1
|
Ghosh P. Metal-Mediated Protein Engineering within Live Cells. Chem Asian J 2025; 20:e202401669. [PMID: 39741109 DOI: 10.1002/asia.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to their ease of handling, rapid solubility, and effective cell penetration, metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc. A few examples of Au(III), Ru(III) are also known. Among these, the click reaction has high potential for the management of biomolecules within cells, and thus this methodology is adopted broadly in chemistry, biology towards therapeutic applications in pharmacology. Fast kinetics in aqueous medium at ambient to normal temperature with specificity between precursors (e. g., azide and alkyne for click reactions which are bio-orthogonal to cells) are essential aspects behind the success of metal mediated intracellular reactions. This review dealt with specifically metal mediated protein modifications within live cells, the achievements and challenges.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
2
|
Čermáková K, Šimková A, Wichterle F, Kryštůfek R, Staňurová J, Vaníčková Z, Bušek P, Konvalinka J, Šácha P. Sensitive quantification of fibroblast activation protein and high-throughput screening for inhibition by FDA-approved compounds. Eur J Med Chem 2024; 280:116948. [PMID: 39437576 DOI: 10.1016/j.ejmech.2024.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Fibroblast activation protein (FAP) has been extensively studied as a cancer biomarker for decades. Recently, small-molecule FAP inhibitors have been widely adopted as a targeting moiety of experimental theranostic radiotracers. Here we present a fast qPCR-based analytical method allowing FAP inhibition screening in a high-throughput regime. To identify clinically relevant compounds that might interfere with FAP-targeted approaches, we focused on a library of FDA-approved drugs. Using the DNA-linked Inhibitor Antibody Assay (DIANA), we tested a library of 2667 compounds within just a few hours and identified numerous FDA-approved drugs as novel FAP inhibitors. Among these, prodrugs of cephalosporin antibiotics and reverse transcriptase inhibitors, along with one elastase inhibitor, were the most potent FAP inhibitors in our dataset. In addition, by employing FAP DIANA in the quantification mode, we were able to determine FAP concentrations in human plasma samples. Together, our work expands the repertoire of FAP inhibitors, analyzes the potential interference of co-administered drugs with FAP-targeting strategies, and presents a sensitive and low-consumption ELISA alternative for FAP quantification with a detection limit of 50 pg/ml.
Collapse
Affiliation(s)
- Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Filip Wichterle
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jana Staňurová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Ghosh P. Deciphering the Cell Surface Sugar-Coating via Biochemical Pathways. Chemistry 2024; 30:e202401983. [PMID: 39215611 DOI: 10.1002/chem.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i. e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and advancing glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Yang C, Lu K, Li J, Wu H, Chen W. Rapid Construction of 18F-Triazolyl-tetrazines through the Click Reaction. J Org Chem 2024; 89:14673-14678. [PMID: 38875503 DOI: 10.1021/acs.joc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Due to the fast reaction rate, 18F-labeled tetrazines have been widely applied in positron emission tomography (PET) imaging in cancer research and drug discovery. In this work, several functional 18F-triazolyl-tetrazines were rapidly obtained through an optimized copper-catalyzed alkyene-azide cycloaddition reaction system in >99% radiochemical conversions. Notably, the commonly used 18F-labeled azides were isolated through cartridges and directly used for cycloadditions, which greatly simplified the labeling procedure. The assembled triazolyl-tetrazines demonstrated high in vitro stability and reaction kinetics, exhibiting considerable potential for the development of PET agents.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Kai Lu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Haoxing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Tamura I, Sakamoto DM, Yi B, Saito Y, Yamada N, Morimoto J, Takakusagi Y, Kuroda M, Kubota SI, Yatabe H, Kobayashi M, Harada H, Tainaka K, Sando S. Click3D: Click reaction across deep tissues for whole-organ 3D fluorescence imaging. SCIENCE ADVANCES 2024; 10:eado8471. [PMID: 39018410 PMCID: PMC466963 DOI: 10.1126/sciadv.ado8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Click chemistry offers various applications through efficient bioorthogonal reactions. In bioimaging, pretargeting strategies have often been used, using click reactions between molecular probes with a click handle and reporter molecules that make them observable. Recent efforts have integrated tissue-clearing techniques with fluorescent labeling through click chemistry, allowing high-resolution three-dimensional fluorescence imaging. Nevertheless, these techniques have faced a challenge in limited staining depth, confining their use to imaging tissue sections or partial organs. In this study, we introduce Click3D, a method for thoroughly staining whole organs using click chemistry. We identified click reaction conditions that improve staining depth with our custom-developed assay. The Click3D protocol exhibits a greater staining depth compared to conventional methods. Using Click3D, we have successfully achieved whole-kidney imaging of nascent RNA and whole-tumor imaging of hypoxia. We have also accomplished whole-brain imaging of hypoxia by using the clickable hypoxia probe, which has a small size and, therefore, has high permeability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daichi M. Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masafumi Kuroda
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei I. Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Hiroyuki Yatabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
In situ identification of cellular drug targets in mammalian tissue. Cell 2022; 185:1793-1805.e17. [PMID: 35483372 PMCID: PMC9106931 DOI: 10.1016/j.cell.2022.03.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.
