1
|
Qiu Y, Gao S, Ding X, Lu J, Ji X, Hao W, Cheng S, Du H, Gu Y, Yu C, Cheng C, Gao X. Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function. Neurosci Bull 2025; 41:421-433. [PMID: 39688649 PMCID: PMC11876497 DOI: 10.1007/s12264-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 12/18/2024] Open
Abstract
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses. To date, there have been few reports on TNFAIP6 levels in the inner ear. To elucidate the precise mechanism, we generated transgenic mouse models with conditional knockout of Tnfaip6 (Tnfaip6 cKO). Evaluation of hair cell morphology and function revealed no significant differences in hair cell numbers or ribbon synapses between Tnfaip6 cKO and wild-type mice. Moreover, there were no notable variations in hair cell numbers or hearing function in noisy environments. Our results indicate that Tnfaip6 does not have a substantial impact on the auditory system.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/pathology
- Mice
- Mice, Transgenic
- Hearing Loss, Noise-Induced
- Evoked Potentials, Auditory, Brain Stem/physiology
Collapse
Affiliation(s)
- Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Song Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiong Ding
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Haolinag Du
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
2
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Stassen RHMJ, van den Akker GGH, Surtel DAM, Housmans BAC, Cremers A, Caron MMJ, Smagul A, Peffers MJ, van Rhijn LW, Welting TJM. Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome; a role for TGF-β signaling. Osteoarthritis Cartilage 2023; 31:1035-1046. [PMID: 37075856 DOI: 10.1016/j.joca.2023.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Basic Calcium Phosphate (BCP) crystals play an active role in the progression of osteoarthritis (OA). However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods. METHOD Isolated human OA articular chondrocytes were stimulated with BCP crystals and examined by Quantitative Reverse Transcription PCR (RT-qPCR) and enzyme-linked immune sorbent assay (ELISA) after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and an antibody array. The activity of BCP dependent Transforming Growth Factor Beta (TGF-β) signaling was analyzed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-β signaling on BCP-dependent Interleukin 6 (IL-6) were investigated using specific pathway inhibitors. RESULTS Synthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-β signaling, both in activation of latent TGF-β and TGF-β superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-β signaling was confirmed by increased activity of expression of TGF-β target genes and luciferase reporters. Inhibition of BCP driven TGF-β signaling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression. CONCLUSION BCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-β signaling was identified in development of a pro-inflammatory environment.
Collapse
Affiliation(s)
- R H M J Stassen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - M M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - A Smagul
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - M J Peffers
- Department of Musculoskeletal Biology, Life Course and Medical Sciences, University of Liverpool, UK
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Zhu L, Kamalathevan P, Koneva LA, Zarebska JM, Chanalaris A, Ismail H, Wiberg A, Ng M, Muhammad H, Walsby-Tickle J, McCullagh JSO, Watt FE, Sansom SN, Furniss D, Gardiner MD, Vincent TL, Riley N, Spiteri M, McNab I, Little C, Cogswell L, Critchley P, Giele H, Shirley R. Variants in ALDH1A2 reveal an anti-inflammatory role for retinoic acid and a new class of disease-modifying drugs in osteoarthritis. Sci Transl Med 2022; 14:eabm4054. [PMID: 36542696 DOI: 10.1126/scitranslmed.abm4054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.
Collapse
Affiliation(s)
- Linyi Zhu
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Pragash Kamalathevan
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Lada A Koneva
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Jadwiga Miotla Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anastasios Chanalaris
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Heba Ismail
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
- Healthy Lifespan Institute (HELSI) and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Akira Wiberg
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Michael Ng
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Hayat Muhammad
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - John Walsby-Tickle
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Matthew D Gardiner
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chaudhry N, Muhammad H, Seidl C, Downes D, Young DA, Hao Y, Zhu L, Vincent TL. Highly efficient CRISPR-Cas9-mediated editing identifies novel mechanosensitive microRNA-140 targets in primary human articular chondrocytes. Osteoarthritis Cartilage 2022; 30:596-604. [PMID: 35074547 PMCID: PMC8987936 DOI: 10.1016/j.joca.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE MicroRNA 140 (miR-140) is a chondrocyte-specific endogenous gene regulator implicated in osteoarthritis (OA). As mechanical injury is a primary aetiological factor in OA, we investigated miR-140-dependent mechanosensitive gene regulation using a novel CRISPR-Cas9 methodology in primary human chondrocytes. METHOD Primary (passage 1/2) human OA chondrocytes were isolated from arthroplasty samples (six donors) and transfected with ribonuclear protein complexes or plasmids using single guide RNAs (sgRNAs) targeting miR-140, in combination with Cas9 endonuclease. Combinations of sgRNAs and single/double transfections were tested. Gene editing was measured by T7 endonuclease 1 (T7E1) assay. miRNA levels were confirmed by qPCR in chondrocytes and in wild type murine femoral head cartilage after acute injury. Predicted close match off-targets were examined. Mechanosensitive miR-140 target validation was assessed in 42 injury-associated genes using TaqMan Microfluidic cards in targeted and donor-matched control chondrocytes. Identified targets were examined in RNAseq data from costal chondrocytes from miR-140-/- mice. RESULTS High efficiency gene editing of miR-140 (90-98%) was obtained when two sgRNAs were combined with double RNP-mediated CRISPR-Cas9 transfection. miR-140 levels fell rapidly after femoral cartilage injury. Of the top eight miR-140 gene targets identified (P < 0.01), we validated three previously identified ones (septin 2, bone morphogenetic protein 2 and fibroblast growth factor 2). Novel targets included Agrin, a newly recognised pro-regenerative cartilage agent, and proteins associated with retinoic acid signalling and the primary cilium. CONCLUSION We describe a highly efficient CRISPR-Cas9-mediated strategy for gene editing in primary human chondrocytes and identify several novel mechanosensitive miR-140 targets of disease relevance.
