1
|
de la Fuente‐Vivas D, Cappitelli V, García‐Gómez R, Valero‐Díaz S, Amato C, Rodriguéz J, Duro‐Sánchez S, von Kriegsheim A, Grusch M, Lozano J, Arribas J, Casar B, Crespo P. ERK1/2 mitogen-activated protein kinase dimerization is essential for the regulation of cell motility. Mol Oncol 2025; 19:452-473. [PMID: 39263917 PMCID: PMC11792999 DOI: 10.1002/1878-0261.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
ERK1/2 mitogen-activated protein kinases (ERK) are key regulators of basic cellular processes, including proliferation, survival, and migration. Upon phosphorylation, ERK becomes activated and a portion of it dimerizes. The importance of ERK activation in specific cellular events is generally well documented, but the role played by dimerization is largely unknown. Here, we demonstrate that impeding ERK dimerization precludes cellular movement by interfering with the molecular machinery that executes the rearrangements of the actin cytoskeleton. We also show that a constitutively dimeric ERK mutant can drive cell motility per se, demonstrating that ERK dimerization is both necessary and sufficient for inducing cellular migration. Importantly, we unveil that the scaffold protein kinase suppressor of Ras 1 (KSR1) is a critical element for endowing external agonists, acting through tyrosine kinase receptors, with the capacity to induce ERK dimerization and, subsequently, to unleash cellular motion. In agreement, clinical data disclose that high KSR1 expression levels correlate with greater metastatic potential and adverse evolution of mammary tumors. Overall, our results portray both ERK dimerization and KSR1 as essential factors for the regulation of cell motility and mammary tumor dissemination.
Collapse
Affiliation(s)
- Dalia de la Fuente‐Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Present address:
Universidad de BurgosBurgosSpain
| | - Vincenzo Cappitelli
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Rocío García‐Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Sara Valero‐Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Camilla Amato
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Javier Rodriguéz
- Cancer Research UK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghUK
| | - Santiago Duro‐Sánchez
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaAustria
| | - José Lozano
- Universidad de Málaga and Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina – IBIMA, Plataforma BionandSpain
| | - Joaquín Arribas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Cheng T, Gu ML, Xu WQ, Ye DW, Zha ZY, Fang WG, Mao LK, Ning J, Hu XB, Ding YH. Mechanism of lncRNA SNHG16 on kidney clear cell carcinoma cells by targeting miR-506-3p/ETS1/RAS/ERK molecular axis. Heliyon 2024; 10:e30388. [PMID: 38756581 PMCID: PMC11096951 DOI: 10.1016/j.heliyon.2024.e30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Objective This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ming-Li Gu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wei-Qiang Xu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Da-Wen Ye
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ze-Yu Zha
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wen-Ge Fang
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Li-Kai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xing-Bang Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Yong-Hui Ding
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
3
|
Jurado M, Zorzano A, Castaño O. Cooperativity and oscillations: Regulatory mechanisms of K-Ras nanoclusters. Comput Biol Med 2023; 166:107455. [PMID: 37742420 DOI: 10.1016/j.compbiomed.2023.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
K-Ras nanoclusters (NCs) concentrate all required molecules belonging to the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway in a small area where signaling events take place, increasing efficiency and specificity of signaling. Such nanostructures are characterized by controlled sizes and lifetimes distributions, but there is a poor understanding of the mechanisms involved in their dynamics of growth/decay. Here, a minimum computational model is presented to analyze the behavior of K-Ras NCs as cooperative dynamic structures that self-regulate their growth and decay according to their size. Indeed, the proposed model reveals that the growth and the local production of a K-Ras nanocluster depend positively on its actual size, whilst its lifetime is inversely proportional to the root of its size. The cooperative binding between the structural constituents of the NC (K-Ras proteins) induces oscillations in the size distributions of K-Ras NCs allowing them to range within controlled values, regulating the growth/decay dynamics of these NCs. Thereby, the size of a K-Ras NC is proposed as a key factor to regulate cell signaling, opening a range of possibilities to develop strategies for use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
5
|
Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. SCIENCE ADVANCES 2023; 9:eadd7969. [PMID: 36791195 PMCID: PMC9931222 DOI: 10.1126/sciadv.add7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.
Collapse
Affiliation(s)
- Ana Martín-Vega
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Ruiz-Peinado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rubén Caloto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xosé R. Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medicine, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Pathology, George Washington University, 2121 I St NW, Washington, DC 20052, USA
- University of Cape Town, UCT Faculty of Health Sciences, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
6
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
7
|
Lin Y, Chen L, Zhang M, Xie S, Du L, Zhang X, Li H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front Cell Dev Biol 2021; 9:667765. [PMID: 34395417 PMCID: PMC8355620 DOI: 10.3389/fcell.2021.667765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) play an important role in temperature regulation by secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge for dermatologists and bum surgeons. To promote and accelerate research on the repair and regeneration of ESGs, we summarized the development, structure and function of ESGs, and current strategies to repair and regenerate ESGs based on stem cells, scaffolds, and possible signaling pathways involved.
