1
|
Wu C. Motif-Directed Oxidative Folding to Design and Discover Multicyclic Peptides for Protein Recognition. Acc Chem Res 2025. [PMID: 40083048 DOI: 10.1021/acs.accounts.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
ConspectusMulticyclic peptides that are constrained through covalent cross-linkers can usually maintain stable three-dimensional (3D) structures without the necessity of incorporating noncovalently interacting cores. This configuration allows for a greater utilization of residues for functional purposes compared to larger proteins, rendering multicyclic peptides attractive molecular modalities for the development of chemical tools and therapeutic agents. Even smaller multicyclic peptides, which may lack stable 3D structures due to limited sequence-driven folding capabilities, can still benefit from the specific conformations stabilized by covalent cross-linkers to facilitate target binding. Disulfide-rich peptides (DRPs) are a class of particularly significant multicyclic peptides that are primarily composed of disulfide bonds in their interior. However, the structural diversity of DRPs is limited to a few naturally occurring and designer scaffolds, which significantly impedes the development of multicyclic peptide ligands and therapeutics. To address this issue, we developed a novel method that utilizes disulfide-directing motifs to design and discover DRPs with new structures and functions in random sequence space. Compared with traditional DRPs, these new DRPs that incorporate disulfide-directing motifs exhibit more precise oxidative folding regarding disulfide pairing and demonstrate greater tolerance to sequence manipulations. Thus, we designated these peptides as disulfide-directed multicyclic peptides (DDMPs).Over the past decade, we have developed a new class of multicyclic peptides by leveraging disulfide-directing motifs, including biscysteine motifs such as CPXXC, CPPC, and CXC (C: cysteine; P: proline; X: any amino acid), as well as triscysteine motifs that rationally combine two biscysteine motifs (e.g., CPPCXC and CPXXCXC) to direct the oxidative folding of peptides. This leads to the introduction of a novel concept known as motif-directed oxidative folding, which is valuable for the construction of peptides with multiple disulfide bonds. A large diversity of DDMPs have been designed by simply altering the disulfide-directing motifs, the arrangement of cysteine residues (i.e., cysteine patterns), and the number of random residues separating them. As the oxidative folding of DDMPs is primarily determined by disulfide-directing motifs, these peptides are intrinsically more tolerant of extensive sequence manipulations compared to traditional DRPs. Consequently, multicyclic peptide libraries with an unprecedented high degree of sequence randomization have been developed by utilizing commonly used biological display systems such as phage display. We have validated the applicability of these libraries by successfully discovering DDMPs with unique protein-like 3D structures and high affinity and specificity to various cell-surface receptors, including tumor-associated antigens, immune costimulatory receptors, and G protein-coupled receptors (GPCRs). Currently, multicyclic peptides used in clinical settings are of natural origin or derived from natural DRPs. Our studies have opened up the possibility of developing multicyclic peptides without relying on natural scaffolds, representing a pivotal breakthrough in the field of peptide ligand and drug discovery. Further investigations will facilitate the application of our DDMPs in broader fields such as bioanalysis, chemical biology, and biomedicine.
Collapse
Affiliation(s)
- Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Takjoo R, Wilson DT, Le Quilliec J, Schmidt CA, Zhao G, Liddell MJ, Shaikh NY, Sunagar K, Loukas A, Smout MJ, Daly NL. Structural analysis of an Asterias rubens peptide indicates the presence of a disulfide-directed β-hairpin fold. FEBS Open Bio 2025; 15:415-426. [PMID: 39561265 PMCID: PMC11891777 DOI: 10.1002/2211-5463.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Sea stars are an abundant group of marine invertebrates that display remarkably robust regenerative capabilities throughout all life stages. Numerous proteins and peptides have been identified in a proteome study on the coelomic fluid (biofluid) of the common sea star Asterias rubens, which appear to be involved with the wound-healing response in the organism. However, the three-dimensional structure and function of several of these injury-responsive peptides, including the peptide KASH2, are yet to be investigated. Here, we show that the KASH2 peptide adopts a disulfide-directed β-hairpin fold (DDH). The DDH motif appears to be evolutionarily related to the inhibitor cystine knot motif, which is one of the most widespread disulfide-rich peptide folds. The DDH motif was originally thought to be restricted to arachnids, but our study suggests that as a result of convergent evolution it could also have originated in sea stars. Although the widely conserved DDH fold has potential cross-phyla wound-healing capacity, we have shown that KASH2 does not enhance the proliferation of human fibroblasts, a simple method for wound-healing re-epithelialisation screening. Therefore, additional research is necessary to determine the role of KASH2 in the sea stars.
Collapse
Affiliation(s)
- Rozita Takjoo
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - David T. Wilson
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Justine Le Quilliec
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
- Univ Brest, École Supérieure d'Ingénieurs en Agroalimentaire de Bretagne atlantiquePlouzanéFrance
| | - Casey A. Schmidt
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Guangzu Zhao
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | | | - Naeem Y. Shaikh
- Evolutionary Venomics Lab, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Michael J. Smout
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| |
Collapse
|
3
|
Fan S, Li J, Zhuang J, Zhou Q, Mai Y, Lin B, Wang MW, Wu C. Disulfide-Directed Multicyclic Peptides with N-Terminally Extendable α-Helices for Recognition and Activation of G Protein-Coupled Receptors. J Am Chem Soc 2025; 147:4821-4832. [PMID: 39688263 DOI: 10.1021/jacs.4c12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Many peptide hormones adopt long α-helical structures upon interacting with their cognate receptors but often exhibit flexible conformations when unbound. Strategies that can stabilize long α-helices without disrupting their binding to receptors are still lacking, which hinders progress in their biological applications and drug development. Here, we present an approach that combines rational design with library screening to create and identify a unique disulfide-directed multicyclic peptide (DDMP) scaffold, which could effectively stabilize N-terminally extendable α-helices while displaying exceptional efficiency in disulfide pairing and oxidative folding. This DDMP scaffold was then utilized for stabilizing the α-helical structure of glucagon-like peptide-1 (GLP-1), resulting in a potent GLP-1 receptor (GLP-1R) agonist with a significantly improved α-helicity and proteolytic stability. By incorporating external α-helices into the DDMP scaffold, we can effectively preserve the native N-terminal α-helical structures while allowing for extensive evolution of the C-terminal disulfide-rich domain for enhancing target binding, as demonstrated by the generation of the DDMP-stabilized GLP-1 (g1:Ox). The cryo-electron microscopy structure of the g1:Ox-GLP-1R in complex with heterotrimeric Gs reveals the molecular basis for the potent binding between g1:Ox and GLP-1R. Specifically, the DDMP moiety establishes additional interactions with the extracellular domain of GLP-1R, which are absent in the case of GLP-1. Thus, this work offers a novel and effective approach for engineering therapeutic peptides and other peptide α-helices, ensuring that both the N- and C-terminal regions remain essential for target recognition and activation.