Collapse
Affiliation(s)
- N Chaudhry
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - H Muhammad
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - C Seidl
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - D Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, United Kingdom
| | - D A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, United Kingdom
| | - Y Hao
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, United Kingdom
| | - L Zhu
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
6
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
7
|
Garriga C, Goff M, Paterson E, Hrusecka R, Hamid B, Alderson J, Leyland K, Honeyfield L, Greenshields L, Satchithananda K, Lim A, Arden NK, Judge A, Williams A, Vincent TL, Watt FE. Clinical and molecular associations with outcomes at 2 years after acute knee injury: a longitudinal study in the Knee Injury Cohort at the Kennedy (KICK). THE LANCET. RHEUMATOLOGY 2021; 3:e648-e658. [PMID: 34476411 PMCID: PMC8390381 DOI: 10.1016/s2665-9913(21)00116-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Joint injury is a major risk factor for osteoarthritis and provides an opportunity to prospectively examine early processes associated with osteoarthritis. We investigated whether predefined baseline demographic and clinical factors, and protein analytes in knee synovial fluid and in plasma or serum, were associated with clinically relevant outcomes at 2 years after knee injury. METHODS This longitudinal cohort study recruited individuals aged 16-50 years between Nov 1, 2010, and Nov 28, 2014, across six hospitals and clinics in London, UK. Participants were recruited within 8 weeks of having a clinically significant acute knee injury (effusion and structural injury on MRI), which was typically treated surgically. We measured several predefined clinical variables at baseline (eg, time from injury to sampling, extent and type of joint injury, synovial fluid blood staining, presence of effusion, self-reported sex, age, and BMI), and measured 12 synovial fluid and four plasma or serum biomarkers by immunoassay at baseline and 3 months. The primary outcome was Knee Injury and Osteoarthritis Outcome Score (KOOS4) at 2 years, adjusted for baseline score, assessed in all patients. Linear and logistic regression models adjusting for predefined covariates were used to assess associations between baseline variables and 2-year KOOS4. This study is registered with ClinicalTrials.gov, number NCT02667756. FINDINGS We enrolled 150 patients at a median of 17 days (range 1-59, IQR 9-26) after knee injury. 123 (82%) were male, with a median age of 25 years (range 16-50, IQR 21-30). 98 (65%) of 150 participants completed a KOOS4 at 2 (or 3) years after enrolment (50 participants were lost to follow-up and two were withdrawn due to adverse events unrelated to study participation); 77 (51%) participants had all necessary variables available and were included in the core variable adjusted analysis. In the 2-year dataset mean KOOS4 improved from 38 (SD 18) at baseline to 79 (18) at 2 years. Baseline KOOS4, medium-to-large knee effusion, and moderate-to-severe synovial blood staining and their interaction significantly predicted 2-year KOOS4 (n=77; coefficient -20·5, 95% CI -34·8 to -6·18; p=0·0060). The only predefined biomarkers that showed independent associations with 2-year KOOS4 were synovial fluid MCP-1 (n=77; -0·015, 0·027 to -0·004 per change in 1 pg/mL units; p=0·011) and IL-6 (n=77; -0·0005, -0·0009 to -0·0001 per change in 1 pg/mL units; p=0·017). These biomarkers, combined with the interaction of effusion and blood staining, accounted for 39% of outcome variability. Two adverse events occurred that were linked to study participation, both at the time of blood sampling (one presyncopal episode, one tenderness and pain at the site of venepuncture). INTERPRETATION The combination of effusion and haemarthrosis was significantly associated with symptomatic outcomes after acute knee injury. The synovial fluid molecular protein response to acute knee injury (best represented by MCP-1 and IL-6) was independently associated with symptomatic outcomes but not with structural outcomes, with the biomarkers overall playing a minor role relative to clinical predictors. The relationship between symptoms and structure after acute knee injury and their apparent dissociation early in this process need to be better understood to make clinical progress. FUNDING Versus Arthritis, Kennedy Trust for Rheumatology Research, and NIHR Oxford Biomedical Research Centre.
Collapse
Affiliation(s)
- Cesar Garriga
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Megan Goff
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Erin Paterson
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Renata Hrusecka
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Benjamin Hamid
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Jennifer Alderson
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Kirsten Leyland
- NIHR Bristol BRC, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Lesley Honeyfield
- Department of Radiology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Liam Greenshields
- Department of Radiology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Keshthra Satchithananda
- Department of Radiology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Radiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Adrian Lim
- Department of Radiology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Nigel K Arden
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, NDORMS, University of Oxford, Oxford, UK
| | - Andrew Judge
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
- NIHR Bristol BRC, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - Andrew Williams
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Fortius Clinic, London, UK
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Department of Rheumatology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, NDORMS, University of Oxford, Oxford, UK
- Department of Rheumatology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
8
|
Li XJ, Zhu F, Li B, Zhang D, Liang CW. Recombinant human regenerating gene 4 attenuates the severity of osteoarthritis by promoting the proliferation of articular chondrocyte in an animal model. Curr Mol Pharmacol 2021; 15:693-699. [PMID: 34488597 DOI: 10.2174/1874467214666210901163144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a dominant cause of morbidity and disability. As a chronic disease, its etiological risk factors and most therapies at present, are empirical and symptomatic. Regenerating gene 4 (Reg4) is involved in cell growth, survival, regeneration, adhesion, and resistance to apoptosis, which are partially thought to be the pathogenic mechanisms of OA. However, the proper role of Reg4 in OA is still unknown. METHODS In this study, a consecutive administration of rhReg4 was applied to normal Sprague-Dawley rats or rats after OA induction. Histological changes and chondrocyte proliferation in the articular cartilage were measured. RESULTS We found that RhReg4 promotes chondrocyte proliferation in normal rats, and RhReg4 attenuated the severity of OA in rats by promoting chondrocytes' proliferation in OA rats. CONCLUSION In conclusion, recombinant human regenerating gene 4 (rhReg4) attenuates the severity of osteoarthritis in OA animal models and may be used as a new method for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xue-Jia Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Fei Zhu
- Department of Orthopaedics, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Bo Li
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Dong Zhang
- Department of Orthopaedics, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Cheng-Wei Liang
- Department of Orthopaedics, Huadong Hospital Affiliated to Fudan University, Shanghai. China
| |
Collapse
|
9
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
11
|
Garcia J, McCarthy HS, Kuiper JH, Melrose J, Roberts S. Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach? Biomolecules 2021; 11:biom11010092. [PMID: 33450893 PMCID: PMC7828356 DOI: 10.3390/biom11010092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.
Collapse
Affiliation(s)
- John Garcia
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Local Health District, St. Leonards, NSW 2065, Australia;
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
- Correspondence: ; Tel.: +44-1-691-404-664
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Current thinking in the study of posttraumatic osteoarthritis (PTOA) is overviewed: the osteoarthritis which follows acute joint injury. The review particularly highlights important publications in the last 18 months, also reflecting on key older literature, in terms of what have we have we learned and have yet to learn from PTOA, which can advance the osteoarthritis field as a whole. RECENT FINDINGS PTOA is a mechanically driven disease, giving insight into mechanical drivers for osteoarthritis. A mechanosensitive molecular tissue injury response (which includes activation of pain, degradative and also repair pathways) is triggered by acute joint injury and seen in osteoarthritis. Imaging features of PTOA are highly similar to osteoarthritis, arguing against it being a different phenotype. The inflammatory pathways activated by injury contribute to early joint symptoms. However, later structural changes appear to be dissociated from traditional measures of synovial inflammation. SUMMARY PTOA remains an important niche in which to understand processes underlying osteoarthritis and seek interventional targets. Whether PTOA has true molecular or clinical differences to osteoarthritis as a whole remains to be understood. This knowledge is important for a field where animal modelling of the disease relies heavily on the link between injury and osteoarthritis.
Collapse
Affiliation(s)
- Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Southan J, McHugh E, Walker H, Ismail HM. Metabolic Signature of Articular Cartilage Following Mechanical Injury: An Integrated Transcriptomics and Metabolomics Analysis. Front Mol Biosci 2020; 7:592905. [PMID: 33392255 PMCID: PMC7773849 DOI: 10.3389/fmolb.2020.592905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical injury to the articular cartilage is a key risk factor in joint damage and predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable tool to understand tissue behavior in response to mechanical injury insult and help to identify key pathways linking injury to tissue damage. Global or untargeted metabolomics provides a comprehensive characterization of the metabolite content of biological samples. In this study, we aimed to identify the metabolic signature of cartilage tissue post injury. We employed an integrative analysis of transcriptomics and global metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics analysis showed a significant enrichment of gene sets involved in regulation of metabolic processes including carbon metabolism, biosynthesis of amino acids, and steroid biosynthesis. Integrative analysis of enriched genes with putatively identified metabolite features post injury showed a significant enrichment for carbohydrate metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine, threonine, and arginine and proline metabolism). We then performed a cross analysis of global metabolomics profiles of murine and porcine ex vivo cartilage injury models. The top commonly modulated metabolic pathways post injury included arginine and proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6 metabolic pathways. These results highlight the significant modulation of metabolic responses following mechanical injury to articular cartilage. Further investigation of these pathways would provide new insights into the role of the early metabolic state of articular cartilage post injury in promoting tissue damage and its link to disease progression of osteoarthritis.