Collapse
Affiliation(s)
- Yao Lin
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
8
|
Martínez-Iglesias O, Ruiz-Llorente L, Jurado CC, Aranda A. Thyroid Hormone Receptors and their Role in Cell Proliferation and Cancer. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:229-246. [DOI: 10.1016/b978-0-12-819801-8.00011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
10
|
García-Ibáñez Y, Riesco-Eizaguirre G, Santisteban P, Casar B, Crespo P. RAS Subcellular Localization Inversely Regulates Thyroid Tumor Growth and Dissemination. Cancers (Basel) 2020; 12:cancers12092588. [PMID: 32927904 PMCID: PMC7565207 DOI: 10.3390/cancers12092588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary RAS mutations occur frequently in thyroid tumors, but the extent to which they are associated to tumor aggressiveness is still uncertain. HRAS proteins occupy different subcellular localizations, from which they regulate distinct biochemical processes. Herein, we demonstrate that the capacity of HRAS-transformed thyroid cells to extravasate and invade distant organs is orchestrated by HRAS subcellular localization, by a mechanism dependent on VEGF-B secretion. Interestingly, aggressiveness inversely correlates with tumor size. Moreover, we have identified the acyl protein thioesterase APT-1, a regulator of HRAS sublocalization, as a determinant of thyroid tumor growth versus dissemination. As such, alterations in APT-1 expression levels can dramatically affect the behavior of thyroid tumors. In this respect, APT-1 levels could serve as a biomarker that may help in the stratification of HRAS mutant thyroid tumors based on their aggressiveness. Abstract RAS mutations are the second most common genetic alteration in thyroid tumors. However, the extent to which they are associated with the most aggressive phenotypes is still controversial. Regarding their malignancy, the majority of RAS mutant tumors are classified as undetermined, which complicates their clinical management and can lead to undesired under- or overtreatment. Using the chick embryo spontaneous metastasis model, we herein demonstrate that the aggressiveness of HRAS-transformed thyroid cells, as determined by the ability to extravasate and metastasize at distant organs, is orchestrated by HRAS subcellular localization. Remarkably, aggressiveness inversely correlates with tumor size. In this respect, we also show that RAS site-specific capacity to regulate tumor growth and dissemination is dependent on VEGF-B secretion. Furthermore, we have identified the acyl protein thioesterase APT-1 as a determinant of thyroid tumor growth versus dissemination. We show that alterations in APT-1 expression levels can dramatically affect the behavior of thyroid tumors, based on its role as a regulator of HRAS sublocalization at distinct plasma membrane microdomains. In agreement, APT-1 emerges in thyroid cancer clinical samples as a prognostic factor. As such, APT-1 levels could serve as a biomarker that could help in the stratification of HRAS mutant thyroid tumors based on their aggressiveness.
Collapse
Affiliation(s)
- Yaiza García-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, E-39011 Cantabria, Spain; (Y.G.-I.); (B.C.)
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid. E-28029 Madrid, Spain; (G.R.-E.); (P.S.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, E-28935 Madrid, Spain
- Departamento de Endocrinología Molecular, Universidad Francisco de Vitoria, E-28223 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid. E-28029 Madrid, Spain; (G.R.-E.); (P.S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, E-39011 Cantabria, Spain; (Y.G.-I.); (B.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, E-39011 Cantabria, Spain; (Y.G.-I.); (B.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
12
|
Elmaghrabi AM, Francis D, Rogers HJ, Ochatt SJ. Nuclear Migration: An Indicator of Plant Salinity Tolerance in vitro. FRONTIERS IN PLANT SCIENCE 2019; 10:783. [PMID: 31249584 PMCID: PMC6582401 DOI: 10.3389/fpls.2019.00783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 05/27/2023]
Abstract
In order to understand the mechanisms underlying acquisition of tolerance to salinity, we recently produced callus tissues of tobacco and Medicago truncatula resistant to NaCl-induced salt stress following application of a step-up recurrent selection method. The effects of salinity on cell size are known, but those on cell morphometry including cell and nuclear surface area and position of nuclei within salt stress resistant cells were never studied before. This work fills that gap, using suspension cultured cells of M. truncatula A17 initiated from callus, and Nicotiana tabacum BY-2 cell line resistant to increasing NaCl concentrations up to 150 mM NaCl. The surface area of salinity resistant cells of M. truncatula A17 and N. tabacum BY2 and their nuclei, produced by step-up recurrent selection, were reduced, and cells elongated as NaCl increased, but these parameters proved to be unreliable in explaining cell survival and growth at high NaCl. Conversely, nuclei of resistant cells migrated from the center to the periphery of the cytoplasm close to the walls. Nuclear marginalization was for the first time observed as a result of salt stress in plant cells, and could be a novel helpful morphological marker of acquisition of salinity tolerance.
