hydrogel as a Chondro-Instructive Three-Dimensional Microenvironment. Polymers (Basel) 2023; 15:4630. [PMID: 38139882 PMCID: PMC10747086 DOI: 10.3390/polym15244630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Articular cartilage injuries are inherently irreversible, even with the advancement in current therapeutic options. Alternative approaches, such as the use of mesenchymal stem/stromal cells (MSCs) and tissue engineering techniques, have gained prominence. MSCs represent an ideal source of cells due to their low immunogenicity, paracrine activity, and ability to differentiate. Among biomaterials, self-assembling peptide hydrogels (SAPH) are interesting given their characteristics such as good biocompatibility and tunable properties. Herein we associate human adipose-derived stem cells (hASCs) with a commercial SAPH, Puramatrix™, to evaluate how this three-dimensional microenvironment affects cell behavior and its ability to undergo chondrogenic differentiation. We demonstrate that the Puramatrix™ hydrogel comprises a highly porous matrix permissible for hASC adhesion and in vitro expansion. The morphology and cell growth dynamics of hASCs were affected when cultured on the hydrogel but had minimal alteration in their immunophenotype. Interestingly, hASCs spontaneously formed cell aggregates throughout culturing. Analysis of glycosaminoglycan production and gene expression revealed a noteworthy and donor-dependent trend suggesting that Puramatrix™ hydrogel may have a natural capacity to support the chondrogenic differentiation of hASCs. Altogether, the results provide a more comprehensive understanding of the potential applications and limitations of the Puramatrix™ hydrogel in developing functional cartilage tissue constructs.
Collapse
Affiliation(s)
| | | | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| | - Marco Augusto Stimamiglio
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| |
Collapse
|
28
|
Khoury MA, Chamari K, Tabben M, Alkhelaifi K, Papacostas E, Marín Fermín T, Laupheimer M, D′Hooghe P. Knee Osteoarthritis: Clinical and MRI Outcomes After Multiple Intra-Articular Injections With Expanded Autologous Adipose-Derived Stromal Cells or Platelet-Rich Plasma. Cartilage 2023; 14:433-444. [PMID: 37350015 PMCID: PMC10807730 DOI: 10.1177/19476035231166127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE To directly compare clinical and MRI outcomes of multiple intra-articular injections of adipose-derived stromal cells (ASCs) or platelet-rich plasma (PRP) in patients with knee osteoarthritis (OA). DESIGN We retrospectively compared 24-month outcomes in (1) 27 patients receiving 3-monthly intra-articular injections with a total of 43.8 million ASCs and (2) 23 patients receiving 3-monthly injections of 3-ml preparation of PRP. All patients had Kellgren-Lawrence grade 1, 2, or 3 knee OA with failed conservative medical therapy. The Numeric Pain Rating Scale (NPRS) scores; Knee injury and Osteoarthritis Outcome Score (KOOS) at baseline, 6, 12, and 24 months after the first injection; and the MRI Osteoarthritis Knee Score (MOAKS) at 12 and 24 months were considered as outcomes. RESULTS No major complications occurred in any patient. Both groups significantly improved in pain NPRS score and KOOS at 6 months. At 12- and 24-month evaluations, the ASC group significantly decreased scores to a greater degree (P < 0.001) than the PRP group. MOAKS scores indicated a decrease in disease progression in the ASC group. CONCLUSION Both ASCs and PRP were safe and resulted in clinical improvement in patients with knee OA at 6 months; however, at 12 and 24 months, ASCs outperformed leukocyte-poor PRP in clinical and radiological outcomes.
Collapse
Affiliation(s)
| | - Karim Chamari
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | | | | | | | | - Pieter D′Hooghe
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
29
|
Weninger P, Feichtinger X, Steffel C, Kerschbaumer C, Duscher D. Arthroscopy with Lipoaspirate and Plasma Infiltration Using Adipose-Derived Stem Cells Plus Platelet-Rich Plasma: Harvesting and Injection for Arthroscopic Treatment of Cartilage Defects of the Knee. Arthrosc Tech 2023; 12:e2265-e2271. [PMID: 38196888 PMCID: PMC10773146 DOI: 10.1016/j.eats.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/30/2023] [Indexed: 01/11/2024] Open
Abstract
Osteoarthritis, predominantly of the knee, is a highly prevalent disease leading to pain, reduced quality of life, and significantly reduced ability to work. With autologous orthobiologic options, new regenerative treatment methods have emerged, offering an alternative to early surgical intervention. Supercharged Liparthroplasty combines arthroscopy with lipoaspirate and plasma infiltration of the joint. Lipoaspirate contains high levels of adipose-derived stem cells, which show chondroprotective and anti-inflammatory qualities. Intra-articular injection, combined with platelet-rich plasma administration for accelerated cartilage metabolism, thus provides an optional approach in osteoarthritis treatment. This article aims to provide in detail our regimen for Supercharged Liparthroplasty, including tissue harvesting and preparation of the injectables, therefore enabling physicians to adopt this point-of-care technique.