Collapse
Affiliation(s)
- Jennifer Southan
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Emily McHugh
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Heather Walker
- biOMICS Mass Spectrometry Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Zhu L, Donhou S, Burleigh A, Miotla Zarebska J, Curtinha M, Parisi I, Khan SN, Dell'Accio F, Chanalaris A, Vincent TL. TSG-6 Is Weakly Chondroprotective in Murine OA but Does not Account for FGF2-Mediated Joint Protection. ACR Open Rheumatol 2020; 2:605-615. [PMID: 33029956 PMCID: PMC7571392 DOI: 10.1002/acr2.11176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Tumor necrosis factor α-stimulated gene 6 (TSG-6) is an anti-inflammatory protein highly expressed in osteoarthritis (OA), but its influence on the course of OA is unknown. METHODS Cartilage injury was assessed by murine hip avulsion or by recutting rested explants. Forty-two previously validated injury genes were quantified by real-time polymerase chain reaction in whole joints following destabilization of the medial meniscus (DMM) (6 hours and 7 days). Joint pathology was assessed at 8 and 12 weeks following DMM in 10-week-old male and female fibroblast growth factor 2 (FGF2)-/- , TSG-6-/- , TSG-6tg (overexpressing), FGF2-/- ;TSG-6tg (8 weeks only) mice, as well as strain-matched, wild-type controls. In vivo cartilage repair was assessed 8 weeks following focal cartilage injury in TSG-6tg and control mice. FGF2 release following cartilage injury was measured by enzyme-linked immunosorbent assay. RESULTS TSG-6 messenger RNA upregulation was strongly FGF2-dependent upon injury in vitro and in vivo. Fifteeen inflammatory genes were significantly increased in TSG-6-/- joints, including IL1α, Ccl2, and Adamts5 compared with wild type. Six genes were significantly suppressed in TSG-6-/- joints including Timp1, Inhibin βA, and podoplanin (known FGF2 target genes). FGF2 release upon cartilage injury was not influenced by levels of TSG-6. Cartilage degradation was significantly increased at 12 weeks post-DMM in male TSG-6-/- mice, with a nonsignificant 30% reduction in disease seen in TSG-6tg mice. No differences were observed in cartilage repair between genotypes. TSG-6 overexpression was unable to prevent accelerated OA in FGF2-/- mice. CONCLUSION TSG-6 influences early gene regulation in the destabilized joint and exerts a modest late chondroprotective effect. Although strongly FGF2 dependent, TSG-6 does not explain the strong chondroprotective effect of FGF2.
Collapse
Affiliation(s)
- Linyi Zhu
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Shannah Donhou
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Annika Burleigh
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Jadwiga Miotla Zarebska
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Marcia Curtinha
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Ida Parisi
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Sumayya Nafisa Khan
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | | | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| |
Collapse
|
15
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol 2020; 16:547-564. [PMID: 32807927 DOI: 10.1038/s41584-020-0469-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.
Collapse
|
17
|
Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum 2020; 49:S36-S38. [PMID: 31779850 DOI: 10.1016/j.semarthrit.2019.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 11/22/2022]
Abstract
Mechanical injury is the most important risk factor in osteoarthritis (OA) development. Although once considered a passive disease of mechanical attrition, injury drives active mechanosensitive intracellular signalling which affects the structural and symptomatic course of disease. Mechanosensitive signalling in cartilage has been elucidated over the years and two principal responses emerge: those that cause the release of growth factors from the matrix and which stimulate repair, and those that drive inflammatory signalling, a process that we have termed "mechanoflammation". The up-stream activator of mechanoflammation remains unknown, but it results in rapid activation of NFkB and the inflammatory mitogen activated protein (MAP) kinases and this controls the bioavailability of aggrecanase and regulation of nerve growth factor (NGF), causing pain. The precise relationship between mechanoflammation and cartilage repair is currently unclear but it is likely that chronic mechanoflammation will contribute to disease by also suppressing intrinisic tissue repair.
Collapse
|
18
|
Watt FE, Hamid B, Garriga C, Judge A, Hrusecka R, Custers RJH, Jansen MP, Lafeber FP, Mastbergen SC, Vincent TL. The molecular profile of synovial fluid changes upon joint distraction and is associated with clinical response in knee osteoarthritis. Osteoarthritis Cartilage 2020; 28:324-333. [PMID: 31904489 PMCID: PMC7054834 DOI: 10.1016/j.joca.2019.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Surgical knee joint distraction (KJD) leads to clinical improvement in knee osteoarthritis (OA) and also apparent cartilage regeneration by magnetic resonance imaging. We investigated if alteration of the joint's mechanical environment during the 6 week period of KJD was associated with a molecular response in synovial fluid, and if any change was associated with clinical response. METHOD 20 individuals undergoing KJD for symptomatic radiographic knee OA had SF sampled at baseline, midpoint and endpoint of distraction (6 weeks). SF supernatants were measured by immunoassay for 10 predefined mechanosensitive molecules identified in our previous pre-clinical studies. The composite Knee injury and OA Outcome Score-4 (KOOS4) was collected at baseline, 3, 6 and 12 months. RESULTS 13/20 (65%) were male with mean age 54°±°5yrs. All had Kellgren-Lawrence grade ≥2 knee OA. 6/10 analytes showed statistically significant change in SF over the 6 weeks distraction (activin A; TGFβ-1; MCP-1; IL-6; FGF-2; LTBP2), P < 0.05. Of these, all but activin A increased. Those achieving the minimum clinically important difference of 10 points for KOOS4 over 6 months showed greater increases in FGF-2 and TGFβ-1 than non-responders. An increase in IL-8 during the 6 weeks of KJD was associated with significantly greater improvement in KOOS4 over 12 months. CONCLUSION Detectable, significant molecular changes are observed in SF following KJD, that are remarkably consistent between individuals. Preliminary findings appear to suggest that increases in some molecules are associated with clinically meaningful responses. Joint distraction may provide a potential opportunity in the future to define regenerative biomarker(s) and identify pathways that drive intrinsic cartilage repair.
Collapse
Affiliation(s)
- F E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Roosevelt Drive, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK.
| | - B Hamid
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK.
| | - C Garriga
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK.
| | - A Judge
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK; Musculoskeletal Research Unit, University of Bristol, UK; National Institute for Health Research Bristol Biomedical Research Centre (NIHR Bristol BRC), University Hospitals Bristol NHS Foundation Trust, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK.
| | - R Hrusecka
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK.
| | - R J H Custers
- Department of Orthopaedic Surgery, University Medical Center Utrecht, the Netherlands.
| | - M P Jansen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, the Netherlands.
| | - F P Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, the Netherlands.
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, the Netherlands.
| | - T L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK.
| |
Collapse
|
19
|
Tangredi BP, Lawler DF. Osteoarthritis from evolutionary and mechanistic perspectives. Anat Rec (Hoboken) 2019; 303:2967-2976. [PMID: 31854144 DOI: 10.1002/ar.24339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Developmental osteogenesis and the pathologies associated with tissues that normally are mineralized are active areas of research. All of the basic cell types of skeletal tissue evolved in early aquatic vertebrates. Their characteristics, transcription factors, and signaling pathways have been conserved, even as they adapted to the challenge imposed by gravity in the transition to terrestrial existence. The response to excess mechanical stress (among other factors) can be expressed in the pathologic phenotype described as osteoarthritis (OA). OA is mediated by epigenetic modification of the same conserved developmental gene networks, rather than by gene mutations or new chemical signaling pathways. Thus, these responses have their evolutionary roots in morphogenesis. Epigenetic channeling and heterochrony, orchestrated primarily by microRNAs, maintain the sequence of these responses, while allowing variation in their timing that depends at least partly on the life history of the individual.
