1
|
Zhai F, Pan G, Xue L, Cheng C, Wang J, Liu Y, Liu L. PRDM16 Induces Methylation of FLT3 to Promote FLT3-ITD Signaling and Leukemia Progression. Cancer Res 2025; 85:535-550. [PMID: 39495225 DOI: 10.1158/0008-5472.can-24-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Internal tandem duplication (ITD) in the FMS-like receptor tyrosine kinase-3 (FLT3) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with poor prognosis. FLT3-ITD mutations result in endoplasmic reticulum (ER) retention and constitutive autophosphorylation of FLT3. The PR/SET domain 16 (PRDM16) is highly expressed in patients with FLT3-ITD+ AML, suggesting it might play a role in leukemogenesis. Here, we revealed that genetic and pharmacologic suppression of PRDM16 greatly slowed the progression of FLT3-ITD-driven leukemia, sensitized leukemic cells to tyrosine kinase inhibitors, and extended the survival of leukemic mice. PRDM16 enhanced activation of oncogenic FLT3-ITD and ligand-dependent activation of wild-type FLT3 in leukemic cells. Mechanistically, PRDM16 mediated monomethylation of FLT3-ITD at lysine-614 and promoted its ER localization, resulting in enhanced FLT3 signaling in leukemia cells. Moreover, pharmacologic suppression of FLT3-ITD methylation in combination with tyrosine kinase inhibitors increased the elimination of FLT3-ITD+ AML cells. Altogether, these results suggest that PRDM16 boosts oncogenic FLT3 signaling in leukemic cells by prompting FLT3-ITD methylation. Therefore, PRDM16 may serve as a therapeutic target for AML. Significance: Monomethylation of FLT3-ITD at lysine-614 by PRDM16 induces FLT3 ER localization and enhanced signaling, which can be inhibited by targeting PRDM16 to suppress survival of FLT3-ITD+ AML cells and increase chemosensitivity.
Collapse
Affiliation(s)
- Fengxian Zhai
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
- Department of Hepatobiliary Surgery,Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guozheng Pan
- Department of Renal Transplantation, Organ Transplantation Center, The First Affiliated Hospital of USTC, Hefei, China
| | - Lei Xue
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei, China
| | - Can Cheng
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, China
| | - Jiabei Wang
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
- Department of Hepatobiliary Surgery,Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Yao Liu
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
- Department of Hepatobiliary Surgery,Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Lianxin Liu
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
- Department of Hepatobiliary Surgery,Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| |
Collapse
|
2
|
Sun G, Zhao H, Mu X, Li X, Wang J, Zhao M, Ji R, Lv H, Li Y, Chen C, Xie J, Zhang W, Duan X, Zhu S, Wang J. Whole-genome re-sequencing association study on body size traits at 10-weeks of age in Chinese indigenous geese. Front Vet Sci 2024; 11:1506471. [PMID: 39736931 PMCID: PMC11683055 DOI: 10.3389/fvets.2024.1506471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To investigate the genetic factors underlying marketed body size traits in Chinese local geese, we conducted a comprehensive study involving nine body size traits in 251 samples at 10 weeks of age from five local breeds: Taihu goose (TH), Sichuan goose (SC), Guangfeng goose (GF), Xupu goose (XP), and Youjiang goose (YJ). Genotyping data were obtained through whole-genome re-sequencing, followed by a genome-wide association analysis utilizing the fixed and random model circulating probability unification (FarmCPU) approach. Our findings revealed 88 significant SNPs associated with body size traits, with 16 SNPs surpassing the genome-wide significance threshold (p = 3.98E-09) and 72 SNPs exceeding the suggestive significance threshold (p = 5E-07). Subsequent gene annotation identified these SNPs to be located within exonic regions of 86 candidate genes, including THADA, ATP5A1, ZNF462, PRDM8, and GH14523. Notably, functional enrichment analysis employing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways highlighted 37 significantly enriched pathways, among which the "negative regulation of transforming growth factor beta receptor signaling pathway" (GO:0030512) emerged as relevant to goose skeletal development and the phenotypic expression of body size in geese. The identification of these novel SNPs and candidate genes associated with 10-week-old body size traits in geese presents valuable insights for future molecular breeding endeavors and the elucidation of underlying mechanisms governing body size trait formation in goose.
Collapse
Affiliation(s)
- Guobo Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
| | - Hongchang Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
| | - Xiaohui Mu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jun Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
| | - Mengli Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
| | - Rongchao Ji
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou, China
| | - Hailing Lv
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou, China
| | - Yang Li
- National Waterfowl of Gene Pool, Taizhou, China
| | - Chao Chen
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou, China
| | - Jia Xie
- Jiangsu Liangyu Agriculture and Animal Husbandry Co., Ltd., Suqian, China
| | - Wei Zhang
- Suqian March Food Co., Ltd., Suqian, China
| | - Xiujun Duan
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Shanyuan Zhu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jian Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- National Waterfowl of Gene Pool, Taizhou, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou, China
| |
Collapse
|
3
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
4
|
Sibilio P, Conte F, Huang Y, Castaldi PJ, Hersh CP, DeMeo DL, Silverman EK, Paci P. Correlation-based network integration of lung RNA sequencing and DNA methylation data in chronic obstructive pulmonary disease. Heliyon 2024; 10:e31301. [PMID: 38807864 PMCID: PMC11130701 DOI: 10.1016/j.heliyon.2024.e31301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous, chronic inflammatory process of the lungs and, like other complex diseases, is caused by both genetic and environmental factors. Detailed understanding of the molecular mechanisms of complex diseases requires the study of the interplay among different biomolecular layers, and thus the integration of different omics data types. In this study, we investigated COPD-associated molecular mechanisms through a correlation-based network integration of lung tissue RNA-seq and DNA methylation data of COPD cases (n = 446) and controls (n = 346) derived from the Lung Tissue Research Consortium. First, we performed a SWIM-network based analysis to build separate correlation networks for RNA-seq and DNA methylation data for our case-control study population. Then, we developed a method to integrate the results into a coupled network of differentially expressed and differentially methylated genes to investigate their relationships across both molecular layers. The functional enrichment analysis of the nodes of the coupled network revealed a strikingly significant enrichment in Immune System components, both innate and adaptive, as well as immune-system component communication (interleukin and cytokine-cytokine signaling). Our analysis allowed us to reveal novel putative COPD-associated genes and to analyze their relationships, both at the transcriptomics and epigenomics levels, thus contributing to an improved understanding of COPD pathogenesis.
Collapse
Affiliation(s)
- Pasquale Sibilio
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Yichen Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|
5
|
Tsimpos P, Desiderio S, Cabochette P, Poelvoorde P, Kricha S, Vanhamme L, Poulard C, Bellefroid EJ. Loss of G9a does not phenocopy the requirement for Prdm12 in the development of the nociceptive neuron lineage. Neural Dev 2024; 19:1. [PMID: 38167468 PMCID: PMC10759634 DOI: 10.1186/s13064-023-00179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.