Collapse
Affiliation(s)
- Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhuang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Bingni Lin
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Albar RA, Smith HL, Sanches K, Wai DCC, Naseem MU, Szanto TG, Panyi G, Prentis PJ, Norton RS. Structure and functional studies of Avt1, a novel peptide from the sea anemone Aulactinia veratra. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141050. [PMID: 39357665 DOI: 10.1016/j.bbapap.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Sea anemones are a rich source of peptide toxins spanning a diverse range of biological activities, typically targeting proteins such as ion channels, receptors and transporters. These peptide toxins and their analogues are usually highly stable and selective for their molecular targets, rendering them of interest as molecular tools, insecticides and therapeutics. Recent transcriptomic and proteomic analyses of the sea anemone Aulactinia veratra identified a novel 28-residue peptide, designated Avt1. Avt1 was produced using solid-phase peptide synthesis, followed by oxidative folding and purification of the folded peptide using reversed-phase high-performance liquid chromatography. The liquid chromatography-mass spectrometry profile of synthetic Avt1 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds. The solution structure determined by NMR revealed that Avt1 adopts an inhibitor cystine knot (ICK) fold, in which a ring is formed by two disulfide bonds with a third disulfide penetrating the ring to create the pseudo-knot. This structure provides ICK peptides with high structural, thermal and proteolytic stability. Consistent with its ICK structure, Avt1 was resistant to proteolysis by trypsin, chymotrypsin and pepsin, although it was not a trypsin inhibitor. Avt1 at 100 nM showed no activity in patch-clamp electrophysiological assays against several mammalian voltage-gated ion channels, but has structural features similar to toxins targeting insect sodium ion channels. Although sequence homologues of Avt1 are found in a number of sea anemones, this is the first representative of this family to be characterised structurally and functionally.
Collapse
Affiliation(s)
- Renad A Albar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Lyukmanova EN, Shenkarev ZO. Toxins from Animal Venom-A Rich Source of Active Compounds with High Pharmacological Potential. Toxins (Basel) 2024; 16:512. [PMID: 39728770 PMCID: PMC11728658 DOI: 10.3390/toxins16120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Animal venoms contain a huge variety of bioactive molecules-namely, toxins-with an almost combinatorial spectrum of biological activities [...].
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
6
|
Duan Z, Kong C, Fan S, Wu C. Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders. Nat Commun 2024; 15:7799. [PMID: 39242578 PMCID: PMC11379947 DOI: 10.1038/s41467-024-51723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Peptides are valuable for therapeutic development, with multicyclic peptides showing promise in mimicking antigen-binding potency of antibodies. However, our capability to engineer multicyclic peptide scaffolds, particularly for the construction of large combinatorial libraries, is still limited. Here, we study the interplay of disulfide pairing between three biscysteine motifs, and designed a range of triscysteine motifs with unique disulfide-directing capability for regulating the oxidative folding of multicyclic peptides. We demonstrate that incorporating these motifs into random sequences allows the design of disulfide-directed multicyclic peptide (DDMP) libraries with up to four disulfide bonds, which have been applied for the successful discovery of peptide binders with nanomolar affinity to several challenging targets. This study encourages the use of more diverse disulfide-directing motifs for creating multicyclic peptide libraries and opens an avenue for discovering functional peptides in sequence and structural space beyond existing peptide scaffolds, potentially advancing the field of peptide drug discovery.
Collapse
Affiliation(s)
- Zengping Duan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuilian Kong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China.
| |
Collapse
|
7
|
Walker AA, Chin YKY, Guo S, Jin J, Wilbrink E, Goudarzi MH, Wirth H, Gordon E, Weirauch C, King GF. Structure and bioactivity of an insecticidal trans-defensin from assassin bug venom. Structure 2024; 32:1348-1357.e4. [PMID: 38889720 DOI: 10.1016/j.str.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evienne Wilbrink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Fontys University of Applied Sciences, Eindhoven 5612 AR, the Netherlands
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Hayden Wirth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Eric Gordon
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Christiane Weirauch
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
McCarthy S, Gonen S. δ-Conotoxin Structure Prediction and Analysis through Large-Scale Comparative and Deep Learning Modeling Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404786. [PMID: 39033537 PMCID: PMC11425241 DOI: 10.1002/advs.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Indexed: 07/23/2024]
Abstract
The δ-conotoxins, a class of peptides produced in the venom of cone snails, are of interest due to their ability to inhibit the inactivation of voltage-gated sodium channels causing paralysis and other neurological responses, but difficulties in their isolation and synthesis have made structural characterization challenging. Taking advantage of recent breakthroughs in computational algorithms for structure prediction that have made modeling especially useful when experimental data is sparse, this work uses both the deep-learning-based algorithm AlphaFold and comparative modeling method RosettaCM to model and analyze 18 previously uncharacterized δ-conotoxins derived from piscivorous, vermivorous, and molluscivorous cone snails. The models provide useful insights into the structural aspects of these peptides and suggest features likely to be significant in influencing their binding and different pharmacological activities against their targets, with implications for drug development. Additionally, the described protocol provides a roadmap for the modeling of similar disulfide-rich peptides by these complementary methods.
