1
|
Lu Z, Li A, Gao Y, Shi H, Shi X, Li W, Song J, Song M. Endocrine-disrupting chemicals in human adipose tissue and associations between exposure and obesity. J Environ Sci (China) 2025; 155:552-561. [PMID: 40246489 DOI: 10.1016/j.jes.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
Bio-accumulation of endocrine-disrupting chemicals (EDCs) in human body may result in various adverse health effects. This study measured the levels of 16 EDCs in the visceral adipose tissue of 55 participants in China and investigated their association with obesity. MeP, BPP, PrP, BPA, EtP, BPE, and BPC were frequently detected in more than 50 % of the adipose tissues. A positive correlation between bisphenol A and body mass index (BMI) was observed in both multivariate linear regression model (β = 0.87, 95 % confidence interval: 0.21-1.53, p = 0.011) and multivariate logistic regression analysis (odds ratio = 1.28, 95 % confidence interval: 1.01-1.62, 0.044). Restricted cubic spline regression analysis revealed a significant nonlinear association between bisphenol P and BMI. Weighted quantile sum regression and quantile-based g-computation revealed a slight positive trend between EDCs mixed exposure and BMI, with bisphenol A as the primary contributor to the positive correlation with BMI. Our findings suggest the extensive existence of environmental EDCs in the adipose tissue of the adult Chinese population and indicate that exposure to BPA in adipose tissue may be associated with the occurrence of obesity.
Collapse
Affiliation(s)
- Zhenhua Lu
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haowei Shi
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolei Shi
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weijing Li
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Seewooruttun C, Bouguila B, Corona A, Delanaud S, Bodin R, Bach V, Desailloud R, Pelletier A. 5G Radiofrequency Exposure Reduces PRDM16 and C/EBP β mRNA Expression, Two Key Biomarkers for Brown Adipogenesis. Int J Mol Sci 2025; 26:2792. [PMID: 40141434 PMCID: PMC11942954 DOI: 10.3390/ijms26062792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants and tends to decrease with age. Previous animal studies demonstrated a cold sensation in rats exposed to 900 MHz (second generation, 2G). UCP1-dependent thermogenesis and BAT hyperplasia are two fundamental adaptive mechanisms initiated in response to cold. This study investigated the impact of short-term exposure to 2G and fifth generation (5G) on key thermogenic and adipogenic markers related to these mechanisms while considering age and exposure duration. Juvenile and young adult Wistar rats were randomized into three subgroups: a 5G group (3.5 GHz), 2G group (900 MHz), and a control group (SHAM). They were exposed to their respective continuous-wave RF signals for 1 or 2 weeks at an intensity of 1.5 V/m, with two exposure sessions of 1 h per day. After the exposure period, a RT-qPCR was carried out to evaluate the genetic markers involved in BAT thermogenesis and adipogenesis. Two adipogenic biomarkers were affected; a fold change reduction of 49% and 32% was detected for PRDM16 (p = 0.016) and C/EBP β (p = 0.0002), respectively, after 5G exposure, regardless of age and exposure duration. No significant RF effect was found on UCP1-dependent thermogenesis at a transcriptional level. These findings suggest that exposure to a 5G radiofrequency may partially disrupt brown adipocyte differentiation and thermogenic function by downregulating PRDM16 and C/EBP β, possibly leading to higher cold sensitivity.
Collapse
Affiliation(s)
- Chandreshwar Seewooruttun
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Bélir Bouguila
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Aurélie Corona
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Stéphane Delanaud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Raphaël Bodin
- PériTox (UMR I_01), INERIS/UPJV, INERIS, MIV/TEAM, 60550 Verneuil-en-Halatte, France
| | - Véronique Bach
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Rachel Desailloud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 Rond Point du Pr Christian Cabrol, 80054 Amiens, France
| | - Amandine Pelletier
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| |
Collapse
|
3
|
Singh M, Crosthwait J, Sorisky A, Atlas E. Tetra methyl bisphenol F: another potential obesogen. Int J Obes (Lond) 2024; 48:923-933. [PMID: 38388800 PMCID: PMC11216980 DOI: 10.1038/s41366-024-01496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND/OBJECTIVES Obesity and its associated metabolic diseases are increasing globally. Sedentary lifestyle, high caloric diet, and genetic predisposition are known to contribute to the onset of obesity. It is increasingly recognized that exposure to environmental chemicals such as Bisphenol A (BPA) may also play a significant role. BPA has been correlated with an array of adverse health effects, including obesity and metabolic disorders. Due to public concern, manufacturers are replacing BPA with structural analogues for which there is limited toxicological data. The objective of this study was to assess the effects of these BPA analogues on adipogenesis. METHODS The adipogenic effects of Tetra Methyl Bisphenol F (TMBPF), Bisphenol F (BPF), Bisphenol AP (BPAP), and fluorine-9-bisphenol (BHPF) were evaluated in murine 3T3-L1 cells. The cells were treated with BPA and its analogues at concentrations from 0.01 µM to 20 µM, throughout differentiation, in the absence of Dexamethasone (Dex). Lipid accumulation, mRNA and protein levels of adipogenic markers was assessed. RESULTS We found that TMBPF, BPF and BPA increased 3T3-L1 lipid accumulation and the expression levels of adipogenic markers lipoprotein lipase (Lpl), fatty acid binding protein 4 (Fabp4) and perilipin (Plin) (1-20 µM; p < 0.05), whereas BHPF and BPAP had no effect in this model. Further, TMBPF induced adipogenesis to a greater extent than all the other chemicals including BPA (1-20 µM; p < 0.05). The effect mediated by TMBPF on expression levels of Fabp4, but not Plin, is likely mediated via peroxisome proliferator-activated receptor (PPAR) γ activation. CONCLUSIONS Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.
Collapse
Affiliation(s)
- Misha Singh
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Crosthwait
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Alexander Sorisky
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Vilfranc CL, Houghton LC, Tsui F, Barrett E, Llanos AAM, Pennell K, Walker DAH, Martinez M, Morton B, Shepard P, Terry MB, McDonald JA. The hair tales of women of color in Northern Manhattan: a qualitative analysis. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1298615. [PMID: 38559324 PMCID: PMC10978798 DOI: 10.3389/frph.2024.1298615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Exposure to endocrine disrupting chemicals (EDCs), such as phthalates, can negatively impact maternal and child health, contributing to impaired fetal growth, preterm birth, and pregnancy complications, as well as increased downstream risks of cardiometabolic disease and breast cancer. Notably, women of color (WOC) are the largest consumers of personal care products, which are a common source of EDC exposure. Methods The Let's Reclaim Our Ancestral Roots (Let's R.O.A.R) Pilot Study developed an educational intervention delivered during pregnancy to promote reduced use of phthalate-containing hair care products (HCPs). This mixed-methods study included: (1) a quantitative analysis and (2) a qualitative analysis of the educational sessions and the semi-structured focus groups to evaluate the factors that influenced the hair care practices and product choices of WOC at various stages of life, including their current pregnancy (hereafter referred to as the hair journey). During the sessions, participants learned about EDCs (with a focus on phthalates), the unequal burden of exposure for WOC, adverse implications of exposure, and exposure reduction strategies. Focus group sessions provided insight into participants' hair journeys from childhood to the current pregnancy and explored factors during their hair product selection process. All sessions were transcribed and imported into NVivo Version 12 for coding and thematic analysis. Results A total of 46 individuals were enrolled in the study, and 31 participated in an educational session. This current work synthesizes the qualitative analysis of this study. We identified two important life stages (before and after gaining agency over hair care practices and product choices) and three dominant themes related to HCP use: (1) products that impacted the hair journey, which involved all mentions of hair products, (2) factors that influenced the hair journey, which included individuals or entities that shaped participants' hair experiences, and (3) the relationship between hair and sense of self, where sense of self was defined as the alignment of one's inner and outer beauty. Conclusion The themes intersected and impacted the participants' hair journey. Cultural integration was a sub-theme that overlapped within the dominant themes and participants discussed the effect of traditions on their hair experiences.
