1
|
Roshani M, Taheri M, Goodarzi A, Yosefimashouf R, Shokoohizadeh L. Investigating the effect of sub MIC concentrations of ciprofloxacin, ceftriaxone and imipenem on the expression of virulence and toxin-antitoxin genes of Escherichia coli strains isolated from blood infections in leukemia patients. Microb Pathog 2025; 205:107631. [PMID: 40287110 DOI: 10.1016/j.micpath.2025.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Bloodstream infections (BSIs) pose significant risks to individuals with leukemia, and Escherichia coli stands out as a prevalent cause in these infections. This research sought to explore the impact of sub-inhibitory concentrations (sub-MIC) of ciprofloxacin, imipenem, ceftriaxone, and the combined use of ceftriaxone and ciprofloxacin on the expression of virulence factors and toxin-antitoxin genes in E. coli strains obtained from leukemia patients. Twelve clinical strains of E. coli that demonstrated resistance to ciprofloxacin, imipenem, and ceftriaxone and contained the chosen virulence and toxin-antitoxin genes were included in the study. The minimum inhibitory concentration (MIC) of ciprofloxacin, imipenem, and ceftriaxone was determined using the microbroth dilution method. Furthermore, the expression levels of virulence genes (iutA, traT, afaA, hlyA) and toxin-antitoxin genes (relE, mazF) were assessed via Real-time PCR both before and after exposure to ciprofloxacin, ceftriaxone, and imipenem. According to our findings, the sub-MIC concentrations of ciprofloxacin, imipenem, and ceftriaxone resulted in decreased expression levels of virulence factor genes (iutA, traT, afaA) and toxin-antitoxin genes (relE, mazF), with the exception of an increase in hlyA gene expression. The findings indicate that prophylactic and experimental use of sub-MICs of ciprofloxacin, imipenem, ceftriaxone, and a combination of ciprofloxacin and ceftriaxone can diminish the expression of virulence factors and toxin-antitoxin genes in E. coli. Further research is necessary to explore the interactions between antibiotic resistance and virulence genes, particularly in the blood infections.
Collapse
Affiliation(s)
- Mahdaneh Roshani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yosefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Mammeri H, Sereme Y, Toumi E, Faury H, Skurnik D. Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae. PLoS Pathog 2025; 21:e1012902. [PMID: 39919103 PMCID: PMC11805372 DOI: 10.1371/journal.ppat.1012902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
The increasing resistance of Gram-negative bacteria to last resort antibiotics, such as carbapenems, is particularly of concern as it is a significant cause of global health threat. In this context, there is an urgent need for better understanding underlying mechanisms leading to antimicrobial resistance in order to limit its diffusion and develop new therapeutic strategies. In this review, we focus on the specific role of porins in carbapenem-resistance in Enterobacteriaceae and Pseudomonas aeruginosa, which are major human pathogens. Porins are outer membrane proteins, which play a key role in the bacterial permeability to allow nutrients to enter and toxic waste to leave. However, these channels are also "Achilles' heel" of bacteria as antibiotics can also pass through them to reach their target and kill the bacteria. After describing normal structures and pathways regulating the expression of porins, we discuss strategies implemented by bacteria to limit the access of carbapenems to their cytoplasmic target. We further examine the real impact of changes in porins on carbapenems susceptibility. Finally, we decipher what is the effect of such changes on bacterial fitness and virulence. Our goal is to integrate all these findings to give a global overview of how bacteria modify their porins to face antibiotic selective pressure trying to not induce fitness cost.
Collapse
Affiliation(s)
- Hedi Mammeri
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, Paris, France
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Youssouf Sereme
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Eya Toumi
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Hélène Faury
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| | - David Skurnik
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Gmeiner A, Njage PMK, Hansen LT, Aarestrup FM, Leekitcharoenphon P. Predicting Listeria monocytogenes virulence potential using whole genome sequencing and machine learning. Int J Food Microbiol 2024; 410:110491. [PMID: 38000216 DOI: 10.1016/j.ijfoodmicro.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Contamination with food-borne pathogens, such as Listeria monocytogenes, remains a big concern for food safety. Hence, rigorous and continuous microbial surveillance is a standard procedure. At this point, however, the food industry and authorities only focus on detection of Listeria monocytogenes without characterization of individual strains into groups of more or less concern. As whole genome sequencing (WGS) gains increasing interest in the industry, this methodology presents an opportunity to obtain finer resolution of microbial traits such as virulence. Within this study, we therefore aimed to explore the use of WGS in combination with Machine Learning (ML) to predict L. monocytogenes virulence potential on a sub-species level. The WGS datasets used in this study for ML model training consisted of i) national surveillance isolates (n = 169, covering 38 MLST types) and ii) publicly available isolates acquired through the GenomeTrakr network (n = 2880, spanning 80 MLST types). We used the clinical frequency, i.e., ratio of the number of clinical isolates to total amount of isolates, as estimate for virulence potential. The predictive performance of input features from three different genomic levels (i.e., virulence genes, pan-genome genes, and single nucleotide polymorphisms (SNPs)) and six machine learning algorithms (i.e., Support Vector Machine with a linear kernel, Support Vector Machine with a radial kernel, Random Forrest, Neural Networks, LogitBoost, and Majority Voting) were compared. Our machine learning models predicted sub-species virulence potential with nested cross-validation F1-scores up to 0.88 for the majority voting classifier trained on national surveillance data and using pan-genome genes as input features. The validation of the pre-trained ML models based on 101 previously in vivo studied isolates resulted in F1-scores up to 0.76. Furthermore, we found that the more rapid and less computationally intensive raw read alignment yields comparably accurate models as de novo assembly. The results of our study suggest that a majority voting classifier trained on pan-genome genes is the best and most robust choice for the prediction of clinical frequency. Our study contributes to more rapid and precise characterization of L. monocytogenes virulence and its variation on a sub-species level. We further demonstrated a possible application of WGS data in the context of microbial hazard characterization for food safety. In the future, predictive models may assist case-specific microbial risk management in the food industry. The python code, pre-trained models, and prediction pipeline are deposited at (https://github.com/agmei/LmonoVirulenceML).