Collapse
Affiliation(s)
- Patrick Weninger
- Sports Medical Center, Vienna, Austria
- Academic Stem Cell Center Vienna, Vienna, Austria
| | | | - Caterina Steffel
- Sports Medical Center, Vienna, Austria
- Academic Stem Cell Center Vienna, Vienna, Austria
| | | | - Dominik Duscher
- The Face and Longevity Center Munich, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, BG-Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Dias de Oliveira FB, Antonioli E, Dias OFM, de Souza JG, Agarwal S, Chudzinski-Tavassi AM, Ferretti M. Comparative Effects of Intra-Articular versus Intravenous Mesenchymal Stromal Cells Therapy in a Rat Model of Osteoarthritis by Destabilization of Medial Meniscus. Int J Mol Sci 2023; 24:15543. [PMID: 37958526 PMCID: PMC10649289 DOI: 10.3390/ijms242115543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Transplanted mesenchymal stromal cells (MSCs) exhibit a robust anti-inflammatory and homing capacity in response to high inflammatory signals, as observed in studies focused on rheumatic diseases that target articular cartilage (AC) health. However, AC degradation in osteoarthritis (OA) does not necessarily coincide with a highly inflammatory joint profile. Often, by the time patients seek medical attention, they already have damaged AC. In this study, we examined the therapeutic potential of a single bone marrow MSC transplant (2 × 106 cells/kgbw) through two different routes: intra-articular (MSCs-IAt) and intravenous (MSCs-IVt) in a preclinical model of low-grade inflammatory OA with an established AC degeneration. OA was induced through the destabilization of the medial meniscus (DMM) in female Wistar Kyoto rats. The animals received MSCs 9 weeks after surgery and were euthanized 4 and 12 weeks post-transplant. In vivo and ex vivo tracking of MSCs were analyzed via bioluminescence and imaging flow cytometry, respectively. Cytokine/chemokine modulation in serum and synovial fluid was measured using a multiplex panel. AC degeneration was quantified through histology, and hindlimb muscle balance was assessed with precision weighing. To our knowledge, we are the first group to show the in vivo (8 h) and ex vivo (12 h) homing of cells to the DMM-OA joint following MSCs-IVt. In the case of MSCs-IAt, the detection of cellular bioluminescence at the knee joint persisted for up to 1 week. Intriguingly, intra-articular saline injection (placebo-IAt) resulted in a worse prognosis of OA when compared to a non-invasive control (placebo-IVt) without joint injection. The systemic cytokines/chemokines profile exhibited a time-dependent variation between transplant routes, displaying a transient anti-inflammatory systemic response for both MSCs-IVt and MSCs-IAt. A single injection of MSCs, whether administered via the intra-articular or intravenous route, performed 9 weeks after DMM surgery, did not effectively inhibit AC degeneration when compared to a non-invasive control.
Collapse
Affiliation(s)
| | - Eliane Antonioli
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.B.D.d.O.)
| | | | - Jean Gabriel de Souza
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA;
- CENTD Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil
| | - Sudha Agarwal
- Division of Rheumatology and Immunology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | - Ana Marisa Chudzinski-Tavassi
- CENTD Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil
- Laboratório de Desenvolvimento e Inovação, Butantan Institute, São Paulo 05503-900, Brazil
| | - Mario Ferretti
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.B.D.d.O.)
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
31
|
Hasiba-Pappas S, Kamolz LP, Luze H, Nischwitz SP, Lumenta DB, Winter R. Regenerative Therapies for Basal Thumb Arthritis-A Systematic Review. Int J Mol Sci 2023; 24:14909. [PMID: 37834357 PMCID: PMC10573355 DOI: 10.3390/ijms241914909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Basal thumb arthritis is a painful and debilitating pathology that can severely reduce a patients' quality of life. Common therapies include oral pain control, local steroid injections and/or surgery. Yet, therapeutic data on long-term improvement and even cartilage repair are scarce. This review aims to present the currently available literature on novel therapies for basal thumb arthritis, including platelet-rich plasma (PRP), fat grafting and phototherapy, and investigate their potential efficacy. The entire OVID database and PubMed were searched for studies containing the topics PRP injection, lipofilling, laser treatment and regenerative treatment for carpometacarpal arthritis. Seven studies on the effect of fat tissue on basal thumb arthritis were found. Four authors reported on PRP injections, one RCT examined a combinational treatment of PRP and fat grafting, another phototherapy for the thumb joint and one prospective trial on chondrocyte transplantation was found. Pain improvement and decreased impairment were reported in the majority of PRP and/or fat grafting studies as well as after chondrocyte implantation. Phototherapy did not significantly improve the condition. This review revealed that only limited data on regenerative therapies for carpometacarpal arthritis are currently available, yet PRP and lipofilling show promising results and merit further investigation.
Collapse
Affiliation(s)
- Sophie Hasiba-Pappas
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Lars-P. Kamolz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
- COREMED—Cooperative Centre for Regenerative Medicine, Joanneum Research GmbH, Neue Stiftingtalstr. 2, A-8010 Graz, Austria
| | - Hanna Luze
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Sebastian P. Nischwitz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - David B. Lumenta
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Raimund Winter
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| |
Collapse
|
32
|
Zhou AK, Jou E, Lu V, Zhang J, Chabra S, Abishek J, Wong E, Zeng X, Guo B. Using Pre-Clinical Studies to Explore the Potential Clinical Uses of Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem cells. Tissue Eng Regen Med 2023; 20:793-809. [PMID: 37651091 PMCID: PMC10519927 DOI: 10.1007/s13770-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.
Collapse
Affiliation(s)
- Andrew Kailin Zhou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- Watford General Hospital, London, UK
| | - Eric Jou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Victor Lu
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - James Zhang
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | | | | | - Xianwei Zeng
- Beijing Rehabilitation Hospital Affiliated to National Research Centre for Rehabilitation Technical Aids, Ministry of Civil Affairs of China, Beijing, China.