Collapse
|
7
|
Hoffmann P, Lherbet C, Fabing I, Barthélémy MC, Borjon-Piron Y, Laurent C, Vigroux A. A mesoporous metal–organic framework used to sustainably release copper( ii) into reducing aqueous media to promote the CuAAC click reaction. RSC Adv 2022; 12:26825-26833. [PMID: 36320833 PMCID: PMC9494208 DOI: 10.1039/d2ra04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The mesoporous metal–organic framework Cr-MIL-101-NH2 (MOF1) has been used to encapsulate, by a simple impregnation method, large amounts of copper sulfate. The resulting loaded material, Cu@MOF1, was successfully employed to slowly release copper(ii) into an appropriate reaction medium in which the reducing agent sodium ascorbate reduces copper(ii) to copper(i), thus allowing the well-known copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) “click” reaction to proceed in the absence of potentially high local copper(i) concentrations. The use of a MOF-based controlled copper release system such as Cu@MOF1 may be relevant for copper(i)-catalyzed reactions having substrates that could be degraded by potentially high local concentrations of copper(i). The copper chelating ligand TBTA (tris(benzyltriazolylmethyl)amine), a very useful ligand for click chemistry, has been successfully attached to the pores of MOF1. The resulting TBTA-functionalized MOF (MOF3) was compared with its non-functionalized version (MOF1). At copper loadings of ca. 3 mmol g−1, the results revealed that the performances of the two materials are strikingly similar. Upon immersion in methanol/water (95/5) containing sodium ascorbate, both materials slowly released copper encapsulated in their pores and could be recovered and reused efficiently for up to five reaction cycles without reloading with metal ion, while allowing the CuAAC reaction to proceed with excellent conversion rates and yields. Cr-MIL-101-NH2 (MOF1) has been used to encapsulate large amounts of copper sulfate and the resulting loaded material, Cu@MOF1, was successfully used to promote the CuAAC click reaction.![]()
Collapse
Affiliation(s)
- Pascal Hoffmann
- LSPCMIB, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS 5068, 118 Route de Narbonne, 31062 Toulouse, France
| | - Christian Lherbet
- LSPCMIB, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS 5068, 118 Route de Narbonne, 31062 Toulouse, France
| | - Isabelle Fabing
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 118 Route de Narbonne, 31062 Toulouse, France
| | - Marie-Claire Barthélémy
- CIRIMAT, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS INP 5085, 118 Route de Narbonne, 31062 Toulouse, France
| | - Yann Borjon-Piron
- CIRIMAT, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS INP 5085, 118 Route de Narbonne, 31062 Toulouse, France
| | - Christophe Laurent
- CIRIMAT, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS INP 5085, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alain Vigroux
- LSPCMIB, Université Toulouse 3 Paul Sabatier, UMR CNRS UPS 5068, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
8
|
Hong S, Yu C, Rodrigues E, Shi Y, Chen H, Wang P, Chapla DG, Gao T, Zhuang R, Moremen KW, Paulson JC, Macauley MS, Wu P. Modulation of Siglec-7 Signaling Via In Situ-Created High-Affinity cis-Ligands. ACS CENTRAL SCIENCE 2021; 7:1338-1346. [PMID: 34471678 PMCID: PMC8393205 DOI: 10.1021/acscentsci.1c00064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Sialic acid-binding immunoglobulin-like lectins, also known as Siglecs, have recently been designated as glyco-immune checkpoints. Through their interactions with sialylated glycan ligands overexpressed on tumor cells, inhibitory Siglecs on innate and adaptive immune cells modulate signaling cascades to restrain anti-tumor immune responses. However, the elucidation of the mechanisms underlying these processes is just beginning. We find that when human natural killer (NK) cells attack tumor cells, glycan remodeling occurs on the target cells at the immunological synapse. This remodeling occurs through both the transfer of sialylated glycans from NK cells to target tumor cells and the accumulation of de novo synthesized sialosides on the tumor cells. The functionalization of NK cells with a high-affinity ligand of Siglec-7 leads to multifaceted consequences in modulating a Siglec-7-regulated NK-activation. At high levels of ligand, an enzymatically added Siglec-7 ligand suppresses NK cytotoxicity through the recruitment of Siglec-7 to an immune synapse, whereas at low levels of ligand an enzymatically added Siglec-7 ligand triggers the release of Siglec-7 from the cell surface into the culture medium, preventing a Siglec-7-mediated inhibition of NK cytotoxicity. These results suggest that a glycan engineering of NK cells may provide a means to boost NK effector functions for related applications.
Collapse
Affiliation(s)
- Senlian Hong
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenhua Yu
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
- Tianjin
Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin 300060, China
| | - Emily Rodrigues
- Department of Chemistry, Department of Medical
Microbiology and Immunology, University
of Alberta, 11227 Saskatchewan Drive NW, Edmonton AB T6G 2G2, Alberta, Canada
| | - Yujie Shi
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Hongmin Chen
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Wang
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Tao Gao
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruoxuan Zhuang
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical
Microbiology and Immunology, University
of Alberta, 11227 Saskatchewan Drive NW, Edmonton AB T6G 2G2, Alberta, Canada
| | - Peng Wu
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| |
Collapse
|
9
|
Li S, Li G, Gao B, Pujari SP, Chen X, Kim H, Zhou F, Klivansky LM, Liu Y, Driss H, Liang DD, Lu J, Wu P, Zuilhof H, Moses J, Sharpless KB. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat Chem 2021; 13:858-867. [PMID: 34400816 DOI: 10.1038/s41557-021-00726-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/05/2021] [Indexed: 11/09/2022]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) is a category of click chemistry that enables covalent linking of modular units through sulfur(VI) connective hubs. The efficiency of SuFEx and the stability of the resulting bonds have led to polymer chemistry applications. Now, we report the SuFEx click chemistry synthesis of several structurally diverse SOF4-derived copolymers based on the polymerization of bis(iminosulfur oxydifluorides) and bis(aryl silyl ethers). This polymer class presents two key characteristics. First, the [-N=S(=O)F-O-] polymer backbone linkages are themselves SuFExable and undergo precise SuFEx-based post-modification with phenols or amines to yield branched functional polymers. Second, studies of individual polymer chains of several of these new materials indicate helical polymer structures. The robust nature of SuFEx click chemistry offers the potential for post-polymerization modification, enabling the synthesis of materials with control over composition and conformation.
Collapse
Affiliation(s)
- Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Gencheng Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bing Gao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sidharam P Pujari
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands
| | - Xiaoyan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hyunseok Kim
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Liana M Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hafedh Driss
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands. .,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia. .,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, People's Republic of China.
| | - John Moses
- Cold Spring Harbor Laboratory, New York, NY, USA.