Collapse
Affiliation(s)
- Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
9
|
Turcio R, Di Matteo F, Capolupo I, Ciaglia T, Musella S, Di Chio C, Stagno C, Campiglia P, Bertamino A, Ostacolo C. Voltage-Gated K + Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities. Mar Drugs 2024; 22:350. [PMID: 39195466 DOI: 10.3390/md22080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some "novel" candidate chemotherapeutic drugs that target potassium channels.
Collapse
Affiliation(s)
- Rita Turcio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | | | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
10
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
11
|
Xu T, Huangfu B, He X, Huang K. Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review. Cell Biol Toxicol 2024; 40:27. [PMID: 38693223 PMCID: PMC11062979 DOI: 10.1007/s10565-024-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.
Collapse
Affiliation(s)
- Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| |
Collapse
|
12
|
Ramanujam V, Crawford T, Cristofori‐Armstrong B, Deuis JR, Jia X, Maxwell MJ, Jami S, Ma L, Vetter I, Mobli M. Structural Basis of the Bivalency of the TRPV1 Agonist DkTx. Angew Chem Int Ed Engl 2024; 63:e202314621. [PMID: 37953402 PMCID: PMC10952689 DOI: 10.1002/anie.202314621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Bivalency is a prevalent natural mechanism to enhance receptor avidity. Various two-domain disulfide-rich peptides exhibiting bivalent action have been identified from animal venoms. A unique characteristic of these peptides is that they induce a pharmacological response different from that provoked by any of the constituent domains. The enhanced potency and avidity of such peptides is therefore a consequence of their domain fusion by a peptide linker. The role of the linker itself, beyond conjugation, remains unclear. Here, we investigate how the linker affects the bivalency of the capsaicin receptor (TRPV1) agonist DkTx. We recombinantly produced isotope labelled DkTx using a protein splicing approach, to solve the high-resolution solution structure of DkTx, revealing residual linker order stabilised by linker-domain interactions leading to biased domain orientations. The significance of this was studied using a combination of mutagenesis, spin relaxation studies and electrophysiology measurements. Our results reveal that disrupting the pre-organisation of the domains of DkTx is accompanied by reductions in potency and onset of avidity. Our findings support a model of pre-configured two-domain binding, in favour of the previously suggested sequential binding model. This highlights the significance of ordered elements in linker design and the natural evolution of these in bivalent toxins.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Theo Crawford
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Ben Cristofori‐Armstrong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Jennifer R. Deuis
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Xinying Jia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Michael J. Maxwell
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Sina Jami
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Linlin Ma
- Griffith Institute for Drug DiscoverySchool of Environment and ScienceGriffith UniversityNathan4111QueenslandAustralia
| | - Irina Vetter
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Mehdi Mobli
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| |
Collapse
|
13
|
Elnahriry KA, Wai DCC, Ashwood LM, Naseem MU, Szanto TG, Guo S, Panyi G, Prentis PJ, Norton RS. Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140952. [PMID: 37640250 DOI: 10.1016/j.bbapap.2023.140952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.
Collapse
Affiliation(s)
- Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
14
|
Labropoulou V, Wang L, Magkrioti C, Smagghe G, Swevers L. Single domain von Willebrand factor type C "cytokines" and the regulation of the stress/immune response in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22071. [PMID: 38288483 DOI: 10.1002/arch.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.
Collapse
Affiliation(s)
- Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Luoluo Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Guy Smagghe
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Entomology, Guizhou University, Guizhou, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|
15
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
16
|
Li J, Liu H, Xiao S, Fan S, Cheng X, Wu C. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery. J Am Chem Soc 2023; 145:28264-28275. [PMID: 38092662 DOI: 10.1021/jacs.3c11856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.
Collapse
Affiliation(s)
- Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xueting Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
17
|
Müller E, Hackney CM, Ellgaard L, Morth JP. High-resolution crystal structure of the Mu8.1 conotoxin from Conus mucronatus. Acta Crystallogr F Struct Biol Commun 2023; 79:240-246. [PMID: 37642664 PMCID: PMC10478764 DOI: 10.1107/s2053230x23007070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Marine cone snails produce a wealth of peptide toxins (conotoxins) that bind their molecular targets with high selectivity and potency. Therefore, conotoxins constitute valuable biomolecular tools with a variety of biomedical purposes. The Mu8.1 conotoxin from Conus mucronatus is the founding member of the newly identified saposin-like conotoxin class of conotoxins and has been shown to target Cav2.3, a voltage-gated calcium channel. Two crystal structures have recently been determined of Mu8.1 at 2.3 and 2.1 Å resolution. Here, a high-resolution crystal structure of Mu8.1 was determined at 1.67 Å resolution in the high-symmetry space group I4122. The asymmetric unit contained one molecule, with a symmetry-related molecule generating a dimer equivalent to that observed in the two previously determined structures. The high resolution allows a detailed atomic analysis of a water-filled cavity buried at the dimer interface, revealing a tightly coordinated network of waters that shield a lysine residue (Lys55) with a predicted unusually low side-chain pKa value. These findings are discussed in terms of a potential functional role of Lys55 in target interaction.
Collapse
Affiliation(s)
- Emilie Müller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Walker AA, Robinson SD, Merritt DJ, Cardoso FC, Goudarzi MH, Mercedes RS, Eagles DA, Cooper P, Zdenek CN, Fry BG, Hall DW, Vetter I, King GF. Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). Proc Natl Acad Sci U S A 2023; 120:e2305871120. [PMID: 37428925 PMCID: PMC10629529 DOI: 10.1073/pnas.2305871120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.