Collapse
Affiliation(s)
- Basil P Tangredi
- Vermont Institute of Natural Sciences, Quechee, Vermont
- Sustainable Agriculture Program, Green Mountain College, Poultney, Vermont
| | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois
- Illinois State Museum, Springfield, Illinois
- Pacific Marine Mammal Center, Laguna Beach, California
| |
Collapse
|
20
|
Özer D, Eyigör S. Osteoartrozda yeni tedavi yöntemleri. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.648590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. Int J Mol Sci 2019; 20:ijms20205036. [PMID: 31614494 PMCID: PMC6834142 DOI: 10.3390/ijms20205036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
We investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine (n = 4) and human degenerated NP cells (n = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14. Additionally, histology was performed. Human NP cells cultured in FBG-HA hydrogel showed an increase in collagen type II (COL2) and carbonic anhydrase XII (CA12) gene expression after 14 or 7 days of culture, respectively. GAG release into the conditioned medium increased over 14 days. Healthy bovine NP cells showed increased gene expression of ACAN from day 7 to day 14. Wild type FGF-18 up-regulated CA12 gene expression of human NP cells. Histology revealed an increase of proteoglycan deposition upon FGF-18 stimulation in bovine but not in human NP cells. The FBG-HA hydrogel had a positive modulatory effect on human degenerated NP cells. Under the tested conditions, no significant effect of FGF-18 was observed on cell proliferation or GAG synthesis in human NP cells.
Collapse
|
22
|
Batushansky A, Lopes EBP, Zhu S, Humphries KM, Griffin TM. GC-MS method for metabolic profiling of mouse femoral head articular cartilage reveals distinct effects of tissue culture and development. Osteoarthritis Cartilage 2019; 27:1361-1371. [PMID: 31136803 PMCID: PMC6702098 DOI: 10.1016/j.joca.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The metabolic profile of cartilage is important to define as it relates to both normal and pathophysiological conditions. Our aim was to develop a precise, high-throughput method for gas/chromatography-mass/spectrometry (GC-MS) semi-targeted metabolic profiling of mouse cartilage. METHOD Femoral head (hip) cartilage was isolated from 5- and 15-week-old male C57BL/6J mice immediately after death for in vivo analyses. In vitro conditions were evaluated in 5-week-old samples cultured ±10% fetal bovine serum (FBS). We optimized cartilage processing for GC-MS analysis and evaluated group-specific differences by multivariate and parametric statistical analyses. RESULTS 55 metabolites were identified in pooled cartilage (4 animals per sample), with 29 metabolites shared between in vivo and in vitro conditions. Multivariate analysis of these common metabolites demonstrated that culturing explants was the strongest factor altering cartilage metabolism, followed by age and serum starvation. In vitro culture altered the relative abundance of specific metabolites; whereas, cartilage development between five and 15-weeks of age reduced the levels of 36 out of 43 metabolites >2-fold, especially in TCA cycle and alanine, aspartate, and glutamate pathways. In vitro serum starvation depleted six out of 41 metabolites. CONCLUSION This study describes the first GC-MS method for mouse cartilage metabolite identification and quantification. We observed fundamental differences in femoral head cartilage metabolic profiles between in vivo and in vitro conditions, suggesting opportunities to optimize in vitro conditions for studying cartilage metabolism. In addition, the reductions in TCA cycle and amino acid metabolites during cartilage maturation illustrate the plasticity of chondrocyte metabolism during development.
Collapse
Affiliation(s)
- Albert Batushansky
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA
| | | | - Shouan Zhu
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA,,Department of Biochemistry and Molecular Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma
Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA,,Department of Biochemistry and Molecular Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Physiology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma
Health Sciences Center, Oklahoma City, OK, 73104, USA,Corresponding author: Timothy M. Griffin, Aging
& Metabolism Research Program, MS 21, Oklahoma Medical Research Foundation,
825 N.E. 13th Street, Oklahoma City, OK 73104, Phone: (405) 271-7579;
| |
Collapse
|
23
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Sessions GA, Copp ME, Liu JY, Sinkler MA, D'Costa S, Diekman BO. Controlled induction and targeted elimination of p16 INK4a-expressing chondrocytes in cartilage explant culture. FASEB J 2019; 33:12364-12373. [PMID: 31408372 DOI: 10.1096/fj.201900815rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellular senescence is a phenotypic state that contributes to age-related diseases through the secretion of matrix-degrading and inflammatory molecules. An emerging therapeutic strategy for osteoarthritis (OA) is to selectively eliminate senescent cells by initiating apoptosis. This study establishes a cartilage explant model of senescence induction and senolytic clearance using p16Ink4a expression as a biomarker of senescence. Growth-factor stimulation of explants increased the expression of p16Ink4a at both the mRNA and protein levels. Applying this culture system to cartilage from p16tdTom reporter mice (a knockin allele with tdTomato fluorescent protein regulated by the endogenous p16Ink4a promoter) demonstrated the emergence of a p16-high population that was quantified using flow cytometry for tdTomato. Cell sorting was used to separate chondrocytes based on tdTomato fluorescence and p16-high cells showed higher senescence-associated β-galactosidase activity and increased gene expression of the senescence-associated secretory phenotype as compared with p16-low cells. The potential for effective senolysis within the cartilage extracellular matrix was assessed using navitoclax (ABT-263). Navitoclax treatment reduced the percentage of p16-high cells from 17.9 to 6.1% (mean of 13 matched pairs; P < 0.001) and increased cleaved caspase-3 confirmed apoptotic activity. Together, these findings establish a physiologically relevant cartilage explant model for testing the induction and elimination of senescent chondrocytes, which will support investigations of senolytic therapy for OA.-Sessions, G. A., Copp, M. E., Liu, J.-Y., Sinkler, M. A., D'Costa, S., Diekman, B. O. Controlled induction and targeted elimination of p16INK4a-expressing chondrocytes in cartilage explant culture.
Collapse
Affiliation(s)
- Garrett A Sessions
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michaela E Copp
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina-North Carolina State University, Raleigh, North Carolina, USA
| | - Jie-Yu Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A Sinkler
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Susan D'Costa
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian O Diekman
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina-North Carolina State University, Raleigh, North Carolina, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Saw S, Aiken A, Fang H, McKee TD, Bregant S, Sanchez O, Chen Y, Weiss A, Dickson BC, Czarny B, Sinha A, Fosang A, Dive V, Waterhouse PD, Kislinger T, Khokha R. Metalloprotease inhibitor TIMP proteins control FGF-2 bioavailability and regulate skeletal growth. J Cell Biol 2019; 218:3134-3152. [PMID: 31371388 PMCID: PMC6719459 DOI: 10.1083/jcb.201906059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Saw et al. show via the combinatorial deletion of Timp family members in mice that metalloprotease regulation of FGF-2 is a crucial event in the chondrocyte maturation program, underlying the growth plate development and bone elongation responsible for attaining proper body stature. Regulated growth plate activity is essential for postnatal bone development and body stature, yet the systems regulating epiphyseal fusion are poorly understood. Here, we show that the tissue inhibitors of metalloprotease (TIMP) gene family is essential for normal bone growth after birth. Whole-body quadruple-knockout mice lacking all four TIMPs have growth plate closure in long bones, precipitating limb shortening, epiphyseal distortion, and widespread chondrodysplasia. We identify TIMP/FGF-2/IHH as a novel nexus underlying bone lengthening where TIMPs negatively regulate the release of FGF-2 from chondrocytes to allow IHH expression. Using a knock-in approach that combines MMP-resistant or ADAMTS-resistant aggrecans with TIMP deficiency, we uncouple growth plate activity in axial and appendicular bones. Thus, natural metalloprotease inhibitors are crucial regulators of chondrocyte maturation program, growth plate integrity, and skeletal proportionality. Furthermore, individual and combinatorial TIMP-deficient mice demonstrate the redundancy of metalloprotease inhibitor function in embryonic and postnatal development.