- Weifang People's Hospital, Weifang City, Shandong Province, China.
| | - Baoqiang Guo
- Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
33
|
Zhao S, Xiu G, Wang J, Wen Y, Lu J, Wu B, Wang G, Yang D, Ling B, Du D, Xu J. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in Osteoarthritis. J Nanobiotechnology 2023; 21:341. [PMID: 37736726 PMCID: PMC10515007 DOI: 10.1186/s12951-023-02086-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
- Department of Plastic Surgery, Shanghai Fourth People's Hospital, School of Medicine,Tongji University, Shanghai, 200434, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China.
| | - Dajiang Du
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120.
| |
Collapse
|
34
|
Zhang K, Xu T, Xie H, Li J, Fu W. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study. Am J Sports Med 2023; 51:3008-3024. [PMID: 37528751 DOI: 10.1177/03635465231187042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease that causes joint pain and disability. Stem cell therapy is emerging as a promising treatment for OA. PURPOSE To evaluate the ability of peripheral blood-derived mesenchymal stem cells (PBMSCs) combined with donor-matched platelet-rich plasma (PRP) to treat OA in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS PBMSCs and donor-matched PRP were isolated and prepared from the same rabbit. PBMSCs were treated with serum-free medium, fetal bovine serum, and PRP; a series of PBMSC behaviors, including proliferation, migration, and adhesion, were compared among groups. The ability of PBMSCs or PRP alone and PBMSCs+PRP to protect chondrocytes against proinflammatory cytokine (interleukin 1β [IL-1β]) treatment was compared by analyzing reactive oxygen species (ROS)-scavenging ability and apoptosis. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate the expression of extracellular matrix (ECM) metabolism genes and proteins, and Western blotting was used to explore the potential mechanism of the corresponding signaling pathway. In vivo, the effect of PBMSCs+PRP on cartilage and inflammation of the synovium was observed in a surgery-induced OA rabbit model via gross observation, histological and immunohistochemical staining, and enzyme-linked immunosorbent assay. RESULTS Proliferation, migration, and adhesion ability were enhanced in PBMSCs treated with PRP. Moreover, compared with either PBMSCs or PRP alone, PBMSCs+PRP enhanced ROS-scavenging ability and inhibited apoptosis in IL-1β-treated chondrocytes. PBMSCs+PRP also reversed the IL-1β-induced degradation of collagen type 2 and aggrecan and increased expression of matrix metalloproteinase 13, and this effect was related to increased expression of ECM synthesis and decreased expression of degradation and inflammatory genes and proteins. Mechanistically, PBMSCs+PRP reduced the phosphorylation of inhibitor of nuclear factor-κBα (IκBα), which further inhibited the phosphorylation of downstream nuclear factor-κB (NF-κB) in the NF-κB signaling pathway. In vivo, compared with PBMSCs or PRP alone, intra-articular (IA) injection of PBMSCs+PRP enhanced cartilage regeneration and attenuated synovial inflammation in OA-induced rabbits. CONCLUSION These results demonstrate that PRP could enhance biological activities, including viability, migration, and adhesion, in PBMSCs. PBMSCs+PRP could rescue ECM degeneration by inhibiting inflammatory signaling in IL-1β-treated OA chondrocytes. In addition, IA injection of PBMSCs+PRP effectively attenuated OA progression in a surgery-induced OA rabbit model. CLINICAL RELEVANCE PBMSCs+PRP may provide a promising treatment for knee OA, and this study can advance the related basic research.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Krawetz RJ, Larijani L, Corpuz JM, Ninkovic N, Das N, Olsen A, Mohtadi N, Rezansoff A, Dufour A. Mesenchymal progenitor cells from non-inflamed versus inflamed synovium post-ACL injury present with distinct phenotypes and cartilage regeneration capacity. Stem Cell Res Ther 2023; 14:168. [PMID: 37357305 DOI: 10.1186/s13287-023-03396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic debilitating disease impacting a significant percentage of the global population. While there are numerous surgical and non-invasive interventions that can postpone joint replacement, there are no current treatments which can reverse the joint damage occurring during the pathogenesis of the disease. While many groups are investigating the use of stem cell therapies in the treatment of OA, we still don't have a clear understanding of the role of these cells in the body, including heterogeneity of tissue resident adult mesenchymal progenitor cells (MPCs). METHODS In the current study, we examined MPCs from the synovium and individuals with or without a traumatic knee joint injury and explored the chondrogenic differentiation capacity of these MPCs in vitro and in vivo. RESULTS We found that there is heterogeneity of MPCs with the adult synovium and distinct sub-populations of MPCs and the abundancy of these sub-populations change with joint injury. Furthermore, only some of these sub-populations have the ability to effect cartilage repair in vivo. Using an unbiased proteomics approach, we were able to identify cell surface markers that identify this pro-chondrogenic MPC population in normal and injured joints, specifically CD82LowCD59+ synovial MPCs have robust cartilage regenerative properties in vivo. CONCLUSIONS The results of this study clearly show that cells within the adult human joint can impact cartilage repair and that these sub-populations exist within joints that have undergone a traumatic joint injury. Therefore, these populations can be exploited for the treatment of cartilage injuries and OA in future clinical trials.
Collapse
Affiliation(s)
- Roman J Krawetz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Department Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, University of Calgary, Calgary, AB, Canada.