Collapse
Affiliation(s)
- Adel M. Elmaghrabi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sergio J. Ochatt
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
13
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
The Modulatory Role of MicroRNA-873 in the Progression of KRAS-Driven Cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:301-317. [PMID: 30654191 PMCID: PMC6348737 DOI: 10.1016/j.omtn.2018.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
KRAS is one of the most frequently mutated proto-oncogenes in pancreatic ductal adenocarcinoma (PDAC) and aberrantly activated in triple-negative breast cancer (TNBC). A profound role of microRNAs (miRNAs) in the pathogenesis of human cancer is being uncovered, including in cancer therapy. Using in silico prediction algorithms, we identified miR-873 as a potential regulator of KRAS, and we investigated its role in PDAC and TNBC. We found that reduced miR-873 expression is associated with shorter patient survival in both cancers. miR-873 expression is significantly repressed in PDAC and TNBC cell lines and inversely correlated with KRAS levels. We demonstrate that miR-873 directly bound to the 3′ UTR of KRAS mRNA and suppressed its expression. Notably, restoring miR-873 expression induced apoptosis; recapitulated the effects of KRAS inhibition on cell proliferation, colony formation, and invasion; and suppressed the activity of ERK and PI3K/AKT, while overexpression of KRAS rescued the effects mediated by miR-873. Moreover, in vivo delivery of miR-873 nanoparticles inhibited KRAS expression and tumor growth in PDAC and TNBC tumor models. In conclusion, we provide the first evidence that miR-873 acts as a tumor suppressor by targeting KRAS and that miR-873-based gene therapy may be a therapeutic strategy in PDAC and TNBC.
Collapse
|
15
|
Rudd AK, Brea RJ, Devaraj NK. Amphiphile-Mediated Depalmitoylation of Proteins in Living Cells. J Am Chem Soc 2018; 140:17374-17378. [PMID: 30516377 DOI: 10.1021/jacs.8b10806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational S-palmitoylation plays a central role in protein localization, trafficking, stability, aggregation, and cell signaling. Dysregulation of palmitoylation pathways in cells can alter protein function and is the cause of several diseases. Considering the biological and clinical importance of S-palmitoylation, tools for direct, in vivo modulation of this lipid modification would be extremely valuable. Here, we describe a method for the cleavage of native S-palmitoyl groups from proteins in living cells. Using a cell permeable, cysteine-functionalized amphiphile, we demonstrate the direct depalmitoylation of cellular proteins. We show that amphiphile-mediated depalmitoylation (AMD) can effectively cleave S-palmitoyl groups from the native GTPase HRas and successfully depalmitoylate mislocalized proteins in an infantile neuronal ceroid lipofuscinosis (INCL) disease model. AMD enables direct and facile depalmitoylation of proteins in live cells and has potential therapeutic applications for diseases such as INCL, where native protein thioesterase activity is deficient.
Collapse
Affiliation(s)
- Andrew K Rudd
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
16
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
17
|
Casar B, Badrock AP, Jiménez I, Arozarena I, Colón-Bolea P, Lorenzo-Martín LF, Barinaga-Rementería I, Barriuso J, Cappitelli V, Donoghue DJ, Bustelo XR, Hurlstone A, Crespo P. RAS at the Golgi antagonizes malignant transformation through PTPRκ-mediated inhibition of ERK activation. Nat Commun 2018; 9:3595. [PMID: 30185827 PMCID: PMC6125387 DOI: 10.1038/s41467-018-05941-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development. RAS isoforms are associated with the plasma membrane and endomembranes, but how their localization contributes to tumorigenesis is unclear. Here, the authors show that RAS signals from Golgi complex antagonize tumour formation by inducing apoptosis via ERK inhibition.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Andrew P Badrock
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Iñaki Jiménez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - Imanol Arozarena
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain.,Navarrabiomed-FMS IDISNA, Pamplona, Navarra, 31008, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - L Francisco Lorenzo-Martín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Irene Barinaga-Rementería
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Jorge Barriuso
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Vincenzo Cappitelli
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093, USA
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Adam Hurlstone
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK.
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
18
|
Herrero A, Reis-Cardoso M, Jiménez-Gómez I, Doherty C, Agudo-Ibañez L, Pinto A, Calvo F, Kolch W, Crespo P, Matallanas D. Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases 2018; 11:371-383. [PMID: 29172991 DOI: 10.1080/21541248.2017.1406434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
Collapse
Affiliation(s)
- Ana Herrero
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | | | - Iñaki Jiménez-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Carolanne Doherty
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Lorena Agudo-Ibañez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,Conway Institute, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain.,Centro de Investigación Biomédica en Red CIBERONC, Instituto de Salud Calos III , Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| |
Collapse
|
19
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Liu X, Wang Y, Zhao J. MicroRNA-337 inhibits colorectal cancer progression by directly targeting KRAS and suppressing the AKT and ERK pathways. Oncol Rep 2017; 38:3187-3196. [DOI: 10.3892/or.2017.5997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
|
21
|
Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye F, Xie X, Chen J, Tang H, Xie X. miR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget 2016; 6:34968-78. [PMID: 26392416 PMCID: PMC4741502 DOI: 10.18632/oncotarget.5198] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022] Open
Abstract
The microRNA, miR-200c, is involved in the tumorigenesis and progression of a variety of cancers. The purpose of this study was to investigate the expression, mechanism and prognostic roles of miR-200c in breast cancer. We found that miR-200c was downregulated in both breast cancer tissue and cell lines using quantitative real-time PCR (qRT-PCR). In situ hybridization (ISH) and microarrays showed that low miR-200c expression was associated with poor patient overall survival (OS) and disease free survival (DFS). We used luciferase reporter plasmids to find that miR-200c inhibited the AKT and ERK pathways by directly targeting KRAS. Repression of KRAS by miR-200c suppressed the proliferation and survival of breast cancer cells in vitro and in vivo. miR-200c also had an anti-tumor effect by negatively regulating KRAS in a xenograft mouse model. Our findings provide clues regarding the role of miR-200c as a tumor suppressor in breast cancer through the inhibition of KRAS translation both in vitro and in vivo. miR-200c could be a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Cailu Song
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Long-Zhong Liu
- Department of Ultrasond, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiao-Qing Pei
- Department of Ultrasond, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Herrero A, Casar B, Colón-Bolea P, Agudo-Ibáñez L, Crespo P. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Mol Biol Cell 2016; 27:1958-68. [PMID: 27099370 PMCID: PMC4907729 DOI: 10.1091/mbc.e15-02-0118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/13/2016] [Indexed: 11/11/2022] Open
Abstract
Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals.