Collapse
Affiliation(s)
- Sanjay Saw
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Alison Aiken
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Trevor D McKee
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Yan Chen
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Ashley Weiss
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | - Ankit Sinha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Amanda Fosang
- University of Melbourne Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vincent Dive
- Institute of Biology and Technology, Saclay, France
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| |
Collapse
|
26
|
Choi WS, Yang JI, Kim W, Kim HE, Kim SK, Won Y, Son YO, Chun CH, Chun JS. Critical role for arginase II in osteoarthritis pathogenesis. Ann Rheum Dis 2019; 78:421-428. [PMID: 30610061 PMCID: PMC6390026 DOI: 10.1136/annrheumdis-2018-214282] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) appears to be associated with various metabolic disorders, but the potential contribution of amino acid metabolism to OA pathogenesis has not been clearly elucidated. Here, we explored whether alterations in the amino acid metabolism of chondrocytes could regulate OA pathogenesis. METHODS Expression profiles of amino acid metabolism-regulating genes in primary-culture passage 0 mouse chondrocytes were examined by microarray analysis, and selected genes were further characterised in mouse OA chondrocytes and OA cartilage of human and mouse models. Experimental OA in mice was induced by destabilisation of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing catabolic regulators. The functional consequences of arginase II (Arg-II) were examined in Arg2-/- mice and those subjected to IA injection of an adenovirus encoding Arg-II (Ad-Arg-II). RESULTS The gene encoding Arg-II, an arginine-metabolising enzyme, was specifically upregulated in chondrocytes under various pathological conditions and in OA cartilage from human patients with OA and various mouse models. Adenovirus-mediated overexpression of Arg-II in mouse joint tissues caused OA pathogenesis, whereas genetic ablation of Arg2 in mice (Arg2-/-) abolished all manifestations of DMM-induced OA. Mechanistically, Arg-II appears to cause OA cartilage destruction at least partly by upregulating the expression of matrix-degrading enzymes (matrix metalloproteinase 3 [MMP3] and MMP13) in chondrocytes via the nuclear factor (NF)-κB pathway. CONCLUSIONS Our results indicate that Arg-II is a crucial regulator of OA pathogenesis in mice. Although chondrocytes of human and mouse do not identically, but similarly, respond to Arg-II, our results suggest that Arg-II could be a therapeutic target of OA pathogenesis.
Collapse
Affiliation(s)
- Wan-Su Choi
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jeong-In Yang
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Wihak Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyo-Eun Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Seul-Ki Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yoonkyung Won
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young-Ok Son
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Abstract
OBJECTIVE The objective of this study was to describe the mechanism of healing of osteochondral defects of the distal femur in the sheep, a commonly used translational model. Information on the healing mechanism be useful to inform the design of tissue engineering devices for joint surface defect repair. DESIGN A retrospective study was conducted examining 7-mm diameter osteochondral defects made in the distal medial femoral condyle of 40 adult female sheep, comprising control animals from 3 separate structures. The healing of the defects was studied at post mortem at up to 26 weeks. RESULTS Osteochondral defects of the distal femur of the sheep heal through endochondral ossification as evidenced by chondrocyte hypertrophy and type X collagen expression. Neocartilage is first formed adjacent to damaged cartilage and then streams over the damaged underlying bone before filling the defect from the base upward. No intramembranous ossification or isolated mesenchymal stem cell aggregates were detected in the healing tissue. No osseous hypertrophy was detected in the defects. CONCLUSIONS Osteochondral defects of the medial femoral condyle of the sheep heal via endochondral ossification, with neocartilage first appearing adjacent to damaged cartilage. Unlike the mechanism of healing in fracture repair, neocartilage is eventually formed directly onto damaged bone. There was most variability between animals between 8 and 12 weeks postsurgery. These results should be considered when designing devices to promote defect healing.
Collapse
Affiliation(s)
- Helen Lydon
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Alan Getgood
- Fowler Kennedy Sports Medicine Clinic, London, Ontario, Canada
| | - Frances M. D. Henson
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Abstract
The ex vivo organ culture of bone provides many of the advantages of both the whole organism and isolated cell strategies and can deliver valuable insight into the network of processes and activities that are fundamental to bone and cartilage biology. Through maintaining the bone and/or cartilage cells in their native environment, this model system provides the investigator with a powerful experimental protocol to address specific facets of skeletal growth and development. In this chapter, we outline the basic protocols and possible readouts of organ culture models to replicate; (a) linear bone growth (murine metatarsal culture model), (b) bone and cartilage metabolism (murine femoral head culture model), (c) bone response to mechanical stimulation (bovine trabecular core culture model), and (d) bone resorption and formation (murine calvaria culture model).
Collapse
|
29
|
Tang X, Muhammad H, McLean C, Miotla-Zarebska J, Fleming J, Didangelos A, Önnerfjord P, Leask A, Saklatvala J, Vincent TL. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ. Ann Rheum Dis 2018; 77:1372-1380. [PMID: 29925506 PMCID: PMC6104679 DOI: 10.1136/annrheumdis-2018-212964] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES One mechanism by which cartilage responds to mechanical load is by releasing heparin-bound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. METHODS Recombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. RESULTS The biological responses of rCTGF were TGFβ dependent. CTGF displaced latent TGFβ from cartilage and both were released on cartilage injury. CTGF and latent TGFβ migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFβ in the matrix and activation of the latent complex at the cell surface through TGFβR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. CONCLUSIONS CTGF is a latent TGFβ binding protein that controls the matrix sequestration and activation of TGFβ in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.
Collapse
Affiliation(s)
- Xiaodi Tang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hayat Muhammad
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Celia McLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Jacob Fleming
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Tonia L Vincent
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Zou L, Liu J, Lu H. Correlation of concentrations of activin A with occurrence and severity of knee osteoarthritis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:320-322. [PMID: 30179208 PMCID: PMC6146188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Activin A plays as an anticatabolic autocrine cytokine in articular cartilage. Thus, this study aims to evaluate whether activin Aconcentration is correlated with the occurrence and severity of knee osteoarthritis (OA). METHODS A total of 210 knee OA patients and 150 healthy controls were enrolled in this cross-sectional study, to evaluate the severity of OA by Kellgren-Lawrence (KL) grading method. RESULTS It was found that the concentration of activin A in knee OA group was higher than that in healthy subjects. Furthermore, results of of activin A concentration in serum and synovial fluid (SF) suggested that activin A concentration was the highest in Kellgren-Lawrence (KL) grade 4, and the lowest in KL grade 2. Concentrations of activin A in serum and SF showed significant correlation with disease severity measured by KL grading criteria. CONCLUSIONS It was indicated that concentrations of activin A in serum and SF showed a positive correlation with the occurrence and severity of knee OA.
Collapse
Affiliation(s)
- Lixue Zou
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China,Corresponding author: Lixue Zou, M.D. Department of Orthopaedic Surgery, Jingzhou Central Hospital, 60 Jingzhong Road, Jingzhou District, Jingzhou 434020, Hubei Province, China E-mail:
| | - Jun Liu
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China
| | - Hougen Lu
- Department of Orthopaedic Surgery, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
31
|
Combating Osteoarthritis through Stem Cell Therapies by Rejuvenating Cartilage: A Review. Stem Cells Int 2018; 2018:5421019. [PMID: 29765416 PMCID: PMC5885495 DOI: 10.1155/2018/5421019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine.