Collapse
Affiliation(s)
- Alexander Gmeiner
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, Kgs. Lyngby, Denmark.
| | - Patrick Murigu Kamau Njage
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- National Food Institute, Technical University of Denmark, Research Group for Food Microbiology and Hygiene, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
5
|
Lührmann A, Palmini A, Hellmich J, Belik V, Zentek J, Vahjen W. Antimicrobial resistance- and pathogen patterns in the fecal microbiota of sows and their offspring in German commercial pig farms. PLoS One 2023; 18:e0290554. [PMID: 37616234 PMCID: PMC10449214 DOI: 10.1371/journal.pone.0290554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Reducing antibiotic use is one of the biggest challenges in pig farming, as antibiotics have been used for years to control typical problems such as newborn or post-weaning diarrhea. The pressure a one health approach has created on animal production regarding antimicrobial resistance is an opportunity to find other strategies against enterobacterial pathogens in suckling and weaned piglets. A farm-specific approach could have a good success due to the individual farm structures in Germany and other countries. In this study, non-metric multidimensional scaling, hierarchical clustering, and latent class analysis were used to determine the impact of antibiotic use on antibiotic resistance patterns and pathogen prevalence in 20 German pig farms. This may help to develop individualized health strategies. 802 fresh fecal samples were collected from sows and piglets from 20 piglet production and rearing farms at different production times (sows antepartum and postpartum, suckling piglets, weaned piglets). In addition, the use of antibiotics was recorded. DNA extracts were subjected to quantitative real-time qPCR with primers specific for antibiotic resistance genes (int1, sul1-3, dfrA1, mcr-1, blaCTX-M), and virulence factors of relevant bacteria (C. difficile, C. perfringens, Salmonella, Escherichia/Shigella/Hafnia, E. coli). Linear and logistic regression models were used to analyze the relationship between different antibiotics and the major genes contributing to the clustering of observations for the different animal groups. Clustering revealed different farm clusters for sows, suckling piglets, and weaned piglets, with the most remarkable diversity in antibiotic use among weaned piglets. Amoxicillin, lincomycin, and enrofloxacin were identified as the most probable cause of increased odds of the presence of relevant antibiotic resistance genes (mcr1, dfrA1, blaCTX-M). Still, direct effects of a specific antibiotic on its associated resistance gene were rare. Enrofloxacin and florfenicol favored the occurrence of C. difficile in sows. The E. coli fimbriae genes were less affected by antibiotic use in sows and piglets, but the F4 fimbriae gene could be associated with the integrase 1 gene in piglets. The results confirm that multidrug-resistant enterobacteria are widespread in German pig farms and give awareness of the impact of current antibiotic use while searching for alternative health strategies.
Collapse
Affiliation(s)
- Anja Lührmann
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Andrea Palmini
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Justinus Hellmich
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hao Y, Zhao Y, Zhang Y, Liu Y, Wang G, He Z, Cao W, Han T, Zhang X, Zhang Z, Wang Y, Gong C, Hou J. Population response of intestinal microbiota to acute Vibrio alginolyticus infection in half-smooth tongue sole ( Cynoglossus semilaevis). Front Microbiol 2023; 14:1178575. [PMID: 37333647 PMCID: PMC10275075 DOI: 10.3389/fmicb.2023.1178575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.
Collapse
Affiliation(s)
- Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yaxian Zhao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yitong Zhang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufeng Liu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Wei Cao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Tian Han
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Xun Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Ziying Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Chunguang Gong
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| |
Collapse
|
7
|
Wu J, Liu W, Zhu L, Li N, Luo G, Gu M, Peng M, Zeng S, Wu S, Zhang S, Chen Q, Cai M, Cao W, Jiang Y, Luo C, Tian D, Shi M, Shu Y, Chang G, Luo H. Dysbiosis of oropharyngeal microbiome and antibiotic resistance in hospitalized COVID-19 patients. J Med Virol 2023; 95:e28727. [PMID: 37185870 DOI: 10.1002/jmv.28727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients. Correspondingly, less functional genes in multiple biological processes and weakened metabolic pathways such as carbohydrate metabolism, energy metabolism were also observed in COVID-19 patients. We only found higher relative abundance of limited genera such as Lachnoanaerobaculum between severe patients and moderate patients while no worthy-noting microbiome diversity and function alteration were observed. Finally, we noticed that the co-occurrence of antibiotic resistance and virulence was closely related to the microbiome alteration caused by SRAS-CoV-2. Overall, our findings demonstrate that microbial dysbiosis may enhance the pathogenesis of SARS-CoV-2 and the antibiotics treatment should be critically considered.
Collapse
Affiliation(s)
- Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of AIDS and STD Control and Prevention, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Wei Liu
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Gengyan Luo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ming Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Minwu Peng
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meiqi Cai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wei Cao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- Environment Health Department, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guohui Chang
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Yang C, Diarra MS, Attiq Rehman M, Li L, Yu H, Yin X, Aslam M, Carrillo CD, Yang C, Gong J. Virulence potential of antimicrobial-resistant extraintestinal pathogenic Escherichia coli from retail poultry meat in a Caenorhabditis elegans model. J Food Prot 2023; 86:100008. [PMID: 36916583 DOI: 10.1016/j.jfp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Healthy poultry can be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC), some of which could be multidrug resistant to antimicrobials. These ExPEC strains could contaminate the environment and/or food chain representing thus, food safety and human health risk. However, few studies have shown the virulence of poultry-source antimicrobial-resistant (AMR) ExPEC in humans. This study characterized AMR ExPEC and investigated the virulence potential of some of their isolates in a Caenorhabditis elegans infection model. A total of 46 E. coli isolates from poultry (chicken, n = 29; turkey, n = 12) retail meats and chicken feces (n = 4), or humans (n = 1) were sequenced and identified as ExPEC. Except eight, all remaining 38 ExPEC isolates were resistant to at least one antibiotic and carried corresponding antimicrobial resistance genes (ARGs). About 27 of the 46 ExPEC isolates were multidrug-resistant (≥3 antibiotic classes). Seven ExPEC isolates from chicken or turkey meats were of serotype O25:H4 and sequence type (ST) 131 which clustered with an isolate from a human urinary tract infection (UTI) case having the same serotype and ST. The C. elegans challenge model using eight of studied ExPEC isolates harboring various ARGs and virulence genes (VGs) showed that regardless of their ARG or VG numbers in tested poultry meat and feces, ExPEC significantly reduced the life span of the nematode (P < 0.05) similarly to a human UTI isolate. This study indicated the pathogenic potential of AMR ExPEC from retail poultry meat or feces, but more studies are warranted to establish their virulence in poultry and human. Furthermore, relationships between specific resistance profiles and/or VGs in these E. coli isolates for their pathogenicity deserve investigations.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Mueen Aslam
- Lacombe Research Centre, AAFC, Lacombe, Alberta, Canada T4L1W1
| | - Catherine D Carrillo
- Canadian Food Inspection Agency (CFIA), Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
9
|