Collapse
Affiliation(s)
- Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander E-39011, Spain
| |
Collapse
|
23
|
The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol 2016; 39:15-20. [PMID: 26827288 DOI: 10.1016/j.ceb.2016.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/27/2022]
Abstract
The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases.
Collapse
|
24
|
HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 2015; 26:17-28. [PMID: 26597576 DOI: 10.1016/j.tcb.2015.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.
Collapse
|
25
|
Herrero A, Pinto A, Colón-Bolea P, Casar B, Jones M, Agudo-Ibáñez L, Vidal R, Tenbaum SP, Nuciforo P, Valdizán EM, Horvath Z, Orfi L, Pineda-Lucena A, Bony E, Keri G, Rivas G, Pazos A, Gozalbes R, Palmer HG, Hurlstone A, Crespo P. Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell 2015; 28:170-82. [PMID: 26267534 DOI: 10.1016/j.ccell.2015.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/30/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022]
Abstract
Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.
Collapse
Affiliation(s)
- Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Mary Jones
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Rebeca Vidal
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | - Stephan P Tenbaum
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Paolo Nuciforo
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Elsa M Valdizán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | | | - Laszlo Orfi
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | | | - Emilie Bony
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary; MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | | | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Adam Hurlstone
- Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain.
| |
Collapse
|
26
|
Ruiz-Llorente L, Martínez-Iglesias O, García-Silva S, Tenbaum S, Regadera J, Aranda A. The thyroid hormone receptors as tumor suppressors. Horm Mol Biol Clin Investig 2015; 5:79-89. [PMID: 25961243 DOI: 10.1515/hmbci.2010.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 12/18/2022]
Abstract
In addition to the well-known role of the thyroid hormone receptors (TRs) in growth, development and metabolism, there is increasing evidence that they have profound effects on cell proliferation and malignant transformation. TRs repress transcriptional induction of cyclin D1 by the ras oncogene and block transformation and tumor formation by Ras-transformed fibroblasts in nude mice. Mutant receptors that do not bind coactivators are able to display these actions, whereas receptors defective in corepressors binding are unable to antagonize the responses to the ras oncogene. Furthermore, expression of TRβ1 in hepatocarcinoma and breast cancer cells abolishes anchorage-independent growth and migration, blocks responses to growth factors and represses expression of prometastatic genes, reducing tumor growth and strongly inhibiting invasiveness, extravasation and metastasis formation in euthyroid mice. By contrast, when cells are inoculated into hypothyroid host, tumor growth is retarded, but tumors are more invasive and metastatic growth is enhanced. Increased aggressiveness and tumor growth retardation was also observed with parental cells that do not express TRs, showing that changes secondary to hypothyroidism can modulate tumor progression and metastatic growth independently of the presence of TRs on the tumor cells. Finally, increased malignancy of skin tumors is found in mice lacking TRs, further demonstrating the role of these receptors as inhibitors of tumor progression and suggesting that they represent a potential therapeutic target in cancer.
Collapse
|
27
|
Garant KA, Shmulevitz M, Pan L, Daigle RM, Ahn DG, Gujar SA, Lee PWK. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2015; 35:771-82. [PMID: 25961930 DOI: 10.1038/onc.2015.136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 11/09/2022]
Abstract
Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread.
Collapse
Affiliation(s)
- K A Garant
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - M Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - L Pan
- Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto, ON, Canada
| | - R M Daigle
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - D-G Ahn
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - S A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Strategy and Organizational Performance, IWK Health Centre, Halifax, NS, Canada
| | - P W K Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
Zhu X, Xiong L, Zhang X, Shi N, Zhang Y, Ke J, Sun Z, Chen T. Lyophilized strawberries prevent 7,12-dimethylbenz[α]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events. Mol Cell Biol 2015; 35:1898-914. [PMID: 25776558 DOI: 10.1128/mcb.01398-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/10/2015] [Indexed: 12/30/2022] Open
Abstract
H-Ras must adhere to the plasma membrane to be functional. This is accomplished by posttranslational modifications, including palmitoylation, a reversible process whereby H-Ras traffics between the plasma membrane and the Golgi complex. At the plasma membrane, H-Ras has been proposed to occupy distinct sublocations, depending on its activation status: lipid rafts/detergent-resistant membrane fractions when bound to GDP, diffusing to disordered membrane/soluble fractions in response to GTP loading. Herein, we demonstrate that H-Ras sublocalization is dictated by its degree of palmitoylation in a cell type-specific manner. Whereas H-Ras localizes to detergent-resistant membrane fractions in cells with low palmitoylation activity, it locates to soluble membrane fractions in lineages where it is highly palmitoylated. Interestingly, in both cases GTP loading results in H-Ras diffusing away from its original sublocalization. Moreover, tilting the equilibrium between palmitoylation and depalmitoylation processes can substantially alter H-Ras segregation and, subsequently, its biochemical and biological functions. Thus, the palmitoylation/depalmitoylation balance not only regulates H-Ras cycling between endomembranes and the plasma membrane but also serves as a key orchestrator of H-Ras lateral diffusion between different types of plasma membrane and thereby of H-Ras signaling.