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jessica May Corpuz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicoletta Ninkovic
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Alexandra Olsen
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicholas Mohtadi
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Valdrighi N, Blom AB, van Beuningen HM, Vitters EL, Helsen MM, Walgreen B, van Lent PL, Koenders MI, van der Kraan PM, van de Loo FA, Blaney Davidson EN. Early pain in females is linked to late pathological features in murine experimental osteoarthritis. PeerJ 2023; 11:e15482. [PMID: 37366428 PMCID: PMC10290834 DOI: 10.7717/peerj.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Osteoarthritis (OA) is a progressive joint disease and a major cause of chronic pain in adults. The prevalence of OA is higher in female patients, who tend to have worse OA outcomes, partially due to pain. The association between joint pain and OA pathology is often inconclusive. Preclinical research studies have largely overlooked sex as a potential determinant in joint pain during OA. This study aimed to investigate the role of sex in joint pain in the collagenase-induced OA (CiOA) model and its link with joint pathology. Methods Multiple aspects of pain were evaluated during identically executed experiments of CiOA in male and female C57BL/6J mice. Cartilage damage, osteophyte formation, synovial thickness, and cellularity were assessed by histology on day 56. The association between pain and pathology was investigated, disaggregated by sex. Results Differences in pain behavior between sexes were found in the majority of the evaluated pain methods. Females displayed lower weight bearing ability in the affected leg compared to males during the early phase of the disease, however, the pathology at the end stage was comparable between sexes. In the second cohort, males displayed increased mechanical sensitivity in the affected joint compared to females but also showed more cartilage damage at the end stage of the model. Within this cohort, gait analysis showed varied results. Males used the affected paw less often and displayed dynamic weight-bearing compensation in the early phase of the model. These differences were not observed in females. Other evaluated parameters displayed comparable gait behavior between males and females. A detailed analysis of individual mice revealed that seven out of 10 pain measurements highly correlated with OA histopathology in females (Pearson r range: 0.642-0.934), whereas in males this measurement was only two (Pearson r range: 0.645-0.748). Conclusion Our data show that sex is a determinant in the link between pain-related behavior with OA features. Therefore, to accurately interpret pain data it is crucial to segregate data analysis by sex to draw the correct mechanistic conclusion.
Collapse
|
37
|
Copp G, Robb KP, Viswanathan S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol Immunol 2023; 20:626-650. [PMID: 37095295 PMCID: PMC10229578 DOI: 10.1038/s41423-023-01020-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative multifactorial disease with concomitant structural, inflammatory, and metabolic changes that fluctuate in a temporal and patient-specific manner. This complexity has contributed to refractory responses to various treatments. MSCs have shown promise as multimodal therapeutics in mitigating OA symptoms and disease progression. Here, we evaluated 15 randomized controlled clinical trials (RCTs) and 11 nonrandomized RCTs using culture-expanded MSCs in the treatment of knee OA, and we found net positive effects of MSCs on mitigating pain and symptoms (improving function in 12/15 RCTs relative to baseline and in 11/15 RCTs relative to control groups at study endpoints) and on cartilage protection and/or repair (18/21 clinical studies). We examined MSC dose, tissue of origin, and autologous vs. allogeneic origins as well as patient clinical phenotype, endotype, age, sex and level of OA severity as key parameters in parsing MSC clinical effectiveness. The relatively small sample size of 610 patients limited the drawing of definitive conclusions. Nonetheless, we noted trends toward moderate to higher doses of MSCs in select OA patient clinical phenotypes mitigating pain and leading to structural improvements or cartilage preservation. Evidence from preclinical studies is supportive of MSC anti-inflammatory and immunomodulatory effects, but additional investigations on immunomodulatory, chondroprotective and other clinical mechanisms of action are needed. We hypothesize that MSC basal immunomodulatory "fitness" correlates with OA treatment efficacy, but this hypothesis needs to be validated in future studies. We conclude with a roadmap articulating the need to match an OA patient subset defined by molecular endotype and clinical phenotype with basally immunomodulatory "fit" or engineered-to-be-fit-for-OA MSCs in well-designed, data-intensive clinical trials to advance the field.