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
11
|
Alamudi SH, Liu X, Chang YT. Azide-based bioorthogonal chemistry: Reactions and its advances in cellular and biomolecular imaging. BIOPHYSICS REVIEWS 2021; 2:021301. [PMID: 38505123 PMCID: PMC10903415 DOI: 10.1063/5.0050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 03/21/2024]
Abstract
Since the term "bioorthogonal" was first demonstrated in 2003, new tools for bioorthogonal chemistry have been rapidly developed. Bioorthogonal chemistry has now been widely utilized for applications in imaging various biomolecules, such as proteins, glycoconjugates, nucleic acids, and lipids. Contrasting the chemical reactions or synthesis that are typically executed in vitro with organic solvents, bioorthogonal reactions can occur inside cells under physiological conditions. Functional groups or chemical reporters for bioorthogonal chemistry are highly selective and will not perturb the native functions of biological systems. Advances in azide-based bioorthogonal chemical reporters make it possible to perform chemical reactions in living systems for wide-ranging applications. This review discusses the milestones of azide-based bioorthogonal reactions, from Staudinger ligation and copper(I)-catalyzed azide-alkyne cycloaddition to strain-promoted azide-alkyne cycloaddition. The development of bioorthogonal reporters and their capability of being built into biomolecules in vivo have been extensively applied in cellular imaging. We focus on strategies used for metabolic incorporation of chemically tagged molecular building blocks (e.g., amino acids, carbohydrates, nucleotides, and lipids) into cells via cellular machinery systems. With the aid of exogenous bioorthogonally compatible small fluorescent probes, we can selectively visualize intracellular architectures, such as protein, glycans, nucleic acids, and lipids, with high specificity to help in answering complex biological problems.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (ASTAR), 31 Biopolis Way, #07‐01, Singapore 138669
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | |
Collapse
|
12
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
13
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021. [PMID: 33125942 DOI: 10.1016/jcbpa.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
14
|
Mukherjee S. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? PLANT SIGNALING & BEHAVIOR 2021; 16:1831792. [PMID: 33300450 PMCID: PMC7781837 DOI: 10.1080/15592324.2020.1831792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant resilience to oxidative stress possibly operates through the restoration of intracellular redox milieu and the activity of various posttranslationally modified proteins. Among various modes of redox regulation operative in plants cys oxPTMs are brought about by the activity of reactive oxygen species (ROS), reactive nitrogen species (RNS), and hydrogen peroxide. Cysteine oxPTMs are capable of transducing ROS-mediated long-distance hormone signaling (ABA, JA, SA) in plants. S-sulphenylation is an intermediary modification en route to other oxidative states of cysteine. In silico analysis have revealed evolutionary conservation of certain S-sulphenylated proteins across human and plants. Further analysis of protein sulphenylation in plants should be extended to the functional follow-up studies followed by site-specific characterization and case-by-case validation of protein activity. The repertoire of physiological methods (fluorescent conjugates (dimedone) and yeast AP-1 (YAP1)-based genetic probes) in the recent past has been successful in the detection of sulphenylated proteins and other cysteine-based modifications in plants. In view of a better understanding of the sulfur-based redoxome it is necessary to update our timely progress on the methodological advancements for the detection of cysteine-based oxPTM. This substantiative information can extend our investigations on plant-environment interaction thus improving crop manipulation strategies. The simulation-based computational approach has emerged as a new method to determine the directive mechanism of cysteine oxidation in plants. Thus, sulfenome analysis in various plant systems might reflect as a pinnacle of plant redox biology in the future.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West, Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College, University of Kalyani, West, Bengal742213, India
| |
Collapse
|
15
|
Kaur J, Bhardwaj A, Wuest F. In Cellulo Generation of Fluorescent Probes for Live-Cell Imaging of Cylooxygenase-2. Chemistry 2020; 27:3326-3337. [PMID: 32786126 DOI: 10.1002/chem.202003315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 02/01/2023]
Abstract
Live-cell imaging with fluorescent probes is an essential tool in chemical biology to visualize the dynamics of biological processes in real-time. Intracellular disease biomarker imaging remains a formidable challenge due to the intrinsic limitations of conventional fluorescent probes and the complex nature of cells. This work reports the in cellulo assembly of a fluorescent probe to image cyclooxygenase-2 (COX-2). We developed celecoxib-azide derivative 14, possessing favorable biophysical properties and excellent COX-2 selectivity profile. In cellulo strain-promoted fluorogenic click chemistry of COX-2-engaged compound 14 with non/weakly-fluorescent compounds 11 and 17 formed fluorescent probes 15 and 18 for the detection of COX-2 in living cells. Competitive binding studies, biophysical, and comprehensive computational analyses were used to describe protein-ligand interactions. The reported new chemical toolbox enables precise visualization and tracking of COX-2 in live cells with superior sensitivity in the visible range.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Rivera SL, Espaillat A, Aditham AK, Shieh P, Muriel-Mundo C, Kim J, Cava F, Siegrist MS. Chemically Induced Cell Wall Stapling in Bacteria. Cell Chem Biol 2020; 28:213-220.e4. [PMID: 33238158 DOI: 10.1016/j.chembiol.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Transpeptidation reinforces the structure of cell-wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting β-lactam antibiotics illustrates the essentiality of these cross-linkages for cell-wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many species makes it challenging to determine cross-link function. Here, we present a technique to link peptide strands by chemical rather than enzymatic reaction. We employ biocompatible click chemistry to induce triazole formation between azido- and alkynyl-d-alanine residues that are metabolically installed in the peptidoglycan of Gram-positive or Gram-negative bacteria. Synthetic triazole cross-links can be visualized using azidocoumarin-d-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell-wall stapling protects Escherichia coli from treatment with the broad-spectrum β-lactams ampicillin and carbenicillin. Chemical control of cell-wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.
Collapse
Affiliation(s)
- Sylvia L Rivera
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chris Muriel-Mundo
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå 90187, Sweden.
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
18
|
Hong S, Feng L, Yang Y, Jiang H, Hou X, Guo P, Marlow FL, Stanley P, Wu P. In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/β-Catenin Signaling. Cell Chem Biol 2020; 27:1140-1150.e4. [PMID: 32649905 DOI: 10.1016/j.chembiol.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Wnt/β-catenin signaling regulates critical, context-dependent transcription in numerous physiological events. Among the well-documented mechanisms affecting Wnt/β-catenin activity, modification of N-glycans by L-fucose is the newest and the least understood. Using a combination of Chinese hamster ovary cell mutants with different fucosylation levels and cell-surface fucose editing (in situ fucosylation [ISF]), we report that α(1-3)-fucosylation of N-acetylglucosamine (GlcNAc) in the Galβ(1-4)-GlcNAc sequences of complex N-glycans modulates Wnt/β-catenin activity by regulating the endocytosis of low-density lipoprotein receptor-related protein 6 (LRP6). Pulse-chase experiments reveal that ISF elevates endocytosis of lipid-raft-localized LRP6, leading to the suppression of Wnt/β-catenin signaling. Remarkably, Wnt activity decreased by ISF is fully reversed by the exogenously added fucose. The combined data show that in situ cell-surface fucosylation can be exploited to regulate a specific signaling pathway via endocytosis promoted by a fucose-binding protein, thereby linking glycosylation of a receptor with its intracellular signaling.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The School of Medicine and Pharmacy, Ocean University of China 5 Yushan Road, Qingdao 266003, China
| | - Xiaomeng Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Florence L Marlow
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla CA 92037, USA.