Barceló IM, Jordana-Lluch E, Escobar-Salom M, Torrens G, Fraile-Ribot PA, Cabot G, Mulet X, Zamorano L, Juan C, Oliver A. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0270022. [PMID: 36214681 PMCID: PMC9604156 DOI: 10.1128/spectrum.02700-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023] Open
Abstract
In the current scenario of growing antibiotic resistance, understanding the interplay between resistance mechanisms and biological costs is crucial for designing therapeutic strategies. In this regard, intrinsic AmpC β-lactamase hyperproduction is probably the most important resistance mechanism of Pseudomonas aeruginosa, proven to entail important biological burdens that attenuate virulence mostly under peptidoglycan recycling alterations. P. aeruginosa can acquire resistance to new β-lactam-β-lactamase inhibitor combinations (ceftazidime-avibactam and ceftolozane-tazobactam) through mutations affecting ampC and its regulatory genes, but the impact of these mutations on the associated biological cost and the role that β-lactamase activity plays per se in contributing to the above-mentioned virulence attenuation are unknown. The same questions remain unsolved for plasmid-encoded AmpC-type β-lactamases such as FOX enzymes, some of which also provide resistance to new β-lactam-β-lactamase inhibitor combinations. Here, we assessed from different perspectives the effects of changes in the active center and, thus, in the hydrolytic spectrum resistance to inhibitors of AmpC-type β-lactamases on the fitness and virulence of P. aeruginosa, using site-directed mutagenesis; the previously described AmpC variants T96I, G183D, and ΔG229-E247; and, finally, blaFOX-4 versus blaFOX-8. Our results indicate the essential role of AmpC activity per se in causing the reported full virulence attenuation (in terms of growth, motility, cytotoxicity, and Galleria mellonella larvae killing), although the biological cost of the above-mentioned AmpC-type variants was similar to that of the wild-type enzymes. This suggests that there is not an important biological burden that may limit the selection/spread of these variants, which could progressively compromise the future effectiveness of the above-mentioned drug combinations. IMPORTANCE The growing antibiotic resistance of the top nosocomial pathogen Pseudomonas aeruginosa pushes research to explore new therapeutic strategies, for which the resistance-versus-virulence balance is a promising source of targets. While resistance often entails significant biological costs, little is known about the bases of the virulence attenuations associated with a resistance mechanism as extraordinarily relevant as β-lactamase production. We demonstrate that besides potential energy and cell wall alterations, the enzymatic activity of the P. aeruginosa cephalosporinase AmpC is essential for causing the full attenuation associated with its hyperproduction by affecting different features related to pathogenesis, a fact exploitable from the antivirulence perspective. Less encouraging, we also show that the production of different chromosomal/plasmid-encoded AmpC derivatives conferring resistance to some of the newest antibiotic combinations causes no significantly increased biological burdens, which suggests a free way for the selection/spread of these types of variants, potentially compromising the future effectiveness of these antipseudomonal therapies.
Collapse
Affiliation(s)
- Isabel M. Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Gabriel Torrens
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Pablo A. Fraile-Ribot
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Gabriel Cabot
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Xavier Mulet
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Microbiology Department, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
10
|
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary. Antibiotics (Basel) 2022; 11:antibiotics11101441. [PMID: 36290099 PMCID: PMC9598914 DOI: 10.3390/antibiotics11101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.
Collapse
|
11
|
Balbuena-Alonso MG, Cortés-Cortés G, Kim JW, Lozano-Zarain P, Camps M, Del Carmen Rocha-Gracia R. Genomic analysis of plasmid content in food isolates of E. coli strongly supports its role as a reservoir for the horizontal transfer of virulence and antibiotic resistance genes. Plasmid 2022; 123-124:102650. [PMID: 36130651 PMCID: PMC10896638 DOI: 10.1016/j.plasmid.2022.102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The link between E. coli strains contaminating foods and human disease is unclear, with some reports supporting a direct transmission of pathogenic strains via food and others highlighting their role as reservoirs for resistance and virulence genes. Here we take a genomics approach, analyzing a large set of fully-assembled genomic sequences from E. coli available in GenBank. Most of the strains isolated in food are more closely related to each other than to clinical strains, arguing against a frequent direct transmission of pathogenic strains from food to the clinic. We also provide strong evidence of genetic exchanges between food and clinical strains that are facilitated by plasmids. This is based on an overlapped representation of virulence and resistance genes in plasmids isolated from these two sources. We identify clusters of phylogenetically-related plasmids that are largely responsible for the observed overlap and see evidence of specialization, with some food plasmid clusters preferentially transferring virulence factors over resistance genes. Consistent with these observations, food plasmids have a high mobilization potential based on their plasmid taxonomic unit classification and on an analysis of mobilization gene content. We report antibiotic resistance genes of high clinical relevance and their specific incompatibility group associations. Finally, we also report a striking enrichment for adhesins in food plasmids and their association with specific IncF replicon subtypes. The identification of food plasmids with specific markers (Inc and PTU combinations) as mediators of horizontal transfer between food and clinical strains opens new research avenues and should assist with the design of surveillance strategies.
Collapse
Affiliation(s)
- María G Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Rosa Del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico.
| |
Collapse
|
12
|
Emelianova AG, Petrova NV, Fremez C, Fontanié M, Tarasov SА, Epstein ОI. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. Eur J Pharm Sci 2022; 173:106161. [DOI: 10.1016/j.ejps.2022.106161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
|
13
|
Lakbar I, Medam S, Ronflé R, Cassir N, Delamarre L, Hammad E, Lopez A, Lepape A, Machut A, Boucekine M, Zieleskiewicz L, Baumstarck K, Savey A, Leone M. Association between mortality and highly antimicrobial-resistant bacteria in intensive care unit-acquired pneumonia. Sci Rep 2021; 11:16497. [PMID: 34389761 PMCID: PMC8363636 DOI: 10.1038/s41598-021-95852-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Data on the relationship between antimicrobial resistance and mortality remain scarce, and this relationship needs to be investigated in intensive care units (ICUs). The aim of this study was to compare the ICU mortality rates between patients with ICU-acquired pneumonia due to highly antimicrobial-resistant (HAMR) bacteria and those with ICU-acquired pneumonia due to non-HAMR bacteria. We conducted a multicenter, retrospective cohort study using the French National Surveillance Network for Healthcare Associated Infection in ICUs ("REA-Raisin") database, gathering data from 200 ICUs from January 2007 to December 2016. We assessed all adult patients who were hospitalized for at least 48 h and presented with ICU-acquired pneumonia caused by S. aureus, Enterobacteriaceae, P. aeruginosa, or A. baumannii. The association between pneumonia caused by HAMR bacteria and ICU mortality was analyzed using the whole sample and using a 1:2 matched sample. Among the 18,497 patients with at least one documented case of ICU-acquired pneumonia caused by S. aureus, Enterobacteriaceae, P. aeruginosa, or A. baumannii, 3081 (16.4%) had HAMR bacteria. The HAMR group was associated with increased ICU mortality (40.3% vs. 30%, odds ratio (OR) 95%, CI 1.57 [1.45-1.70], P < 0.001). This association was confirmed in the matched sample (3006 HAMR and 5640 non-HAMR, OR 95%, CI 1.39 [1.27-1.52], P < 0.001) and after adjusting for confounding factors (OR ranged from 1.34 to 1.39, all P < 0.001). Our findings suggest that ICU-acquired pneumonia due to HAMR bacteria is associated with an increased ICU mortality rate, ICU length of stay, and mechanical ventilation duration.