Collapse
|
30
|
|
31
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
32
|
Gu Y, Cheng Y, Song Y, Zhang Z, Deng M, Wang C, Zheng G, He Z. MicroRNA-493 suppresses tumor growth, invasion and metastasis of lung cancer by regulating E2F1. PLoS One 2014; 9:e102602. [PMID: 25105419 PMCID: PMC4126682 DOI: 10.1371/journal.pone.0102602] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
miRNAs have been proposed to be key regulators of progression and metastasis in cancer. However, an understanding of their roles and molecular mechanisms is needed to provide deeper insights for better therapeutic opportunities. In this study we investigated the role and mechanism of miR-493 in the development and progression of nonsmall-cell lung cancer (NSCLC). Our data indicated that the expression of miR-493 was markedly reduced in pulmonary carcinoma. The ectopic expression of miR-493 impaired cell growth and invasion in vitro and in vivo. Mechanically, miR-493 commonly directly targeted E2F1, which resulted in a robust reduction of the expression of mRNA and protein. This effect, in turn, decreased the growth, invasion and metastasis of lung cancer cells. Our findings highlight the importance of miR-493 dysfunction in promoting tumor progression, and implicate miR-493 as a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yixue Gu
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ye Cheng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Ying Song
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhijie Zhang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Min Deng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chengkun Wang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Guopei Zheng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhimin He
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
33
|
Gelabert-Baldrich M, Soriano-Castell D, Calvo M, Lu A, Viña-Vilaseca A, Rentero C, Pol A, Grinstein S, Enrich C, Tebar F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB J 2014; 28:3023-37. [PMID: 24719356 DOI: 10.1096/fj.13-241158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic compartment is emerging as a functional platform for controlling important cellular processes. We have found that ∼10 to 15% of total KRas, a protein that is frequently mutated in cancer, is present on endosomes, independent of its activation state. The dynamics of GFP-KRas wild-type (WT) and constitutively active or inactive mutants on endosomes were analyzed by fluorescence recovery after photobleaching (FRAP) microscopy. The measurements revealed an extraordinarily fast recovery of KRas WT [half-time (HT), ∼1.3 s] compared to HRas, Rab5, and EGFR, with the active KRasG12V mutant being significantly faster and more mobile (HT, ∼1 s, and ∼82% of exchangeable fraction) than the inactive KRasS17N (HT, ∼1.6 s, and ∼60% of exchangeable fraction). KRas rapidly switches from the cytoplasm to the endosomal membranes by an electrostatic interaction between its polybasic region and the endosomal acidic phospholipids, mainly phosphatidylserine.-Gelabert-Baldrich, M., Soriano-Castell, D., Calvo, M., Lu, A., Viña-Vilaseca, A., Rentero, C., Pol, A., Grinstein, S. Enrich, C., Tebar, F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association.
Collapse
Affiliation(s)
- Mariona Gelabert-Baldrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - David Soriano-Castell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Maria Calvo
- Unitat de Microscopia Òptica Avançada, Facultat de Medicina, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Arnau Viña-Vilaseca
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; and
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and
| |
Collapse
|
34
|
Sato T, Takahashi H, Hatakeyama S, Iguchi A, Ariga T. The TRIM-FLMN protein TRIM45 directly interacts with RACK1 and negatively regulates PKC-mediated signaling pathway. Oncogene 2014; 34:1280-91. [PMID: 24681954 DOI: 10.1038/onc.2014.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 12/19/2022]
Abstract
The receptor for activated C-kinase (RACK1), a scaffolding protein that participates in the protein kinase C (PKC) signaling pathway, has an important role in shuttling active PKCs to its substrate. Indeed, recent studies have revealed that RACK1 has an important role in tumorigenesis and that enhancement of the feed-forward mechanism of the c-Jun N-terminal kinase (JNK)-Jun pathway via RACK1 is associated with constitutive activation of MEK (MAPK-ERK kinase)-ERK (extracellular signal-regulated kinase) signaling in human melanoma cells. Taken together, RACK1 additionally has a very important role in the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we show that one of the tripartite motif-containing (TRIM) family ubiquitin ligases, TRIM45, is a novel RACK1-interacting protein and downregulates MAPK signal transduction. Importantly, the expression of TRIM45 is induced when growth-promoting extracellular stimuli activate the MAPK signaling pathway, resulting in attenuation of activation of the MAPK pathway. These findings suggest that TRIM45 functions as a member of the negative feedback loop of the MAPK pathway.