Collapse
Affiliation(s)
- Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
| | - David J. Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Raine S. Mercedes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - David A. Eagles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Paul Cooper
- Research School of Biology, Australian National University, Canberra, ACT2601, Australia
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Donald W. Hall
- Entomology and Nematology Department, University of Florida, Gainesville, FL32608
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD4102, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
19
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
20
|
A bivalent remipede toxin promotes calcium release via ryanodine receptor activation. Nat Commun 2023; 14:1036. [PMID: 36823422 PMCID: PMC9950431 DOI: 10.1038/s41467-023-36579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.
Collapse
|
21
|
Shaikh NY, Sunagar K. The deep-rooted origin of disulfide-rich spider venom toxins. eLife 2023; 12:83761. [PMID: 36757362 PMCID: PMC10017107 DOI: 10.7554/elife.83761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.
Collapse
Affiliation(s)
- Naeem Yusuf Shaikh
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| |
Collapse
|
22
|
Liu J, Maxwell M, Cuddihy T, Crawford T, Bassetti M, Hyde C, Peigneur S, Tytgat J, Undheim EAB, Mobli M. ScrepYard: An online resource for disulfide-stabilized tandem repeat peptides. Protein Sci 2023; 32:e4566. [PMID: 36644825 PMCID: PMC9885460 DOI: 10.1002/pro.4566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Receptor avidity through multivalency is a highly sought-after property of ligands. While readily available in nature in the form of bivalent antibodies, this property remains challenging to engineer in synthetic molecules. The discovery of several bivalent venom peptides containing two homologous and independently folded domains (in a tandem repeat arrangement) has provided a unique opportunity to better understand the underpinning design of multivalency in multimeric biomolecules, as well as how naturally occurring multivalent ligands can be identified. In previous work, we classified these molecules as a larger class termed secreted cysteine-rich repeat-proteins (SCREPs). Here, we present an online resource; ScrepYard, designed to assist researchers in identification of SCREP sequences of interest and to aid in characterizing this emerging class of biomolecules. Analysis of sequences within the ScrepYard reveals that two-domain tandem repeats constitute the most abundant SCREP domain architecture, while the interdomain "linker" regions connecting the functional domains are found to be abundant in amino acids with short or polar sidechains and contain an unusually high abundance of proline residues. Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for discovery of putatively multivalent peptides, by using it as a resource to identify a previously uncharacterized serine protease inhibitor and confirm its predicted activity using an enzyme assay.
Collapse
Affiliation(s)
- Junyu Liu
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Michael Maxwell
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Thom Cuddihy
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,Centre for Clinical ResearchThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Theo Crawford
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Madeline Bassetti
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,University of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Steve Peigneur
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Eivind A. B. Undheim
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia,Centre for Ecological and Evolutionary Synthesis, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mehdi Mobli
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
23
|
Lu S, Fan S, Xiao S, Li J, Zhang S, Wu Y, Kong C, Zhuang J, Liu H, Zhao Y, Wu C. Disulfide-Directed Multicyclic Peptide Libraries for the Discovery of Peptide Ligands and Drugs. J Am Chem Soc 2023; 145:1964-1972. [PMID: 36633218 DOI: 10.1021/jacs.2c12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multicyclic peptides with stable 3D structures are a kind of novel and promising peptide formats for drug design and discovery as they have the potential to combine the best characteristics of small molecules and proteins. However, the development of multicyclic peptides is largely limited to naturally occurring products. It remains a big challenge to develop multicyclic peptides with new structures and functions without recourse to the existing natural scaffolds. Here, we report a general and robust method relying on the utility of new disulfide-directing motifs for designing and discovering diverse multicyclic peptides with potent protein-binding capability. These peptides, referred to as disulfide-directed multicyclic peptides (DDMPs), are tolerant to extensive sequence manipulations and variations of disulfide-pairing frameworks, enabling the development of de novo DDMP libraries useful for ligand and drug discovery. This study opens a new avenue for creating a new generation of multicyclic peptides in sequence and structure space inaccessible by natural scaffolds, thus would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shilong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
24
|
Meng X, Xu C, Fan S, Dong M, Zhuang J, Duan Z, Zhao Y, Wu C. Selection and evolution of disulfide-rich peptides via cellular protein quality control. Chem Sci 2023; 14:3668-3675. [PMID: 37006698 PMCID: PMC10055976 DOI: 10.1039/d2sc05343h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A selection system leveraging cellular protein quality control (termed PQC-select) has been designed to select DRPs with robust foldability from random sequences, providing valuable scaffolds for developing peptide-based probes or therapeutics.
Collapse
Affiliation(s)
- Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoying Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
25
|
Tessler M, Galen SC, DeSalle R, Schierwater B. Let’s end taxonomic blank slates with molecular morphology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1016412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many known evolutionary lineages have yet to be described formally due to a lack of traditional morphological characters. This is true for genetically distinctive groups within the amoeboid Placozoa animals, the protists in ponds, and the bacteria that cover nearly everything. These taxonomic tabula rasae, or blank slates, are problematic; without names, communication is hampered and other scientific progress is slowed. We suggest that the morphology of molecules be used to help alleviate this issue. Molecules, such as proteins, have structure. Proteins are even visualizable with X-ray crystallography, albeit more easily detected by and easier to work with using genomic sequencing. Given their structured nature, we believe they should not be considered as anything less than traditional morphology. Protein-coding gene content (presence/absence) can also be used easily with genomic sequences, and is a convenient binary character set. With molecular morphology, we believe that each taxonomic tabula rasa can be solved.