Collapse
|
32
|
Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 2018; 78:126-136. [PMID: 29496040 DOI: 10.1016/j.oraloncology.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.
Collapse
Affiliation(s)
- Edward P Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Evan M Nevel
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Amber Batra
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Tran Phi
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Angels T P Nguyen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, New Jersey School of Dental Medicine, Rutgers University, Newark, NJ 07103 USA
| | - Alan J Shienbaum
- Department of Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
33
|
Ikpegbu E, Basta L, Clements DN, Fleming R, Vincent TL, Buttle DJ, Pitsillides AA, Staines KA, Farquharson C. FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression. J Cell Physiol 2018; 233:5334-5347. [PMID: 29215722 PMCID: PMC5900964 DOI: 10.1002/jcp.26345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
Abstract
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.
Collapse
Affiliation(s)
- Ekele Ikpegbu
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK.,Michael Okpara University of Agriculture, Abia, Nigeria
| | - Lena Basta
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Dylan N Clements
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Robert Fleming
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Tonia L Vincent
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - David J Buttle
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK
| | | | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Anderson DE, Johnstone B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review. Front Bioeng Biotechnol 2017; 5:76. [PMID: 29322043 PMCID: PMC5732133 DOI: 10.3389/fbioe.2017.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023] Open
Abstract
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Collapse
Affiliation(s)
- Devon E Anderson
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
35
|
Ismail HM, Didangelos A, Vincent TL, Saklatvala J. Rapid Activation of Transforming Growth Factor β-Activated Kinase 1 in Chondrocytes by Phosphorylation and K 63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol 2017; 69:565-575. [PMID: 27768832 PMCID: PMC5347887 DOI: 10.1002/art.39965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Objective Mechanical injury to cartilage predisposes to osteoarthritis (OA). Wounding of the articular cartilage surface causes rapid activation of MAP kinases and NF‐κB, mimicking the response to inflammatory cytokines. This study was undertaken to identify the upstream signaling mechanisms involved. Methods Cartilage was injured by dissecting it from the articular surface of porcine metacarpophalangeal (MCP) joints or by avulsing murine proximal femoral epiphyses. Protein phosphorylation was assayed by Western blotting of cartilage lysates. Immunolocalization of phosphorylated activating transcription factor 2 (ATF‐2) and NF‐κB/p65 was detected by confocal microscopy. Messenger RNA (mRNA) was measured by quantitative reverse transcriptase–polymerase chain reaction (qRT‐PCR). Receptor associated protein 80 (RAP‐80) ubiquitin interacting motif agarose was used in a pull‐down assay to obtain K63‐polyubiquitinated proteins. Ubiquitin linkages on immunoprecipitated transforming growth factor β–activated kinase 1 (TAK‐1) were analyzed with deubiquitinases. Results Sharp injury to porcine cartilage caused rapid activation of JNK and NF‐κB pathways and the upstream kinases MKK‐4, IKK, and TAK‐1. Pharmacologic inhibition of TAK‐1 in porcine cartilage abolished JNK and NF‐κB activation and reduced the injury‐dependent inflammatory gene response. High molecular weight species of phosphorylated TAK‐1 were induced by injury, indicating its ubiquitination. An overall increase in K63‐linked polyubiquitination was detected upon injury, and TAK‐1 was specifically linked to K63‐ but not K48‐polyubiquitin chains. In mice, avulsion of wild‐type femoral epiphyses caused similar intracellular signaling that was reduced in cartilage‐specific TAK‐1–null mice. Epiphyseal cartilage of MyD88‐null and TRAF‐6–null mice responded to injury, suggesting the involvement of a ubiquitin E3 ligase other than TRAF‐6. Conclusion Activation of TAK‐1 by phosphorylation and K63‐linked polyubiquitination by injury indicates its role in driving cell activation. Further studies are needed to identify the upstream ubiquitination mechanisms, including the E3 ligase involved.
Collapse
|
36
|
Watt FE, Paterson E, Freidin A, Kenny M, Judge A, Saklatvala J, Williams A, Vincent TL. Acute Molecular Changes in Synovial Fluid Following Human Knee Injury: Association With Early Clinical Outcomes. Arthritis Rheumatol 2017; 68:2129-40. [PMID: 26991527 PMCID: PMC5006850 DOI: 10.1002/art.39677] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
Objective To investigate whether molecules found to be up‐regulated within hours of surgical joint destabilization in the mouse are also elevated in the analogous human setting of acute knee injury, how this molecular response varies between individuals, and whether it is related to patient‐reported outcomes in the 3 months after injury. Methods Seven candidate molecules were analyzed in blood and synovial fluid (SF) from 150 participants with recent structural knee injury at baseline (<8 weeks from injury) and in blood at 14 days and 3 months following baseline. Knee Injury and Osteoarthritis Outcome Score 4 (KOOS4) was obtained at baseline and 3 months. Patient and control samples were compared using Meso Scale Discovery platform assays or enzyme‐linked immunosorbent assay. Results Six of the 7 molecules were significantly elevated in human SF immediately after injury: interleukin‐6 (IL‐6), monocyte chemotactic protein 1, matrix metalloproteinase 3 (MMP‐3), tissue inhibitor of metalloproteinases 1 (TIMP‐1), activin A, and tumor necrosis factor–stimulated gene 6 (TSG‐6). There was low‐to‐moderate correlation with blood measurements. Three of the 6 molecules were significantly associated with baseline KOOS4 (those with higher SF IL‐6, TIMP‐1, or TSG‐6 had lower KOOS4). These 3 molecules, MMP‐3, and activin A were all significantly associated with greater improvement in KOOS4 over 3 months, after adjustment for other relevant factors. Of these, IL‐6 alone significantly accounted for the molecular contribution to baseline KOOS4 and change in KOOS4 over 3 months. Conclusion Our findings validate relevant human biomarkers of tissue injury identified in a mouse model. Analysis of SF rather than blood more accurately reflects this response. The response is associated with patient‐reported outcomes over this early period, with SF IL‐6 acting as a single representative marker. Longitudinal outcomes will determine if these molecules are biomarkers of subsequent disease risk.
Collapse
Affiliation(s)
- Fiona E Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Erin Paterson
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Freidin
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Mark Kenny
- Fortius Clinic, Imperial College Healthcare NHS Trust, St. Mary's Hospital, London, UK
| | - Andrew Judge
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK, and University of Southampton, Southampton, UK
| | - Jeremy Saklatvala
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andy Williams
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK, and Fortius Clinic, London, UK
| | - Tonia L Vincent
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Watt FE, Gulati M. New Drug Treatments for Osteoarthritis: What Is on the Horizon? EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10314447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, yet has historically lagged far behind rheumatoid arthritis in terms of drug development. Despite the many challenges presented by clinical trials in OA, improvements in our understanding of disease pathogenesis and a move to treat pain, as well as underlying disease process, mean there are now many new pharmacological therapies currently in various stages of clinical trials. The medical need for these therapies and the evidence for recent tissue and molecular targets are reviewed. Current therapeutic examples in each area are discussed, including both novel therapeutics and existing agents which may be repurposed from other disease areas. Some challenges remain, but opportunities for improving symptoms and disease process in OA in the clinic with new pharmacological agents would appear to be on the close horizon.