Collapse
Affiliation(s)
- Panagiotis Tsimpos
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Simon Desiderio
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Pauline Cabochette
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Sadia Kricha
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, Lyon, F-69000, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B- 6041, Belgium.
| |
Collapse
|
6
|
Li A, Li M, Wang J, Zhou J, Yang T, Fan M, Zhang K, Gao H, Ren H, Chen M. MECOM: a bioinformatics and experimentally identified marker for the diagnosis and prognosis of lung adenocarcinoma. Biomark Med 2024; 18:79-91. [PMID: 38440890 DOI: 10.2217/bmm-2023-0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: We aimed to explore the clinical value of MDS1 and EVI1 complex locus (MECOM) in lung adenocarcinoma (LUAD). Methods: Bioinformatics and experimental validation confirmed MECOM expression levels in LUAD. The value of MECOM was analyzed by receiver operating characteristic (ROC) curve and Cox regression analysis. Results: Serum MECOM levels were lower in LUAD and correlated with gender, TNM stage, tumor size, lymph node metastasis and distant metastasis. The ROC curve showed that the area under the curve of MECOM was 0.804 for LUAD and, of note, could reach 0.889 for advanced LUAD; specificity was up to 90%. Conclusion: MECOM may contribute to independently identifying LUAD patients, particularly in advanced stages.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| | - Jiejun Zhou
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Yang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Fan
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Zhang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hengxing Gao
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hui Ren
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mingwei Chen
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| |
Collapse
|
7
|
Wells AC, Lotfipour S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11628. [PMID: 38389806 PMCID: PMC10880762 DOI: 10.3389/adar.2023.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Maternal tobacco use and nicotine exposure during pregnancy have been associated with adverse birth outcomes in infants and can lead to preventable pregnancy complications. Exposure to nicotine and other compounds in tobacco and electronic cigarettes (e-cigarettes) has been shown to increases the risk of miscarriage, prematurity, stillbirth, low birth weight, perinatal morbidity, and sudden infant death syndrome (SIDS). Additionally, recent data provided by clinical and pre-clinical research demonstrates that nicotine exposure during pregnancy may heighten the risk for adverse neurodevelopmental disorders such as Attention-Deficit Hyperactivity (ADHD), anxiety, and depression along with altering the infants underlying brain circuitry, response to neurotransmitters, and brain volume. In the United States, one in 14 women (7.2%) reported to have smoked cigarettes during their pregnancy with the global prevalence of smoking during pregnancy estimated to be 1.7%. Approximately 1.1% of women in the United States also reported to have used e-cigarettes during the last 3 months of pregnancy. Due to the large percentage of women utilizing nicotine products during pregnancy in the United States and globally, this review seeks to centralize pre-clinical and clinical studies focused on the neurobehavioral and neurodevelopmental complications associated with prenatal nicotine exposure (PNE) such as alterations to the hypothalamic-pituitary-adrenal (HPA) axis and brain regions such as the prefrontal cortex (PFC), ventral tegmental area (VTA), nucleus accumbens (NA), hippocampus, and caudate as well as changes to nAChR and cholinergic receptor signaling, long-term drug seeking behavior following PNE, and other related developmental disorders. Current literature analyzing the association between PNE and the risk for offspring developing schizophrenia, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety, and obesity will also be discussed.
Collapse
Affiliation(s)
- Alicia C Wells
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, Pharmaceutical Sciences, Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Zhao F, Guo X, Li X, Liu F, Fu Y, Sun X, Yang Z, Zhang Z, Qin Z. Identification and Expressional Analysis of Putative PRDI-BF1 and RIZ Homology Domain-Containing Transcription Factors in Mulinia lateralis. BIOLOGY 2023; 12:1059. [PMID: 37626944 PMCID: PMC10451705 DOI: 10.3390/biology12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.
Collapse
Affiliation(s)
- Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaolin Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Fang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Yifan Fu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaohan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| |
Collapse
|
9
|
Thompson M, Sakabe M, Verba M, Hao J, Meadows SM, Lu QR, Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol 2023; 14:1165379. [PMID: 37324380 PMCID: PMC10267475 DOI: 10.3389/fphys.2023.1165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression. However, the mechanisms of how endothelial cells (ECs) in the artery maintain their arterial characteristics remain unclear. Here, we show that PRDM16 (positive regulatory domain-containing protein 16), a zinc finger transcription factor, is expressed in arterial ECs, but not venous ECs in developing embryos and neonatal retinas. Endothelial-specific deletion of Prdm16 induced ectopic venous marker expression in the arterial ECs and reduced vascular smooth muscle cell (vSMC) recruitment around arteries. Whole-genome transcriptome analysis using isolated brain ECs show that the expression of Angpt2 (encoding ANGIOPOIETIN2, which inhibits vSMC recruitment) is upregulated in the Prdm16 knockout ECs. Conversely, forced expression of PRDM16 in venous ECs is sufficient to induce arterial gene expression and repress the ANGPT2 level. Together, these results reveal an arterial cell-autonomous function for PRDM16 in suppressing venous characteristics in arterial ECs.
Collapse
Affiliation(s)
- Michael Thompson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Masahide Sakabe
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Verba
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Hanquier JN, Sanders K, Berryhill CA, Sahoo FK, Hudmon A, Vilseck JZ, Cornett EM. Identification of non-histone substrates of the lysine methyltransferase PRDM9. J Biol Chem 2023; 299:104651. [PMID: 36972790 PMCID: PMC10164904 DOI: 10.1016/j.jbc.2023.104651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lysine methylation is a dynamic, post-translational mark that regulates the function of histone and non-histone proteins. Many of the enzymes that mediate lysine methylation, known as lysine methyltransferases (KMTs), were originally identified to modify histone proteins but have also been discovered to methylate non-histone proteins. In this work, we investigate the substrate selectivity of the lysine methyltransferase PRDM9 to identify both potential histone and non-histone substrates. Though normally expressed in germ cells, PRDM9 is significantly upregulated across many cancer types. The methyltransferase activity of PRDM9 is essential for double-strand break formation during meiotic recombination. PRDM9 has been reported to methylate histone H3 at lysine residues 4 and 36; however, PRDM9 KMT activity had not previously been evaluated on non-histone proteins. Using lysine-oriented peptide (K-OPL) libraries to screen potential substrates of PRDM9, we determined that PRDM9 preferentially methylates peptide sequences not found in any histone protein. We confirmed PRDM9 selectivity through in vitro KMT reactions using peptides with substitutions at critical positions. A multisite λ-dynamics computational analysis provided a structural rationale for the observed PRDM9 selectivity. The substrate selectivity profile was then used to identify putative non-histone substrates, which were tested by peptide spot array, and a subset were further validated at the protein level by in vitro KMT assays on recombinant proteins. Finally, one of the non-histone substrates, CTNNBL1, was found to be methylated by PRDM9 in cells.
Collapse
Affiliation(s)
- Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Kenidi Sanders
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Firoj K Sahoo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.