Collapse
Affiliation(s)
- Griffin Copp
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Zhao S, Liu Y, Wang J, Wen Y, Wu B, Yang D, Wang G, Xiu G, Ling B, Du D, Xu J. ADSCs increase the autophagy of chondrocytes through decreasing miR-7-5p in Osteoarthritis rats by targeting ATG4A. Int Immunopharmacol 2023; 120:110390. [PMID: 37262955 DOI: 10.1016/j.intimp.2023.110390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly degenerative joint disease, mainly companying with progressive destruction of articular cartilage. Adipose-derived stromal cells (ADSCs) therapy enhances articular cartilage repair, extracellular matrix (ECM) synthesis and attenuates joints inflammation, but specific mechanisms of therapeutic benefit remain poorly understood. This study aimed to clarify the therapeutic effects and mechanisms of ADSCs on cartilage damage in the keen joint of OA rat model. METHODS Destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT) surgery-induced OA rats were treated with allogeneic ADSCs by intra-articular injections for 6 weeks. The protective effect of ADSCs in vivo was measured using Safranin O and fast green staining, immunofluorescence and western blot analysis. Meanwhile, the miRNA-7-5p (miR-7-5p) expression was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The mechanism of increased autophagy with ADSCs addition through decreasing miR-7-5p was revealed using oligonucleotides, and adenovirus in rat chondrocytes. The luciferase reporter assay revealed the molecular role of miR-7-5p and autophagy related 4A (ATG4A). The substrate of mTORC1 pathway: (p-)p70S6 and (p-)S6 in OA models with ADSCs addition were detected by western blotting. RESULTS The ADSCs treatment repaired the articular cartilage and maintained chondrocytes ECM homeostasis through modulating chondrocytes autophagy in the OA model, indicators of the change of autophagic proteins expression and autophagic flux. Meanwhile, the increased autophagy induced by ADSCs treatment was closely related to the decreased expression of host-derived miR-7-5p, a negative modulator of OA progression. Functional genomics (overexpression of genes) in vitro studies demonstrate the inhibition of host-derived miR-7-5p in mediating the benefit of ADSCs administration in OA model. Then ATG4A was defined as a target gene of miR-7-5p, and the negative relation between miR-7-5p and ATG4A was investigated in the OA model treated with ADSCs. Furthermore, miR-7-5p mediated chondrocyte autophagy by targeting ATG4A in the OA model treated with ADSCs was confirmed with the rescue trial of ATG4A/miR-7-5p overexpression on rat chondrocyte. Finally, the mTORC1 signaling pathways mediated by host-derived miR-7-5p with ADSCs treatment were decreased in OA rats. CONCLUSIONS ADSCs promote the chondrocytes autophagy by decreasing miR-7-5p in articular cartilage by targeting ATG4A and a potential role for ADSCs based therapeutics for preventing of articular cartilage destruction and extracellular matrix (ECM) degradation in OA.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu'e Liu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Meng C, Na Y, Han C, Ren Y, Liu M, Ma P, Bai R. Exosomal miR-429 derived from adipose-derived stem cells ameliorated chondral injury in osteoarthritis via autophagy by targeting FEZ2. Int Immunopharmacol 2023; 120:110315. [PMID: 37245297 DOI: 10.1016/j.intimp.2023.110315] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent musculoskeletal disease, imposing a significant public health burden. Exosomes might be an effective means of treating OA. PURPOSE To investigate the role of exosomes from adipose tissue-derived stromal cells (ADSCs) in OA. We explored whether exosomes from ADSCs could be absorbed by OA chondrocytes, whether there were differences in miR-429 expression in the exosomes of ADSCs and chondrocytes, and whether ADSC exosomal miR-429 could enhance chondrocyte proliferation to exert therapeutic effects in OA. STUDY DESIGN Controlled laboratory study. METHODS ADSCs were isolated and cultured from 4-week-old Sprague-Dawley rats. ADSCs and chondrocytes were identified by flow cytometry assay and fluorescent staining, respectively. The exosomes were extracted and identified. Exosome transport was verified by cell staining and co-culture. Beclin 1, collagen II, LC3-II/I, miR-429, and FEZ2 mRNA and protein expression were investigated with real-time PCR and western blotting, respectively. Chondrocyte proliferation was investigated with Cell Counting Kit-8 (CCK-8) assay. The association between miR-429 and FEZ2 was verified with luciferase assay. A rat OA model was established and rat knee joint cartilage tissue was examined with hematoxylin-eosin and toluidine blue staining. RESULTS Both ADSCs and chondrocytes secreted exosomes and ADSC-derived exosomes could be absorbed by the chondrocytes. ADCS exosomes contained higher miR-429 levels than chondrocyte exosomes. The luciferase assay demonstrated that miR-429 directly targeted FEZ2. Compared with the OA group, miR-429 promoted chondrocyte proliferation while FEZ2 decreased it. miR-429 promoted autophagy by targeting FEZ2 to ameliorate cartilage injury. In vivo, miR-429 promoted autophagy to alleviate OA by targeting FEZ2. CONCLUSION ADSC exosomes could be beneficial for OA and could be absorbed by chondrocytes to promote chondrocyte proliferation through miR-429. miR-429 ameliorated cartilage injury in OA by targeting FEZ2 and promoting autophagy.