Collapse
Affiliation(s)
- Ines Lakbar
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France.,Department of Anesthesiology and Intensive Care Unit, University hospital of Toulouse, Toulouse, France
| | - Sophie Medam
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France
| | - Romain Ronflé
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France
| | - Nadim Cassir
- MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Louis Delamarre
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France.,Department of Anesthesiology and Intensive Care Unit, University hospital of Toulouse, Toulouse, France
| | - Emmanuelle Hammad
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France
| | - Alexandre Lopez
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France.,MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Alain Lepape
- Intensive Care Unit, Centre Hospitalier Lyon Sud, Pierre Bénite, Hospices Civils de Lyon, France.,Rea-Raisin study group (National network for Healthcare-Associated Infection surveillance in ICU, Marseille, France.,PHE3ID, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS Unité Mixte de Recherche 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Saint Genis Laval, France
| | - Anaïs Machut
- Rea-Raisin study group (National network for Healthcare-Associated Infection surveillance in ICU, Marseille, France.,Infection Control & Prevention, Hôpital Henry Gabrielle, Hospices Civils de Lyon, Saint Genis Laval, France
| | - Mohamed Boucekine
- APHM, EA 3279 CEReSS, School of Medicine, La Timone Medical Campus, Health Service Research and Quality of Life Center, Aix Marseille Université, Marseille, France
| | - Laurent Zieleskiewicz
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France
| | - Karine Baumstarck
- APHM, EA 3279 CEReSS, School of Medicine, La Timone Medical Campus, Health Service Research and Quality of Life Center, Aix Marseille Université, Marseille, France
| | - Anne Savey
- Rea-Raisin study group (National network for Healthcare-Associated Infection surveillance in ICU, Marseille, France.,Infection Control & Prevention, Hôpital Henry Gabrielle, Hospices Civils de Lyon, Saint Genis Laval, France.,PHE3ID, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS Unité Mixte de Recherche 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Saint Genis Laval, France
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Nord Hospital, Marseille, France. .,MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France. .,Service d'anesthésie et de réanimation, Chemin des Bourrely, Hôpital Nord, 13015, Marseille, France.
| | | |
Collapse
|
14
|
Aabed K, Moubayed N, Alzahrani S. Antimicrobial resistance patterns among different Escherichia coli isolates in the Kingdom of Saudi Arabia. Saudi J Biol Sci 2021; 28:3776-3782. [PMID: 34220231 PMCID: PMC8241624 DOI: 10.1016/j.sjbs.2021.03.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance patterns among different Escherichia coli isolates in the Kingdom of Saudi Arabia. This study aimed to investigate the patterns of antimicrobial resistance in E. coli isolated from different samples, and to identify potential pathogenic isolates in Riyadh, Kingdom of Saudi Arabia (KSA). In total, 51 bacterial isolates were recovered from 113 samples of human urine, food (raw meat, raw chicken, raw egg surface, and fresh vegetables), water, and air. Twenty-four E. coli isolates were tested for susceptibility to 26 antibiotics. The air sample isolates were most resistant to amoxicillin, ampicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, piperacillin/tazobactam, cefalotin, cefuroxime, cefoxitin, cefixime, nitrofurantoin, and trimethoprim/sulfamethoxazol. The isolates from vegetable samples were resistant to amoxicillin, ampicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, cefalotin, cefuroxime, cefoxitin, and cefixime. By contrast, the isolates from the water samples were resistant only to amoxicillin and ampicillin. The isolates from the human urine samples were most frequently resistant to norfloxacin (80%) followed by amoxicillin and ampicillin (70%), trimethoprim/sulfamethoxazole (55%), ciprofloxacin and ofloxacin (50%), cefalotin (30%), cefuroxime, cefixime and cefotaxime (25%), ceftazidime, ceftriaxone, cefepime and aztreonam (20%), amoxicillin/clavulanic acid, piperacillin/tazobactam and gentamicin (10%), and amoxicillin/sulbactam and cefoxitin (5%). Almost all (23/25, 95.8%) (n = 23) of the isolates were multi-drug resistant (MDR) (i.e., resistant to 3 or more classes of antibiotics), and 16.7% (n = 4) of those were positive for extended spectrum β-lactamase (ESBL). Of the 4 ESBL-producers, 3 were positive for blaCTX-M-15 and blaCTX-M1group, 2 were positive for blaCMY-2, and 1 each was positive for blaCTX-M-2 group, blaSHV, and blaOXA-47. The quinolone resistance gene qnrS was detected in 25% (n = 6) of the E. coli strains isolated from urine (N = 5) and air (N = 1) samples. The considerable number of antimicrobial resistance genes detected among E. coli isolates tested here is alarming and should raise public health concern.