| |
Collapse
|
11
|
Di Zazzo E, Rienzo M, Casamassimi A, De Rosa C, Medici N, Gazzerro P, Bifulco M, Abbondanza C. Exploring the putative role of PRDM1 and PRDM2 transcripts as mediators of T lymphocyte activation. J Transl Med 2023; 21:217. [PMID: 36964555 PMCID: PMC10039509 DOI: 10.1186/s12967-023-04066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084, Salerno, Fisciano (SA), Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
12
|
Ren Y, Wang Y, Fang L, Ma M, Ge L, Su C, Xin L, He J, Yang J, Liu X. Deregulation of PRDM5 promotes cell proliferation by regulating JAK/STAT signaling pathway through SOCS1 in human lung adenocarcinoma. Cancer Med 2023; 12:4568-4578. [PMID: 36127737 PMCID: PMC9972168 DOI: 10.1002/cam4.5251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PRDM5 is considered a tumor suppressor in several types of solid tumors and is involved in multiple cellular processes. However, target genes regulated by PRDM5 in lung cancer and its potential mechanism are poorly defined. METHODS Survival analysis was conducted using Kaplan-Meier estimates based on the online databases. RNA-sequencing and bioinformatics analysis were performed to identify the differentially expressed genes in PRDM5-overexpressed A549 cells. RESULTS We observed deregulated PRDM5 in several lung adenocarcinoma cell lines and its association with a poor prognosis. PRDM5 overexpression inhibited the proliferation of lung adenocarcinoma cells in vitro and suppressed tumor growth in a xenograft model. PRDM5 upregulated the promoter activity of SOCS1, which then inhibited the phosphorylation of JAK2 and STAT3. CONCLUSIONS Our study suggests that the low expression of PRDM5 promotes the proliferation of lung adenocarcinoma cells by downregulating SOCS1 and then upregulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ye Wang
- Sinovac Biotech Co. Ltd, Beijing, China
| | | | - Mengchu Ma
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Su
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Feng D, Li W, Wu W, Kahlert UD, Gao P, Hu G, Huang X, Shi W, Li H. Chromatin Regulator-Related Gene Signature for Predicting Prognosis and Immunotherapy Efficacy in Breast Cancer. JOURNAL OF ONCOLOGY 2023; 2023:2736932. [PMID: 36755810 PMCID: PMC9902130 DOI: 10.1155/2023/2736932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many studies have found that chromatin regulators (CRs) are correlated with tumorigenesis and disease prognosis. Here, we attempted to build a new CR-related gene model to predict breast cancer (BC) survival status. METHODS First, the CR-related differentially expressed genes (DEGs) were screened in normal and tumor breast tissues, and the potential mechanism of CR-related DEGs was determined by function analysis. Based on the prognostic DEGs, the Cox regression model was applied to build a signature for BC. Then, survival and receiver operating characteristic (ROC) curves were performed to validate the signature's efficacy and identify its independent prognostic value. The CIBERSORT and tumor immune dysfunction and exclusion (TIDE) algorithms were used to assess the immune cells infiltration and immunotherapy efficacy for this signature, respectively. Additionally, a novel nomogram was also built for clinical decisions. RESULTS We identified 98 CR-related DEGs in breast tissues and constructed a novel 6 CR-related gene signature (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) to predict the outcome of BC patients. The prognostic value of this CR-related gene signature was validated with outstanding predictive performance. The TIDE analysis revealed that the high-risk group patients had a better response to immune checkpoint blockade (ICB) therapy. CONCLUSION A new CR-related gene signature was built, and this signature could provide the independent predictive capability of prognosis and immunotherapy efficacy for BC patients.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wenbing Li
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wei Wu
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Ulf Dietrich Kahlert
- University Clinic for General, Visceral, Vascular-and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Pingfa Gao
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Gangfeng Hu
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Xia Huang
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wenjie Shi
- University Clinic for General, Visceral, Vascular-and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg 39120, Germany
- University Hospital for Gynaecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg 26121, Germany
| | - Huichao Li
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266555, Shandong, China
| |
Collapse
|
14
|
Donoso V, Whitson J, Lom B. Developmental exposure to the pesticide malathion enhances expression of Prdm12, a regulator of nociceptor development, in Xenopus laevis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000786. [PMID: 37033708 PMCID: PMC10074175 DOI: 10.17912/micropub.biology.000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
The transcription factor Prdm12 exerts important influences on the development of nociceptors, peripheral touch and pain-sensing neurons, and has been implicated in human pain sensation disorders. We examined the consequences of exposing developing Xenopus laevis embryos to the commonly used pesticide malathion on Prdm12 expression. Using qPCR and western blot analysis we observed that malathion treatment for the first six days of tadpole development significantly increased both prdm12 mRNA levels and Prdm12 protein levels compared to controls. Consequently, early exposure to this pesticide has potential to alter nociceptor development.
Collapse
Affiliation(s)
- Valeria Donoso
- Biology, Davidson College, Davidson, North Carolina, United States
- Preventative Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jeremy Whitson
- Biology, Davidson College, Davidson, North Carolina, United States
- Biology, High Point University, High Point, North Carolina, United States
| | - Barbara Lom
- Biology, Davidson College, Davidson, North Carolina, United States
- Correspondence to: Barbara Lom (
)
| |
Collapse
|
15
|
Zhu Z, Zou H, Li C, Tong B, Zhang C, Xiao J. The possible pathogenesis of macular caldera in patients with North Carolina macular dystrophy. BMC Ophthalmol 2022; 22:447. [PMID: 36402981 PMCID: PMC9675142 DOI: 10.1186/s12886-022-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND This study provides a detailed description of a Chinese family with North Carolina macular dystrophy (NCMD) and explores its possible pathogenesis. METHODS Five individuals from a three-generation family underwent general ophthalmic examination, multi-imaging examinations and visual electrophysiology examinations when possible. Genetic characterization was carried out by target region sequencing and high-throughput sequencing in affected patients. RESULTS Despite severe fundus changes, patients had relatively good visual acuity. Genetic analysis showed that affected patients had PRDM13 gene duplication and heterozygous mutations of the ABCA4 gene. Optical coherence tomography (OCT) showed an abnormal retinal pigment epithelium (RPE) layer in patients with grade 2 lesions, while the neurosensory retina was relatively normal. In grade 3 patients, RPE and choroid atrophy were greater than that of the neurosensory retina, showing concentric atrophy. CONCLUSIONS RPE and choroidal atrophy were found to play an important role in the development of macular caldera.
Collapse
Affiliation(s)
- Zhe Zhu
- Medical Retina, Eye Center of the Second Hospital of Jilin University, Room 304, 3Rd Floor, Out Patient Building, No.218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - He Zou
- Eye Center of the Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Chuanyu Li
- Medical Retina, Eye Center of the Second Hospital of Jilin University, Room 304, 3Rd Floor, Out Patient Building, No.218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bainan Tong
- Medical Retina, Eye Center of the Second Hospital of Jilin University, Room 304, 3Rd Floor, Out Patient Building, No.218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Chenchen Zhang
- Eye Center of the Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Jun Xiao
- Medical Retina, Eye Center of the Second Hospital of Jilin University, Room 304, 3Rd Floor, Out Patient Building, No.218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
16
|
Widmer S, Seefried FR, von Rohr P, Häfliger IM, Spengeler M, Drögemüller C. Associated regions for multiple birth in Brown Swiss and Original Braunvieh cattle on chromosomes 15 and 11. Anim Genet 2022; 53:557-569. [PMID: 35748198 PMCID: PMC9539900 DOI: 10.1111/age.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Twin and multiple births have negative effects on the performance and health of cows and calves. To decipher the genetic architecture of this trait in the two Swiss Brown Swiss cattle populations, we performed various association analyses based on de-regressed breeding values. Genome-wide association analyses were executed using ~600 K imputed SNPs for the maternal multiple birth trait in ~3500 Original Braunvieh and ~7800 Brown Swiss animals. Significantly associated QTL were observed on different chromosomes for both breeds. We have identified on chromosome 11 a QTL that explains ~6% of the total genetic variance of the maternal multiple birth trait in Original Braunvieh. For the Brown Swiss breed, we have discovered a QTL on chromosome 15 that accounts for ~4% of the total genetic variance. For Original Braunvieh, subsequent haplotype analysis revealed a 90-kb window on chromosome 11 at 88 Mb, where a likely regulatory region is located close to the ID2 gene. In Brown Swiss, a 130-kb window at 75 Mb on chromosome 15 was identified. Analysis of whole-genome sequence data using linkage-disequilibrium estimation revealed possible causal variants for the identified QTL. A presumably regulatory variant in the non-coding 5' region of the ID2 gene was strongly associated with the haplotype for Original Braunvieh. In Brown Swiss, an intron variant in PRDM11, one 3' UTR variant in SYT13 and three intergenic variants 5' upstream of SYT13 were identified as candidate variants for the trait multiple birth maternal. In this study, we report for the first time QTL for the trait of multiple births in Original Braunvieh and Brown Swiss cattle. Moreover, our findings are another step towards a better understanding of the complex genetic architecture of this polygenic trait.