Collapse
Affiliation(s)
- Chrystelle L. Vilfranc
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Irving Medical Center, New York, NY, United States
| | - Lauren C. Houghton
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Irving Medical Center, New York, NY, United States
| | - Felice Tsui
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
| | - Emily Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| | - Adana A. M. Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Irving Medical Center, New York, NY, United States
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | | | - Micaela Martinez
- We ACT for Environmental Justice, New York, NY, United States
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Beaumont Morton
- We ACT for Environmental Justice, New York, NY, United States
| | - Peggy Shepard
- We ACT for Environmental Justice, New York, NY, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Irving Medical Center, New York, NY, United States
| | - Jasmine A. McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Eseberri I, Gómez-Maqueo A, Trepiana J, Gómez-López I, Proença C, Cano MP, Portillo MP. In Vitro Screening and Lipid-Lowering Effect of Prickly Pear (Opuntia Ficus-Indica L. Mill.) Fruit Extracts in 3T3-L1 Pre-Adipocytes and Mature Adipocytes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:143-150. [PMID: 38206481 PMCID: PMC10891207 DOI: 10.1007/s11130-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.
Collapse
Affiliation(s)
- Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain.
- Bioaraba Health Research Institute, Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.
| | - Andrea Gómez-Maqueo
- Department of Biotechnology and Microbiology of Food, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
- Bioaraba Health Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Iván Gómez-López
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Department of Biotechnology and Microbiology of Food, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Carina Proença
- REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, LAQV, University of Porto, Porto, Portugal
| | - M Pilar Cano
- Department of Biotechnology and Microbiology of Food, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
- Bioaraba Health Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Zamora AN, Jansen EC, Goodrich JM, Téllez-Rojo MM, Song PXK, Meeker JD, Dolinoy DC, A Torres-Olascoaga L, Cantoral A, Peterson KE. Cross-sectional associations between phthalates, phenols, and parabens with metabolic syndrome risk during early-to-mid adolescence among a cohort of Mexican youth. ENVIRONMENTAL RESEARCH 2023; 236:116706. [PMID: 37474091 PMCID: PMC10592077 DOI: 10.1016/j.envres.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Epidemiological studies on children and adults have linked toxicants from plastics and personal care products to metabolic disruption. Yet, the impact of endocrine-disrupting chemicals (EDCs) on adolescent metabolic syndrome (MetS) risk during early and mid-adolescence is unclear. METHODS To examine the links between exposure to EDCs and MetS risk and its components, cross-sectional data from 344 Mexican youth in early-to-mid adolescence (10-17 years) were analyzed. Urinary biomarker concentrations of phthalates, phenol, and paraben analytes were measured from a single spot urine sample collected in 2015; study personnel obtained anthropometric and metabolic measures. We examined associations between summary phthalates and metabolites, phenol, and paraben analytes with MetS risk z-scores using linear regression, adjusted for specific gravity, sex, age, pubertal status, smoking, alcohol intake, physical activity level, and screen time. As a secondary aim, mediation analysis was conducted to evaluate the role of hormones in the association between summary phthalates with lipids and MetS risk z-scores. RESULTS The mean (SD) age was 13.2 (1.9) years, and 50.9% were female. Sex-stratified analyses revealed associations between summary phthalates and lipids ratio z-scores, including Σ DEHP [β = 0.21 (95% CI: 0.04, 0.37; p < 0.01)], phthalates from plastic sources (Σ Plastic) [β = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], anti-androgenic phthalates (Σ AA) [β = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], and individual phthalate metabolites (MEHHP, MEOHP, and MECPP) among males. Among females, BPA [β = 0.24 (95% CI: 0.03, 0.44; p < 0.05)] was positively associated with lipids ratio z-score and one phenol (2,5 DCP) [β = 0.09 (95% CI: 0.01, 0.18); p < 0.05)] was associated with increased waist circumference z-score. Results showed no evidence of mediation by hormone concentrations in the association between summary phthalates with lipids ratio or MetS risk z-scores. CONCLUSION Higher EDC exposure was positively associated with serum lipids during adolescence, particularly among males.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Libni A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Xu M, Wang W, Feng J, Ruan Z, Le Y, Liu Y, Zhang Q, Wang C. The mechanism underlying pentabromoethylbenzene-induced adipogenesis and the obesogenic outcome in both cell and mouse model. ENVIRONMENT INTERNATIONAL 2023; 178:108088. [PMID: 37429055 DOI: 10.1016/j.envint.2023.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Convergent evidence links traditional brominated flame retardants (BFRs) exposure to weight gain, while the obesogenic potency of new BFRs (NBFRs) remain largely unknown. Aiding by luciferase-reporter gene assay, the present study revealed only pentabromoethylbenzene (PBEB), an alternative for penta-BDEs, binds with retinoid X receptor α (RXRα) but not peroxisomeproliferator receptor γ (PPARγ) among the seven testing NBFRs. An apparent induction of adipogenesis in 3T3-L1 cells was observed at nanomolar of PBEB, much lower than penta-BFRs. Mechanistic research uncovered PBEB initiated the adipogenesis by demethylated CpG sites in the PPARγ promoter region. Specifically, activation RXRα by PBEB strengthened the activity of RXRα/PPARγ heterodimer, tightened the interaction between the heterodimer and PPAR response elements, and further enhanced adipogenesis. RNA sequencing combined with k-means clustering analysis exposed adenosine 5'-monophosphate (AMP)-activated protein kinase and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling as two predominant pathways that enriched in PBEB-induced lipogenesis. The obesogenic outcome was further corroborated in offspring mice when the maternal mice exposed to environmental relevant doses of PBEB. We found the male offspring exhibited adipocyte hypertrophy and increased weight gain in the epididymal white adipose tissue (eWAT). Consistent with in vitro findings, the reduction in protein phosphorylation of both AMPK and PI3K/AKT were observed within eWAT. Thus, we posited PBEB disrupts the pathways controlling adipogenesis and adipose tissue maintenance, supporting its potential as an environmental obesogen.
Collapse
Affiliation(s)
- Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Jiafan Feng
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Schkoda S, Horman B, Witchey SK, Jansson A, Macari S, Patisaul HB. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat. FRONTIERS IN TOXICOLOGY 2023; 5:1216388. [PMID: 37577032 PMCID: PMC10414991 DOI: 10.3389/ftox.2023.1216388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shannah K. Witchey
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anton Jansson
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, United States
| | - Soraia Macari
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Abstract
Obesity research is advancing swiftly, but the increase in obesity prevalence is faster. Over the past three decades, researchers have found that biopsychosocial factors determine weight gain much more than personal choices and responsibility. Various genes have found to predispose people to obesity by interacting with our obesogenic environment. In this review, we discuss the impact of physical inactivity, excessive caloric intake, intrauterine environment, postnatal influences, insufficient sleep, drugs, medical conditions, socioeconomic status, ethnicity, psychosocial stress, endocrine disrupting chemicals and the gastrointestinal microbiome, on the occurrence of obesity.
Collapse
|
13
|
Guo Y, Liu C, Deng YH, Ning J, Yu L, Wu JL. Association between Bisphenol A exposure and body composition parameters in children. Front Endocrinol (Lausanne) 2023; 14:1180505. [PMID: 37274319 PMCID: PMC10234572 DOI: 10.3389/fendo.2023.1180505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Background Although there is evidence linking Bisphenol A (BPA) exposure to obesity, research examining its relationship with body composition parameters in young children is limited. Methods A cross-sectional investigation was conducted on 200 preschool children aged between 4 and 6 years in Guangzhou, China. BPA exposure was assessed through urine samples using ultra-high performance liquid chromatography- tandem mass spectrometry, and body composition parameters were measured through bioelectrical impedance analysis (InBody770). Results The median urinary BPA concentration was 0.556 μg/L (IQR: 0.301 - 1.031 μg/L) and creatinine-adjusted BPA concentration was 0.930 μg/g (IQR: 0.551 - 1.586 μg/g). BPA levels were significantly associated with body mass index (β= 1.15; 95%CI: 0.47, 1.83), body fat mass (β= 1.14; 95%CI: 0.39, 1.89), fat free mass (β= 0.92; 95%CI: 0.26, 1.58), and percent body fat (β= 3.44; 95%CI: 1.17, 5.71) after adjusting for potential confounding factors. Similarly, adjusted models with log10-transformed creatinine-adjusted BPA concentrations as a continuous variable showed similar trends. Positive linear associations were observed between quartiles of BPA concentrations and body composition parameters, with the highest coefficients in the fourth quartile. Conclusion Our study provides further evidence of positive correlations between BPA exposure and body composition parameters in children aged 4 to 6 years. These findings highlight the potential health risks associated with obesity-related body composition parameters in young children. Further investigations are needed to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yong Guo
- *Correspondence: Yong Guo, ; Jie-Ling Wu,
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Children suffer disproportionately from disease and disability due to environmental hazards, for reasons rooted in their biology. The contribution is substantial and increasingly recognized, particularly due to ever-increasing awareness of endocrine disruption. Regulatory actions can be traced directly to reductions in toxic exposures, with tangible benefits to society. Deep flaws remain in the policy framework in industrialized countries, failing to offer sufficient protection, but are even more limited in industrializing nations where the majority of chemical production and use will occur by 2030. Evidence-based steps for reducing chemical exposures associated with adverse health outcomes exist and should be incorporated into anticipatory guidance.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU School of Global Public Health, New York, NY, USA.