| |
Collapse
|
19
|
Hong S, Grande G, Yu C, Chapla DG, Reigh N, Yang JY, Yang Y, Izumori K, Moremen KW, Xie J, Wu P. hFUT1-Based Live-Cell Assay To Profile α1-2-Fucoside-Enhanced Influenza Virus A Infection. ACS Chem Biol 2020; 15:819-823. [PMID: 32271008 PMCID: PMC7521629 DOI: 10.1021/acschembio.9b00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Host cell surface glycans play critical roles in influenza virus A (IVA) infection ranging from modulation of IVA attachment to membrane fusion and host tropism. Approaches for quick and sensitive profile of viral avidity toward a specific type of host cell glycan can contribute to the understanding of tropism switching among different IVA strains. Here, we developed a method based on chemoenzymatic glycan engineering to investigate the possible involvement of α1-2-fucosides in IVA infections. Using a truncated human fucosyltransferase 1 (hFUT1), we created α1-2-fucosides in situ on host cells to assess their influence on the host cell binding to IVA hemagglutinin and the susceptibility of host cells toward IVA-induced killing. We discovered that the newly created α1-2-fucosides on host cells enhanced the infection of several human pandemic IVA subtypes either directly or indirectly. These findings suggest that glycan epitopes other than sialic acid should also be considered for assessing the human pandemic risk of this viral pathogen.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chenhua Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Natalie Reigh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Guo YY, Zhang B, Wang L, Huang S, Wang S, You Y, Zhu G, Zhu A, Geng M, Li L. An efficient and easily-accessible ligand for Cu(i)-catalyzed azide–alkyne cycloaddition bioconjugation. Chem Commun (Camb) 2020; 56:14401-14403. [DOI: 10.1039/d0cc06348g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel ligand (6) for copper-catalyzed azide–alkyne cycloaddition (CuAAC) in bioconjugation has been developed.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Bo Zhang
- Department of Medical Research Center
- Peking Union Medical College Hospital
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100730
- China
| | - Luying Wang
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Shenlong Huang
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Shilei Wang
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yanbo You
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Gongming Zhu
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Anlian Zhu
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Mingwei Geng
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Lingjun Li
- School of Chemistry and Chemical engineering
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
21
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
22
|
Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, Li J, Zhang G, Lin J, Chen PR. Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications. J Am Chem Soc 2019; 141:17133-17141. [DOI: 10.1021/jacs.9b05833] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yanjun Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - William Shu Ching Ngai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Heng Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019; 58:14327-14333. [PMID: 31295389 PMCID: PMC6820142 DOI: 10.1002/anie.201907410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pankaj Sahai-Hernandez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
24
|
Hong S, Sahai‐Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single‐Step Metabolic Labeling with Fluorophore‐Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Pankaj Sahai‐Hernandez
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | | | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
| | - David Traver
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
25
|
Gao W, He J, Xiao F, Yang R. Synthesis of Propargyl‐Terminated Polybutadiene and Properties of Polytriazole Elastomers. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenbo Gao
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Jiyu He
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Fei Xiao
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Rongjie Yang
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
26
|
Tomita T, Wang H, Wu P, Weiss LM. Stage-Specific and Selective Delivery of Caged Azidosugars into the Intracellular Parasite Toxoplasma gondii by Using an Esterase-Ester Pair Technique. mSphere 2019; 4:e00142-19. [PMID: 31142619 PMCID: PMC6541734 DOI: 10.1128/msphere.00142-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects up to a third of the human population. The parasites persist in the form of cysts in the central nervous system and serve as a reservoir for the reactivation of toxoplasmic encephalitis. The cyst wall is known to have abundant O-linked N-acetylgalactosamine glycans, but the existing metabolic labeling methods do not allow selective labeling of intracellular parasite glycoproteins without labeling of host glycans. In this study, we have integrated Cu(I)-catalyzed bioorthogonal click chemistry with a specific esterase-ester pair system in order to selectively deliver azidosugars to the intracellular parasites. We demonstrated that α-cyclopropyl modified GalNAz was cleaved by porcine liver esterase produced in the parasites but not in the host cells. Our proof-of-concept study demonstrates the feasibility and potential of this esterase-ester click chemistry approach for the selective delivery of small molecules in a stage-specific manner.IMPORTANCE Selective delivery of small molecules into intracellular parasites is particularly problematic due to the presence of multiple membranes and surrounding host cells. We have devised a method that can deliver caged molecules into an intracellular parasite, Toxoplasma gondii, that express an uncaging enzyme in a stage-specific manner without affecting host cell biology. This system provides a valuable tool for studying many intracellular parasites.
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Hua Wang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Hong S, Shi Y, Wu NC, Grande G, Douthit L, Wang H, Zhou W, Sharpless KB, Wilson IA, Xie J, Wu P. Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification. Nat Commun 2019; 10:1799. [PMID: 30996301 PMCID: PMC6470217 DOI: 10.1038/s41467-019-09608-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Chemoenzymatic modification of cell-surface glycan structures has emerged as a complementary approach to metabolic oligosaccharide engineering. Here, we identify Pasteurella multocida α2-3-sialyltransferase M144D mutant, Photobacterium damsela α2-6-sialyltransferase, and Helicobacter mustelae α1-2-fucosyltransferase, as efficient tools for live-cell glycan modification. Combining these enzymes with Helicobacter pylori α1-3-fucosyltransferase, we develop a host-cell-based assay to probe glycan-mediated influenza A virus (IAV) infection including wild-type and mutant strains of H1N1 and H3N2 subtypes. At high NeuAcα2-6-Gal levels, the IAV-induced host-cell death is positively correlated with haemagglutinin (HA) binding affinity to NeuAcα2-6-Gal. Remarkably, an increment of host-cell-surface sialyl Lewis X (sLeX) exacerbates the killing by several wild-type IAV strains and a previously engineered mutant HK68-MTA. Structural alignment of HAs from HK68 and HK68-MTA suggests formation of a putative hydrogen bond between Trp222 of HA-HK68-MTA and the C-4 hydroxyl group of the α1-3-linked fucose of sLeX, which may account for the enhanced host cell killing of that mutant.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yujie Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
28
|
de Souza MVN, da Costa CF, Facchinetti V, Gomes CRB, Pacheco PM. Advances in Triazole Synthesis from Copper-catalyzed Azide-alkyne Cycloadditions (CuAAC) Based on Eco-friendly Procedures. Curr Org Synth 2019; 16:244-257. [DOI: 10.2174/1570179416666190104141454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/04/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
Background:
1,2,3-triazoles are an important class of organic compounds and because of their
aromatic stability, they are not easily reduced, oxidized or hydrolyzed in acidic and basic environments.