Collapse
Affiliation(s)
- Kawther Aabed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nadine Moubayed
- Botany and Microbiology Department, Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Saleha Alzahrani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Wang W, Baker M, Hu Y, Xu J, Yang D, Maciel-Guerra A, Xue N, Li H, Yan S, Li M, Bai Y, Dong Y, Peng Z, Ma J, Li F, Dottorini T. Whole-Genome Sequencing and Machine Learning Analysis of Staphylococcus aureus from Multiple Heterogeneous Sources in China Reveals Common Genetic Traits of Antimicrobial Resistance. mSystems 2021; 6:e0118520. [PMID: 34100643 PMCID: PMC8579812 DOI: 10.1128/msystems.01185-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a worldwide leading cause of numerous diseases ranging from food-poisoning to lethal infections. Methicillin-resistant S. aureus (MRSA) has been found capable of acquiring resistance to most antimicrobials. MRSA is ubiquitous and diverse even in terms of antimicrobial resistance (AMR) profiles, posing a challenge for treatment. Here, we present a comprehensive study of S. aureus in China, addressing epidemiology, phylogenetic reconstruction, genomic characterization, and identification of AMR profiles. The study analyzes 673 S. aureus isolates from food as well as from hospitalized and healthy individuals. The isolates have been collected over a 9-year period, between 2010 and 2018, from 27 provinces across China. By whole-genome sequencing, Bayesian divergence analysis, and supervised machine learning, we reconstructed the phylogeny of the isolates and compared them to references from other countries. We identified 72 sequence types (STs), of which, 29 were novel. We found 81 MRSA lineages by multilocus sequence type (MLST), spa, staphylococcal cassette chromosome mec element (SCCmec), and Panton-Valentine leukocidin (PVL) typing. In addition, novel variants of SCCmec type IV hosting extra metal and antimicrobial resistance genes, as well as a new SCCmec type, were found. New Bayesian dating of the split times of major clades showed that ST9, ST59, and ST239 in China and European countries fell in different branches, whereas this pattern was not observed for the ST398 clone. On the contrary, the clonal transmission of ST398 was more intermixed in regard to geographic origin. Finally, we identified genetic determinants of resistance to 10 antimicrobials, discriminating drug-resistant bacteria from susceptible strains in the cohort. Our results reveal the emergence of Chinese MRSA lineages enriched of AMR determinants that share similar genetic traits of antimicrobial resistance across human and food, hinting at a complex scenario of evolving transmission routes. IMPORTANCE Little information is available on the epidemiology and characterization of Staphylococcus aureus in China. The role of food is a cause of major concern: staphylococcal foodborne diseases affect thousands every year, and the presence of resistant Staphylococcus strains on raw retail meat products is well documented. We studied a large heterogeneous data set of S. aureus isolates from many provinces of China, isolated from food as well as from individuals. Our large whole-genome collection represents a unique catalogue that can be easily meta-analyzed and integrated with further studies and adds to the library of S. aureus sequences in the public domain in a currently underrepresented geographical region. The new Bayesian dating of the split times of major drug-resistant enriched clones is relevant in showing that Chinese and European methicillin-resistant S. aureus (MRSA) have evolved differently. Our machine learning approach, across a large number of antibiotics, shows novel determinants underlying resistance and reveals frequent resistant traits in specific clonal complexes, highlighting the importance of particular clonal complexes in China. Our findings substantially expand what is known of the evolution and genetic determinants of resistance in food-associated S. aureus in China and add crucial information for whole-genome sequencing (WGS)-based surveillance of S. aureus.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | | | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Hui Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Menghan Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jinjing Ma
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, Anhui, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| |
Collapse
|
16
|
Genome Informatics and Machine Learning-Based Identification of Antimicrobial Resistance-Encoding Features and Virulence Attributes in Escherichia coli Genomes Representing Globally Prevalent Lineages, Including High-Risk Clonal Complexes. mBio 2021; 13:e0379621. [PMID: 35164570 PMCID: PMC8844930 DOI: 10.1128/mbio.03796-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli, a ubiquitous commensal/pathogenic member from the Enterobacteriaceae family, accounts for high infection burden, morbidity, and mortality throughout the world. With emerging multidrug resistance (MDR) on a massive scale, E. coli has been listed as one of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) priority pathogens. Understanding the resistance mechanisms and underlying genomic features appears to be of utmost importance to tackle further spread of these multidrug-resistant superbugs. While a few of the globally prevalent sequence types (STs) of E. coli, such as ST131, ST69, ST405, and ST648, have been previously reported to be highly virulent and harboring MDR, there is no clarity if certain ST lineages have a greater propensity to acquire MDR. In this study, large-scale comparative genomics of a total of 5,653 E. coli genomes from 19 ST lineages revealed ST-wide prevalence patterns of genomic features, such as antimicrobial resistance (AMR)-encoding genes/mutations, virulence genes, integrons, and transposons. Interpretation of the importance of these features using a Random Forest Classifier trained with 11,988 genomic features from whole-genome sequence data identified ST-specific or phylogroup-specific signature proteins mostly belonging to different protein superfamilies, including the toxin-antitoxin systems. Our study provides a comprehensive understanding of a myriad of genomic features, ST-specific proteins, and resistance mechanisms entailing different lineages of E. coli at the level of genomes; this could be of significant downstream importance in understanding the mechanisms of AMR, in clinical discovery, in epidemiology, and in devising control strategies. IMPORTANCE With the leap in whole-genome data being generated, the application of relevant methods to mine biologically significant information from microbial genomes is of utmost importance to public health genomics. Machine-learning methods have been used not only to mine, curate, or classify the data but also to identify the relevant features that could be linked to a particular class/target. This is perhaps one of the pioneering studies that has attempted to classify a large repertoire of E. coli genome data sets (5,653 genomes) belonging to 19 different STs (including well-studied as well as understudied STs) using machine learning approaches. Important features identified by these approaches have revealed ST-specific signature proteins, which could be further studied to predict possible associations with the phenotypic profiles, thereby providing a better understanding of virulence and the resistance mechanisms among different clonal lineages of E. coli.
Collapse
|
17
|
Alizon S. Treating symptomatic infections and the co-evolution of virulence and drug resistance. PEER COMMUNITY JOURNAL 2021; 1:e47. [PMID: 38707518 PMCID: PMC7615929 DOI: 10.24072/pcjournal.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Antimicrobial therapeutic treatments are by definition applied after the onset of symptoms, which tend to correlate with infection severity. Using mathematical epidemiology models, I explore how this link affects the coevolutionary dynamics between the virulence of an infection, measured via host mortality rate, and its susceptibility to chemotherapy. I show that unless resistance pre-exists in the population, drug-resistant infections are initially more virulent than drug-sensitive ones. As the epidemic unfolds, virulence is more counter-selected in drug-sensitive than in drug-resistant infections. This difference decreases over time and, eventually, the exact shape of genetic trade-offs govern long-term evolutionary dynamics. Using adaptive dynamics, I show that two types of evolutionary stable strategies (ESS) may be reached in the context of this simple model and that, depending on the parameter values, an ESS may only be locally stable. In general, the more the treatment rate increases with virulence, the lower the ESS value. Overall, both on the short-term and long-term, having treatment rate depend on infection virulence tend to favour less virulent strains in drug-sensitive infections. These results highlight the importance of the feedbacks between epidemiology, public health policies and parasite evolution, and have implications for the monitoring of virulence evolution.