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Yoon DS, Byeon E, Kim DH, Lee MC, Shin KH, Hagiwara A, Park HG, Lee JS. Effects of temperature and combinational exposures on lipid metabolism in aquatic invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109449. [PMID: 36055628 DOI: 10.1016/j.cbpc.2022.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Studies of changes in fatty acids in response to environmental temperature changes have been conducted in many species, particularly mammals. However, few studies have considered aquatic invertebrates, even though they are particularly vulnerable to changes in environmental temperature. In this review, we summarize the process by which animals synthesize common fatty acids and point out differences between the fatty acid profiles of vertebrates and those of aquatic invertebrates. Unlike vertebrates, some aquatic invertebrates can directly synthesize polyunsaturated fatty acids (PUFAs), which can be used to respond to temperature changes. Various studies have shown that aquatic invertebrates increase the degree of saturation in their fatty acids through an increase in saturated fatty acid production or a decrease in PUFAs as the temperature increases. In addition, we summarize recent studies that have examined the complex effects of temperature and combinational stressors to determine whether the degree of saturation in aquatic invertebrates is influenced by other factors. The combined effects of carbon dioxide partial pressure, food quality, starvation, salinity, and chemical exposures have been confirmed, and fatty acid profile changes in response to high temperature were greater than those from combinational stressors.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food & Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
16
|
Liu Y, Xu M, Le Y, Wang W, Li Y, Li X, Wang C. Sex-dependent effect of triphenyl phosphate on hepatic energy metabolism at the intersection of diet pattern in pubertal mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113850. [PMID: 36068767 DOI: 10.1016/j.ecoenv.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is mostly residual in fat-rich foodstuff and ingestion is the main route for adolescents' exposure. As a typical metabolic disruptor, however, sex-specific effect of TPhP-high fat diet (HFD) co-exposure in adolescent remains unknown. This study revealed that HFD exacerbated systematic inflammation and insulin insensitivity in female mice at pubertal stage after exposure to 25 mg/kg TPhP or above. Notably, the pattern of sexual selective metabolic disruption caused by TPhP was irrespective of diet after examined mice both in HFD and normal diet feeding. Female mice favored the energy storage in forms of D-glucose 6-phosphate, D-fructose 6-phosphate and triglyceride. That was further supported by mRNA levels of key enzymes in glycolysis, gluconeogenesis, and lipid metabolism. Contrastingly, the elevation of the corresponding genes ensuing by the depleted metabolites were observed in males. In mechanistic investigation, we observed a declination of serum estrogen, a master of energy homeostasis, in both sexes, irrespective of diet. However, only male mice displayed estrogen-hypothalamus negative feedback, supporting by the upregulation of gonadotropin-releasing hormone. Rather than the well-recognized estrogen receptor α, hepatic G protein-coupled estrogen receptor manifested sexual dichotomy, which desensitized to estrogenic response only in females. Collectively, this study posited that females were more susceptible to store energy under TPhP-HFD than males during pubertal partially through estrogenic pathway.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yi Li
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Xiaowen Li
- Cangzhou Medical College, Cangzhou, Hebei, People's Republic of China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Costet N, Lafontaine A, Rouget F, Michineau L, Monfort C, Thomé JP, Kadhel P, Multigner L, Cordier S. Prenatal and childhood exposure to chlordecone and adiposity of seven-year-old children in the Timoun mother-child cohort study in Guadeloupe (French West Indies). Environ Health 2022; 21:42. [PMID: 35439992 PMCID: PMC9017008 DOI: 10.1186/s12940-022-00850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to persistent environmental organic pollutants may contribute to the development of obesity among children. Chlordecone is a persistent organochlorine insecticide with estrogenic properties that was used in the French West Indies (1973-1993) and is still present in the soil and the water and food consumed by the local population. We studied the association between prenatal and childhood exposure to chlordecone and the adiposity of prepubertal children. METHODS Within the Timoun Mother-Child Cohort Study in Guadeloupe (French West Indies), 575 children had a medical examination at seven years of age, including adiposity measurements. A Structural Equation Modeling approach was used to create a global adiposity score from four adiposity indicators: the BMI z-score, percentage of fat mass, sum of the tricipital and subscapular skinfold thickness, and waist-to-height ratio. Chlordecone concentrations were measured in cord blood at birth and in the children's blood at seven years of age. Models were adjusted for prenatal and postnatal covariates. Sensitivity analyses accounted for co-exposure to PCB-153 and pp'-DDE. Mediation analyses, including intermediate birth outcomes, were conducted. RESULTS Prenatal chlordecone exposure tended to be associated with increased adiposity at seven years of age, particularly in boys. However, statistical significance was only reached in the third quartile of exposure and neither linear nor non-linear trends could be formally identified. Consideration of preterm birth or birth weight in mediation analyses did not modify the results, as adjustment for PCB-153 and pp'-DDE co-exposures. CONCLUSION Globally, we found little evidence of an association between chlordecone exposure during the critical in utero or childhood periods of development and altered body-weight homeostasis in childhood. Nevertheless, some associations we observed at seven years of age, although non-significant, were consistent with those observed at earlier ages and would be worth investing during further follow-ups of children of the Timoun Mother-Child Cohort Study when they reach puberty.
Collapse
Affiliation(s)
- Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France
| | - Antoine Lafontaine
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France
| | - Florence Rouget
- CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Léah Michineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-97100 Pointe-à-Pitre, France
| | - Christine Monfort
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Thomé
- LEAE-CART (Laboratoire d’Ecologie Animale Et d’Ecotoxicologie-Centre de Recherche Analytique Et Technologique), Université de Liège, Liège, Belgium
| | - Philippe Kadhel
- CHU de Guadeloupe, Univ Antilles, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) - UMR_S 1085, F-97100 Pointe-à-Pitre, France
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
18
|
Lucas A, Herrmann S, Lucas M. The role of endocrine-disrupting phthalates and bisphenols in cardiometabolic disease: the evidence is mounting. Curr Opin Endocrinol Diabetes Obes 2022; 29:87-94. [PMID: 35034036 PMCID: PMC8915988 DOI: 10.1097/med.0000000000000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW There is substantive and accumulating evidence that endemic exposure to plastic-associated chemicals (PACs) contribute to the pathophysiology of metabolic conditions, like obesity, diabetes, and heart disease. The consequences of this endemic exposure in inducing a pro-inflammatory state in adipose tissues as a critical link between exposure and disease is reviewed. RECENT FINDINGS In general, PACs are classified as nonpersistent in vivo because of their rapid metabolism to easily excreted forms. The parental chemicals, however, are typically lipophilic, with the potential to bioaccumulate. Recent data from selected association studies suggest exposure to PACs drive predisease states like obesity and inflammation of the adipose tissues. A range of experimental studies are discussed with a focus on biological mechanisms that are susceptible to the influence of PACs and which may promote metabolic disease, the detection of PACs within susceptible tissues and biological effects that are detectable at doses that correspond to real-life exposures to these chemicals. SUMMARY If we hypothesize the toxic pressure from chronic exposure to PACs will progress disease processes, then individuals with comprehensively characterized indicators of premetabolic disease could undergo trials of quantifiable interventions to reduce exposure to PACs to test if the trajectory of disease-associated analytes, is altered.