Moreover, 1,2,3-triazole derivatives are known by their important biological activities and have drawn
considerable attention due to their variety of properties. The synthesis of this nucleus, based on the click
chemistry concept, through the 1,3-dipolar addition reaction between azides and alkynes is a well-known
procedure. This reaction has a wide range of applications, especially on the development of new drugs.
Methods:
The most prominent eco-friendly methods for the synthesis of triazoles under microwave irradiation
published in articles from 2012-2018 were reviewed.
Results:
In this review, we cover some of the recent eco-friendly CuAAC procedures for the click synthesis of
1,2,3-triazoles with remarks to new and easily recoverable catalysts, such as rhizobial cyclic β-1,2 glucan;
WEB (water extract of banana); biosourced cyclosophoraose (CyS); egg shell powder (ESP); cyclodextrin (β-
CD); fish bone powder; nanoparticle-based catalyst, among others.
Conclusion:
These eco-friendly procedures are a useful tool for the synthesis of 1,2,3-triazoles, providing
many advantages on the synthesis of this class, such as shorter reaction times, easier work-up and higher yields
when compared to classical procedures. Moreover, these methodologies can be applied to the industrial
synthesis of drugs and to other areas.
Collapse
Affiliation(s)
- Marcus Vinicius Nora de Souza
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos-Farmanguinhos, Fundacao Oswaldo Cruz-Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Cristiane França da Costa
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos-Farmanguinhos, Fundacao Oswaldo Cruz-Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Victor Facchinetti
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos-Farmanguinhos, Fundacao Oswaldo Cruz-Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Claudia Regina Brandão Gomes
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos-Farmanguinhos, Fundacao Oswaldo Cruz-Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | - Paula Mázala Pacheco
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos-Farmanguinhos, Fundacao Oswaldo Cruz-Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Hyun JY, Kim S, Lee HS, Shin I. A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes. Cell Chem Biol 2018; 25:1255-1267.e8. [DOI: 10.1016/j.chembiol.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/20/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
|
30
|
Mann VR, Powers AS, Tilley DC, Sack JT, Cohen BE. Azide-Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination. ACS NANO 2018; 12:4469-4477. [PMID: 29608274 PMCID: PMC5966341 DOI: 10.1021/acsnano.8b00575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover nonquenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete with the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells.
Collapse
Affiliation(s)
- Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander S. Powers
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Drew C. Tilley
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Corresponding Author:
| |
Collapse
|
31
|
Schonhoft JD, Monteiro C, Plate L, Eisele YS, Kelly JM, Boland D, Parker CG, Cravatt BF, Teruya S, Helmke S, Maurer M, Berk J, Sekijima Y, Novais M, Coelho T, Powers ET, Kelly JW. Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients. Sci Transl Med 2018; 9:9/407/eaam7621. [PMID: 28904227 DOI: 10.1126/scitranslmed.aam7621] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence supports the hypothesis that soluble misfolded protein assemblies contribute to the degeneration of postmitotic tissue in amyloid diseases. However, there is a dearth of reliable nonantibody-based probes for selectively detecting oligomeric aggregate structures circulating in plasma or deposited in tissues, making it difficult to scrutinize this hypothesis in patients. Hence, understanding the structure-proteotoxicity relationships driving amyloid diseases remains challenging, hampering the development of early diagnostic and novel treatment strategies. We report peptide-based probes that selectively label misfolded transthyretin (TTR) oligomers circulating in the plasma of TTR hereditary amyloidosis patients exhibiting a predominant neuropathic phenotype. These probes revealed that there are much fewer misfolded TTR oligomers in healthy controls, in asymptomatic carriers of mutations linked to amyloid polyneuropathy, and in patients with TTR-associated cardiomyopathies. The absence of misfolded TTR oligomers in the plasma of cardiomyopathy patients suggests that the tissue tropism observed in the TTR amyloidoses is structure-based. Misfolded oligomers decrease in TTR amyloid polyneuropathy patients treated with disease-modifying therapies (tafamidis or liver transplant-mediated gene therapy). In a subset of TTR amyloid polyneuropathy patients, the probes also detected a circulating TTR fragment that disappeared after tafamidis treatment. Proteomic analysis of the isolated TTR oligomers revealed a specific patient-associated signature composed of proteins that likely associate with the circulating TTR oligomers. Quantification of plasma oligomer concentrations using peptide probes could become an early diagnostic strategy, a response-to-therapy biomarker, and a useful tool for understanding structure-proteotoxicity relationships in the TTR amyloidoses.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yvonne S Eisele
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Kelly
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Boland
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergio Teruya
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Stephen Helmke
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mathew Maurer
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - John Berk
- Boston University School of Medicine, Boston, MA 02118, USA
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Marta Novais
- Unidade Corino de Andrade, Department of Neurosciences, Hospital de Santo António, 4099-001 Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade, Department of Neurosciences, Hospital de Santo António, 4099-001 Porto, Portugal
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Lopez Aguilar A, Meng L, Hou X, Li W, Moremen KW, Wu P. Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans. Bioconjug Chem 2018; 29:1231-1239. [PMID: 29569918 DOI: 10.1021/acs.bioconjchem.8b00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Profiling specific glycans in histopathological samples is hampered by the lack of selective and sensitive tools for their detection. Here, we report on the development of chemoenzymatic histology of membrane polysaccharide (CHoMP)-based methods for the detection of O- and N-linked glycans on tissue sections via the use of sialyltransferases ST3Gal1 and ST6Gal1, respectively. Combining these two methods, we developed tandem labeling and double labeling strategies that permit the detection of unsialylated and sialylated glycans or the detection of O- and N-linked glycans on the same tissue section, respectively. We applied these methods to screen murine tissue specimens, human multiple-organ cancer arrays, and lymphoma and prostate cancer arrays. Using tandem labeling with ST6Gal1 to analyze N-glycans in a prostate cancer array, we found striking differences in expression patterns of both sialylated and unsialylated N-glycans between cancerous and healthy samples. Such differences were also observed between normal tissue from healthy donors and healthy tissue adjacent to tumors. Our double labeling technique identified significant differences in unsialylated O-glycans between B-cell and T-cell lymphomas and between B-cell lymphomas and normal adjacent lymph nodes. Remarkable differences were also detected between adjacent lymph nodes and spleen tissue samples. These new chemoenzymatic histology methods therefore provide valuable tools for the analysis of glycans in clinically relevant tissue samples.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Lu Meng
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Xiaomeng Hou
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Wei Li
- Department of Oncology , The First Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | - Kelley W Moremen
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Peng Wu
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
33
|
Miguel-Ávila J, Tomás-Gamasa M, Olmos A, Pérez PJ, Mascareñas JL. Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells. Chem Sci 2018; 9:1947-1952. [PMID: 29675241 PMCID: PMC5892125 DOI: 10.1039/c7sc04643j] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.