Collapse
Affiliation(s)
- T Sato
- 1] Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan [2] Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - A Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
35
|
Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C. Annexins and Endosomal Signaling. Methods Enzymol 2014; 535:55-74. [DOI: 10.1016/b978-0-12-397925-4.00004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Zang LL, Wu BN, Lin Y, Wang J, Fu L, Tang ZY. Research progress of ursolic acid's anti-tumor actions. Chin J Integr Med 2014; 20:72-9. [PMID: 24374755 DOI: 10.1007/s11655-013-1541-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 01/01/2023]
Abstract
Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars' attention. This review explained anti-tumor actions of UA, including (1) the protection of cells' DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor/mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells. With further studies, UA would be one of the potential anti-tumor agents.
Collapse
Affiliation(s)
- Li-li Zang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | | | | | | | | | | |
Collapse
|
37
|
Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E. Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 2013; 32:147-62. [PMID: 23085856 DOI: 10.1007/s10555-012-9396-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PAC) stands as the poorest prognostic tumor of the digestive tract with limited therapeutic options. PAC carcinogenesis is associated with the loss of function of tumor suppressor genes such as INK4A, TP53, BRCA2, and DPC4, and only a few activated oncogenes among which K-RAS mutations are the most prevalent. The K-RAS mutation occurs early in PAC carcinogenesis, driving downstream activation of MEK and ERK1/2 which promote survival, invasion, and migration of cancer cells. In PAC models, inhibition of members of the Ras-ERK pathway blocks cellular proliferation and metastasis development. As oncogenic Ras does not appear to be a suitable drug target, inhibitors targeting downstream kinases including Raf and MEK have been developed and are currently under evaluation in clinical trials. In this review, we describe the role of the Ras-ERK pathway in pancreatic carcinogenesis and as a new therapeutic target for the treatment of PAC.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM U728 and Department of Medical Oncology, Beaujon University Hospital (AP-HP Paris 7 Diderot), Clichy, France
| | | | | | | | | |
Collapse
|
38
|
Fuentes-Calvo I, Crespo P, Santos E, López-Novoa JM, Martínez-Salgado C. The small GTPase N-Ras regulates extracellular matrix synthesis, proliferation and migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2734-2744. [DOI: 10.1016/j.bbamcr.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/22/2023]
|
39
|
Tarone G, Sbroggiò M, Brancaccio M. Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 2013; 70:4047-54. [PMID: 23532408 PMCID: PMC11114054 DOI: 10.1007/s00018-013-1321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Turin, Italy,
| | | | | |
Collapse
|
40
|
Enthammer M, Papadakis ES, Salomé Gachet M, Deutsch M, Schwaiger S, Koziel K, Ashraf MI, Khalid S, Wolber G, Packham G, Cutress RI, Stuppner H, Troppmair J. Isolation of a novel thioflavin S-derived compound that inhibits BAG-1-mediated protein interactions and targets BRAF inhibitor-resistant cell lines. Mol Cancer Ther 2013; 12:2400-14. [PMID: 24048738 DOI: 10.1158/1535-7163.mct-13-0142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein-protein interactions mediated through the C-terminal Bcl-2-associated athanogene (BAG) domain of BAG-1 are critical for cell survival and proliferation. Thioflavin S (NSC71948)-a mixture of compounds resulting from the methylation and sulfonation of primulin base-has been shown to dose-dependently inhibit the interaction between BAG-1 and Hsc70 in vitro. In human breast cancer cell lines, with high BAG-1 expression levels, Thioflavin S reduces the binding of BAG-1 to Hsc70, Hsp70, or CRAF and decreases proliferation and viability. Here, we report the development of a protocol for the purification and isolation of biologically active constituents of Thioflavin S and the characterization of the novel compound Thio-2. Thio-2 blocked the growth of several transformed cell lines, but had much weaker effects on untransformed cells. Thio-2 also inhibited the proliferation of melanoma cell lines that had become resistant to treatment with PLX4032, an inhibitor of mutant BRAF. In transformed cells, Thio-2 interfered with intracellular signaling at the level of RAF, but had no effect on the activation of AKT. Thio-2 decreased binding of BAG-1 to Hsc70 and to a lesser extent BRAF in vitro and in vivo, suggesting a possible mechanism of action. Given that tumors frequently develop resistance to kinase inhibitors during treatment, Thio-2 and related compounds may offer promising alternative strategies to currently available therapies.
Collapse
Affiliation(s)
- Marion Enthammer
- Corresponding Author: Jakob Troppmair, Innsbruck Medical University, Innrain 66, Innsbruck 6020, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The nucleus is the largest organelle and is commonly depicted in the center of the cell. Yet during cell division, migration, and differentiation, it frequently moves to an asymmetric position aligned with cell function. We consider the toolbox of proteins that move and anchor the nucleus within the cell and how forces generated by the cytoskeleton are coupled to the nucleus to move it. The significance of proper nuclear positioning is underscored by numerous diseases resulting from genetic alterations in the toolbox proteins. Finally, we discuss how nuclear position may influence cellular organization and signaling pathways.