Collapse
Affiliation(s)
- Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| |
Collapse
|
18
|
Hamida RS, Ali MA, Goda DA, Al-Zaban MI. Lethal Mechanisms of Nostoc-Synthesized Silver Nanoparticles Against Different Pathogenic Bacteria. Int J Nanomedicine 2020; 15:10499-10517. [PMID: 33402822 PMCID: PMC7778443 DOI: 10.2147/ijn.s289243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and the emergence of multidrug-resistant (MDR) pathogens have led to the need to develop new therapeutic agents to tackle microbial infections. Nano-antibiotics are a novel generation of nanomaterials with significant antimicrobial activities that target bacterial defense systems including biofilm formation, membrane permeability, and virulence activity. PURPOSE In addition to AgNO3, the current study aimed to explore for first time the antibacterial potential of silver nanoparticles synthesized by Nostoc sp. Bahar_M (N-SNPs) and their killing mechanisms against Streptococcus mutans, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. METHODS Potential mechanisms of action of both silver species against bacteria were systematically explored using agar well diffusion, enzyme (lactate dehydrogenase (LDH) and ATPase) and antioxidant (glutathione peroxidase and catalase) assays, and morphological examinations. qRT-PCR and SDS-PAGE were employed to investigate the effect of both treatments on mfD, flu, and hly gene expression and protein patterns, respectively. RESULTS N-SNPs exhibited greater biocidal activity than AgNO3 against the four tested bacteria. E. coli treated with N-SNPs showed significant surges in LDH levels, imbalances in other antioxidant and enzyme activities, and marked morphological changes, including cell membrane disruption and cytoplasmic dissolution. N-SNPs caused more significant upregulation of mfD expression and downregulation of both flu and hly expression and increased protein denaturation compared with AgNO3. CONCLUSION N-SNPs exhibited significant inhibitory potential against E. coli by direct interfering with bacterial cellular structures and/or enhancing oxidative stress, indicating their potential for use as an alternative antimicrobial agent. However, the potential of N-SNPs to be usable and biocompatible antibacterial drug will evaluate by their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Haque M, Islam S, Sheikh MA, Dhingra S, Uwambaye P, Labricciosa FM, Iskandar K, Charan J, Abukabda AB, Jahan D. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev Anti Infect Ther 2020; 19:571-586. [PMID: 33131352 DOI: 10.1080/14787210.2021.1843427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Quorum-sensing (QS) is a microbial cell-to-cell communication system that utilizes small signaling molecules to mediates interactions between cross-kingdom microorganisms, including Gram-positive and -negative microbes. QS molecules include N-acyl-homoserine-lactones (AHLs), furanosyl borate, hydroxyl-palmitic acid methylester, and methyl-dodecanoic acid. These signaling molecules maintain the symbiotic relationship between a host and the healthy microbial flora and also control various microbial virulence factors. This manuscript has been developed based on published scientific papers. AREAS COVERED Furanones, glycosylated chemicals, heavy metals, and nanomaterials are considered QS inhibitors (QSIs) and are therefore capable of inhibiting the microbial QS system. QSIs are currently being considered as antimicrobial therapeutic options. Currently, the low speed at which new antimicrobial agents are being developed impairs the treatment of drug-resistant infections. Therefore, QSIs are currently being studied as potential interventions targeting QS-signaling molecules and quorum quenching (QQ) enzymes to reduce microbial virulence. EXPERT OPINION QSIs represent a novel opportunity to combat antimicrobial resistance (AMR). However, no clinical trials have been conducted thus far assessing their efficacy. With the recent advancements in technology and the development of well-designed clinical trials aimed at targeting various components of the, QS system, these agents will undoubtedly provide a useful alternative to treat infectious diseases.
Collapse
Affiliation(s)
- Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Eric Williams Medical Sciences Complex, Trinidad & Tobago
| | - Peace Uwambaye
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine and Health Sciences, School of Dentistry, Kigali, Rwanda
| | | | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, F-31000 Toulouse, France.,INSPECT-LB: Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon.,Faculty of Pharmacy, Lebanese University, Beirut 1106, Lebanon
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Dhaka, Bangladesh
| |
Collapse
|
20
|
Comparative genome analysis of 12 Shigella sonnei strains: virulence, resistance, and their interactions. Int Microbiol 2020; 24:83-91. [PMID: 32880768 DOI: 10.1007/s10123-020-00145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Shigellosis is a highly infectious disease that is mainly transmitted via fecal-oral contact of the bacteria Shigella. Four species have been identified in Shigella genus, among which Shigella flexneri is used to be the most prevalent species globally and commonly isolated from developing countries. However, it is being replaced by Shigella sonnei that is currently the main causative agent for dysentery pandemic in many emerging industrialized countries such as Asia and the Middle East. For a better understanding of S. sonnei virulence and antibiotic resistance, we sequenced 12 clinical S. sonnei strains with varied antibiotic-resistance profiles collected from four cities in Jiangsu Province, China. Phylogenomic analysis clustered antibiotic-sensitive and resistant S. sonnei into two distinct groups while pan-genome analysis reveals the presence and absence of unique genes in each group. Screening of 31 classes of virulence factors found out that type 2 secretion system is doubled in resistant strains. Further principle component analysis based on the interactions between virulence and resistance indicated that abundant virulence factors are associated with higher levels of antibiotic resistance. The result present here is based on statistical analysis of a small sample size and serves basically as a guidance for further experimental and theoretical studies.
Collapse
|
21
|
Costard S, Pouzou JG, Belk KE, Morley PS, Schmidt JW, Wheeler TL, Arthur TM, Zagmutt FJ. No Change in Risk for Antibiotic-Resistant Salmonellosis from Beef, United States, 2002-2010. Emerg Infect Dis 2020; 26:2108-2117. [PMID: 32818395 PMCID: PMC7454111 DOI: 10.3201/eid2609.190922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Restricting antibiotic use in food production animals is a target for reducing antimicrobial drug–resistant infections in humans. To estimate the probability of antibiotic-resistant nontyphoidal salmonellosis per meal made with beef during 2002–2010, we used US surveillance data. Applying data for nontyphoidal Salmonella in raised-without-antibiotics cattle, we tested the effect of removing antibiotic use from all beef cattle production. We found an average of 1.2 antibiotic-resistant nontyphoidal salmonellosis cases per 1 million beef meals made with beef initially contaminated with antibiotic-resistant nontyphoidal Salmonella at slaughter or retail and 0.031 cases per 1 million meals irrespective of beef contamination status. Neither outcome showed sustained change except for increases in 2003 and 2009 (>98% confidence) when larger or more outbreaks occurred. Switching all beef production to a raised-without-antibiotics system may not have a significant effect on antibiotic-resistant nontyphoidal salmonellosis (94.3% confidence).