Collapse
Affiliation(s)
- Joan Miguel-Ávila
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Andrea Olmos
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
34
|
Rouhanifard SH, Lopez Aguilar A, Meng L, Moremen KW, Wu P. Engineered Glycocalyx Regulates Stem Cell Proliferation in Murine Crypt Organoids. Cell Chem Biol 2018; 25:439-446.e5. [PMID: 29429899 DOI: 10.1016/j.chembiol.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
At the base of the intestinal crypt, long-lived Lgr5+ stem cells are intercalated by Paneth cells that provide essential niche signals for stem cell maintenance. This unique epithelial anatomy makes the intestinal crypt one of the most accessible models for the study of adult stem cell biology. The glycosylation patterns of this compartment are poorly characterized, and the impact of glycans on stem cell differentiation remains largely unexplored. We find that Paneth cells, but not Lgr5+ stem cells, express abundant terminal N-acetyllactosamine (LacNAc). Employing an enzymatic method to edit glycans in cultured crypt organoids, we assess the functional role of LacNAc in the intestinal crypt. We discover that blocking access to LacNAc on Paneth cells leads to hyperproliferation of the neighboring Lgr5+ stem cells, which is accompanied by the downregulation of genes that are known as negative regulators of proliferation.
Collapse
Affiliation(s)
- Sara H Rouhanifard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aime Lopez Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lu Meng
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Alamudi SH, Su D, Lee KJ, Lee JY, Belmonte-Vázquez JL, Park HS, Peña-Cabrera E, Chang YT. A palette of background-free tame fluorescent probes for intracellular multi-color labelling in live cells. Chem Sci 2018; 9:2376-2383. [PMID: 29719710 PMCID: PMC5897845 DOI: 10.1039/c7sc04716a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
A palette of background-free tame fluorescent probes were designed and applied to intracellular multi-color labelling in live cells.
A multi-color labelling technique for visualizing multiple intracellular apparatuses in their native environment using small fluorescent probes remains challenging. This approach requires both orthogonal and biocompatible coupling reactions in heterogeneous biological systems with minimum fluorescence background noise. Here, we present a palette of BODIPY probes containing azide and cyclooctyne moieties for copper-free click chemistry in living cells. The probes, referred to as ‘tame probes’, are highly permeable and specific in nature, leaving no background noise in cells. Such probes, which are rationally designed through optimized lipophilicity, water solubility and charged van der Waals surface area, allow us to demonstrate rapid and efficient concurrent multi-labelling of intracellular target components. We show that these probes are capable of not only labelling organelles and engineered proteins, but also showing the intracellular glycoconjugates’ dynamics, through the use of metabolic oligosaccharide engineering technology in various cell types. The results demonstrated in this study thus provide flexibility for multi-spectral labelling strategies in native systems in a high spatiotemporal manner.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium , Agency for Science, Technology and Research (ASTAR) , 11 Biopolis Way , Helios #02-02 , Singapore 138667
| | - Dongdong Su
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium , Agency for Science, Technology and Research (ASTAR) , 11 Biopolis Way , Helios #02-02 , Singapore 138667
| | - Kyung Jin Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Republic of Korea 305701
| | - Jung Yeol Lee
- Department of Chemistry , Pohang University of Science and Technology , Pohang , Republic of Korea 37673 .
| | - José Luis Belmonte-Vázquez
- Departamento de Quimica DCNE , Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36050
| | - Hee-Sung Park
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Republic of Korea 305701
| | - Eduardo Peña-Cabrera
- Departamento de Quimica DCNE , Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36050
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium , Agency for Science, Technology and Research (ASTAR) , 11 Biopolis Way , Helios #02-02 , Singapore 138667.,Department of Chemistry , Pohang University of Science and Technology , Pohang , Republic of Korea 37673 . .,Center for Self-assembly and Complexity , Institute for Basic Science (IBS) , Pohang , Republic of Korea 37673
| |
Collapse
|
36
|
Woo CM, Lund PJ, Huang AC, Davis MM, Bertozzi CR, Pitteri SJ. Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol Cell Proteomics 2018; 17:764-775. [PMID: 29351928 DOI: 10.1074/mcp.ra117.000261] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/20/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications (PTMs) on proteins often function to regulate signaling cascades, with the activation of T cells during an adaptive immune response being a classic example. Mounting evidence indicates that the modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), the only mammalian glycan found on nuclear and cytoplasmic proteins, helps regulate T cell activation. Yet, a mechanistic understanding of how O-GlcNAc functions in T cell activation remains elusive, partly because of the difficulties in mapping and quantifying O-GlcNAc sites. Thus, to advance insight into the role of O-GlcNAc in T cell activation, we performed glycosite mapping studies via direct glycopeptide measurement on resting and activated primary human T cells with a technique termed Isotope Targeted Glycoproteomics. This approach led to the identification of 2219 intact O-linked glycopeptides across 1045 glycoproteins. A significant proportion (>45%) of the identified O-GlcNAc sites lie near or coincide with a known phosphorylation site, supporting the potential for PTM crosstalk. Consistent with other studies, we find that O-GlcNAc sites in T cells lack a strict consensus sequence. To validate our results, we employed gel shift assays based on conjugating mass tags to O-GlcNAc groups. Notably, we observed that the transcription factors c-JUN and JUNB show higher levels of O-GlcNAc glycosylation and higher levels of expression in activated T cells. Overall, our findings provide a quantitative characterization of O-GlcNAc glycoproteins and their corresponding modification sites in primary human T cells, which will facilitate mechanistic studies into the function of O-GlcNAc in T cell activation.