Collapse
Affiliation(s)
- Sarah Widmer
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | | | - Irene M. Häfliger
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | - Cord Drögemüller
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| |
Collapse
|
17
|
Buontempo S, Laise P, Hughes JM, Trattaro S, Das V, Rencurel C, Testa G. EZH2-Mediated H3K27me3 Targets Transcriptional Circuits of Neuronal Differentiation. Front Neurosci 2022; 16:814144. [PMID: 35645710 PMCID: PMC9133892 DOI: 10.3389/fnins.2022.814144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) plays important roles in the epigenetic regulation of cellular development and differentiation through H3K27me3-dependent transcriptional repression. Aberrant PRC2 activity has been associated with cancer and neurodevelopmental disorders, particularly with respect to the malfunction of sits catalytic subunit EZH2. Here, we investigated the role of the EZH2-mediated H3K27me3 apposition in neuronal differentiation. We made use of a transgenic mouse model harboring Ezh2 conditional KO alleles to derive embryonic stem cells and differentiate them into glutamatergic neurons. Time course transcriptomics and epigenomic analyses of H3K27me3 in absence of EZH2 revealed a significant dysregulation of molecular networks affecting the glutamatergic differentiation trajectory that resulted in: (i) the deregulation of transcriptional circuitries related to neuronal differentiation and synaptic plasticity, in particular LTD, as a direct effect of EZH2 loss and (ii) the appearance of a GABAergic gene expression signature during glutamatergic neuron differentiation. These results expand the knowledge about the molecular pathways targeted by Polycomb during glutamatergic neuron differentiation.
Collapse
Affiliation(s)
- Serena Buontempo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasquale Laise
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - James M. Hughes
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Vivek Das
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chantal Rencurel
- Department of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| |
Collapse
|
18
|
Shull LC, Lencer ES, Kim HM, Goyama S, Kurokawa M, Costello JC, Jones K, Artinger KB. PRDM paralogs antagonistically balance Wnt/β-catenin activity during craniofacial chondrocyte differentiation. Development 2022; 149:274527. [PMID: 35132438 PMCID: PMC8918787 DOI: 10.1242/dev.200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/β-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/β-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/β-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.
Collapse
Affiliation(s)
- Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra S. Lencer
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hyun Min Kim
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, The University of Tokyo, Tokyo, 113-8655, Japan
| | - James C. Costello
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Author for correspondence ()
| |
Collapse
|
19
|
Prdm12 regulates inhibitory neuron differentiation in mouse embryonal carcinoma cells. Cytotechnology 2022; 74:329-339. [PMID: 35464160 PMCID: PMC8975904 DOI: 10.1007/s10616-022-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
The epigenetic regulatory system significant influences the fate determination of cells during developmental processes. Prdm12 is a transcriptional regulator that modulates gene expression epigenetically. The Prdm12 gene has been shown to be expressed in neural tissues, specifically during development, but its detailed function is not fully understood. This study investigated the function of the Prdm12 gene in P19 mouse embryonic tumor cells as a model for neural differentiation. A decrease in the expression of neuron-specific genes and the alterations of dendrites and axons morphology was confirmed in Prdm12-knockout P19 cells. In addition, almost no astrocytes were generated in Prdm12-knockout P19 cells. Comprehensive gene expression analysis revealed that there was a reduction in the expression of the inhibitory neuron-specific genes Gad1/2 and Glyt2, but not the excitatory neuron-specific gene VGLUT2, in Prdm12-knockout P19 cells. Furthermore, the expression of inhibitory neuron-related factors, Ptf1a, Dbx1, and Gsx1/2, decreased in Prdm12-knockout P19 cells. Gene expression analysis also revealed that the Ptf1a, Hic1, and Foxa1 genes were candidate targets of Prdm12 during neurogenesis. These results suggest that Prdm12 regulates the differentiation of inhibitory neurons and astrocytes by controlling the expression of these genes during the neural differentiation of P19 cells.
Collapse
|
20
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Wu S, Yuan Z, Sun Z, Zhu T, Wei X, Zou X, Sui R. A novel tandem duplication of PRDM13 in a Chinese family with North Carolina macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2022; 260:645-653. [PMID: 34427740 DOI: 10.1007/s00417-021-05376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSES North Carolina macular dystrophy (NCMD) is a rare autosomal dominant inherited disorder characterized by macular impairment with a variety of phenotypic manifestations. The aims of this study were to assess the clinical features of a Chinese family with NCMD and to identify the underlying genetic cause of the disease. METHODS Three patients from a Chinese family were included in this study. Detailed ophthalmological examinations were performed, including best corrected visual acuity (BCVA), slit lamp, dilated indirect ophthalmoscopy, fundus photography, optical coherence tomography (OCT), fundus autofluorescence, full-field electroretinography (ERG), and electrooculography (EOG). Genomic DNA was extracted from peripheral blood samples. Whole-genome sequencing and long-read genome sequencing were applied to detect the pathogenic variants. Sanger sequencing was performed to confirm the breakpoints. RESULTS All three patients had macular involvement ranging from patchy yellowish-white lesions to big-area thinning, which are typical for NCMD. The BCVA ranged from 20/50 to 20/20. OCT revealed varying degrees of macular structure disorganization. The ERG responses were normal, and the Arden ration of the EOG was reduced. A novel 134.6 kb (g.99932464-100067110dup) tandem duplication on chromosome 6 (NC_000006.11) encompassing the entire CCNC and PRDM13 genes and a DNase 1 hypersensitivity site in the MCDR1 locus was identified. CONCLUSION A novel large tandem duplication in MCDR1 locus was confirmed in a Chinese family with NCMD with a variety of macular phenotypes.
Collapse
Affiliation(s)
- Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhisheng Yuan
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xuan Zou
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
22
|
Li M, Ren H, Zhang Y, Liu N, Fan M, Wang K, Yang T, Chen M, Shi P. MECOM/PRDM3 and PRDM16 Serve as Prognostic-Related Biomarkers and Are Correlated With Immune Cell Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:772686. [PMID: 35174083 PMCID: PMC8841357 DOI: 10.3389/fonc.2022.772686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background The MDS1 and EVI1 complex locus (MECOM, also called PRDM3) and PR domain containing 16 (PRDM16) are two highly related zinc finger transcription factors associated with many malignancies. However, the mechanisms of MECOM and PRDM16 in prognosis and tumor immune infiltration in lung adenocarcinoma (LUAD) remain uncertain. Methods The Cancer Genome Atlas (TCGA), Oncomine, UALCAN, GEPIA, and TIMER databases were searched to determine the relationship between the expression of MECOM and PRDM16, clinicopathological features, immune infiltration, and prognosis in LUAD. Coexpressed genes of the two genes were investigated by CBioPortal, and the potential mechanism of MECOM- and PRDM16-related genes was elucidated by GO and KEGG analyses. STRING database was utilized to further construct the protein-protein interaction network of the coexpressed genes, and the hub genes were identified by Cytoscape. Finally, qRT-PCR was performed to identify the mRNA levels of the target genes in LUAD. Results mRNA levels of MECOM and PRDM16 were downregulated in LUAD (p < 0.05), and the low expression of the two genes was associated with the age, gender, smoking duration, tissue subtype, poor stage, nodal metastasis status, TP53 mutation, and prognosis in LUAD (p < 0.05). MECOM and PRDM16 were also found to be correlated with the expression of a variety of immune cell subsets and their markers. KEGG analysis showed that both of them were mainly enriched in the cell cycle, cellular senescence, DNA replication, and p53 signaling pathway. Importantly, the mRNA levels of the two genes were also found to be decreased in the clinical samples of LUAD by qRT-PCR. Conclusion MECOM and PRDM16 may serve as potential prognostic biomarkers which govern immune cell recruitment to LUAD.