Collapse
Affiliation(s)
| | | | - Michaela Lucas
- Medical School, University of Western Australia
- Department of Immunology, PathWest and Sir Charles Gairdner Hospital, Perth, Australia
| |
Collapse
|
19
|
Gasser M, Lenglet S, Bararpour N, Sajic T, Wiskott K, Augsburger M, Fracasso T, Gilardi F, Thomas A. Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology 2022; 470:153153. [PMID: 35301059 DOI: 10.1016/j.tox.2022.153153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 01/23/2023]
Abstract
Obesity is considered as a major public health concern with strong economic and social burdens. Exposure to pollutants such as heavy metals can contribute to the development of obesity and its associated metabolic disorders, including type 2 diabetes and cardiovascular diseases. Adipose tissue is an endocrine and paracrine organ that plays a key role in the development of these diseases and is one of the main target of heavy metal accumulation. In this study, we determined by inductively coupled plasma mass spectrometry cadmium concentrations in human subcutaneous and visceral adipose tissues, ranging between 2.5nM and 2.5µM. We found a positive correlation between cadmium levels and age, sex and smoking status and a negative correlation between Cd and body mass index. Based on cadmium adipose tissue concentrations found in humans, we investigated the effects of cadmium exposure, at concentrations between 1nM and 10µM, on adipose-derived human mesenchymal stem cells differentiated into mature adipocytes in vitro. Transcriptomic analysis highlighted that such exposure altered the expression of genes involved in trace element homeostasis and heavy metal detoxification, such as Solute Carrier Family transporters and metallothioneins. This effect correlated with zinc level alteration in cells and cellular media. Interestingly, dysregulation of zinc homeostasis and transporters has been particularly associated with the development of obesity and type 2 diabetes. Moreover, we found that cadmium exposure induces the pro-inflammatory state of the adipocytes by enhancing the expression of genes such as IL-6, IL-1B and CCL2, cytokines also induced in obesity. Finally, cadmium modulates various adipocyte functions such as the insulin response signaling pathway and lipid homeostasis. Collectively, our data identified some of the cellular mechanisms by which cadmium alters adipocyte functions, thus highlighting new facets of its potential contribution to the progression of metabolic disorders.
Collapse
Affiliation(s)
- Marie Gasser
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lenglet
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Nasim Bararpour
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Present address: Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Tatjana Sajic
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kim Wiskott
- Unit of Forensic Pathology, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Tony Fracasso
- Unit of Forensic Pathology, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Federica Gilardi
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
20
|
Reimann B, Vrijens K, Roels HA, Wang C, Cosemans C, Van Overmeire I, Nawrot TS, Plusquin M. In utero exposure to parabens and early childhood BMI z-scores - Associations between placental ethyl paraben, longitudinal BMI trajectories and cord blood metabolic biomarkers. ENVIRONMENT INTERNATIONAL 2021; 157:106845. [PMID: 34474324 PMCID: PMC8484768 DOI: 10.1016/j.envint.2021.106845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Parabens are used as antimicrobial preservatives in personal care products. Few studies have dealt with adverse health outcomes, transplacental transfer, and obesogenic effects of prenatal exposure to parabens. We examined the association between placental paraben levels and cord blood metabolic biomarkers, considering modulating effects of maternal pre-pregnancy BMI and underlying epigenetic mechanisms, and investigated longitudinal effects of in utero paraben exposure on early childhood trajectories of BMI z-scores. METHODS Placental concentrations of four parabens [methyl (MeP), ethyl (EtP), propyl (PrP), and butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 229 placentas of the ENVIRONAGE birth cohort. The association with cord blood metabolic biomarkers [glucose, insulin, γ-glutamyltransferase (GGT), high-density and low-density lipoprotein (HDL and LDL)] was analyzed in multiple regression models with two different sets of, a priori selected potential confounders, additionally stratified for different maternal BMI groups and assessed by causal mediation analysis. The association between placental paraben concentration and differential DNA methylation of CpGs annotated to GGT and longitudinal measurements of BMI z-scores were investigated with adjusted linear mixed models. RESULTS The geometric means of placental MeP, EtP, PrP, and BuP levels above the limit of detection (LOD) were 4.42, 1.32, 1.51, and 0.35 ng/g respectively, with only EtP showing sufficient (88%) measurements above LOD for further analyses. An interquartile ratio (IQR) increase in placental EtP was associated with an increase of 12.61 % (95% CI: 1.80 24.57) in the geometric mean of cord GGT activity, and with a decrease of -3.64 % (95% CI: -6.80 to -0.39) in the geometric mean of cord glucose. Placental EtP levels were significantly associated with hypermethylation of cg08612779 annotated to GGT7 after correcting for multiple testing (ß = 0.0017, p = 0.049). An interquartile ratio (IQR) increment in placental EtP was associated with a decrease in longitudinal BMI z-score of 0.27 points (95% CI: -0.46 to -0.088). CONCLUSION Prenatal EtP exposure may affect early childhood BMI. The association of placental EtP with cord blood GGT and glucose levels provides a starting point for further research on mechanisms of paraben-related metabolic processes in utero.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Ilse Van Overmeire
- Sciensano, Chemical and Physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
21
|
Tassinari R, Maranghi F. Rodent Model of Gender-Affirming Hormone Therapies as Specific Tool for Identifying Susceptibility and Vulnerability of Transgender People and Future Applications for Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12640. [PMID: 34886364 PMCID: PMC8656759 DOI: 10.3390/ijerph182312640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Transgenders (TGs) are individuals with gender identity and behaviour different from the social norms; they often undergo gender-affirming hormone therapy (HT). HT for TG men involves testosterone treatment and, for TG women, oestrogen plus androgen-lowering agents. Due-but not limited-to the lifelong lasting HT, usually TG people experience several physical and behavioural conditions leading to different and specific susceptibility and vulnerability in comparison to general population, including the response to chemical contaminants present in daily life. In particular, the exposure to the widespread endocrine disrupters (EDs) may affect hormonal and metabolic processes, leading to tissue and organ damage. Since the endocrine system of TG people is overstimulated by HT and, often, the targets overlap with ED, it is reasonable to hypothesize that TG health deserves special attention. At present, no specific tools are available to study the toxicological effects of environmental contaminants, including EDs, and the potential long-term consequences of HT on TG people. In this context, the development of adequate and innovative animal models to mimic gender-affirming HT have a high priority, since they can provide robust data for hazard identification in TG women and men, leading to more reliable risk assessment.
Collapse
Affiliation(s)
- Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | |
Collapse
|
22
|
Perng W, Cantoral A, Soria-Contreras DC, Betanzos-Robledo L, Kordas K, Liu Y, Mora AM, Corvalan C, Pereira A, Cardoso MA, Chavarro JE, Breton CV, Meeker JD, Harley KG, Eskenazi B, Peterson KE, Tellez-Rojo MM. [Exposición a químicos disruptores endócrinos obesogénicos y obesidad en niños y jóvenes de origen latino o hispano en Estados Unidos y Latinoamérica: una perspectiva del curso de la vida]. Obes Rev 2021; 22 Suppl 5:e13352. [PMID: 34708538 DOI: 10.1111/obr.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, EE. UU.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, EE. UU
| | - Alejandra Cantoral
- Consejo Nacional de Ciencia y Tecnología, Instituto Nacional de Salud Pública, Ciudad de México, México
| | - Diana C Soria-Contreras
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Ciudad de México, México
| | - Larissa Betanzos-Robledo
- Consejo Nacional de Ciencia y Tecnología, Instituto Nacional de Salud Pública, Ciudad de México, México
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, Búfalo, Nueva York, EE. UU
| | - Yun Liu
- Department of Epidemiology, Brown University, Providence, Rhode Island, EE. UU
| | - Ana M Mora
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, EE. UU.,Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Camila Corvalan
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Anita Pereira
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Marly Augusto Cardoso
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Jorge E Chavarro
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, EE. UU
| | - Carrie V Breton
- Division of Environmental Health, University of Southern California Keck School of Medicine, Los Ángeles, California, EE. UU
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Míchigan, EE. UU
| | - Kim G Harley
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, EE. UU
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, EE. UU
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Míchigan, EE. UU
| | - Martha Maria Tellez-Rojo
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Ciudad de México, México
| |
Collapse
|
23
|
Adipose-derived stem cells and obesity: The spear and shield relationship. Genes Dis 2021; 10:175-186. [PMID: 37013055 PMCID: PMC10066342 DOI: 10.1016/j.gendis.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
With the transformation of modern lifestyles and population ageing, obesity has become a global epidemic, as one of the important threat to human health of chronic non-communicable diseases (NCD). Stem cell therapy seems promising as an alternative strategy for managing obesity and related metabolic problems. Adipose tissue-derived stem cells (ADSCs) have received widespread attention, which provides new ideas for the treatment of obesity and various metabolic-related diseases, due to their abundant reserves, easy acquisition, rapid expansion, and multi-directional differentiation potential, low immunogenicity and many other advantages. Accordingly, there seems to be a "shield and spear paradox" in the relationship between ADSCs and obesity. In this review, we emphatically summarized the role of ADSCs in the occurrence and development of obesity and related metabolic disease processes, in order to pave the way for clinical practice.