Collapse
Affiliation(s)
| | - Peder J Lund
- §Microbiology & Immunology, and.,‖Interdepartmental Program in Immunology
| | | | - Mark M Davis
- §Microbiology & Immunology, and.,‡‡Howard Hughes Medical Institute; Stanford University, Stanford, California 94305
| | - Carolyn R Bertozzi
- From the ‡Departments of Chemistry.,‡‡Howard Hughes Medical Institute; Stanford University, Stanford, California 94305
| | | |
Collapse
|
37
|
Lopez Aguilar A, Gao Y, Hou X, Lauvau G, Yates JR, Wu P. Profiling of Protein O-GlcNAcylation in Murine CD8 + Effector- and Memory-like T Cells. ACS Chem Biol 2017; 12:3031-3038. [PMID: 29125738 DOI: 10.1021/acschembio.7b00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During an acute infection, antigenic stimulation leads to activation, expansion, and differentiation of naïve CD8+ T cells, first into cytotoxic effector cells and eventually into long-lived memory cells. T cell antigen receptors (TCRs) detect antigens on antigen-presenting cells (APCs) in the form of antigenic peptides bound to major histocompatibility complex I (MHC-I)-encoded molecules and initiate TCR signal transduction network. This process is mediated by phosphorylation of many intracellular signaling proteins. Protein O-GlcNAc modification is another post-translational modification involved in this process, which often has either reciprocal or synergistic roles with phosphorylation. In this study, using a chemoenzymatic glycan labeling technique and proteomics analysis, we compared protein O-GlcNAcylation of murine effector and memory-like CD8+ T cells differentiated in vitro. By quantitative proteomics analysis, we identified 445 proteins that are significantly regulated in either effector- or memory-like T cell subsets. Furthermore, qualitative and quantitative analysis identified highly regulated protein clusters that suggest involvement of this post-translational modification in specific cellular processes. In effector-like T cells, protein O-GlcNAcylation is heavily involved in transcriptional and translational processes that drive fast effector T cells proliferation. During the formation of memory-like T cells, protein O-GlcNAcylation is involved in a more specific, perhaps more targeted regulation of transcription, mRNA processing, and translation. Significantly, O-GlcNAc plays a critical role as part of the "histone code" in both CD8+ T cells subgroups.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yu Gao
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaomeng Hou
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregoire Lauvau
- Department
of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - John R. Yates
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Aguilar AL, Hou X, Wen L, Wang PG, Wu P. A Chemoenzymatic Histology Method for O-GlcNAc Detection. Chembiochem 2017; 18:2416-2421. [PMID: 29044951 PMCID: PMC5771404 DOI: 10.1002/cbic.201700515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 12/18/2022]
Abstract
Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaomeng Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Ovryn B, Li J, Hong S, Wu P. Visualizing glycans on single cells and tissues-Visualizing glycans on single cells and tissues. Curr Opin Chem Biol 2017; 39:39-45. [PMID: 28578260 PMCID: PMC5791903 DOI: 10.1016/j.cbpa.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/16/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Metabolic oligosaccharide engineering and chemoenzymatic glycan labeling have provided powerful tools to study glycans in living systems and tissue samples. In this review article, we summarize recent advances in this field with a focus on innovative approaches for glycan imaging. The presented applications demonstrate that several of the leading imaging methods, which have revolutionized quantitative cell biology, can be adapted to imaging glycans on single cells and tissues.
Collapse
Affiliation(s)
- Ben Ovryn
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Jie Li
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| |
Collapse
|
40
|
Hamadani KM, Howe J, Jensen MK, Wu P, Cate JHD, Marqusee S. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer. J Biol Chem 2017; 292:15636-15648. [PMID: 28754692 DOI: 10.1074/jbc.m117.791723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.
Collapse
Affiliation(s)
- Kambiz M Hamadani
- From the California Institute for Quantitative Biosciences and .,the Department of Chemistry and Biochemistry, California State University, San Marcos, California 92096, and
| | - Jesse Howe
- the Department of Chemistry and Biochemistry, California State University, San Marcos, California 92096, and
| | | | - Peng Wu
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Jamie H D Cate
- From the California Institute for Quantitative Biosciences and .,the Departments of Molecular and Cell Biology and.,Chemistry, University of California, Berkeley, California 94720
| | - Susan Marqusee
- From the California Institute for Quantitative Biosciences and .,the Departments of Molecular and Cell Biology and
| |
Collapse
|
41
|
Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts. Angew Chem Int Ed Engl 2017; 56:11203-11208. [PMID: 28792119 DOI: 10.1002/anie.201701160] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Indexed: 11/10/2022]
Abstract
The SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph3 P=N-PPh3 ]+ [HF2 ]- as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of side chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Feng Zhou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Gerui Ren
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hongli Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bing Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Liana Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
42
|
Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. SuFEx‐Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701160] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hua Wang
- Department of Chemical Physiology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Feng Zhou
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Gerui Ren
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Department of Applied Chemistry School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 P.R. China
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Hongli Chen
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Liana Klivansky
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wu
- Department of Chemical Physiology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
43
|
Zhu Z, Chen H, Li S, Yang X, Bittner E, Cai C. Tripodal Amine Ligands for Accelerating Cu-Catalyzed Azide-Alkyne Cycloaddition: Efficiency and Stability against Oxidation and Dissociation. Catal Sci Technol 2017; 7:2474-2485. [PMID: 29129990 PMCID: PMC5679428 DOI: 10.1039/c7cy00587c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ancillary ligands, especially the tripodal ligands such as tris(triazolylmethyl)amines, have been widely used to accelerate the Cu-catalyzed azide-alkyne cycloaddition (CuAAC, a "click" reaction). However, the relationship between the activity of these Cu(I) complexes and their stability against air oxidation and ligand dissociation/exchange was seldom studied, which is critical for the applications of CuAAC in many biological systems. In this work, we synthesized twenty-one Cu(I) tripodal ligands varying in chelate arm length (five to seven atoms), donor groups (triazolyl, pyridyl and phenyl), and steric hindrance. The effects of these variables on the CuAAC reaction, air oxidation, and ligand dissociation were evaluated. Reducing the chelate arm length to five atoms, decreasing steric hindrance, or using a relatively weakly-binding ligand can significantly increase the CuAAC reactivity of the Cu(I) complexes, but the concomitant higher degree of oxidation cannot be avoided, which leads to rapid degradation of a histidine-containing peptide as a model of proteins. The oxidation of the peptide can be reduced by attaching oligo(ethylene glycol) chains to the ligands as sacrificing reagents. Using electrospray ionization mass spectrometry (ESI-MS), we directly observed the tri- and di-copper(I)-acetylide complexes in CuAAC reaction in the [5,5,5] ligand system and a small amount of di-Cu(I)-acetylide in the [5,5,6] ligand system. Only the mono-Cu(I) ligand adducts were observed in the [6,6,6] and [5,6,6] ligand systems.