Collapse
Affiliation(s)
- Meng Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanpeng Zhang
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puyu Shi, ; ; Mingwei Chen, ;
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puyu Shi, ; ; Mingwei Chen, ;
| |
Collapse
|
23
|
Whittaker DE, Oleari R, Gregory LC, Le Quesne-Stabej P, Williams HJ, GOSgene, Torpiano JG, Formosa N, Cachia MJ, Field D, Lettieri A, Ocaka LA, Paganoni AJ, Rajabali SH, Riegman KL, De Martini LB, Chaya T, Robinson IC, Furukawa T, Cariboni A, Basson MA, Dattani MT. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J Clin Invest 2021; 131:e141587. [PMID: 34730112 PMCID: PMC8670848 DOI: 10.1172/jci141587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.
Collapse
Affiliation(s)
- Danielle E. Whittaker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise C. Gregory
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Polona Le Quesne-Stabej
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hywel J. Williams
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - GOSgene
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- GOSgene is detailed in Supplemental Acknowledgments
| | - John G. Torpiano
- Department of Paediatrics and
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | | | - Mario J. Cachia
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | - Daniel Field
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise A. Ocaka
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alyssa J.J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sakina H. Rajabali
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Kimberley L.H. Riegman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Lisa B. De Martini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Mehul T. Dattani
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
24
|
MECOM promotes supporting cell proliferation and differentiation in cochlea. J Otol 2021; 17:59-66. [PMID: 35949554 PMCID: PMC9349018 DOI: 10.1016/j.joto.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Permanent damage to hair cells (HCs) is the leading cause of sensory deafness. Supporting cells (SCs) are essential in the restoration of hearing in mammals because they can proliferate and differentiate to HCs. MDS1 and EVI1 complex locus (MECOM) is vital in early development and cell differentiation and regulates the TGF-β signaling pathway to adapt to pathophysiological events, such as hematopoietic proliferation, differentiation and cells death. In addition, MECOM plays an essential role in neurogenesis and craniofacial development. However, the role of MECOM in the development of cochlea and its way to regulate related signaling are not fully understood. To address this problem, this study examined the expression of MECOM during the development of cochlea and observed a significant increase of MECOM at the key point of auditory epithelial morphogenesis, indicating that MECOM may have a vital function in the formation of cochlea and regeneration of HCs. Meanwhile, we tried to explore the possible effect and potential mechanism of MECOM in SC proliferation and HC regeneration. Findings from this study indicate that overexpression of MECOM markedly increases the proliferation of SCs in the inner ear, and the expression of Smad3 and Cdkn2b related to TGF signaling is significantly down-regulated, corresponding to the overexpression of MECOM. Collectively, these data may provide an explanation of the vital function of MECOM in SC proliferation and trans-differentiation into HCs, as well as its regulation. The interaction between MECOM, Wnt, Notch and the TGF-β signaling may provide a feasible approach to induce the regeneration of HCs.
Collapse
|
25
|
Yang WT, Chen M, Xu R, Zheng PS. PRDM4 inhibits cell proliferation and tumorigenesis by inactivating the PI3K/AKT signaling pathway through targeting of PTEN in cervical carcinoma. Oncogene 2021; 40:3318-3330. [PMID: 33846573 PMCID: PMC8102194 DOI: 10.1038/s41388-021-01765-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
PR domain zinc finger protein 4 (PRDM4) is a transcription factor that plays key roles in stem cell self-renewal and tumorigenesis. However, its biological role and exact mechanism in cervical cancer remain unknown. Here, both immunohistochemistry (IHC) and Western blot assays demonstrated that the expression of PRDM4 in cervical cancer tissues was much lower than that in the normal cervix. A xenograft assay showed that PRDM4 overexpression in the cervical cancer cell lines SiHa and HeLa dramatically inhibited cell proliferation and tumorigenic potential in vivo. Conversely, the silencing of PRDM4 promoted cervical cancer cell proliferation and tumorigenic potential. Mechanistically, PRDM4 induced cell cycle arrest at the transition from G0/G1 phase to S phase by upregulating p27 and p21 expression and downregulating Cyclin D1 and CDK4 expression. Furthermore, the PI3K/AKT signaling pathway was inactivated in PRDM4-overexpressing cells, which decreased the levels of p-AKT and upregulated the expression of PTEN, an inhibitor of the PI3K/AKT signaling pathway, at both the transcriptional and translational levels. Dual-luciferase reporter assays and qChIP assays confirmed that PRDM4 transactivated the expression of PTEN by binding to two specific regions in the PTEN promoter. Furthermore, PTEN silencing or a PTEN inhibitor rescued the cell defects induced by PRDM4 overexpression. Therefore, our data suggest that PRDM4 inhibits cell proliferation and tumorigenesis by downregulating the activity of the PI3K/AKT signaling pathway by directly transactivating PTEN expression in cervical cancer.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, Shaanxi, People's Republic of China
| | - Mei Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Rui Xu
- Department of Internal Medicine One, Shaanxi Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Bleu M, Mermet-Meillon F, Apfel V, Barys L, Holzer L, Bachmann Salvy M, Lopes R, Amorim Monteiro Barbosa I, Delmas C, Hinniger A, Chau S, Kaufmann M, Haenni S, Berneiser K, Wahle M, Moravec I, Vissières A, Poetsch T, Ahrné E, Carte N, Voshol J, Bechter E, Hamon J, Meyerhofer M, Erdmann D, Fischer M, Stachyra T, Freuler F, Gutmann S, Fernández C, Schmelzle T, Naumann U, Roma G, Lawrenson K, Nieto-Oberhuber C, Cobos-Correa A, Ferretti S, Schübeler D, Galli GG. PAX8 and MECOM are interaction partners driving ovarian cancer. Nat Commun 2021; 12:2442. [PMID: 33903593 PMCID: PMC8076227 DOI: 10.1038/s41467-021-22708-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.
Collapse
Affiliation(s)
- Melusine Bleu
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fanny Mermet-Meillon
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Verena Apfel
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Louise Barys
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Laura Holzer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Rui Lopes
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Cecile Delmas
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Hinniger
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Suzanne Chau
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Kaufmann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Simon Haenni
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Karolin Berneiser
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Maria Wahle
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ivana Moravec
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Vissières
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tania Poetsch
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Erik Ahrné
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nathalie Carte
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Johannes Voshol
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Elisabeth Bechter
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jacques Hamon
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Matteo Fischer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Therese Stachyra
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Felix Freuler
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sascha Gutmann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - César Fernández
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tobias Schmelzle
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kate Lawrenson
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | | | - Amanda Cobos-Correa
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephane Ferretti
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Giorgio Giacomo Galli
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
27
|
Landy MA, Goyal M, Casey KM, Liu C, Lai HC. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep 2021; 34:108913. [PMID: 33789102 PMCID: PMC8048104 DOI: 10.1016/j.celrep.2021.108913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.
Collapse
Affiliation(s)
- Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Goyal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine M Casey
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chen Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Hypothalamic Research Center, Dallas, TX 75390, USA
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
29
|
Di Tullio F, Schwarz M, Zorgati H, Mzoughi S, Guccione E. The duality of PRDM proteins: epigenetic and structural perspectives. FEBS J 2021; 289:1256-1275. [PMID: 33774927 DOI: 10.1111/febs.15844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.
Collapse
Affiliation(s)
- Federico Di Tullio
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Habiba Zorgati
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Investigation of PRDM10 and PRDM13 Expression in Developing Mouse Embryos by an Optimized PACT-Based Embryo Clearing Method. Int J Mol Sci 2021; 22:ijms22062892. [PMID: 33809237 PMCID: PMC8000312 DOI: 10.3390/ijms22062892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Recent developments in tissue clearing methods have significantly advanced the three-dimensional analysis of biological structures in whole, intact tissue, providing a greater understanding of spatial relationships and biological circuits. Nonetheless, studies have reported issues with maintaining structural integrity and preventing tissue disintegration, limiting the wide application of these techniques to fragile tissues such as developing embryos. Here, we present an optimized passive tissue clearing technique (PACT)-based embryo clearing method, initial embedding PACT (IMPACT)-Basic, that improves tissue rigidity without compromising optical transparency. We also present IMPACT-Advance, which is specifically optimized for thin slices of mouse embryos past E13.5. We demonstrate proof-of-concept by investigating the expression of two relatively understudied PR domain (PRDM) proteins, PRDM10 and PRDM13, in intact cleared mouse embryos at various stages of development. We observed strong PRDM10 and PRDM13 expression in the developing nervous system and skeletal cartilage, suggesting a functional role for these proteins in these tissues throughout embryogenesis.