Collapse
Affiliation(s)
- Chenyang Meng
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuyan Na
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Changxu Han
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yizhong Ren
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ming Liu
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Penglei Ma
- Anesthesia Surgical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Rui Bai
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
40
|
Said M, Tavakoli C, Dumot C, Toupet K, Dong YC, Collomb N, Auxenfans C, Moisan A, Favier B, Chovelon B, Barbier EL, Jorgensen C, Cormode DP, Noël D, Brun E, Elleaume H, Wiart M, Detante O, Rome C, Auzély-Velty R. A novel injectable radiopaque hydrogel with potent properties for multicolor CT imaging in the context of brain and cartilage regenerative therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537520. [PMID: 37131613 PMCID: PMC10153246 DOI: 10.1101/2023.04.20.537520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases. The development of imaging tools that enable monitoring cells and hydrogel independently is key to achieving this goal. Our objective herein is to longitudinally study an iodine-labeled hydrogel, incorporating gold-labeled stem cells, by bicolor CT imaging after in vivo injection in rodent brains or knees. To this aim, an injectable self-healing hyaluronic acid (HA) hydrogel with long-persistent radiopacity was formed by the covalent grafting of a clinical contrast agent on HA. The labeling conditions were tuned to achieve sufficient X-ray signal and to maintain the mechanical and self-healing properties as well as injectability of the original HA scaffold. The efficient delivery of both cells and hydrogel at the targeted sites was demonstrated by synchrotron K-edge subtraction-CT. The iodine labeling enabled to monitor the hydrogel biodistribution in vivo up to 3 days post-administration, which represents a technological first in the field of molecular CT imaging agents. This tool may foster the translation of combined cell-hydrogel therapies into the clinics.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clément Tavakoli
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France; Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Chloé Dumot
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Karine Toupet
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yuxi Clara Dong
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nora Collomb
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Anaïck Moisan
- Cell Therapy and Engineering Unit, EFS Rhone Alpes, 38330 Saint Ismier, France
| | - Bertrand Favier
- Univ. Grenoble Alpes, Translational Innovation in Medicine & Complexity, UMR552, 38700 La Tronche, France
| | - Benoit Chovelon
- Univ. Grenoble-Alpes, Departement de Pharmacochimie Moleculaire UMR 5063, 38400 Grenoble, France; Institut de Biologie et Pathologie, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - David Peter Cormode
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danièle Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Marlène Wiart
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France
| |
Collapse
|
41
|
Liao CD, Chen HC, Huang MH, Liou TH, Lin CL, Huang SW. Comparative Efficacy of Intra-Articular Injection, Physical Therapy, and Combined Treatments on Pain, Function, and Sarcopenia Indices in Knee Osteoarthritis: A Network Meta-Analysis of Randomized Controlled Trials. Int J Mol Sci 2023; 24:6078. [PMID: 37047058 PMCID: PMC10094194 DOI: 10.3390/ijms24076078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Knee osteoarthritis (KOA) is associated with a high risk of sarcopenia. Both intra-articular injections (IAIs) and physical therapy (PT) exert benefits in KOA. This network meta-analysis (NMA) study aimed to identify comparative efficacy among the combined treatments (IAI+PT) in patients with KOA. Seven electronic databases were systematically searched from inception until January 2023 for randomized controlled trials (RCTs) reporting the effects of IAI+PT vs. IAI or PT alone in patients with KOA. All RCTs which had treatment arms of IAI agents (autologous conditioned serum, botulinum neurotoxin type A, corticosteroids, dextrose prolotherapy (DxTP), hyaluronic acid, mesenchymal stem cells (MSC), ozone, platelet-rich plasma, plasma rich in growth factor, and stromal vascular fraction of adipose tissue) in combination with PT (exercise therapy, physical agent modalities (electrotherapy, shockwave therapy, thermal therapy), and physical activity training) were included in this NMA. A control arm receiving placebo IAI or usual care, without any other IAI or PT, was used as the reference group. The selected RCTs were analyzed through a frequentist method of NMA. The main outcomes included pain, global function (GF), and walking capability (WC). Meta-regression analyses were performed to explore potential moderators of the treatment efficacy. We included 80 RCTs (6934 patients) for analyses. Among the ten identified IAI+PT regimens, DxTP plus PT was the most optimal treatment for pain reduction (standard mean difference (SMD) = -2.54) and global function restoration (SMD = 2.28), whereas MSC plus PT was the most effective for enhancing WC recovery (SMD = 2.54). More severe KOA was associated with greater changes in pain (β = -2.52) and WC (β = 2.16) scores. Combined IAI+PT treatments afford more benefits than do their corresponding monotherapies in patients with KOA; however, treatment efficacy is moderated by disease severity.
Collapse
Affiliation(s)
- Chun-De Liao
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110301, Taiwan
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Mao-Hua Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98015, USA
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
42
|
Alves ED, Benevenuto LGD, Morais BP, Barros MA, Achcar JA, Montrezor LH. Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
43
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
44
|
de Villeneuve Bargemon JB, Rouveyrol M, Massin V, Jaloux C, Levadoux M. Targeted Partial Arthroscopic Trapeziectomy and Temporary K-Wire Distraction for Basal Joint Arthritis in Young Patients: A Retrospective Study of 39 Thumbs. J Wrist Surg 2023; 12:9-17. [PMID: 36644730 PMCID: PMC9836781 DOI: 10.1055/s-0041-1742204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
Purpose There is a real need to find less invasive therapeutic options for young patients suffering from osteoarthritis of the first carpometacarpal joint. We wanted to assess the effectiveness of targeted partial arthroscopic trapeziectomy with distraction of the trapeziometacarpal (TM) joint with Kirschner wires (K-wires) in 39 thumbs impacted by TM osteoarthritis. Methods We conducted a retrospective study in which preoperative and postoperative data on pinch strength, grip strength, and pain on a visual analogue scale were collected. Subgroup analysis was performed based on two different K-wire distraction techniques. Only patients suffering from primary osteoarthritis and younger than 70 years were included. Second, we compared the frequency of complications relative to the position of the pins. Results We found a significant improvement in pain ( p = 0.005) and grip strength ( p = 0.0021) as well as an improvement in pinch strength ( p = 0.5704). There was reduction in pain for all Badia levels, which was significant for stages 2 ( p = 0.002) and 3 ( p = 0.032) as well as an overall improvement in grip strength and pinch strength for all Badia levels. Conclusion Partial trapeziectomy with K-wire distraction in young patients suffering from TM osteoarthritis is a simple technique that requires minimal equipment and yields satisfactory outcomes. Conversion to another surgical treatment is still possible if this less invasive technique is unsuccessful. Level of Evidence This is a Level IV study.