Collapse
|
26
|
Wu Y, Fan S, Dong M, Li J, Kong C, Zhuang J, Meng X, Lu S, Zhao Y, Wu C. Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery. Chem Sci 2022; 13:7780-7789. [PMID: 35865895 PMCID: PMC9258321 DOI: 10.1039/d2sc00924b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Peptides constrained through multiple disulfides (or disulfide-rich peptides, DRPs) have been an emerging frontier for ligand and drug discovery. Such peptides have the potential to combine the binding capability of biologics with the stability and bioavailability of smaller molecules. However, DRPs with stable three-dimensional (3D) structures are usually of natural origin or engineered from natural ones. Here, we report the discovery and identification of CPPC (cysteine-proline-proline-cysteine) motif-directed DRPs with stable 3D structures (i.e., CPPC-DRPs). A range of new CPPC-DRPs were designed or selected from either random or structure-convergent peptide libraries. Thus, for the first time we revealed that the CPPC-DRPs can maintain diverse 3D structures by taking advantage of constraints from unique dimeric CPPC mini-loops, including irregular structures and regular α-helix and β-sheet folds. New CPPC-DRPs that can specifically bind the receptors (CD28) on the cell surface were also successfully discovered and identified using our DRP-discovery platform. Overall, this study provides the basis for accessing an unconventional peptide structure space previously inaccessible by natural DRPs and computational designs, inspiring the development of new peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| |
Collapse
|
27
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
28
|
Yoon KA, Kim WJ, Lee S, Yang HS, Lee BH, Lee SH. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. INSECT SCIENCE 2022; 29:411-429. [PMID: 34296820 DOI: 10.1111/1744-7917.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
30
|
Zha J, Li J, Fan S, Duan Z, Zhao Y, Wu C. An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation. Chem Sci 2021; 12:11464-11472. [PMID: 34567500 PMCID: PMC8409457 DOI: 10.1039/d1sc02952e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.
Collapse
Affiliation(s)
- Jun Zha
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China .,College of Continuing Education, Guizhou Minzu University Guiyang 550025 China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| |
Collapse
|
31
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
32
|
The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2021; 48:1353-1365. [PMID: 32756910 DOI: 10.1042/bst20190820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Animal venoms are recognised as unique biological systems in which to study molecular evolution. Venom use has evolved numerous times among the insects, and insects today use venom to capture prey, defend themselves from predators, or to subdue and modulate host responses during parasitism. However, little is known about most insect venom toxins or the mode and tempo by which they evolve. Here, I review the evolutionary dynamics of insect venom toxins, and argue that insects offer many opportunities to examine novel aspects of toxin evolution. The key questions addressed are: How do venomous animals evolve from non-venomous animals, and how does this path effect the composition and pharmacology of the venom? What genetic processes (gene duplication, co-option, neofunctionalisation) are most important in toxin evolution? What kinds of selection pressures are acting on toxin-encoding genes and their cognate targets in envenomated animals? The emerging evidence highlights that venom composition and pharmacology adapts quickly in response to changing selection pressures resulting from new ecological interactions, and that such evolution occurs through a stunning variety of genetic mechanisms. Insects offer many opportunities to investigate the evolutionary dynamics of venom toxins due to their evolutionary history rich in venom-related adaptations, and their quick generation time and suitability for culture in the laboratory.
Collapse
|
33
|
Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proc Natl Acad Sci U S A 2021; 118:2023815118. [PMID: 33893140 DOI: 10.1073/pnas.2023815118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.
Collapse
|
34
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
35
|
Santos-Silva CAD, Vilela LMB, Oliveira-Silva RLD, Silva JBD, Machado AR, Bezerra-Neto JP, Crovella S, Benko-Iseppon AM. Cassava (Manihot esculenta) defensins: Prospection, structural analysis and tissue-specific expression under biotic/abiotic stresses. Biochimie 2021; 186:1-12. [PMID: 33789147 DOI: 10.1016/j.biochi.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Defensins are a prominent family of antimicrobial peptides. They play sophisticated roles in the defense against pathogens in all living organisms, but few works address their expression under different conditions and plant tissues. The present work prospected defensins of Manihot esculenta Crantz, popularly known as cassava. Five defensin candidates (MeDefs) were retrieved from the genome sequences and characterized. Considering chromosome distribution, only MeDef1 and 2 occupy adjacent positions in the same chromosome arm. All 3D structures had antiparallel ß-sheets, an α-helix, and amphipathic residues distributed throughout the peptides with a predominance of cationic surface charge. MeDefs expression was validated by RT-qPCR, including two stress types (biotic: fungus Macrophomina pseudophaseolina, and abiotic: mechanical injury) and a combination of both stresses (fungus+injury) in three different tissues (root, stem, and leaf). For this purpose, ten reference genes (RGs) were tested, and three were chosen to characterize MeDef expression. MeDef3 was up-regulated at roots in all stress situations tested. MeDef1 and MeDef5 were induced in leaves under biotic and abiotic stresses, but not in both stress types simultaneously. Only MeDef2 was down-regulated in the stem tissue also with biotic/abiotic combined stresses. These results indicate that although defensins are known to be responsive to pathogen infection, they may act as preformed defense or, still, have tissue or stress specificities. Aspects of their structure, stability and evolution are also discussed.
Collapse
Affiliation(s)
- Carlos André Dos Santos-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Roberta Lane de Oliveira-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Jéssica Barboza da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Alexandre Reis Machado
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - João Pacífico Bezerra-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Sergio Crovella
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil.
| |
Collapse
|
36
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
37
|
Phylogenetic analyses suggest centipede venom arsenals were repeatedly stocked by horizontal gene transfer. Nat Commun 2021; 12:818. [PMID: 33547293 PMCID: PMC7864903 DOI: 10.1038/s41467-021-21093-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved over a hundred times in animals. Venom toxins are thought to evolve mostly by recruitment of endogenous proteins with physiological functions. Here we report phylogenetic analyses of venom proteome-annotated venom gland transcriptome data, assisted by genomic analyses, to show that centipede venoms have recruited at least five gene families from bacterial and fungal donors, involving at least eight horizontal gene transfer events. These results establish centipedes as currently the only known animals with venoms used in predation and defence that contain multiple gene families derived from horizontal gene transfer. The results also provide the first evidence for the implication of horizontal gene transfer in the evolutionary origin of venom in an animal lineage. Three of the bacterial gene families encode virulence factors, suggesting that horizontal gene transfer can provide a fast track channel for the evolution of novelty by the exaptation of bacterial weapons into animal venoms.