Collapse
Affiliation(s)
- Gregg G Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
42
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
43
|
Chan DW, Hui WWY, Cai PCH, Liu MX, Yung MMH, Mak CSL, Leung THY, Chan KKL, Ngan HYS. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS One 2012; 7:e52578. [PMID: 23285101 PMCID: PMC3527599 DOI: 10.1371/journal.pone.0052578] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/20/2012] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer is a highly lethal disease with poor prognosis and especially in high-grade tumor. Emerging evidence has reported that aberrant upregulation and activation of GRB7, ERK as well as FOXM1 are closely associated with aggresivenesss of human cancers. However, the interplay between these factors in the pathogenesis of human cancers still remains unclear. In this study, we found that GRB7 (P<0.0001), ERK phosphorylation (P<0.0001) and FOXM1 (P = 0.001) were frequently increased and associated with high-grade tumors, as well as a high tendency in association with advanced stage ovarian cancer by immunohistochemical analysis. Intriguingly, the expressions of GRB7 (P<0.0001), ERK phosphorylation (P<0.001) and FOXM1 (P<0.001) showed a significant stepwise increase pattern along Grade 1 to Grade 3 ovarian cancers. Biochemical studies using western blot analysis demonstrated that enforced expression or knockdown of GRB7 showed GRB7 could elevate the levels of ERK phosphorylation and FOXM1, whereas enforced expression of FOXM1 could not alter levels of GRB7 and ERK phosphorylation. But inhibition of ERK signaling by U0126 or PD98059 could reduce the level of FOXM1 in GRB7-overexpressing ovarian cancer cells, suggesting that GRB7, ERK and FOXM1 are regulated orderly. Moreover, inhibition of ERK activity by U0126 or PD98059, or decreased FOXM1 expression by Thiostrepton significantly inhibited cell migration/invasion, tumor growth in vitro and in vivo. Collectively, our findings confer that targeting GRB7/ERK/FOXM1 signaling cascade may be a promising molecular therapeutic choice in combating ovarian cancer.
Collapse
Affiliation(s)
- David W. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| | - Winnie W. Y. Hui
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Patty C. H. Cai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Michelle X. Liu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Mingo M. H. Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Celia S. L. Mak
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Karen K. L. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| |
Collapse
|
44
|
Thaler R, Spitzer S, Karlic H, Berger C, Klaushofer K, Varga F. Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells. Biochem Pharmacol 2012; 85:173-85. [PMID: 23103563 PMCID: PMC3557391 DOI: 10.1016/j.bcp.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/13/2022]
Abstract
There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene family, down-regulates the expression of the pro-apoptotic gene FAS via epigenetic DNA-methylation by DNMT1. We compared ibandronate treatment in neoplastic human U-2 osteosarcoma and in mouse CCL-51 breast cancer cells as well as in the immortalized non-neoplastic MC3T3-E1 osteoblastic cells. Ibandronate attenuated cell proliferation in all cell lines tested. In the neoplastic cells we found up-regulation of caspases suggesting apoptosis. Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. In contrast, ibandronate did not affect FAS and DNMT1 expression in MC3T3-E1 non-neoplastic cells. Data suggest that bisphosphonates via modulation of the activity of small-GTPases induce apoptosis in neoplastic cells by DNA-CpG-demethylation and stimulation of FAS-expression. In conclusion the shown epigenetic mechanism underlying the anti-neoplastic activity of farnesyl-transferase-inhibition, also explains the clinical success of other drugs, which target this pathway.
Collapse
Affiliation(s)
- R. Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - S. Spitzer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - H. Karlic
- Ludwig Boltzmann Cluster Oncology and Institute for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - C. Berger
- Department of Orthopedics, SMZ-OST, Danube Hospital, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - F. Varga
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
- Corresponding author at: Ludwig Boltzmann Institute of Osteology, 1st Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, A-1140 Vienna, Austria. Tel.: +43 1 91021 86933; fax: +43 1 91021 86929.
| |
Collapse
|
45
|
Fotia C, Avnet S, Granchi D, Baldini N. The natural compound Alizarin as an osteotropic drug for the treatment of bone tumors. J Orthop Res 2012; 30:1486-92. [PMID: 22411621 DOI: 10.1002/jor.22101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/16/2012] [Indexed: 02/04/2023]
Abstract
Despite significant clinical improvements, conventional therapies for bone cancer treatment are limited by significant systemic toxicity and lack of specific targeting. In this study, we considered Alizarin, a natural hydroxyanthraquinone derived from madder root with high affinity to calcium and remarkable osteotropic features, as a novel approach for bone cancer treatment. Due to its antitumor properties, as demostrated in colon cancer cells, and to its tropism to bone, Alizarin may be an ideal drug to reduce bone tumor growth. We demonstrated that low dosages of Alizarin strongly inhibited the osteosarcoma (IC(50) for Saos-2, MG-63, and U-2 OS cells, 27.5, 29.0, and 69.9 µg/ml, respectively) and breast carcinoma (IC(50) for MDA-MB-231 cells, 62.1 µg/ml) cell proliferation in vitro. Importantly, Alizarin had a significantly lower inhibitory activity on normal cells (IC(50) for MSC, 828.6 µg/ml), thereby revealing a selective activity towards malignant cells. Furthermore, we found that Alizarin acted through the inhibition of ERK phosphorylation and cell cycle arrest in the S-phase. Finally, Alizarin significantly and strongly impaired both osteosarcoma and breast cancer tumorigenesis. Our results highlight a selective and effective inhibitory activity of Alizarin towards cancerous cells, laying the basis for further studies to investigate its application in bone cancer therapy.