Collapse
|
31
|
Rienzo M, Sorrentino A, Di Zazzo E, Di Donato M, Carafa V, Marino MM, De Rosa C, Gazzerro P, Castoria G, Altucci L, Casamassimi A, Abbondanza C. Searching for a Putative Mechanism of RIZ2 Tumor-Promoting Function in Cancer Models. Front Oncol 2021; 10:583533. [PMID: 33585202 PMCID: PMC7880127 DOI: 10.3389/fonc.2020.583533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Positive Regulatory Domain (PRDM) gene family members commonly express two main molecular variants, the PR-plus isoform usually acting as tumor suppressor and the PR-minus one functioning as oncogene. Accordingly, PRDM2/RIZ encodes for RIZ1 (PR-plus) and RIZ2 (PR-minus). In human cancers, genetic or epigenetic modifications induce RIZ1 silencing with an expression level imbalance in favor of RIZ2 that could be relevant for tumorigenesis. Additionally, in estrogen target cells and tissues, estradiol increases RIZ2 expression level with concurrent increase of cell proliferation and survival. Several attempts to study RIZ2 function in HeLa or MCF-7 cells by its over-expression were unsuccessful. Thus, we over-expressed RIZ2 in HEK-293 cells, which are both RIZ1 and RIZ2 positive but unresponsive to estrogens. The forced RIZ2 expression increased cell viability and growth, prompted the G2-to-M phase transition and organoids formation. Accordingly, microarray analysis revealed that RIZ2 regulates several genes involved in mitosis. Consistently, RIZ silencing in both estrogen-responsive MCF-7 and -unresponsive MDA-MB-231 cells induced a reduction of cell proliferation and an increase of apoptosis rate. Our findings add novel insights on the putative RIZ2 tumor-promoting functions, although additional attempts are warranted to depict the underlying molecular mechanism.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
32
|
He S, Ma X, Zheng N, Wang G, Wang M, Xia W, Yu D. PRDM14 mediates chemosensitivity and glycolysis in drug‑resistant A549/cisplatin cells and their progenitor A549 human lung adenocarcinoma cells. Mol Med Rep 2020; 23:149. [PMID: 33355367 PMCID: PMC7789100 DOI: 10.3892/mmr.2020.11788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have reported that aberrant PR domain zinc finger protein 14 (PRDM14) expression is associated with the therapeutic sensitivity of cancer cells to drugs. However, its role in lung adenocarcinoma (LUAD) remains unclear. The present study aimed to determine the functions of knockdown or overexpression of PRDM14 in the chemosensitivity and glycolysis of LUAD cells. PRDM14 expression was analyzed in lung cancer tissues from patients resistant and sensitive to cisplatin (DDP), as well as in LUAD cell lines A549 and DDP-resistant A549 (A549/DDP) using reverse transcription quantitative-PCR and western blotting. Additionally, apoptosis was analyzed by flow cytometry, and flow cytometry and biochemical analysis was used to analyze glycolysis, indicated by glucose uptake and lactate release. The results of the present study demonstrated that PRDM14 expression was upregulated in patients with DDP-resistant LUAD and DDP-resistant cell lines. Overexpression of PRDM14 suppressed the sensitivity of A549 cells to DDP and silencing of PRDM14 using shRNA targeting PRDM14 promoted the sensitivity of A549/DDP cells to DDP, compared with that in the respective control groups. In mice with xenograft tumors, knockdown of PRDM14 using shRNA targeting PRDM14 inhibited the A549/DDP cell-derived tumor growth compared with scramble shRNA. The results of the glycolysis assays demonstrated that PRDM14 silencing inhibited glucose uptake, lactate release and glucose transporter 1 expression in A549/DDP cells compared with those in the control cells. PRDM14 overexpression relieved the inhibitory effects of 3-bromopyruvate, a potent glycolytic inhibitor for glycolysis, on glucose uptake and lactate release in A549 cells compared with those in the control cells. Therefore, the results of the present study suggested that PRDM14 may inhibit the chemosensitivity and promote glycolysis in human LUAD cells.
Collapse
Affiliation(s)
- Saifei He
- Department of Science and Research, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ni Zheng
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Donghai Yu
- Department of Science and Education, The Municipal Health Commission, Shanghai 200125, P.R. China
| |
Collapse
|
33
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
34
|
Zhang J, Zhang C, Yang H, Han X, Fan Z, Hou B. Depletion of PRDM9 enhances proliferation, migration and chemotaxis potentials in human periodontal ligament stem cells. Connect Tissue Res 2020; 61:498-508. [PMID: 31096797 DOI: 10.1080/03008207.2019.1620224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Periodontal ligament mesenchymal stem cells (PDLSCs) are important for periodontal tissue regeneration, but how these cells are regulated remains unclear. PRDM (PRDI-BF1 and RIZ homology domain containing) genes play key roles in cell proliferation and differentiation. The present study aimed to investigate the role of one PRDM gene, PRDM9, in the proliferation, migration and chemotaxis potential of PDLSCs. MATERIALS AND METHODS Cell proliferation was examined on the basis of the cell doubling time, cell counting kit-8 (CCK8) assays, and flow cytometry analysis of the cell cycle. Gene expression was detected by Western blotting and real-time RT-PCR. Scratch migration and Transwell chemotaxis assays were used to analyse cell migration and chemotaxis abilities. Microarray analysis and ChIP assays were used to examine the downstream genes of PRDM9 and the corresponding mechanism. RESULTS The results showed that knock-down of PRDM9 enhanced cell proliferation by promoting cell cycle progression and rapid transition from the G1 to S phase via downregulation of p21 and p27 and upregulation of cyclin E. Additionally, depletion of PRDM9 increased the migration and chemotaxis potential of PDLSCs. Microarray results showed that 13 genes, including IGFBP5, IFI44L, and POSTN, were upregulated and 34 genes, including PIP, were downregulated after the depletion of PRDM9. Furthermore, we observed that the depletion of PRDM9 promoted the transcription of IGFBP5 by increasing H3K4me3 methylation in the IGFBP5 promoter. CONCLUSION These discoveries indicated that depletion of PRDM9 increased the cell proliferation, migration and chemotaxis potential of PDLSCs and revealed important downstream genes.
Collapse
Affiliation(s)
- Jianpeng Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China.,Department of Pediatric Dentistry, Tianjin Stomatology Hospital, Tianjin Medical University , Tianjin, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China
| | - Benxiang Hou
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University , Beijing, China
| |
Collapse
|
35
|
Cypris O, Eipel M, Franzen J, Rösseler C, Tharmapalan V, Kuo CC, Vieri M, Nikolić M, Kirschner M, Brümmendorf TH, Zenke M, Lampert A, Beier F, Wagner W. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin Epigenetics 2020; 12:125. [PMID: 32819411 PMCID: PMC7439574 DOI: 10.1186/s13148-020-00914-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Monika Eipel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
36
|
Global translation during early development depends on the essential transcription factor PRDM10. Nat Commun 2020; 11:3603. [PMID: 32681107 PMCID: PMC7368010 DOI: 10.1038/s41467-020-17304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Members of the PR/SET domain-containing (PRDM) family of zinc finger transcriptional regulators play diverse developmental roles. PRDM10 is a yet uncharacterized family member, and its function in vivo is unknown. Here, we report an essential requirement for PRDM10 in pre-implantation embryos and embryonic stem cells (mESCs), where loss of PRDM10 results in severe cell growth inhibition. Detailed genomic and biochemical analyses reveal that PRDM10 functions as a sequence-specific transcription factor. We identify Eif3b, which encodes a core component of the eukaryotic translation initiation factor 3 (eIF3) complex, as a key downstream target, and demonstrate that growth inhibition in PRDM10-deficient mESCs is in part mediated through EIF3B-dependent effects on global translation. Our work elucidates the molecular function of PRDM10 in maintaining global translation, establishes its essential role in early embryonic development and mESC homeostasis, and offers insights into the functional repertoire of PRDMs as well as the transcriptional mechanisms regulating translation.