Collapse
|
38
|
Moreira MH, Almeida FC, Domitrovic T, Palhano FL. A systematic structural comparison of all solved small proteins deposited in PDB. The effect of disulfide bonds in protein fold. Comput Struct Biotechnol J 2021; 19:6255-6262. [PMID: 35024090 PMCID: PMC8712280 DOI: 10.1016/j.csbj.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Defensins are small proteins, usually ranging from 3 to 6 kDa, amphipathic, disulfide-rich, and with a small or even absent hydrophobic core. Since a hydrophobic core is generally found in globular proteins that fold in an aqueous solvent, the peculiar fold of defensins can challenge tertiary protein structure predictors. We performed a Protein Data Bank survey of small proteins (3–6 kDa) to understand the similarities of defensins with other small disulfide-rich proteins. We found no differences when we compared defensins with non-defensins regarding the proportion of apolar, polar and charged residues and their exposure to the solvent. Then we divided all small proteins (3–6 kDa) in the Protein Data Bank into two groups, one group with at least one disulfide bond (bonded, defensins included) and another group without any disulfide bond (unbonded). The group of bonded proteins contained apolar residues more exposed to the solvent than the unbonded group. The ab initio algorithm for tertiary protein structure prediction Robetta was more accurate at predicting unbonded than bonded proteins. On the other hand, the trRosetta algorithm, which uses artificial intelligence, improved the prediction of most bonded proteins, while for the unbonded group no improvement was obtained. Our work highlights one more layer of complexity for the prediction of protein tertiary structure: The ability of small disulfide-rich proteins to fold even with a poorly hydrophobic core.
Collapse
|
39
|
Crouching Tiger, Hidden Protein: Searching for Insecticidal Toxins in Venom of the Red Tiger Assassin Bug ( Havinthus rufovarius). Toxins (Basel) 2020; 13:toxins13010003. [PMID: 33375154 PMCID: PMC7822193 DOI: 10.3390/toxins13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Assassin bugs are venomous insects that prey on other arthropods. Their venom has lethal, paralytic, and liquifying effects when injected into prey, but the toxins responsible for these effects are unknown. To identify bioactive assassin bug toxins, venom was harvested from the red tiger assassin bug (Havinthus rufovarius), an Australian species whose venom has not previously been characterised. The venom was fractionated using reversed-phase high-performance liquid chromatography, and four fractions were found to cause paralysis and death when injected into sheep blowflies (Lucilia cuprina). The amino acid sequences of the major proteins in two of these fractions were elucidated by comparing liquid chromatography/tandem mass spectrometry data with a translated venom-gland transcriptome. The most abundant components were identified as a solitary 12.8 kDa CUB (complement C1r/C1s, Uegf, Bmp1) domain protein and a 9.5 kDa cystatin. CUB domains are present in multidomain proteins with diverse functions, including insect proteases. Although solitary CUB domain proteins have been reported to exist in other heteropteran venoms, such as that of the bee killer assassin bug Pristhesancus plagipennis, their function is unknown, and they have not previously been reported as lethal or paralysis-inducing. Cystatins occur in the venoms of spiders and snakes, but again with an unknown function. Reduction and alkylation experiments revealed that the H. rufovarius venom cystatin featured five cysteine residues, one of which featured a free sulfhydryl group. These data suggest that solitary CUB domain proteins and/or cystatins may contribute to the insecticidal activity of assassin bug venom.
Collapse
|
40
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
41
|
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci U S A 2020; 117:27481-27492. [PMID: 33060291 DOI: 10.1073/pnas.2011120117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.
Collapse
|
42
|
Touchard A, Mendel HC, Boulogne I, Herzig V, Braga Emidio N, King GF, Triquigneaux M, Jaquillard L, Beroud R, De Waard M, Delalande O, Dejean A, Muttenthaler M, Duplais C. Heterodimeric Insecticidal Peptide Provides New Insights into the Molecular and Functional Diversity of Ant Venoms. ACS Pharmacol Transl Sci 2020; 3:1211-1224. [PMID: 33344898 DOI: 10.1021/acsptsci.0c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Ants use venom for predation, defense, and communication; however, the molecular diversity, function, and potential applications of ant venom remains understudied compared to other venomous lineages such as arachnids, snakes and cone snails. In this work, we used a multidisciplinary approach that encompassed field work, proteomics, sequencing, chemical synthesis, structural analysis, molecular modeling, stability studies, and in vitro and in vivo bioassays to investigate the molecular diversity of the venom of the Amazonian Pseudomyrmex penetrator ants. We isolated a potent insecticidal heterodimeric peptide Δ-pseudomyrmecitoxin-Pp1a (Δ-PSDTX-Pp1a) composed of a 27-residue long A-chain and a 33-residue long B-chain cross-linked by two disulfide bonds in an antiparallel orientation. We chemically synthesized Δ-PSDTX-Pp1a, its corresponding parallel AA and BB homodimers, and its monomeric chains and demonstrated that Δ-PSDTX-Pp1a had the most potent insecticidal effects in blowfly assays (LD50 = 3 nmol/g). Molecular modeling and circular dichroism studies revealed strong α-helical features, indicating its cytotoxic effects could derive from cell membrane pore formation or disruption. The native heterodimer was substantially more stable against proteolytic degradation (t 1/2 = 13 h) than its homodimers or monomers (t 1/2 < 20 min), indicating an evolutionary advantage of the more complex structure. The proteomic analysis of Pseudomyrmex penetrator venom and in-depth characterization of Δ-PSDTX-Pp1a provide novel insights in the structural complexity of ant venom and further exemplifies how nature exploits disulfide-bond formation and dimerization to gain an evolutionary advantage via improved stability, a concept that is highly relevant for the design and development of peptide therapeutics, molecular probes, and bioinsecticides.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Isabelle Boulogne
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche Normandie Végétal FED 4277, Mont-Saint-Aignan 76821, France
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Lucie Jaquillard
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France
| | - Rémy Beroud
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint Egrève 38120, France.,Université de Nantes, CNRS, INSERM, L'institut du thorax, Nantes 44000, France.,LabEx, Ion Channels, Science & Therapeutics, Valbonne 06560, France