Collapse
|
24
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
25
|
Plattard N, Dupuis A, Migeot V, Haddad S, Venisse N. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (Cl xBPA). ENVIRONMENT INTERNATIONAL 2021; 153:106547. [PMID: 33831741 DOI: 10.1016/j.envint.2021.106547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Bisphenol A (BPA) is a ubiquitous contaminant with endocrine-disrupting effects in mammals. During chlorination treatment of drinking water, aqueous BPA can react with chlorine to form chlorinated derivatives of BPA (mono, di, tri and tetra-chlorinated derivatives) or ClxBPA. OBJECTIVE The aim of this study is to summarize and present the state of knowledge on human toxicological risk assessment of ClxBPA. MATERIALS AND METHODS A search on ClxBPA in the PubMed database was performed based on studies published between 2002 and 2021. Forty-nine studies on chlorinated derivatives of BPA were found. Available information on their sources and levels of exposure, their effects, their possible mechanisms of action and their toxicokinetics data was extracted and presented. RESULTS ClxBPA have been essentially detected in environmental aqueous media. There is evidence in toxicological and epidemiological studies that ClxBPA also have endocrine-disrupting capabilities. These emerging pollutants have been found in human urine, serum, breast milk, adipose and placental tissue and can constitute a risk to human health. However, in vitro and in vivo toxicokinetic data on ClxBPA are scarce and do not allow characterization of the disposition kinetics of these compounds. CONCLUSION More research to assess their health risks, specifically in vulnerable populations, is needed. Some water chlorination processes are particularly hazardous, and it is important to evaluate their chlorination by-products from a public health perspective.
Collapse
Affiliation(s)
- N Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada; INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - A Dupuis
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France
| | - V Migeot
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - S Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - N Venisse
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France.
| |
Collapse
|
26
|
Perng W, Cantoral A, Soria-Contreras DC, Betanzos-Robledo L, Kordas K, Liu Y, Mora AM, Corvalan C, Pereira A, Cardoso MA, Chavarro JE, Breton CV, Meeker JD, Harley KG, Eskenazi B, Peterson KE, Tellez-Rojo MM. Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective. Obes Rev 2021; 22 Suppl 3:e13245. [PMID: 33951277 PMCID: PMC8217151 DOI: 10.1111/obr.13245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
Following a 2019 workshop led by the Center for Global Health Studies at the Fogarty International Center on the topic of childhood obesity prevention and research synergies transpiring from cross-border collaborations, we convened a group of experts in the United States and Latin America to conduct a narrative review of the epidemiological literature on the role of obesogenic endocrine disrupting chemicals (EDCs) in the etiology of childhood obesity among Latino youth in the United States and Latin America. In addition to summarizing and synthesizing results from research on this topic published within the last decade, we place the findings within a lifecourse biobehavioral framework to aid in identification of unique exposure-outcome relationships driven by both biological and behavioral research, identify inconsistencies and deficiencies in current literature, and discuss the role of policy regulations, all with the goal of identifying viable avenues for prevention of early life obesity in Latino/Hispanic populations.
Collapse
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alejandra Cantoral
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - Diana C Soria-Contreras
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, Mexico
| | - Larissa Betanzos-Robledo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, Buffalo, New York, USA
| | - Yun Liu
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Ana M Mora
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA.,Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Anita Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Jorge E Chavarro
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carrie V Breton
- Division of Environmental Health, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Martha Maria Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, Mexico
| |
Collapse
|
27
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Han SJ, Lee SH. Nontraditional Risk Factors for Obesity in Modern Society. J Obes Metab Syndr 2021; 30:93-103. [PMID: 34011693 PMCID: PMC8277595 DOI: 10.7570/jomes21004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Overweight and obesity, which have rapidly increased around the world in recent years, are significant health problems. They can lead to various morbidities, including cardiovascular diseases, cerebrovascular diseases, type 2 diabetes, some types of cancer, and even death. Obesity is caused by an energy imbalance due to excessive calorie intake and insufficient energy consumption, and genetic factors and individual behavioral problems are also known to be major contributing factors. However, these are insufficient to explain the surge in obesity that has occurred in recent decades. Recent studies have suggested that environmental factors arising from the process of socioeconomic development and modernization contribute to this phenomenon. These environmental factors include light pollution due to artificial lighting, air pollution, endocrine-disrupting chemicals, and reduced exposure to green spaces due to urbanization of residential areas. In this manuscript, the findings and mechanisms of these novel risk factors causing overweight and obesity are reviewed.
Collapse
Affiliation(s)
- Su-Jin Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
30
|
Bisphenol F and bisphenol S promote lipid accumulation and adipogenesis in human adipose-derived stem cells. Food Chem Toxicol 2021; 152:112216. [PMID: 33865937 DOI: 10.1016/j.fct.2021.112216] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as substitutes for bisphenol A (BPA), an endocrine disrupting chemical (EDC) with obesogenic activity. We investigated the in vitro effects of BPS and BPF on the adipogenesis of human adipose-derived stem cells (hASCs) exposed to different doses (0.01, 0.1, 1, 10 and 25 μM), stopping the adipogenic process at 7 or 14 days. Intracellular lipid accumulation was quantified by the Oil Red O assay, gene expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAT/enhancer-binding protein (C/EBPα), lipoprotein-lipase (LPL) and fatty acid binding protein 4 (FABP4), by quantitative real-time polymerase chain reaction (qRT-PCR) and protein levels by Western Blot. hASCs with BPF or BPS produced a linear dose-response increase in intracellular lipid accumulation and in gene expression of the adipogenic markers, confirmed by protein levels. Co-treatment ICI 182,780 significantly inhibited BPF- but not BPS-induced lipid accumulation. Given the affinity of bisphenols for diverse nuclear receptors, their obesogenic effects may result from a combination of pathways rather than a single mechanism. Further research is warranted on the manner in which chemicals interfere with adipogenic differentiation. To our best knowledge, this report shows for the first time the obesogenic potential of BPF in hASCs.
Collapse
|
31
|
Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR. Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116644. [PMID: 33581636 PMCID: PMC8101273 DOI: 10.1016/j.envpol.2021.116644] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 05/17/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1-5 days post fertilization; dpf) or subchronically (1-15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
Collapse
Affiliation(s)
- Karilyn E Sant
- Division of Environmental Health, San Diego State University School of Public Health, San Diego, CA, 92182, USA; Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA.
| | - Kate Annunziato
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Sarah Conlin
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gregory Teicher
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Phoebe Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| |
Collapse
|
32
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
33
|
Amato AA, Wheeler HB, Blumberg B. Obesity and endocrine-disrupting chemicals. Endocr Connect 2021; 10:R87-R105. [PMID: 33449914 PMCID: PMC7983487 DOI: 10.1530/ec-20-0578] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This "generational toxicology" is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.