Collapse
Affiliation(s)
- Fiona E. Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Malvika Gulati
- Department of Rheumatology, Royal Free Hospital, London, UK
| |
Collapse
|
38
|
Watt FE, Gulati M. New Drug Treatments for Osteoarthritis: What is on the Horizon? EUROPEAN MEDICAL JOURNAL. RHEUMATOLOGY 2017; 2:50-58. [PMID: 30364878 PMCID: PMC6198938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, yet has historically lagged far behind rheumatoid arthritis in terms of drug development. Despite the many challenges presented by clinical trials in OA, improvements in our understanding of disease pathogenesis and a move to treat pain, as well as underlying disease process, mean there are now many new pharmacological therapies currently in various stages of clinical trials. The medical need for these therapies and the evidence for recent tissue and molecular targets are reviewed. Current therapeutic examples in each area are discussed, including both novel therapeutics and existing agents which may be repurposed from other disease areas. Some challenges remain, but opportunities for improving symptoms and disease process in OA in the clinic with new pharmacological agents would appear to be on the close horizon.
Collapse
Affiliation(s)
- Fiona E. Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Malvika Gulati
- Department of Rheumatology, Royal Free Hospital, London, UK
| |
Collapse
|
39
|
CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthritis Cartilage 2017; 25:406-412. [PMID: 27746376 PMCID: PMC5358501 DOI: 10.1016/j.joca.2016.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The role of inflammation in structural and symptomatic osteoarthritis (OA) remains unclear. One key mediator of inflammation is the chemokine CCL2, primarily responsible for attracting monocytes to sites of injury. We investigated the role of CCL2 and its receptor CCR2 in experimental OA. DESIGN OA was induced in 10 weeks old male wild type (WT), Ccl2-/- and Ccr2-/- mice, by destabilisation of the medial meniscus (DMM). RNA was extracted from whole joints at 6 h and 7 days post-surgery and examined by reverse transcription polymerase chain reaction (RT-PCR). Gene expression changes between naïve and DMM-operated mice were compared. Chondropathy scores, from mice at 8, 12, 16 and 20 weeks post DMM were calculated using modified Osteoarthritis Research Society International (OARSI) grading systems. Changes in hind paw weight distribution, as a measure of pain, were assessed by Linton incapacitance. RESULTS Absence of CCL2 strongly suppressed (>90%) selective inflammatory response genes in the joint 6 h post DMM, including arginase 1, prostaglandin synthase 2, nitric oxide synthase 2 and inhibin A. IL6, MMP3 and tissue inhibitor of metalloproteinase 1 were also significantly suppressed. Similar trends were also observed in the absence of CCR2. A lower average chondropathy score was observed in both Ccl2-/- and Ccr2-/- mice at 12, 16 and 20 weeks post DMM compared with WT mice, but this was only statistically significant at 20 weeks in Ccr2-/- mice. Pain-related behaviour in Ccl2-/- and Ccr2-/- mice post DMM was delayed in onset. CONCLUSION The CCL2/CCR2 axis plays an important role in the development of pain in murine OA, but contributes little to cartilage damage.
Collapse
|
40
|
Driscoll C, Chanalaris A, Knights C, Ismail H, Sacitharan PK, Gentry C, Bevan S, Vincent TL. Nociceptive Sensitizers Are Regulated in Damaged Joint Tissues, Including Articular Cartilage, When Osteoarthritic Mice Display Pain Behavior. Arthritis Rheumatol 2016; 68:857-67. [PMID: 26605536 PMCID: PMC4979655 DOI: 10.1002/art.39523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/12/2015] [Indexed: 01/15/2023]
Abstract
Objective Pain is the most common symptom of osteoarthritis (OA), yet where it originates in the joint and how it is driven are unknown. The aim of this study was to identify pain‐sensitizing molecules that are regulated in the joint when mice subjected to surgical joint destabilization develop OA‐related pain behavior, the tissues in which these molecules are being regulated, and the factors that control their regulation. Methods Ten‐week‐old mice underwent sham surgery, partial meniscectomy, or surgical destabilization of the medial meniscus (DMM). Pain‐related behavior as determined by a variety of methods (testing of responses to von Frey filaments, cold plate testing for cold sensitivity, analgesiometry, incapacitance testing, and forced flexion testing) was assessed weekly. Once pain‐related behavior was established, RNA was extracted from either whole joints or microdissected tissue samples (articular cartilage, meniscus, and bone). Reverse transcription–polymerase chain reaction analysis was performed to analyze the expression of 54 genes known to regulate pain sensitization. Cartilage injury assays were performed using avulsed immature hips from wild‐type or genetically modified mice or by explanting articular cartilage from porcine joints preinjected with pharmacologic inhibitors. Levels of nerve growth factor (NGF) protein were measured by enzyme‐linked immunosorbent assay. Results Mice developed pain‐related behavior 8 weeks after undergoing partial meniscectomy or 12 weeks after undergoing DMM. NGF, bradykinin receptors B1 and B2, tachykinin, and tachykinin receptor 1 were significantly regulated in the joints of mice displaying pain‐related behavior. Little regulation of inflammatory cytokines, leukocyte activation markers, or chemokines was observed. When tissue samples from articular cartilage, meniscus, and bone were analyzed separately, NGF was consistently regulated in the articular cartilage. The other pain sensitizers were also largely regulated in the articular cartilage, although there were some differences between the 2 models. NGF and tachykinin were strongly regulated by simple mechanical injury of cartilage in vitro in a transforming growth factor β–activated kinase 1–, fibroblast growth factor 2–, and Src kinase–dependent manner. Conclusion Damaged joint tissues produce proalgesic molecules, including NGF, in murine OA.
Collapse
Affiliation(s)
- Clare Driscoll
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | - Heba Ismail
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | | | - Tonia L Vincent
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Shu CC, Jackson MT, Smith MM, Smith SM, Penm S, Lord MS, Whitelock JM, Little CB, Melrose J. Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis. Arthritis Rheumatol 2016; 68:868-79. [PMID: 26636652 DOI: 10.1002/art.39529] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. METHODS Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. RESULTS No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3-/Δ3-) mice, and this was associated with maintained expression of Fgfr3 mRNA and reduced expression of Mmp2/Mmp3 mRNA. CONCLUSION Perlecan HS has significant roles in directing the development of posttraumatic OA, potentially via the alteration of FGF/HS/FGFR signaling. These data suggest that the chondroprotection conferred by perlecan HS ablation could be attributed, at least in part, to the preservation of FGFR-3 and increased FGF signaling.
Collapse
Affiliation(s)
- Cindy C Shu
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Miriam T Jackson
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Margaret M Smith
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Susan M Smith
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Steven Penm
- University of New South Wales, Kensington, New South Wales, Australia
| | - Megan S Lord
- University of New South Wales, Kensington, New South Wales, Australia
| | - John M Whitelock
- University of New South Wales, Kensington, New South Wales, Australia
| | - Christopher B Little
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - James Melrose
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
42
|
Snelling SJB, Davidson RK, Swingler TE, Le LTT, Barter MJ, Culley KL, Price A, Carr AJ, Clark IM. Dickkopf-3 is upregulated in osteoarthritis and has a chondroprotective role. Osteoarthritis Cartilage 2016; 24:883-91. [PMID: 26687825 PMCID: PMC4863878 DOI: 10.1016/j.joca.2015.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Dickkopf-3 (Dkk3) is a non-canonical member of the Dkk family of Wnt antagonists and its upregulation has been reported in microarray analysis of cartilage from mouse models of osteoarthritis (OA). In this study we assessed Dkk3 expression in human OA cartilage to ascertain its potential role in chondrocyte signaling and cartilage maintenance. METHODS Dkk3 expression was analysed in human adult OA cartilage and synovial tissues and during chondrogenesis of ATDC5 and human mesenchymal stem cells. The role of Dkk3 in cartilage maintenance was analysed by incubation of bovine and human cartilage explants with interleukin-1β (IL1β) and oncostatin-M (OSM). Dkk3 gene expression was measured in cartilage following murine hip avulsion. Whether Dkk3 influenced Wnt, TGFβ and activin cell signaling was assessed in primary human chondrocytes and SW1353 chondrosarcoma cells using qRT-PCR and luminescence assays. RESULTS Increased gene and protein levels of Dkk3 were detected in human OA cartilage, synovial tissue and synovial fluid. DKK3 gene expression was decreased during chondrogenesis of both ATDC5 cells and humans MSCs. Dkk3 inhibited IL1β and OSM-mediated proteoglycan loss from human and bovine cartilage explants and collagen loss from bovine cartilage explants. Cartilage DKK3 expression was decreased following hip avulsion injury. TGFβ signaling was enhanced by Dkk3 whilst Wnt3a and activin signaling were inhibited. CONCLUSIONS We provide evidence that Dkk3 is upregulated in OA and may have a protective effect on cartilage integrity by preventing proteoglycan loss and helping to restore OA-relevant signaling pathway activity. Targeting Dkk3 may be a novel approach in the treatment of OA.