Collapse
|
22
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
23
|
Hamida RS, Ali MA, Goda DA, Khalil MI, Redhwan A. Cytotoxic effect of green silver nanoparticles against ampicillin-resistant Klebsiella pneumoniae. RSC Adv 2020; 10:21136-21146. [PMID: 35518759 PMCID: PMC9054378 DOI: 10.1039/d0ra03580g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022] Open
Abstract
Considering the harmful effects and high spread of drug-resistant Klebsiella pneumoniae, many researchers have been trying to produce new antibacterial agents to combat the emergence of multidrug-resistant (MDR) strains of this bacterium. Recent progress in the nanomedicine field has provided opportunities for synthesizing unique nanoagents to battle MDR bacteria by targeting virulence and resistance signalling. The biocidal effects of 14.9 nm silver nanoparticles fabricated using Nostoc sp. Bahar M (N-SNPs) and AgNO3 were examined against drug-resistant K. pneumoniae using the agar well diffusion method. Transmission electron microscopy (TEM) was used to detect the ultrastructural changes caused by N-SNPs and AgNO3. To address the mode of action of N-SNPs and AgNO3, CAT, GPx, LDH and ATPase levels were assessed. The toxicity of N-SNPs and AgNO3 was evaluated against the mfD, flu, hly, 23S, hns, hcp-1, VgrG-1 and VgrG-3 genes as well as cellular proteins. N-SNPs showed the greatest inhibitory activity against K. pneumoniae, with MIC and MBC values of 0.9 and 1.2 mg mL-1, respectively. Furthermore, N-SNPs and AgNO3 induced apoptotic features, including cell shrinkage and cell atrophy. N-SNPs were more potent bactericidal compounds than AgNO3, causing increased leakage of LDH and GPx activities and depletion of ATPase and CAT activities, resulting in induced oxidative stress and metabolic toxicity. Compared to AgNO3, N-SNPs exhibited the highest toxicity towards the selected genes and the greatest damage to bacterial proteins. N-SNPs were the most potent agents that induced bacterial membrane damage, oxidative stress and disruption of biomolecules such as DNA and proteins. N-SNPs may be used as effective nanodrugs against MDR bacteria.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University Egypt +201156298937
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University Riyadh Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Mahmoud Ibrahim Khalil
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University Egypt +201156298937
- Department of Biological Sciences, Faculty of Science, Beirut Arab University Lebanon
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia +966555237223
| |
Collapse
|
24
|
Li Y, Zhang M, Luo J, Chen J, Wang Q, Lu S, Ji H. Antimicrobial resistance of Escherichia coli isolated from retail foods in northern Xinjiang, China. Food Sci Nutr 2020; 8:2035-2051. [PMID: 32328270 PMCID: PMC7174230 DOI: 10.1002/fsn3.1491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
To determine antimicrobial resistance, 431 samples of retail foods purchased at different supermarkets in Northern Xinjiang were examined in this study. There were 112 Escherichia coli strains that were isolated, with approximately 26% of the samples contaminated by E. coli. The detection rate of E. coli isolated from pork was the highest (59.6%), followed by mutton (52.6%), retail fresh milk (52.4%), duck (36.4%), beef (35.3%), chicken (33.3%), and ready-to-eat food (12.9%); the E. coli detection rate for fish and vegetables was <11%. The result showed that the 112 isolates were mostly resistant to tetracycline (52%), followed by ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%), imipenem resistance was not detected. One hundred isolates carried at least one antimicrobial resistance gene. The detection rate of resistance genes of our study was as follows: tetA (38%), tetB (27%), bla OXA (40%), bla TEM (20%), floR (20%), sul1 (16%), sul2 (27%), aad Ala (19%), aadB (11%), strA (28%), and strB (24%); tetC and bla PSE were not detected. Virulence genes fimC, agg, stx2, fimA, fyuA, papA, stx1, and eaeA were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively; papC was not detected. There was a statistically significant association between fimC and resistance to ciprofloxacin (p = .001), gentamicin (p = .001), amikacin (p = .001), levofloxacin (p = .001), and streptomycin (p = .001); between fimA and resistance to tetracycline (p = .001), ampicillin (p = .001), compound trimethoprim/sulfamethoxazole (p = .001), and amoxicillin (p = .003); between agg and resistance to gentamicin (p = .001), tetracycline (p = .001), ciprofloxacin (p = .017), and levofloxacin (p = .001); and between stx2 and resistance to ampicillin (p = .001), tetracycline (p = .001), compound trimethoprim/sulfamethoxazole (p = .002), and amoxicillin (p = .015).
Collapse
Affiliation(s)
- Yingjiao Li
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Mei Zhang
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Juan Luo
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Jiluan Chen
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Qingling Wang
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Shiling Lu
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Hua Ji
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
25
|
Chowdhury N, Suhani S, Purkaystha A, Begum MK, Raihan T, Alam MJ, Islam K, Azad AK. Identification of AcrAB-TolC Efflux Pump Genes and Detection of Mutation in Efflux Repressor AcrR from Omeprazole Responsive Multidrug-Resistant Escherichia coli Isolates Causing Urinary Tract Infections. Microbiol Insights 2019; 12:1178636119889629. [PMID: 31839709 PMCID: PMC6893934 DOI: 10.1177/1178636119889629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
Antimicrobial resistance poses a threat in the treatment of infectious diseases in Bangladesh as well as in the world. Multidrug-resistant (MDR) Enterobacteriaceae, the most common cause of one such infectious disease, urinary tract infection (UTI), has contributed to the escalating problem of selecting empiric antibiotics against UTIs. The aim of this study was to investigate the presence of the efflux pump in MDR Escherichia coli isolates from UTI in the North-East region of Bangladesh, to isolate and characterize the AcrAB-TolC efflux pump genes of these locally isolated strains and to do mutation analysis of the efflux pump repressor AcrR gene to understand the AcrAB-TolC efflux pump mechanism. In the presence of omeprazole, an efflux pump inhibitor, every MDR E. coli isolate showed increased susceptibility to at least 1 of the 7 antibiotics investigated, indicating that efflux pump might be involved in their antibiotic resistance. Omeprazole decreased the minimum inhibitory concentration of every antibiotics being investigated by 2- to 8-fold. DNA and the deduced amino acid sequences of the polymerase chain reaction (PCR) products analyzed by bioinformatics tools revealed that the chromosomal AcrAB-TolC and AcrR genes were present in all MDR and antibiotic-susceptible E. coli isolates. However, the deduced amino acid sequences of the amplification refractory mutation system (ARMS) PCR product of the AcrR gene revealed that the substitution of arginine to cysteine at position 45 of AcrR was observed only in the MDR E. coli whose antibiotic susceptibility increased in the presence of omeprazole. Data reported herein support the notion that the increased antibiotic susceptibility of the MDR E. coli isolates in the presence of omeprazole might be due to efflux pump(s) inhibition and the AcrAB-TolC efflux pump might be a contributor to antibiotic resistance when the mutation of arginine to cysteine occurs at position 45 of AcrR.