Collapse
Affiliation(s)
- Angelica Amorim Amato
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Hailey Brit Wheeler
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
34
|
Jung CR, Nakayama SF, Isobe T, Iwai-Shimada M, Kobayashi Y, Nishihama Y, Michikawa T, Sekiyama M, Taniguchi Y, Nitta H, Yamazaki S. Exposure to heavy metals modifies optimal gestational weight gain: A large nationally representative cohort of the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2021; 146:106276. [PMID: 33264735 DOI: 10.1016/j.envint.2020.106276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Clinical guidelines including those set by the US Institute of Medicine, have based optimal gestational weight gain (GWG) on maternal pre-pregnancy body mass index (BMI), but have not considered the role of environmental toxicants such as heavy metals that can disrupt these processes. This study designed to determine optimal GWG ranges in women grouped according to BMI, and to assess whether blood concentrations of heavy metals alter the relationships between GWG and outcomes. A total of 103,060 participants in the Japan Environment and Children's Study recruited between 2011 and 2014 were followed until their children reached 3 years of age. Outcomes included 1 min Apgar score <7, caesarean delivery, childhood obesity, gestational diabetes, pregnancy-induced hypertension, low birth weight, large for gestational age, macrosomia, operative vaginal delivery, postpartum weight retention, preterm birth and small for gestational age. The optimal GWG ranges were determined using multivariate logistic regression models. Stratified analyses were performed to determine optimal GWG ranges according to quartiles of heavy metals. Optimal GWGs for underweight, normal weight and overweight women were found to be 10.0 to <14.0 kg, 6.0 to <12.0 kg and 4.0 to <8.0 kg, respectively. However, the benefits of optimal GWG were attenuated in women exposed to high concentrations of mercury (Hg), lead (Pb) and cadmium (Cd). Despite being within optimal GWG, underweight women with Hg > 5.21 ng/g and overweight women with Hg 3.67-5.21 ng/g, Pb > 7.31 ng/g and Cd > 0.66 ng/g had null effects. Heavy metals can modify the associations between GWG and outcomes, particularly for underweight and overweight women. Because of the complex interactions of environmental toxicants with pre-pregnancy BMI, GWG and adverse outcomes, GWG guidelines should be interpreted cautiously. Environmental toxicants may influence the determination of a clinical guideline.
Collapse
Affiliation(s)
- Chau-Ren Jung
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Miyuki Iwai-Shimada
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yayoi Kobayashi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yukiko Nishihama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Makiko Sekiyama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yu Taniguchi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hiroshi Nitta
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
35
|
Low-dose Bisphenol-A Promotes Epigenetic Changes at Pparγ Promoter in Adipose Precursor Cells. Nutrients 2020; 12:nu12113498. [PMID: 33203037 PMCID: PMC7696502 DOI: 10.3390/nu12113498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure to endocrine-disrupting chemicals such as Bisphenol-A (BPA) is associated with an increase in obesity prevalence. Diet is the primary cause of human exposure to this contaminant. BPA promotes obesity by inducing adipocyte dysfunction and altering adipogenesis. Contradictory evidence and unanswered questions are reported in the literature concerning the BPA effects on adipogenesis. To clarify this issue, we tested the effects of prolonged low-dose BPA exposure on different phases of adipogenesis in committed 3T3L1 and uncommitted NIH3T3 preadipocytes. Our findings show that BPA effects on the adipogenesis are mediated by epigenetic mechanisms by reducing peroxisome proliferator-activated receptor gamma (Pparγ) promoter methylation in preadipocytes. Nevertheless, in BPA-exposed 3T3L1, Pparγ expression only transiently increases as lipid accumulation at day 4 of differentiation, without altering the adipogenic potential of the precursor cells. In the absence of differentiation mix, BPA does not make the 3T3L1 an in vitro model of spontaneous adipogenesis and the effects on the Pparγ expression are still limited at day 4 of differentiation. Furthermore, BPA exposure does not commit the NIH3T3 to the adipocyte lineage, although Pparγ overexpression is more evident both in preadipocytes and during the adipocyte differentiation. Interestingly, termination of the BPA exposure restores the Pparγ promoter methylation and inflammatory profile of the 3T3L1 cells. This study shows that BPA induces epigenetic changes in a key adipogenic gene. These modifications are reversible and do not affect preadipocyte commitment and/or differentiation. We identify an alternative transcriptional mechanism by which BPA affects gene expression and demonstrate how the challenge of preventing exposure is fundamental for human health.
Collapse
|
36
|
Seyoum A, Pradhan A, Jass J, Olsson PE. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139682. [PMID: 32521362 DOI: 10.1016/j.scitotenv.2020.139682] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 05/15/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are synthetic organofluorine compounds with unique stability accompanied with hydrophobic and lipophobic properties. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are of high concern due to their wide application in consumer and industrial products, extreme persistence, abundant occurrence in the environment and their toxic effect to humans and animals. However, knowledge on the molecular mechanisms of toxicity and the effects on reproduction output remain scarce. In this study, we analyzed the effects of PFOS and PFOA on Daphnia magna. Acute toxicity, development, reproduction, lipid metabolism (lipid-accumulation) and lifespan was investigated, as well as the expression of genes related to these endpoints. Exposure of PFOS and PFOA at 1, 10 and 25 μM did not cause acute lethality. Hatching was reduced following exposure to both compounds, and lifespan was decreased following exposure to 25 μM PFOS. Body length of Daphnia magna was reduced significantly by 25 μM PFOS following 7 days exposure. Lipid staining revealed that all PFAS exposures increased lipid accumulation. qRT-PCR analysis of genes involved in lipid metabolism suggests that the increase in lipid content could be due to inhibition of genes involved on absorption and catabolism of fatty acids. Exposure to both PFOA and PFOS reduced the fecundity significantly. Downregulation of genes involved in development and reproductive process, including vtg2, vasa, EcRA, EcRB, usp, jhe, HR3, ftz-F1, E74 and E75 were observed. The alterations in developmental and reproductive genes as well as the disturbed lipid metabolism provides mechanistic insight into the possible causes for decreased fecundity and lifespan observed following exposure to both PFOS and PFOA.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
37
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
38
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
39
|
Sleep Duration and Effort-Reward Imbalance (ERI) Associated with Obesity and Type II Diabetes Mellitus (T2DM) among Taiwanese Middle-Aged Public Servants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186577. [PMID: 32917013 PMCID: PMC7557535 DOI: 10.3390/ijerph17186577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
(1) Limited evidence has shown the mediating effects of work characteristics and sleep duration on obesity and type 2 diabetes mellitus (T2DM) among adults. The objective of this study is to assess the interaction effects between sleep duration and effort–reward imbalance (ERI) on the risk of obesity and T2DM among Taiwanese public servants aged 40–60. (2) A national survey for Taiwanese public servants was conducted by multistage stratified random cluster sampling based on proportional probabilistic sampling. A total of 11,875 participants aged 40–60 years old were collected; (3) 3.6% of participants had self-reporting T2DM diagnosed by a physician and the prevalence of overweight and obesity were 44.0% and 15.8%, respectively. There was a significant correlation between sleep hours for the workday and risk of T2DM in non-obese and obese groups (odds ratio, OR = 1.48 and 1.39, respectively), but this did not exist for the weekend/vacation group. Similar trends in the two groups by sleep hours on a workday, obesity and overweight were significantly associated with the risks of T2DM. Clearly, sleep duration and ERI were moderating factors on the association between BMI and on the prevalence of T2DM. (4) A short sleep duration and heavy job stress contributes to the risk of weight gain and T2DM development.
Collapse
|
40
|
Biserni M, Mesnage R, Ferro R, Wozniak E, Xenakis T, Mein CA, Antoniou MN. Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes. Toxicol Sci 2020; 170:452-461. [PMID: 31086981 PMCID: PMC6657571 DOI: 10.1093/toxsci/kfz097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to endocrine disrupting chemicals is an established risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the potential of glyphosate, 2, 4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole, and quizalofop-p-ethyl (QpE) to induce lipid accumulation in murine 3T3-L1 adipocytes. Only QpE caused a dose-dependent statistically significant triglyceride accumulation from a concentration of 5 up to 100 µM. The QpE commercial formulation Targa Super was 100 times more cytotoxic than QpE alone. Neither the estrogen receptor antagonist ICI 182, 780 nor the glucocorticoid receptor antagonist RU486 was able to block the QpE-induced lipid accumulation. RNAseq analysis of 3T3-L1 adipocytes exposed to QpE suggests that this compound exerts its lipid accumulation effects via a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated pathway, a nuclear receptor whose modulation influences lipid metabolism. QpE was further shown to be active in a PPARγ reporter gene assay at 100 µM, reaching 4% of the maximal response produced by rosiglitazone, which acts as a positive control. This indicates that lipid accumulation induced by QpE is only in part caused by PPARγ activation. The lipid accumulation capability of QpE we observe suggest that this pesticide, whose use is likely to increase in coming years may have a hitherto unsuspected obesogenic property.