Collapse
Affiliation(s)
| | - Mathias Rouveyrol
- Department of Hand Surgery and Limb Reconstructive Surgery, Timone Adultes Hospital, Aix Marseille University, Marseille, France
| | - Valentin Massin
- Department of Orthopedic Surgery, Hôpital Nord, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Charlotte Jaloux
- Department of Hand Surgery and Limb Reconstructive Surgery, Timone Adultes Hospital, Aix Marseille University, Marseille, France
| | - M. Levadoux
- Department of Hand, Wrist and Elbow Surgery, Saint Roch Private Hospital, Toulon, France
| |
Collapse
|
45
|
Stem cell-derived small extracellular vesicles containing miR-27b-3p attenuated osteoarthritis through inhibition of leukaemia inhibitory factor. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
46
|
Winter R, Hasiba-Pappas SK, Tuca AC, Zrim R, Nischwitz S, Popp D, Lumenta DB, Girsch W, Kamolz LP. Autologous Fat and Platelet-Rich Plasma Injections in Trapeziometacarpal Osteoarthritis: A Systematic Review and Meta-Analysis. Plast Reconstr Surg 2023; 151:119-131. [PMID: 36219860 DOI: 10.1097/prs.0000000000009789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND For the treatment of carpometacarpal arthritis of the thumb, various therapies are used. Infiltration therapy with autologous substances such as platelet-rich plasma and autologous fat have recently gained increasing attention because of beneficial pain-reducing effects in arthritis and the associated regenerative potential. However, the extent of clinical evidence in this area and how well autologous substances work in terms of pain reduction and improvements in hand function remain unclear. METHODS A systematic review and meta-analysis were conducted to evaluate the current evidence and to provide more insight into pain reduction and improvement in hand function after infiltration of autologous substances. The authors identified 11 clinical trials, of which we included eight in the meta-analysis. RESULTS Autologous substances achieved a good and long-lasting pain reduction, which may also be accompanied by corresponding improvement in hand function. Autologous substances appear to be more effective than corticoid infiltrations. The infiltration of autologous fat seems to be particularly promising in more advanced stages of carpometacarpal arthritis of the thumb. Our meta-analysis showed a mean pain reduction of 2.4 to 3 in visual analogue scale score and a reduction of 18 to 19 points in the Disabilities of the Arm, Shoulder, and Hand questionnaire after infiltration with autologous substances. CONCLUSION Both platelet-rich plasma and autologous fat infiltration offer an efficient and long-lasting, minimally invasive therapy option in the treatment of carpometacarpal arthritis of the thumb.
Collapse
Affiliation(s)
- Raimund Winter
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Sophie K Hasiba-Pappas
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Alexandru-Cristian Tuca
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Robert Zrim
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Sebastian Nischwitz
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Daniel Popp
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - David Benjamin Lumenta
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
- Research Unit for Digital Surgery, Medical University of Graz
| | - Werner Girsch
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
| | - Lars-P Kamolz
- From the Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Research Unit for Tissue Regeneration, Repair and Reconstruction
- COREMED, the Cooperative Centre for Regenerative Medicine, Joanneum Research GmbH
| |
Collapse
|
47
|
Nagelli CV, Evans CH, De la Vega RE. Gene Delivery to Chondrocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:95-105. [PMID: 37052849 DOI: 10.1007/978-3-031-25588-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Delivering genes to chondrocytes offers new possibilities both clinically, for treating conditions that affect cartilage, and in the laboratory, for studying the biology of chondrocytes. Advances in gene therapy have created a number of different viral and non-viral vectors for this purpose. These vectors may be deployed in an ex vivo fashion, where chondrocytes are genetically modified outside the body, or by in vivo delivery where the vector is introduced directly into the body; in the case of articular and meniscal cartilage in vivo delivery is typically by intra-articular injection. Ex vivo delivery is favored in strategies for enhancing cartilage repair as these can be piggy-backed on existing cell-based technologies, such as autologous chondrocyte implantation, or used in conjunction with marrow-stimulating techniques such as microfracture. In vivo delivery to articular chondrocytes has proved more difficult, because the dense, anionic, extra-cellular matrix of cartilage limits access to the chondrocytes embedded within it. As Grodzinsky and colleagues have shown, the matrix imposes strict limits on the size and charge of particles able to diffuse through the entire depth of articular cartilage. Empirical observations suggest that the larger viral vectors, such as adenovirus (~100 nm), are unable to transduce chondrocytes in situ following intra-articular injection. However, adeno-associated virus (AAV; ~25 nm) is able to do so in horse joints. AAV is presently in clinical trials for arthritis gene therapy, and it will be interesting to see whether human chondrocytes are also transduced throughout the depth of cartilage by AAV following a single intra-articular injection. Viral vectors have been used to deliver genes to the intervertebral disk but there has been little research on gene transfer to chondrocytes in other cartilaginous tissues such as nasal, auricular or tracheal cartilage.