| | - Olivier Delalande
- Institute of Genetics and Development of Rennes (IGDR), CNRS UMR 6290, Université de Rennes Faculté de Pharmacie, 2 avenue du Professeur Léon Bernard, Rennes 35043, France
| | - Alain Dejean
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France.,Ecolab, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31058, France
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christophe Duplais
- CNRS, UMR Ecofog, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| |
Collapse
|
43
|
Lu S, Wu Y, Li J, Meng X, Hu C, Zhao Y, Wu C. Directed Disulfide Pairing and Folding of Peptides for the De Novo Development of Multicyclic Peptide Libraries. J Am Chem Soc 2020; 142:16285-16291. [PMID: 32914969 DOI: 10.1021/jacs.0c06044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disulfide-rich peptides (DRPs) have been an emerging frontier for drug discovery. There have been two DRPs approved as drugs (i.e., Ziconotide and Linaclotide), and many others are undergoing preclinical studies or in clinical trials. All of these DRPs are of nature origin or derived from natural peptides. It is still a challenge to design new DRPs without recourse to natural scaffolds due to the difficulty in handling the disulfide pairing. Here we developed a simple and robust strategy for directing the disulfide pairing and folding of peptides with up to six cysteine residues. Our strategy exploits the dimeric pairing of CPPC (cysteine-proline-proline-cysteine) motifs for directing disulfide formation, and DRPs with different multicyclic topologies were designed and synthesized by regulating the patterns of CPPC motifs and cysteine residues in peptides. As neither sequence manipulations nor unnatural amino acids are involved, the designed DRPs can be used as templates for the de novo development of biosynthetic multicyclic peptide libraries, enabling selection of DRPs with new functions directly from fully randomized sequences. We believe that this work represents as an important step toward the discovery and design of new multicyclic peptide ligands and therapeutics with structures not derived from natural scaffolds.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Chenliang Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
44
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
45
|
Mansbach RA, Chakraborty S, Travers T, Gnanakaran S. Graph-Directed Approach for Downselecting Toxins for Experimental Structure Determination. Mar Drugs 2020; 18:E256. [PMID: 32422972 PMCID: PMC7281422 DOI: 10.3390/md18050256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Conotoxins are short, cysteine-rich peptides of great interest as novel therapeutic leads and of great concern as lethal biological agents due to their high affinity and specificity for various receptors involved in neuromuscular transmission. Currently, of the approximately 6000 known conotoxin sequences, only about 3% have associated structural characterization, which leads to a bottleneck in rapid high-throughput screening (HTS) for identification of potential leads or threats. In this work, we combine a graph-based approach with homology modeling to expand the library of conotoxin structures and to identify those conotoxin sequences that are of the greatest value for experimental structural characterization. The latter would allow for the rapid expansion of the known structural space for generating high quality template-based models. Our approach generalizes to other evolutionarily-related, short, cysteine-rich venoms of interest. Overall, we present and validate an approach for venom structure modeling and experimental guidance and employ it to produce a 290%-larger library of approximate conotoxin structures for HTS. We also provide a set of ranked conotoxin sequences for experimental structure determination to further expand this library.
Collapse
Affiliation(s)
- Rachael A. Mansbach
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Timothy Travers
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
| |
Collapse
|
46
|
Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc Natl Acad Sci U S A 2020; 117:11399-11408. [PMID: 32398368 DOI: 10.1073/pnas.1914536117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.
Collapse
|
47
|
Jin J, Agwa AJ, Szanto TG, Csóti A, Panyi G, Schroeder CI, Walker AA, King GF. Weaponisation 'on the fly': Convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103310. [PMID: 31870846 DOI: 10.1016/j.ibmb.2019.103310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Many arthropod venom peptides have potential as bioinsecticides, drug leads, and pharmacological tools due to their specific neuromodulatory functions. Assassin flies (Asilidae) are a family of predaceous dipterans that produce a unique and complex peptide-rich venom for killing insect prey and deterring predators. However, very little is known about the structure and function of their venom peptides. We therefore used an E. coli periplasmic expression system to express four disulfide-rich peptides that we previously reported to exist in venom of the giant assassin fly Dolopus genitalis. After purification, each recombinant peptide eluted from a C18 column at a position closely matching its natural counterpart, strongly suggesting adoption of the native tertiary fold. Injection of purified recombinant peptides into blowflies (Lucilia cuprina) and crickets (Acheta domestica) revealed that two of the four recombinant peptides, named rDg3b and rDg12, inhibited escape behaviour in a manner that was rapid in onset (<1 min) and reversible. Homonuclear NMR solution structures revealed that rDg3b and rDg12 adopt cystine-stabilised α/ß defensin and inhibitor cystine knot folds, respectively. Although the closest known homologues of rDg3b at the level of primary structure are dipteran antimicrobial peptides such as sapecin and lucifensin, a DALI search showed that the tertiary structure of rDg3b most closely resembles the KV11.1-specific α-potassium channel toxin CnErg1 from venom of the scorpion Centruroides noxius. This is mainly due to the deletion of a large, unstructured loop between the first and second cysteine residues present in Dg3b homologues from non-asiloid, but not existing in asiloid, species. Patch-clamp electrophysiology experiments revealed that rDg3b shifts the voltage-dependence of KV11.1 channel activation to more depolarised potentials, but has no effect on KV1.3, KV2.1, KV10.1, KCa1.1, or the Drosophila Shaker channel. Although rDg12 shares the inhibitor cystine knot structure of many gating modifier toxins, rDg12 did not affect any of these KV channel subtypes. Our results demonstrate that multiple disulfide-rich peptide scaffolds have been convergently recruited into asilid and other animal venoms, and they provide insight into the molecular evolution accompanying their weaponisation.