Collapse
Affiliation(s)
- Martina Biserni
- Department of Medical and Molecular Genetics, School of Basic and Biomedical Sciences, Faculty of Life Sciences & Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, School of Basic and Biomedical Sciences, Faculty of Life Sciences & Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Raquel Ferro
- Department of Medical and Molecular Genetics, School of Basic and Biomedical Sciences, Faculty of Life Sciences & Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Eva Wozniak
- Genome Centre, Barts and the London School of Medicine and Dentistry, London, UK.,John Vane Science Centre, London, EC1M 6BQ, UK
| | - Theodoros Xenakis
- Genome Centre, Barts and the London School of Medicine and Dentistry, London, UK.,John Vane Science Centre, London, EC1M 6BQ, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, London, UK.,John Vane Science Centre, London, EC1M 6BQ, UK
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, School of Basic and Biomedical Sciences, Faculty of Life Sciences & Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
41
|
Ahn YA, Baek H, Choi M, Park J, Son SJ, Seo HJ, Jung J, Seong JK, Lee J, Kim S. Adipogenic effects of prenatal exposure to bisphenol S (BPS) in adult F1 male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138759. [PMID: 32403013 DOI: 10.1016/j.scitotenv.2020.138759] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS) has been increasingly used as a substitute for bisphenol A (BPA), a known endocrine disruptor. Early-life exposure to BPA affects fetal development and the risk of obesity in adolescence and adulthood. However, the effects of fetal exposure BPS in later life are unknown. This study aimed to investigate the effects of prenatal BPS exposure on adiposity in adult F1 mice. Pregnant C57BL/6 N mice were exposed to BPS (0, 0.05, 0.5, 5, and 50 mg/kg/d) via drinking water from gestation day 9 until delivery. Thereafter, two groups of offspring (6 weeks old) were either administered a standard diet (STD) or a high-fat diet (HFD) for 4 weeks until euthanasia. The body weight and gonadal white adipose tissue (gWAT) mass were determined, and the energy expenditure for the adiposity phenotype was computed especially for male mice, followed by histological analysis of the gWAT. Thereafter, the expression levels of adipogenic marker genes (Pparg, Cebpa, Fabp4, Lpl, and Adipoq) were analyzed in the gWAT via reverse-transcription PCR analysis. BPS-exposed male mice displayed apparent gWAT hypertrophy, consistent with the significant increase in adipocyte size in the gWAT and upregulation of Pparg and its direct target genes among HFD mice in comparison with the control mice. These results suggest that prenatal BPS exposure potentially increases the susceptibility to HFD-induced adipogenesis in male adult mice.
Collapse
Affiliation(s)
- Young-Ah Ahn
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hwayoung Baek
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Miso Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Junbo Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Soo Jin Son
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyun Ju Seo
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaeyun Jung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaehyouk Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
42
|
Serinkan Cinemre FB, Cinemre H, Bahtiyar N, Kahyaoğlu B, Ağaç MT, Shundo H, Sevinç L, Aydemir B. Apelin, Omentin-1, and Vaspin in patients with essential hypertension: association of adipokines with trace elements, inflammatory cytokines, and oxidative damage markers. Ir J Med Sci 2020; 190:97-106. [PMID: 32583310 DOI: 10.1007/s11845-020-02272-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypertension (HT) is a disease associated with endothelial dysfunction which is related to some adipokines and pro- and anti-inflammatory cytokines. AIMS Our aim was to investigate roles of apelin, omentin-1, and vaspin in essential HT and to evaluate their relationships with other pro- and anti-inflammatory cytokines, trace elements, and oxidative stress. We also investigated these parameters to determine asymptomatic target organ damage period and grading essential hypertension. METHODS One hundred fifty-three patients diagnosed with essential hypertension and 45 healthy controls were included in the study. Hypertension was defined as a systolic blood pressure > 140 mmHg and/or a diastolic blood pressure > 90 mm Hg or current use of an antihypertensive medication. The patients who had secondary HT, other chronic metabolic, cardiovascular, cerebrovascular diseases were excluded. History and physical exam including detailed cardiovascular examination were performed in all participants. Adipokines, cytokines, trace elements, lipid peroxidation, and ischemia-modified albumin levels were measured in blood samples by biochemical methods. RESULTS Vaspin, IL-4, IL-8, IL-10, selenium, and zinc levels were significantly lower in the HT group compared to healthy controls while omentin-1, TNF-α, copper, iron, MDA, SOD, and IMA-C levels were significantly higher in HT patients compared to controls. Multiple ordinal regression revealed that TNF-α, IL-10, and body mass index of patients were statistically significant independent predictors (P = 0.024, P = 0.019, and P = 0.032, respectively) for grading of HT. IL-4 and IL-10 were significantly higher in patients with asymptomatic target organ damage, compared to patients without asymptomatic target organ damage (P = 0.032 and P = 0.015, respectively). Our findings suggest that adipokines apelin, omentin, and vaspin may be involved in hypertension by a complex interaction with the anti- and pro-inflammatory cytokines, trace elements, and oxidative stress pathways.
Collapse
Affiliation(s)
- Fatma Behice Serinkan Cinemre
- Department of Biochemistry, Faculty of Medicine, Sakarya University, Korucuk Campus Adapazari, 54290, Sakarya, Turkey.
| | - Hakan Cinemre
- Department of Internal Medicine, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Behlül Kahyaoğlu
- Department of Cardiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mustafa Tarık Ağaç
- Department of Cardiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Harika Shundo
- Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Leyla Sevinç
- Department of Biochemistry, Faculty of Medicine, Sakarya University, Korucuk Campus Adapazari, 54290, Sakarya, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
43
|
Caloric restriction attenuates C57BL/6 J mouse lung injury and extra-pulmonary toxicity induced by real ambient particulate matter exposure. Part Fibre Toxicol 2020; 17:22. [PMID: 32503629 PMCID: PMC7275546 DOI: 10.1186/s12989-020-00354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Caloric restriction (CR) is known to improve health and extend lifespan in human beings. The effects of CR on adverse health outcomes in response to particulate matter (PM) exposure and the underlying mechanisms have yet to be defined. Results Male C57BL/6 J mice were fed with a CR diet or ad libitum (AL) and exposed to PM for 4 weeks in a real-ambient PM exposure system located at Shijiazhuang, China, with a daily mean concentration (95.77 μg/m3) of PM2.5. Compared to AL-fed mice, CR-fed mice showed attenuated PM-induced pulmonary injury and extra-pulmonary toxicity characterized by reduction in oxidative stress, DNA damage and inflammation. RNA sequence analysis revealed that several pulmonary pathways that were involved in production of reactive oxygen species (ROS), cytokine production, and inflammatory cell activation were inactivated, while those mediating antioxidant generation and DNA repair were activated in CR-fed mice upon PM exposure. In addition, transcriptome analysis of murine livers revealed that CR led to induction of xenobiotic metabolism and detoxification pathways, corroborated by increased levels of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and decreased cytotoxicity measured in an ex vivo assay. Conclusion These novel results demonstrate, for the first time, that CR in mice confers resistance against pulmonary injuries and extra-pulmonary toxicity induced by PM exposure. CR led to activation of xenobiotic metabolism and enhanced detoxification of PM-bound chemicals. These findings provide evidence that dietary intervention may afford therapeutic means to reduce the health risk associated with PM exposure.
Collapse
|
44
|
Cadiou S, Bustamante M, Agier L, Andrusaityte S, Basagaña X, Carracedo A, Chatzi L, Grazuleviciene R, Gonzalez JR, Gutzkow KB, Maitre L, Mason D, Millot F, Nieuwenhuijsen M, Papadopoulou E, Santorelli G, Saulnier PJ, Vives M, Wright J, Vrijheid M, Slama R. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index. ENVIRONMENT INTERNATIONAL 2020; 138:105622. [PMID: 32179316 PMCID: PMC8713647 DOI: 10.1016/j.envint.2020.105622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The exposome is defined as encompassing all environmental exposures one undergoes from conception onwards. Challenges of the application of this concept to environmental-health association studies include a possibly high false-positive rate. OBJECTIVES We aimed to reduce the dimension of the exposome using information from DNA methylation as a way to more efficiently characterize the relation between exposome and child body mass index (BMI). METHODS Among 1,173 mother-child pairs from HELIX cohort, 216 exposures ("whole exposome") were characterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age 6-10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple testing: this allowed to point out exposures most likely to be associated with BMI ("reduced exposome"). Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic exposome-wide association study (ExWAS) ignoring the methylome. RESULTS Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including many persistent pollutants, generally unexpectedly associated with decreased BMI. DISCUSSION Our approach incorporating a priori information identified fewer significant associations than an agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.