Collapse
|
48
|
Otahal A, De Luna A, Mobasheri A, Nehrer S. Extracellular Vesicle Isolation and Characterization for Applications in Cartilage Tissue Engineering and Osteoarthritis Therapy. Methods Mol Biol 2023; 2598:123-140. [PMID: 36355289 DOI: 10.1007/978-1-0716-2839-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) have the capacity for use in cartilage tissue engineering by stimulating tissue repair and microenvironmental reprogramming. This makes them ideal candidates for treating focal cartilage defects and cartilage degeneration in osteoarthritis (OA). Observational studies have reported beneficial biological effects of EVs, such as inhibition of inflammation, enhanced extracellular matrix deposition, and reduced cartilage degradation. Isolation of EVs derived from different source materials such as conditioned cell culture media or biofluids is essential to attribute observed biological effects to EVs as genuine effectors. This chapter presents a density- and a size-based method as well as a combination of both for isolation of EVs from conditioned cell culture media or biofluids. In addition, three methods for characterization of isolated EVs are suggested based on physical properties, protein profiling, and ultrastructural morphology.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Stefan Nehrer
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria.
| |
Collapse
|
49
|
Perucca Orfei C, Boffa A, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G, de Girolamo L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: adipose tissue-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023; 31:641-655. [PMID: 36104484 PMCID: PMC9898370 DOI: 10.1007/s00167-022-07063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to determine if adipose tissue-derived cell-based injectable therapies can induce disease-modifying effects in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical studies comparing injectable adipose-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Seventy-one studies were included (2,086 animals) with an increasing publication trend over time. Expanded cells were used in 65 studies, 3 studies applied point of care products, and 3 studies investigated both approaches. Overall, 48 out of 51 studies (94%) reported better results with adipose-derived products compared to OA controls, with positive findings in 17 out of 20 studies (85%) in macroscopic, in 37 out of 40 studies (93%) in histological, and in 22 out of 23 studies (96%) in immunohistochemical evaluations. Clinical and biomarker evaluations showed positive results in 14 studies out of 18 (78%) and 12 studies out of 14 (86%), while only 9 studies out of 17 (53%) of the imaging evaluations were able to detect differences versus controls. The risk of bias was low in 38% of items, unclear in 51%, and high in (11%). CONCLUSION The current preclinical models document consistent evidence of disease-modifying effects of adipose-derived cell-based therapies for the treatment of OA. The high heterogeneity of the published studies highlights the need for further targeted research to provide recommendations on the optimal methodologies for a more effective application of these injective therapies for the treatment of OA in clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Yosef Sourugeon
- grid.413731.30000 0000 9950 8111Rambam Health Care Campus, Haifa, Israel
| | - Lior Laver
- grid.414084.d0000 0004 0470 6828Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel ,Arthrosport Clinic, Tel-Aviv, Israel ,grid.6451.60000000121102151Technion University Hospital (Israel Institute of Technology) - Rappaport Faculty of Medicine, Haifa, Israel
| | - Jérémy Magalon
- grid.414336.70000 0001 0407 1584Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France ,grid.5399.60000 0001 2176 4817INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France ,SAS Remedex, Marseille, France
| | - Mikel Sánchez
- grid.473696.9Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain ,Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- grid.10493.3f0000000121858338Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- grid.419038.70000 0001 2154 6641Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ,grid.469433.f0000 0004 0514 7845Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Laura de Girolamo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| |
Collapse
|
50
|
Li C, Li W, Pu G, Wu J, Qin F. Exosomes derived from miR-338-3p-modified adipose stem cells inhibited inflammation injury of chondrocytes via targeting RUNX2 in osteoarthritis. J Orthop Surg Res 2022; 17:567. [PMID: 36572886 PMCID: PMC9791748 DOI: 10.1186/s13018-022-03437-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease that is one of the main causes of disability in middle-aged and elderly people. Adipose stem cell (ASC)-derived exosomes (ASC-Exo) could repair cartilage damage and treat OA. MiRNA-338-3p expression was confirmed to play a role in inhibiting proinflammatory cytokines. Herein, we aimed to explore the mechanism by which exosomes derived from miR-338-3p overexpressing ASCs protects chondrocytes from interleukin (IL)-1β-induced chondrocyte change. METHODS Exosomes were extracted from ASCs transfected with miR-338-3p or its antisense inhibitor. The ASC-Exos (miR-338-3p silencing/overexpression) were incubated with IL-1β-induced ATDC5 cells, followed by evaluation of the chondrocyte proliferation, degradation, and inflammation injury. RESULTS In vitro results revealed that ASC-Exos inhibited the expression of prostaglandin E2 (PGE2), IL-6, IL-1β, and TNF-α, as well as promoted the proliferation of ATDC5 cells. Moreover, ASC-Exos inhibited inflammation injury and degradation of ATDC5 cells by transferring miR-338-3p. Luciferase reporter assays showed that RUNX2 was a target gene of miR-338-3p. Additionally, RUNX2 overexpression in ATDC5 cells reversed the protective effect of miR-338-3p on chondrocytes. Taken together, this study demonstrated that exosomes secreted from miR-338-3p-modified ASCs were effective in the repair of IL-1β-induced chondrocyte change by inhibiting RUNX2 expression. CONCLUSIONS Our result provided valuable data for understanding the mechanism of ASC-Exos in OA treatment.
Collapse
Affiliation(s)
- ChunLiang Li
- grid.469564.cDepartment of Orthopedic, Qinghai Provincial People’s Hospital, Xining, 810006 Qinghai China
| | - Wei Li
- grid.469564.cDepartment of Orthopedic, Qinghai Provincial People’s Hospital, Xining, 810006 Qinghai China
| | - GengZang Pu
- grid.469564.cDepartment of Emergency Surgery, Qinghai Provincial People’s Hospital, Xining, 810006 Qinghai China
| | - JingWen Wu
- grid.469564.cDepartment of Emergency Surgery, Qinghai Provincial People’s Hospital, Xining, 810006 Qinghai China
| | - Feng Qin
- grid.459333.bDepartment of Endocrinology, Qinghai University Affiliated Hospital, Chengxi District, No. 6, Xichuan South Road, Xining, 810006 Qinghai China
| |
Collapse
|