Collapse
Affiliation(s)
- Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Agota Csóti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
48
|
Ramanujam V, Shen Y, Ying J, Mobli M. Residual Dipolar Couplings for Resolving Cysteine Bridges in Disulfide-Rich Peptides. Front Chem 2020; 7:889. [PMID: 32039137 PMCID: PMC6987419 DOI: 10.3389/fchem.2019.00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
Abstract
Disulfide bridges in proteins are formed by the oxidation of pairs of cysteine residues. These cross-links play a critical role in stabilizing the 3D-structure of small disulfide rich polypeptides such as hormones and venom toxins. The arrangement of the multiple disulfide bonds directs the peptide fold into distinct structural motifs that have evolved for resistance against biochemical and physical insults. These structural scaffolds have, therefore, proven to be very attractive in bioengineering efforts to develop novel biologics with applications in health and agriculture. Structural characterization of small disulfide rich peptides (DRPs) presents unique challenges when using commonly applied biophysical methods. NMR is the most commonly used method for studying such molecules, where the relatively small size of these molecules results in highly precise structural ensembles defined by a large number of distance and dihedral angle restraints per amino acid. However, in NMR the sulfur atoms that are involved in three of the five dihedral angles in a disulfide bond cannot be readily measured. Given the central role of disulfide bonds in the structure of these molecules, it is unclear what the inherent resolution of such NMR structures is when using traditional NMR methods. Here, we use an extensive set of long-range residual dipolar couplings (RDCs) to assess the resolution of the NMR structure of a disulfide-rich peptide. We find that structures based primarily on NOEs, yield ensembles that are equivalent to a crystallographic resolution of 2-3 Å in resolution, and that incorporation of RDCs reduces this to ~1-1.5 Å resolution. At this resolution the sidechain of ordered amino acids can be defined accurately, allowing the geometry of the cysteine bridges to be better defined, and allowing for disulfide-bond connectivities to be determined with high confidence. The observed improvements in resolution when using RDCs is remarkable considering the small size of these peptides.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
49
|
Özbek R, Wielsch N, Vogel H, Lochnit G, Foerster F, Vilcinskas A, von Reumont BM. Proteo-Transcriptomic Characterization of the Venom from the Endoparasitoid Wasp Pimpla turionellae with Aspects on Its Biology and Evolution. Toxins (Basel) 2019; 11:E721. [PMID: 31835557 PMCID: PMC6950128 DOI: 10.3390/toxins11120721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/23/2022] Open
Abstract
Within mega-diverse Hymenoptera, non-aculeate parasitic wasps represent 75% of all hymenopteran species. Their ovipositor dual-functionally injects venom and employs eggs into (endoparasitoids) or onto (ectoparasitoids) diverse host species. Few endoparasitoid wasps such as Pimpla turionellae paralyze the host and suppress its immune responses, such as encapsulation and melanization, to guarantee their offspring's survival. Here, the venom and its possible biology and function of P. turionellae are characterized in comparison to the few existing proteo-transcriptomic analyses on parasitoid wasp venoms. Multiple transcriptome assembly and custom-tailored search and annotation strategies were applied to identify parasitoid venom proteins. To avoid false-positive hits, only transcripts were finally discussed that survived strict filter settings, including the presence in the proteome and higher expression in the venom gland. P. turionella features a venom that is mostly composed of known, typical parasitoid enzymes, cysteine-rich peptides, and other proteins and peptides. Several venom proteins were identified and named, such as pimplin2, 3, and 4. However, the specification of many novel candidates remains difficult, and annotations ambiguous. Interestingly, we do not find pimplin, a paralytic factor in Pimpla hypochondriaca, but instead a new cysteine inhibitor knot (ICK) family (pimplin2), which is highly similar to known, neurotoxic asilid1 sequences from robber flies.
Collapse
Affiliation(s)
- Rabia Özbek
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany;
| | - Frank Foerster
- Bioinformatics Core Facility, Bioinformatics and Systems Biology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
| | - Andreas Vilcinskas
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Björn Marcus von Reumont
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
50
|
Chow CY, Chin YKY, Walker AA, Guo S, Blomster LV, Ward MJ, Herzig V, Rokyta DR, King GF. Venom Peptides with Dual Modulatory Activity on the Voltage-Gated Sodium Channel Na V1.1 Provide Novel Leads for Development of Antiepileptic Drugs. ACS Pharmacol Transl Sci 2019; 3:119-134. [PMID: 32259093 DOI: 10.1021/acsptsci.9b00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 01/14/2023]
Abstract
Voltage-gated sodium (NaV) channels play a fundamental role in normal neurological function, especially via the initiation and propagation of action potentials. The NaV1.1 subtype is found in inhibitory interneurons of the brain and it is essential for maintaining a balance between excitation and inhibition in neuronal networks. Heterozygous loss-of-function mutations of SCN1A, the gene encoding NaV1.1, underlie Dravet syndrome (DS), a severe pediatric epilepsy. We recently demonstrated that selective inhibition of NaV1.1 inactivation prevents seizures and premature death in a mouse model of DS. Thus, selective modulators of NaV1.1 might be useful therapeutics for treatment of DS as they target the underlying molecular deficit. Numerous scorpion-venom peptides have been shown to modulate the activity of NaV channels, but little is known about their activity at NaV1.1. Here we report the isolation, sequence, three-dimensional structure, recombinant production, and functional characterization of two peptidic modulators of NaV1.1 from venom of the buthid scorpion Hottentotta jayakari. These peptides, Hj1a and Hj2a, are potent agonists of NaV1.1 (EC50 of 17 and 32 nM, respectively), and they present dual α/β activity by modifying both the activation and inactivation properties of the channel. NMR studies of rHj1a indicate that it adopts a cystine-stabilized αβ fold similar to known scorpion toxins. Although Hj1a and Hj2a have only limited selectivity for NaV1.1, their unusual dual mode of action provides an alternative approach to the development of selective NaV1.1 modulators for the treatment of DS.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda V Blomster
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|