Collapse
Affiliation(s)
- S J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - R K Davidson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - T E Swingler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - L T T Le
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - M J Barter
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - K L Culley
- Hospital for Special Surgery and Weill Cornell Medical College, New York, NY, USA
| | - A Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - A J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - I M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
43
|
Sorkin R, Kampf N, Zhu L, Klein J. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions. SOFT MATTER 2016; 12:2773-84. [PMID: 26861851 DOI: 10.1039/c5sm02475g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Measurements of normal and shear (frictional) forces between mica surfaces across small unilamellar vesicle (SUV) dispersions of the phosphatidylcholine (PC) lipids DMPC (14:0), DPPC (16:0) and DSPC (18:0) and POPC (16:0, 18:1), at physiologically high pressures, are reported. We have previously studied the normal and shear forces between two opposing surfaces bearing PC vesicles across pure water and showed that liposome lubrication ability improved with increasing acyl chain length, and correlated strongly with the SUV structural integrity on the substrate surface (DSPC > DPPC > DMPC). In the current study, surprisingly, we discovered that this trend is reversed when the measurements are conducted in SUV dispersions, instead of pure water. In their corresponding SUV dispersion, DMPC SUVs ruptured and formed bilayers, which were able to provide reversible and reproducible lubrication with extremely low friction (μ < 10(-4)) up to pressures of 70-90 atm. Similarly, POPC SUVs also formed bilayers which exhibited low friction (μ < 10(-4)) up to pressures as high as 160 atm. DPPC and DSPC SUVs also provided good lubrication, but with slightly higher friction coefficients (μ = 10(-3)-10(-4)). We believe these differences originate from fast self-healing of the softer surface layers (which are in their liquid disordered phase, POPC, or close to it, DMPC), which renders the robustness of the DPPC or DSPC (both in their solid ordered phase) less important in these conditions. Under these circumstances, the enhanced hydration of the less densely packed POPC and DMPC surface layers is now believed to play an important role, and allows enhanced lubrication via the hydration lubrication mechanism. Our findings may have implications for the understanding of complex biological systems such us biolubrication of synovial joints.
Collapse
Affiliation(s)
- Raya Sorkin
- Weizmann Institute of Science, Materials and Interfaces Department, Rehovot, Israel.
| | | | | | | |
Collapse
|
44
|
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis Cartilage 2016; 24:534-43. [PMID: 26497608 PMCID: PMC4769094 DOI: 10.1016/j.joca.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. DESIGN A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3'-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. RESULTS We identified 990 known miRNAs and 1621 potential novel miRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate miRNAs were analysed further, of which six remained after northern blot analysis. Three novel miRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). CONCLUSION Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis (OA). Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man.
Collapse
|
45
|
Le LTT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl) 2015; 94:583-96. [PMID: 26687115 PMCID: PMC4856728 DOI: 10.1007/s00109-015-1374-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022]
Abstract
Abstract MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family was also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b, and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB, and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, and CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways. Key messages Expression of the miR-29 family is regulated in cartilage during osteoarthritis. SOX9 represses expression of the miR-29 family in chondrocytes. The miR-29 family is regulated by TGF-β1 and IL-1 in chondrocytes. The miR-29 family negatively regulates Smad, NFκB, and canonical Wnt signalling. Several Wnt-related genes are direct targets of the miR-29 family.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1374-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linh T T Le
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tracey E Swingler
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Natalie Crowe
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tonia L Vincent
- Department of Cell Signalling, Kennedy Institute of Rheumatology, University of Oxford, Oxfordshire, UK
| | - Matthew J Barter
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Simon T Donell
- Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Anne M Delany
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tamas Dalmay
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - David A Young
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ian M Clark
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
46
|
Tiku ML, Sabaawy HE. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention. Ther Adv Musculoskelet Dis 2015; 7:76-87. [PMID: 26029269 DOI: 10.1177/1759720x15576866] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints.
Collapse
Affiliation(s)
- Moti L Tiku
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ 08903-2681, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
47
|
Eckstein F, Wirth W, Lohmander LS, Hudelmaier MI, Frobell RB. Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 2015; 67:152-61. [PMID: 25252019 DOI: 10.1002/art.38881] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) rupture involves an increased risk of osteoarthritis. The purpose of this study was to explore changes in cartilage thickness over 5 years after ACL rupture. METHODS A total of 121 young active adults (ages 18-35 years; 26% women) from the Knee ACL, Nonsurgical versus Surgical Treatment (KANON) study, who had acute traumatic rupture of the ACL were studied. Sagittal magnetic resonance images were acquired within 4 weeks of ACL rupture (baseline) and at the 2-year and 5-year followup assessments. Medial and lateral femorotibial cartilage was segmented (with blinding to acquisition order), and the mean cartilage thickness was computed across 16 femorotibial subregions. Total femorotibial cartilage thickness change was the primary analytic focus. Maximal subregional mean cartilage thickness loss (ordered value 1 [OV1]) and gain (ordered value 16 [OV16]), independent of its specific location in individual knees, were the secondary analytic focus. RESULTS Overall femorotibial cartilage thickness increased by 31 μm/year over 5 years (95% confidence interval 18, 44). The increase was similar in men and women and was significantly greater in those younger, as compared with those older, than the median age (25.3 years). The rate of total cartilage thickness change did not differ significantly between the first 2 years and the later 3 years. However, the maximal annualized subregional cartilage loss (OV1) and gain (OV16) were both significantly greater (P < 0.001 and P < 0.05, respectively) during the earlier interval than during the later interval (-115 versus -54 μm [OV1] and 116 versus 69 μm [OV16]). CONCLUSION Cartilage thickening was observed over 5 years following ACL injury, particularly in the medial femorotibial compartment and in younger subjects. Major perturbations in cartilage homeostasis were seen over the first 2 years after ACL rupture, with simultaneous subregional thinning and thickening occurring within the same cartilage plate or compartment.
Collapse
Affiliation(s)
- F Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Salzburg, Austria, and Chondrometrics GmbH, Ainring, Germany
| | | | | | | | | |
Collapse
|
48
|
Seror J, Sorkin R, Klein J. Boundary lubrication by macromolecular layers and its relevance to synovial joints. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jasmine Seror
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raya Sorkin
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Jacob Klein
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
49
|
Drexler S, Wann A, Vincent TL. Are cellular mechanosensors potential therapeutic targets in osteoarthritis? ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|