Collapse
Affiliation(s)
- Zhiling Zhu
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Haoqing Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Siheng Li
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Xunmo Yang
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Eric Bittner
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| |
Collapse
|
44
|
Aguilar AL, Briard JG, Yang L, Macauley MS, Wu P. Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling. ACS Chem Biol 2017; 12:611-621. [PMID: 28301937 PMCID: PMC5469623 DOI: 10.1021/acschembio.6b01089] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of cellular glycosylation presents many challenges due, in large part, to the nontemplated nature of glycan biosynthesis and glycans' structural complexity. Chemoenzymatic glycan labeling (CeGL) has emerged as a new technique to address the limitations of existing methods for glycan detection. CeGL combines glycosyltransferases and unnatural nucleotide sugar donors equipped with a bioorthogonal chemical tag to directly label specific glycan acceptor substrates in situ within biological samples. This article reviews the current CeGL strategies that are available to characterize cell-surface and intracellular glycans. Applications include imaging glycan expression status in live cells and tissue samples, proteomic analysis of glycoproteins, and target validation. Combined with genetic and biochemical tools, CeGL provides new opportunities to elucidate the functional roles of glycans in human health and disease.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jennie Grace Briard
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Linette Yang
- Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604
| | - Matthew Scott Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
45
|
Woo CM, Felix A, Byrd WE, Zuegel DK, Ishihara M, Azadi P, Iavarone AT, Pitteri SJ, Bertozzi CR. Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes. J Proteome Res 2017; 16:1706-1718. [PMID: 28244757 DOI: 10.1021/acs.jproteome.6b01053] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein glycosylation can have an enormous variety of biological consequences, reflecting the molecular diversity encoded in glycan structures. This same structural diversity has imposed major challenges on the development of methods to study the intact glycoproteome. We recently introduced a method termed isotope-targeted glycoproteomics (IsoTaG), which utilizes isotope recoding to characterize azidosugar-labeled glycopeptides bearing fully intact glycans. Here, we describe the broad application of the method to analyze glycoproteomes from a collection of tissue-diverse cell lines. The effort was enabled by a new high-fidelity pattern-searching and glycopeptide validation algorithm termed IsoStamp v2.0, as well as by novel stable isotope probes. Application of the IsoTaG platform to 15 cell lines metabolically labeled with Ac4GalNAz or Ac4ManNAz revealed 1375 N- and 2159 O-glycopeptides, variously modified with 74 discrete glycan structures. Glycopeptide-bound glycans observed by IsoTaG were found to be comparable to released N-glycans identified by permethylation analysis. IsoTaG is therefore positioned to enhance structural understanding of the glycoproteome.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Alejandra Felix
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - William E Byrd
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Devon K Zuegel
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Mayumi Ishihara
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Parastoo Azadi
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Anthony T Iavarone
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Sharon J Pitteri
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| | - Carolyn R Bertozzi
- Department of Chemistry; §School of Engineering; #Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine; ∇Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States.,School of Computing, University of Utah , Salt Lake City, Utah 84112, United States.,Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States.,QB3Mass Spectrometry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
46
|
Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39. mSphere 2017; 2:mSphere00291-16. [PMID: 28070562 PMCID: PMC5214746 DOI: 10.1128/msphere.00291-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022] Open
Abstract
Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae. The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae.
Collapse
|
47
|
Li L, Zhang Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016; 21:E1393. [PMID: 27783053 PMCID: PMC6273301 DOI: 10.3390/molecules21101393] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/24/2022] Open
Abstract
The emergence of bioorthogonal reactions has greatly broadened the scope of biomolecule labeling and detecting. Of all the bioorthogonal reactions that have been developed, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the most widely applied one, mainly because of its relatively fast kinetics and high efficiency. However, the introduction of copper species to in vivo systems raises the issue of potential toxicity. In order to reduce the copper-induced toxicity and further improve the reaction kinetics and efficiency, different strategies have been adopted, including the development of diverse copper chelating ligands to assist the catalytic cycle and the development of chelating azides as reagents. Up to now, the optimization of CuAAC has facilitated its applications in labeling and identifying either specific biomolecule species or on the omics level. Herein, we mainly discuss the efforts in the development of CuAAC to better fit the bioorthogonal reaction criteria and its bioorthogonal applications both in vivo and in vitro.
Collapse
Affiliation(s)
- Li Li
- School of Life Sciences, Peking University, Beijing 100871, China.
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
48
|
Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Anal Bioanal Chem 2016; 409:579-588. [PMID: 27695962 DOI: 10.1007/s00216-016-9934-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Protein glycosylation is a post-translational modification (PTM) responsible for many aspects of proteomic diversity and biological regulation. Assignment of intact glycan structures to specific protein attachment sites is a critical step towards elucidating the function encoded in the glycome. Previously, we developed isotope-targeted glycoproteomics (IsoTaG) as a mass-independent mass spectrometry method to characterize azide-labeled intact glycopeptides from complex proteomes. Here, we extend the IsoTaG approach with the use of alkynyl sugars as metabolic labels and employ new probes in analysis of the sialylated glycoproteome from PC-3 cells. Using an Orbitrap Fusion Tribrid mass spectrometer, we identified 699 intact glycopeptides from 192 glycoproteins. These intact glycopeptides represent a total of eight sialylated glycan structures across 126 N- and 576 O-glycopeptides. IsoTaG is therefore an effective platform for identification of intact glycopeptides labeled by alkynyl or azido sugars and will facilitate further studies of the glycoproteome.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alejandra Felix
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
49
|
Singh MS, Chowdhury S, Koley S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.044] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Etayo P, Ayats C, Pericàs MA. Synthesis and catalytic applications of C3-symmetric tris(triazolyl)methanol ligands and derivatives. Chem Commun (Camb) 2016; 52:1997-2010. [PMID: 26701737 DOI: 10.1039/c5cc08961a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently introduced tris(1,2,3-triazol-4-yl)methanols and derivatives (TTM ligands) have become a valuable subclass of C3-symmetric tripodal ligands for transition metal-mediated reactions. TTM-based ligand architectures are modularly constructed through regioselective, one-pot triple [3+2] cycloaddition of azides and alkynes. Applications of homogeneous systems of this type and of heterogenised (polystyrene- and magnetic nanoparticle-supported) TTM ligands in synthesis and catalysis are compiled in this Feature Article.
Collapse
Affiliation(s)
- Pablo Etayo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain.
| | - Carles Ayats
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain.
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain. and Departament de Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|