Collapse
Affiliation(s)
- Solène Cadiou
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Lydiane Agier
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), IDIS, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | | | - Juan R Gonzalez
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Léa Maitre
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Frédéric Millot
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Gillian Santorelli
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Pierre-Jean Saulnier
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France; INSERM, CIC 1402, F-86000 Poitiers, France; CHU Poitiers, Endocrinology, Diabetology, Nutrition Service, Poitiers, France
| | - Marta Vives
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rémy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
45
|
Audouze K, Sarigiannis D, Alonso-Magdalena P, Brochot C, Casas M, Vrijheid M, Babin PJ, Karakitsios S, Coumoul X, Barouki R. Integrative Strategy of Testing Systems for Identification of Endocrine Disruptors Inducing Metabolic Disorders-An Introduction to the OBERON Project. Int J Mol Sci 2020; 21:ijms21082988. [PMID: 32340264 PMCID: PMC7216143 DOI: 10.3390/ijms21082988] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to chemical substances that can produce endocrine disrupting effects represents one of the most critical public health threats nowadays. In line with the regulatory framework implemented within the European Union (EU) to reduce the levels of endocrine disruptors (EDs) for consumers, new and effective methods for ED testing are needed. The OBERON project will build an integrated testing strategy (ITS) to detect ED-related metabolic disorders by developing, improving and validating a battery of test systems. It will be based on the concept of an integrated approach for testing and assessment (IATA). OBERON will combine (1) experimental methods (in vitro, e.g., using 2D and 3D human-derived cells and tissues, and in vivo, i.e., using zebrafish at different stages), (2) high throughput omics technologies, (3) epidemiology and human biomonitoring studies and (4) advanced computational models (in silico and systems biology) on functional endpoints related to metabolism. Such interdisciplinary framework will help in deciphering EDs based on a mechanistic understanding of toxicity by providing and making available more effective alternative test methods relevant for human health that are in line with regulatory needs. Data generated in OBERON will also allow the development of novel adverse outcome pathways (AOPs). The assays will be pre-validated in order to select the test systems that will show acceptable performance in terms of relevance for the second step of the validation process, i.e., the inter-laboratory validation as ring tests. Therefore, the aim of the OBERON project is to support the organization for economic co-operation and development (OECD) conceptual framework for testing and assessment of single and/or mixture of EDs by developing specific assays not covered by the current tests, and to propose an IATA for ED-related metabolic disorder detection, which will be submitted to the Joint Research Center (JRC) and OECD community.
Collapse
Affiliation(s)
- Karine Audouze
- Inserm UMR S-1124, Université de Paris, 75006 Paris, France; (X.C.); (R.B.)
- Correspondence:
| | - Denis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Center for Interdisciplinary Research and Innovation, 57001 Thessaloniki, Greece;
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Celine Brochot
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Parc ALATA BP2, 60550 Verneuil en Halatte, France;
| | - Maribel Casas
- ISGlobal, 08003 Barcelona, Spain; (M.C.); (M.V.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, 08003 Barcelona, Spain; (M.C.); (M.V.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Patrick J. Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM U1211, MRGM, F-33615 Pessac, France;
| | | | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, 75006 Paris, France; (X.C.); (R.B.)
| | - Robert Barouki
- Inserm UMR S-1124, Université de Paris, 75006 Paris, France; (X.C.); (R.B.)
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, 75015 Paris, France
| |
Collapse
|
46
|
Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol 2020; 11:245. [PMID: 32231659 PMCID: PMC7082404 DOI: 10.3389/fimmu.2020.00245] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is accompanied by a systemic chronic low-grade inflammation as well as dysfunctions of several innate and adaptive immune cells. Recent findings emphasize an impaired functionality and phenotype of natural killer (NK) cells under obese conditions. This review provides a detailed overview on research related to overweight and obesity with a particular focus on NK cells. We discuss obesity-associated alterations in subsets, distribution, phenotype, cytotoxicity, cytokine secretion, and signaling cascades of NK cells investigated in vitro as well as in animal and human studies. In addition, we provide recent insights into the effects of physical activity and obesity-associated nutritional factors as well as the reduction of body weight and fat mass on NK cell functions of obese individuals. Finally, we highlight the impact of impaired NK cell physiology on obesity-associated diseases, focusing on the elevated susceptibility for viral infections and increased risk for cancer development and impaired treatment response.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
47
|
Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020; 161:bqaa024. [PMID: 32067051 PMCID: PMC7060764 DOI: 10.1210/endocr/bqaa024] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
- Department of Biomedical Engineering, University of California Irvine, Irvine, California
| |
Collapse
|
48
|
Chioccarelli T, Manfrevola F, Migliaccio M, Altucci L, Porreca V, Fasano S, Cobellis G. Fetal-Perinatal Exposure to Bisphenol-A Affects Quality of Spermatozoa in Adulthood Mouse. Int J Endocrinol 2020; 2020:2750501. [PMID: 32256569 PMCID: PMC7109585 DOI: 10.1155/2020/2750501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol-A (BPA) is considered an endocrine disruptor with estrogenic activity. It is described as an environment-polluting industrial chemical whose adverse effects on the male reproductive system depend on the period of exposure (i.e., fetal, prepubertal, or adult life). We exposed male mice to BPA during the fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the impact of this early-life exposure on gamete health in adulthood animals at 78 days of age. Both in control and BPA-exposed mice, viability and motility of spermatozoa, as well as sperm motility acquisition and chromatin condensation of spermatozoa, have been evaluated. Results reveal harmful effect of BPA on viability and motility of sperm cells as well as on chromatin condensation status during epididymal maturation of spermatozoa. In particular, BPA exposure interferes with biochemical mechanism useful to stabilize sperm chromatin condensation, as it interferes with oxidation of thiol groups associated to chromatin.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Marina Migliaccio
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
49
|
Katz TA, Grimm SL, Kaushal A, Dong J, Treviño LS, Jangid RK, Gaitán AV, Bertocchio JP, Guan Y, Robertson MJ, Cabrera RM, Finegold MJ, Foulds CE, Coarfa C, Walker CL. Hepatic Tumor Formation in Adult Mice Developmentally Exposed to Organotin. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17010. [PMID: 31939706 PMCID: PMC7015627 DOI: 10.1289/ehp5414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Tributyltin (TBT) is a persistent and bioaccumulative environmental toxicant. Developmental exposure to TBT has been shown to cause fatty liver disease (steatosis), as well as increased adiposity in many species, leading to its characterization as an obesogen. OBJECTIVE We aimed to determine the long-term effects of developmental TBT exposure on the liver. METHODS C57BL/6J mice were exposed to a dose of TBT (0.5 mg / kg body weight per day; 3.07 μ M ) below the current developmental no observed adverse effect level (NOAEL) via drinking water, or drinking water alone, provided to the dam from preconception through lactation. Sires were exposed during breeding and lactation. Pups from two parity cycles were included in this study. Animals were followed longitudinally, and livers of offspring were analyzed by pathological evaluation, immunohistochemistry, immunoblotting, and RNA sequencing. RESULTS Developmental exposure to TBT led to increased adiposity and hepatic steatosis at 14 and 20 weeks of age and increased liver adenomas at 45 weeks of age in male offspring. Female offspring displayed increased adiposity as compared with males, but TBT did not lead to an increase in fatty liver or tumor development in female offspring. Liver tumors in male mice were enriched in pathways and gene signatures associated with human and rodent nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). This includes down-regulation of growth hormone receptor (GHR) and of STAT5 signaling, which occurred in response to TBT exposure and preceded liver tumor development. CONCLUSIONS These data reveal a previously unappreciated ability of TBT to increase risk for liver tumorigenesis in mice in a sex-specific manner. Taken together, these findings provide new insights into how early life environmental exposures contribute to liver disease in adulthood. https://doi.org/10.1289/EHP5414.
Collapse
Affiliation(s)
- Tiffany A. Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Akhilesh Kaushal
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey S. Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Rahul K. Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adriana V. Gaitán
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jean-Philippe Bertocchio
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Youchen Guan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Robert M. Cabrera
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Milton J. Finegold
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Charles E. Foulds
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
50
|
Divyashree S, Janhavi P, Ravindra P, Muthukumar S. Experimental models of polycystic ovary syndrome: An update. Life Sci 2019; 237:116911. [DOI: 10.1016/j.lfs.2019.116911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023]
|