Collapse
Affiliation(s)
- Caterina Fotia
- Laboratory for Pathophysiology, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | |
Collapse
|
46
|
Wang G, Kang MX, Lu WJ, Chen Y, Zhang B, Wu YL. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol Lett 2012. [PMID: 23205101 DOI: 10.3892/ol.2012.784] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been suggested that the newly identified metastasis-associated in colon cancer-1 (MACC1) oncogene is involved in the progression and metastasis of cancer. Several studies have indicated that MACC1 has potential as a novel biomarker. In this study, we aimed to investigate the functions and serum expression levels of MACC1 in pancreatic cancer patients. Blood serum samples from 60 cancer patients and 49 controls were analyzed for serum MACC1 by ELISA. The results revealed that high expression levels of MACC1 were correlated with lymph node metastasis, distant metastasis and a later TNM stage. Inhibition of MACC1 by siRNAs significantly suppressed pancreatic cancer cell proliferation and migration. Furthermore, it was found that the downregulation of MACC1 sensitized pancreatic cancer cells to gemcitabine treatment through the inhibition of the Ras/ERK signaling pathway. Our findings suggest that MACC1 may aid in the diagnosis of pancreatic cancer and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Cancer Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Tasioudi KE, Saetta AA, Sakellariou S, Levidou G, Michalopoulos NV, Theodorou D, Patsouris E, Korkolopoulou P. pERK activation in esophageal carcinomas: clinicopathological associations. Pathol Res Pract 2012; 208:398-404. [PMID: 22658382 DOI: 10.1016/j.prp.2012.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/28/2012] [Accepted: 05/08/2012] [Indexed: 12/24/2022]
Abstract
MAPK (mitogen-activated protein kinase) pathway is considered a control regulator in various malignant tumors but its role in esophageal carcinomas remains elusive. In our study, we examined the possible prognostic significance of MAPK pathway in human esophageal cancer. We searched for mutations in exons 18-21 of EGFR gene, codons 12 and 13 of K-RAS gene and exon 15 of B-RAF gene by high resolution melting analysis (HRMA) and pyrosequencing in 44 esophageal carcinomas. Immunohistochemistry was performed in 29 cases in order to evaluate expression levels of pERK (extracellular-signal regulated kinase). In one laser microdissected squamous cell carcinoma, a somatic K-RAS mutation at codon 12 was detected, whereas none of the cases displayed mutations in EGFR and B-RAF genes. Elevated nuclear as well as cytoplasmic pERK expression (100% and 62% of cases respectively) was observed independently of EGFR and B-RAF mutational status. Increasing pERK nuclear and cytoplasmic expression as well as the intensity of nuclear staining was found to be significantly correlated with tumor grade in univariate and multivariate statistical analysis. Our findings depict the presence of activated ERK despite the low frequency of upstream alterations, implicating ERK activation in the acquisition of a more aggressive phenotype in esophageal cancer.
Collapse
Affiliation(s)
- K E Tasioudi
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Assias, Goudi 11527, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Matta A, Siu KWM, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets 2012; 16:515-23. [DOI: 10.1517/14728222.2012.668185] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Deng M, Tang H, Zhou Y, Zhou M, Xiong W, Zheng Y, Ye Q, Zeng X, Liao Q, Guo X, Li X, Ma J, Li G. miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci 2012; 124:2997-3005. [PMID: 21878506 DOI: 10.1242/jcs.085050] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are involved in various diseases, including cancer. In the present study, we found that miR-216b was downregulated in nasopharyngeal carcinoma (NPC) cell lines and specimens. Decreased expression of miR-216b was directly related to advanced clinical stage and lymph node metastasis. miR-216b levels correlated inversely with levels of KRAS protein during nasopharyngeal tumorigenesis. Furthermore, we demonstrated that miR-216b can bind to the 3' untranslated region (UTR) of KRAS and inhibit expression of the KRAS protein. Both in vitro and in vivo assays revealed that miR-216b attenuated NPC cell proliferation, invasion and tumor growth in nude mice. miR-216b exerts its tumor suppressor function through inhibition of the KRAS-related AKT and ERK pathways. Our findings provide, for the first time, significant clues regarding the role of miR-216b as a tumor suppressor by targeting KRAS in NPC.
Collapse
Affiliation(s)
- Min Deng
- Cancer Research Institute, Central South University, 110 Xiang-Ya Road, Changsha 410078, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sevrain CM, Haelters JP, Chantôme A, Couthon-Gourvès H, Girault A, Vandier C, Jaffrès PA. Glyco-Phospho-Glycero Ether Lipids (GPGEL): synthesis and evaluation as small conductance Ca2+-activated K+ channel (SK3) inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20207g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|