Collapse
|
37
|
Batista-Gomes JA, Mello FAR, de Oliveira EHC, de Souza MPC, Wanderley AV, da Costa Pantoja L, dos Santos NPC, Khayat BCM, Khayat AS. Identifying novel genetic alterations in pediatric acute lymphoblastic leukemia based on copy number analysis. Mol Cytogenet 2020; 13:25. [PMID: 32607130 PMCID: PMC7320540 DOI: 10.1186/s13039-020-00491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
Copy number variations (CNVs) analysis may reveal molecular biomarkers and provide information on the pathogenesis of acute lymphoblastic leukemia (ALL). We investigated the gene copy number in childhood ALL by microarray and select three new recurrent CNVs to evaluate by real-time PCR assay: DMBT1, KIAA0125 and PRDM16 were selected due to high frequency of CNVs in ALL samples and based on their potential biological functions in carcinogenesis described in the literature. DBMT1 deletion was associated with patients with chromosomal translocations and is a potential tumor suppressor; KIAA0125 and PRDM16 may act as an oncogene despite having a paradoxical behavior in carcinogenesis. This study reinforces that microarrays/aCGH is it is a powerful tool for detection of genomic aberrations, which may be used in the risk stratification.
Collapse
|
38
|
Xu L, Jiang H. Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:452. [PMID: 32435252 PMCID: PMC7218100 DOI: 10.3389/fpls.2020.00452] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates the silencing of invasive and repetitive sequences by preventing the expression of aberrant gene products and the activation of transposition. In Arabidopsis, while it is well known that dimethylation of histone H3 at lysine 9 (H3K9me2) is maintained through a feedback loop between H3K9me2 and DNA methylation, the details of the H3K9me2-dependent silencing pathway have not been fully elucidated. Recently, the regulation and the function of H3K9 methylation have been extensively characterized. In this review, we summarize work from the recent studies regarding the regulation of H3K9me2, emphasizing the process of deposition and reading and the biological significance of H3K9me2 in Arabidopsis.
Collapse
Affiliation(s)
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
39
|
Zhao LN, Kaldis P. Cascading proton transfers are a hallmark of the catalytic mechanism of SAM-dependent methyltransferases. FEBS Lett 2020; 594:2128-2139. [PMID: 32353165 DOI: 10.1002/1873-3468.13799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
The S-adenosyl methionine (SAM)-dependent methyltransferases attach a methyl group to the deprotonated methyl lysine using SAM as a donor. An intriguing, yet unanswered, question is how the deprotonation takes place. PRDM9 with well-defined enzyme activity is a good representative of the methyltransferase family to study the deprotonation and subsequently the methyl transfer. Our study has found that the pKa of Tyr357 is low enough to make it an ideal candidate for proton abstraction from the methyl lysine. The partially deprontonated Tyr357 is able to change its H-bond pattern thus bridging two proton tunneling states and providing a cascading proton transfer. We have uncovered a new catalytic mechanism for the deprotonation of the methyl lysine in methyltransferases.
Collapse
Affiliation(s)
- Li Na Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Clinical Sciences, Lund University, Clinical Research Center (CRC), Malmö, Sweden
| |
Collapse
|
40
|
Karjosukarso DW, Ali Z, Peters TA, Zhang JQC, Hoogendoorn ADM, Garanto A, van Wijk E, Jensen LD, Collin RWJ. Modeling ZNF408-Associated FEVR in Zebrafish Results in Abnormal Retinal Vasculature. Invest Ophthalmol Vis Sci 2020; 61:39. [PMID: 32097476 PMCID: PMC7329629 DOI: 10.1167/iovs.61.2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.
Collapse
|
41
|
Ma Y, Wu X, Ni S, Chen X, He S, Xu W. The diagnosis and phacoemulsification in combination with intraocular lens implantation for an Axenfeld-Rieger syndrome patient with small cornea: a case report. BMC Ophthalmol 2020; 20:148. [PMID: 32295643 PMCID: PMC7160931 DOI: 10.1186/s12886-020-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Axenfeld-Rieger syndrome (ARS) is a congenital disease with a series of developmental abnormalities, and no case of ARS with cataract and small cornea has been reported in previous studies. In the present report, we aimed to describe the diagnosis and phacoemulsification of an ARS patient with small cornea. CASE PRESENTATION A 58-year-old Han Chinese male patient who was referred to Eye Center of the Second Affiliated Hospital of Zhejiang University Medical College was diagnosed with ARS. Systemic and ophthalmic examination and genetic testing were performed. The slit-lamp microscopic examination of anterior segment showed obvious nuclear cataract, iris lesions, and the abnormal cornea of both eyes with small transversal and longitudinal diameters. ARS with bilateral complicated cataract and small cornea was diagnosed. Microincision-phacoemulsification in combination with intraocular lens implantation was performed on his left eye. After successful surgery of his left eye, the best-corrected visual acuity (BCVA) was obviously improved from 2 to 0.5 (LogMAR). A transient elevation of intraocular pressure (IOP) was controlled with medication. CONCLUSIONS Through genetic testing, a known pathogenic mutation NM_153427.2:c.272G > A was detected on the PITX2 gene; and an unknown mutation NM_001453.2:c.1063C > T was detected on FOXC1 gene. For the ARS patient with complicated cataract, the visual acuity was increased by phacoemulsificasion in combination with microincision.
Collapse
Affiliation(s)
- Yajuan Ma
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Zhejiang Rongjun Hospital, Jiaxing, 314000, China
| | - Xingdi Wu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuang Ni
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiang Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Suhong He
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Suichang Hospital of Traditional Chinese Medicine, Suichang, 323300, China
| | - Wen Xu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
42
|
Hael CE, Rojo D, Orquera DP, Low MJ, Rubinstein M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol Metab 2020; 34:43-53. [PMID: 32180559 PMCID: PMC7011018 DOI: 10.1016/j.molmet.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Regulation of food intake and energy balance depends on a group of hypothalamic neurons that release anorexigenic melanocortins encoded by the Pomc gene. Although the physiological importance of central melanocortins is well appreciated, the genetic program that defines the functional identity of melanocortin neurons and assures high levels of hypothalamic Pomc expression is only beginning to be understood. This study assessed whether the transcriptional regulator PRDM12, identified as a highly expressed gene in adult mouse POMC neurons, plays an important role in the identity and function of melanocortin neurons. METHODS We first determined the cellular distribution of PRDM12 in the developing hypothalamus. Then we studied mutant mice with constitutively inactivated Prdm12 to evaluate possible changes in hypothalamic Pomc expression. In addition, we characterized conditional mutant mice specifically lacking Prdm12 in ISL1-positive or POMC neurons during development. Finally, we measured food intake, body weight progression up to 16 weeks of age, adiposity, and glucose tolerance in adult mice lacking Prdm12 selectively from POMC neurons. RESULTS PRDM12 co-expressed with POMC in mouse hypothalamic neurons from early development to adulthood. Mice lacking Prdm12 displayed greatly reduced Pomc expression in the developing hypothalamus. Selective ablation of Prdm12 from ISL1 neurons prevented hypothalamic Pomc expression. The conditional ablation of Prdm12 limited to POMC neurons greatly reduced Pomc expression in the developing hypothalamus and in adult mice led to increased food intake, adiposity, and obesity. CONCLUSIONS Altogether, our results demonstrate that PRDM12 plays an essential role in the early establishment of hypothalamic melanocortin neuron identity and the maintenance of high expression levels of Pomc. Its absence in adult mice greatly impairs Pomc expression and leads to increased food intake, adiposity, and obesity.
Collapse
Affiliation(s)
- Clara E Hael
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela Rojo
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela P Orquera
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Marcelo Rubinstein
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires, 1428 Buenos Aires, Argentina.
| |
Collapse
|
43
|
Enikanolaiye A, Ruston J, Zeng R, Taylor C, Schrock M, Buchovecky CM, Shendure J, Acar E, Justice MJ. Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology. Genome Res 2020; 30:540-552. [PMID: 32317254 PMCID: PMC7197480 DOI: 10.1101/gr.258400.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.
Collapse
Affiliation(s)
- Adebola Enikanolaiye
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Julie Ruston
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Rong Zeng
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Christine Taylor
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Marijke Schrock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christie M Buchovecky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - Elif Acar
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
44
|
Shull LC, Sen R, Menzel J, Goyama S, Kurokawa M, Artinger KB. The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development. Dev Biol 2020; 461:132-144. [PMID: 32044379 DOI: 10.1016/j.ydbio.2020.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.
Collapse
Affiliation(s)
- Lomeli Carpio Shull
- Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| | - Rwik Sen
- Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| | - Johannes Menzel
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
45
|
PRDM16 orchestrates angiogenesis via neural differentiation in the developing brain. Cell Death Differ 2020; 27:2313-2329. [PMID: 32015502 DOI: 10.1038/s41418-020-0504-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis plays crucial roles in maintaining the complex operation of central nervous system (CNS) development. The architecture of communication between neurogenesis and angiogenesis is essential to maintain normal brain development and function. Hence, any disruption of neuron-vascular communications may lead to the pathophysiology of cerebrovascular diseases and blood-brain barrier (BBB) dysfunction. Here we demonstrate that neural differentiation and communication are required for vascular development. Regarding the cellular and molecular mechanism, our results show that PRDM16 activity determines the production of mature neurons and their specific positions in the neocortex. In the cortical plate (CP), aberrant neurons fail to secrete modular calcium-binding protein 1 (SMOC1), an important neuronal signal that participates in neurovascular communication to regulate CNS angiogenesis. Neuronal SMOC1 interacts with TGFBR1 by activating the transcription factors phospho-Smad2/3 to convey intercellular signals to endothelial cells (ECs) in the TGF-β-Smad signaling pathway. Together, our results highlight a crucial coordinated neurovascular development process orchestrated by PRDM16 and reveal the importance of intimate communication for building the neurovascular network during brain development.
Collapse
|
46
|
Investigation of PRDM7 and PRDM12 expression pattern during mouse embryonic development by using a modified passive clearing technique. Biochem Biophys Res Commun 2020; 524:346-353. [PMID: 32000999 DOI: 10.1016/j.bbrc.2019.12.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Recent developments in tissue clearing methods such as CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue hYdrogel) have allowed for the three-dimensional analysis of biological structures in whole, intact tissue, providing greater understanding of spatial relationships and biological circuits. Nonetheless, studies have reported issues with maintaining structural integrity and preventing tissue disintegration, preventing the wide application of these techniques to fragile tissues such as developing embryos. Here, we present optimized passive clearing techniques, mPACT-A, that improve tissue rigidity without the expense of optical transparency. We also present a further modified mPACT-A protocol that is specifically optimized for handling mouse embryos, which are small and fragile, such that they easily dismantle when processed via established tissue clearing methods. We demonstrate proof-of-concept by investigating the expression of two relatively understudied PRDM proteins, PRDM7 and PRDM12, in intact cleared mouse embryos at various stages of development. We observed strong PRDM7 and PRDM12 expression in the developing mouse nervous system, suggestive of potential roles in neural development that will be tested in future functional studies.
Collapse
|
47
|
Allali-Hassani A, Szewczyk MM, Ivanochko D, Organ SL, Bok J, Ho JSY, Gay FPH, Li F, Blazer L, Eram MS, Halabelian L, Dilworth D, Luciani GM, Lima-Fernandes E, Wu Q, Loppnau P, Palmer N, Talib SZA, Brown PJ, Schapira M, Kaldis P, O'Hagan RC, Guccione E, Barsyte-Lovejoy D, Arrowsmith CH, Sanders JM, Kattar SD, Bennett DJ, Nicholson B, Vedadi M. Discovery of a chemical probe for PRDM9. Nat Commun 2019; 10:5759. [PMID: 31848333 PMCID: PMC6917776 DOI: 10.1038/s41467-019-13652-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.
Collapse
Affiliation(s)
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Danton Ivanochko
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Shawna L Organ
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Jabez Bok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florence P H Gay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levi Blazer
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Genna M Luciani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Qin Wu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore (NUS), Department of Biochemistry, 117597, Singapore, Singapore
| | - Ronan C O'Hagan
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Nature Research Center, Vilnius, Akademijos, 2, Lithuania
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - John M Sanders
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Solomon D Kattar
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | | | - Benjamin Nicholson
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
48
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
49
|
Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019; 26:880-889. [PMID: 31582846 DOI: 10.1038/s41594-019-0298-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
The precise temporal and spatial coordination of histone lysine methylation dynamics across the epigenome regulates virtually all DNA-templated processes. A large number of histone lysine methyltransferase (KMT) enzymes catalyze the various lysine methylation events decorating the core histone proteins. Mutations, genetic translocations and altered gene expression involving these KMTs are frequently observed in cancer, developmental disorders and other pathologies. Therapeutic compounds targeting specific KMTs are currently being tested in the clinic, although overall drug discovery in the field is relatively underdeveloped. Here we review the biochemical and biological activities of histone KMTs and their connections to human diseases, focusing on cancer. We also discuss the scientific and clinical challenges and opportunities in studying KMTs.
Collapse
|
50
|
Prozzillo Y, Delle Monache F, Ferreri D, Cuticone S, Dimitri P, Messina G. The True Story of Yeti, the "Abominable" Heterochromatic Gene of Drosophila melanogaster. Front Physiol 2019; 10:1093. [PMID: 31507454 PMCID: PMC6713933 DOI: 10.3389/fphys.2019.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Yeti gene (CG40218) was originally identified by recessive lethal mutation and subsequently mapped to the deep pericentromeric heterochromatin of chromosome 2. Functional studies have shown that Yeti encodes a 241 amino acid protein called YETI belonging to the evolutionarily conserved family of Bucentaur (BCNT) proteins and exhibiting a widespread distribution in animals and plants. Later studies have demonstrated that YETI protein: (i) is able to bind both subunits of the microtubule-based motor kinesin-I; (ii) is required for proper chromosome organization in both mitosis and meiosis divisions; and more recently (iii) is a new subunit of dTip60 chromatin remodeling complex. To date, other functions of YETI counterparts in chicken (CENtromere Protein 29, CENP-29), mouse (Cranio Protein 27, CP27), zebrafish and human (CranioFacial Development Protein 1, CFDP1) have been reported in literature, but the fully understanding of the multifaceted molecular function of this protein family remains still unclear. In this review we comprehensively highlight recent work and provide a more extensive hypothesis suggesting a broader range of YETI protein functions in different cellular processes.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Francesca Delle Monache
- "Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Diego Ferreri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Stefano Cuticone
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Patrizio Dimitri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Messina
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|