Collapse
Affiliation(s)
- Nandan Chowdhury
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Sabrina Suhani
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Auditi Purkaystha
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Md Jahangir Alam
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Abul Kalam Azad
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| |
Collapse
|
26
|
Chandrasekaran S, Jiang SC. A dose response model for quantifying the infection risk of antibiotic-resistant bacteria. Sci Rep 2019; 9:17093. [PMID: 31745096 PMCID: PMC6863845 DOI: 10.1038/s41598-019-52947-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Quantifying the human health risk of microbial infection helps inform regulatory policies concerning pathogens, and the associated public health measures. Estimating the infection risk requires knowledge of the probability of a person being infected by a given quantity of pathogens, and this relationship is modeled using pathogen specific dose response models (DRMs). However, risk quantification for antibiotic-resistant bacteria (ARB) has been hindered by the absence of suitable DRMs for ARB. A new approach to DRMs is introduced to capture ARB and antibiotic-susceptible bacteria (ASB) dynamics as a stochastic simple death (SD) process. By bridging SD with data from bench experiments, we demonstrate methods to (1) account for the effect of antibiotic concentrations and horizontal gene transfer on risk; (2) compute total risk for samples containing multiple bacterial types (e.g., ASB, ARB); and (3) predict if illness is treatable with antibiotics. We present a case study of exposure to a mixed population of Gentamicin-susceptible and resistant Escherichia coli and predict the health outcomes for varying Gentamicin concentrations. Thus, this research establishes a new framework to quantify the risk posed by ARB and antibiotics.
Collapse
Affiliation(s)
- Srikiran Chandrasekaran
- University of California Irvine, Civil and Environmental Engineering, Irvine, 92697, United States.,University of California Irvine, Center for Complex Biological Sciences, Irvine, 92697, United States
| | - Sunny C Jiang
- University of California Irvine, Civil and Environmental Engineering, Irvine, 92697, United States.
| |
Collapse
|
27
|
Impact of an Antimicrobial Stewardship Intervention on Within- and Between-Patient Daptomycin Resistance Evolution in Vancomycin-Resistant Enterococcus faecium. Antimicrob Agents Chemother 2019; 63:AAC.01800-18. [PMID: 30718245 DOI: 10.1128/aac.01800-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Vancomycin-resistant Enterococcus (VRE) is a leading cause of hospital-acquired infection, with limited treatment options. Resistance to one of the few remaining drugs, daptomycin, is a growing clinical problem and has previously been described in this hospital. In response to increasing resistance, an antimicrobial stewardship intervention was implemented to reduce hospital-wide use of daptomycin. To assess the impact of the intervention, daptomycin prescribing patterns and clinically reported culture results from vancomycin-resistant Enterococcus faecium (VREfm) bloodstream infections (BSIs) from 2011 through 2017 were retrospectively extracted and the impact of the intervention was estimated using interrupted time series analysis (ITS). We corrected for a change in MIC determination methodology by retesting 262 isolates using Etest and broth microdilution. Hospital-wide and within-patient resistance patterns of corrected daptomycin MICs are reported. Our data show that daptomycin prescriptions decreased from an average of 287 days of therapy/month preintervention to 151 days of therapy/month postintervention. Concurrently, the proportion of patients experiencing an increase in daptomycin MIC during an infection declined from 14.6% (7/48 patients) in 2014 to 1.9% (1/54 patients) in 2017. Hospital-wide resistance to daptomycin also decreased in the postintervention period, but this was not maintained. This study shows that an antimicrobial stewardship-guided intervention reduced daptomycin use and improved individual level outcomes but had only transient impact on the hospital-level trend.
Collapse
|
28
|
Barrios-Villa E, Cortés-Cortés G, Lozano-Zaraín P, Arenas-Hernández MMDLP, Martínez de la Peña CF, Martínez-Laguna Y, Torres C, Rocha-Gracia RDC. Adherent/invasive Escherichia coli (AIEC) isolates from asymptomatic people: new E. coli ST131 O25:H4/H30-Rx virotypes. Ann Clin Microbiol Antimicrob 2018; 17:42. [PMID: 30526606 PMCID: PMC6287351 DOI: 10.1186/s12941-018-0295-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The widespread Escherichia coli clone ST131 implicated in multidrug-resistant infections has been recently reported, the majority belonging to O25:H4 serotype and classified into five main virotypes in accordance with the virulence genes carried. METHODS Pathogenicity Islands I and II (PAI-I and PAI-II) were determined using conventional PCR protocols from a set of four E. coli CTXR ST131 O25:H4/H30-Rx strains collected from healthy donors' stool. The virulence genes patterns were also analyzed and compared them with the virotypes reported previously; then adherence, invasion, macrophage survival and biofilm formation assays were evaluated and AIEC pathotype genetic determinants were investigated. FINDINGS Non-reported virulence patterns were found in our isolates, two of them carried satA, papA, papGII genes and the two-remaining isolates carried cnfI, iroN, satA, papA, papGII genes, and none of them belonged to classical ST131 virotypes, suggesting an endemic distribution of virulence genes and two new virotypes. The presence of PAI-I and PAI-II of Uropathogenic E. coli was determined in three of the four strains, furthermore adherence and invasion assays demonstrated higher degrees of attachment/invasion compared with the control strains. We also amplified intI1, insA and insB genes in all four samples. INTERPRETATION The results indicate that these strains own non-reported virotypes suggesting endemic distribution of virulence genes, our four strains also belong to an AIEC pathotype, being this the first report of AIEC in México and the association of AIEC with healthy donors.
Collapse
Affiliation(s)
- Edwin Barrios-Villa
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Gerardo Cortés-Cortés
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Patricia Lozano-Zaraín
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Margarita María de la Paz Arenas-Hernández
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Claudia Fabiola Martínez de la Peña
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Rosa del Carmen Rocha-Gracia
- Benemérita Universidad Autónoma de Puebla, Posgrado en Ciencias Microbiológicas, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Puebla, Mexico
| |
Collapse
|
29
|
Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. Appl Environ Microbiol 2018; 84:AEM.01173-18. [PMID: 30054356 DOI: 10.1128/aem.01173-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial horizontal gene transfer is a continuous process that shapes bacterial genomic adaptation to the environment and the composition of concurrent microbial ecology. This includes the potential impact of synthetic antibiotic utilization in farm animal production on overall antibiotic resistance issues; however, the mechanisms behind the evolution of microbial communities are not fully understood. We explored potential mechanisms by experimentally examining the relatedness of phylogenetic inference between multidrug-resistant Salmonella enterica serovar Typhimurium isolates and pathogenic Salmonella Typhimurium strains based on genome-wide single-nucleotide polymorphism (SNP) comparisons. Antibiotic-resistant S Typhimurium isolates in a simulated farm environment barely lost their resistance, whereas sensitive S Typhimurium isolates in soils gradually acquired higher tetracycline resistance under antibiotic pressure and manipulated differential expression of antibiotic-resistant genes. The expeditious development of antibiotic resistance and the ensuing genetic alterations in antimicrobial resistance genes in S Typhimurium warrant effective actions to control the dissemination of Salmonella antibiotic resistance.IMPORTANCE Antibiotic resistance is attributed to the misuse or overuse of antibiotics in agriculture, and antibiotic resistance genes can also be transferred to bacteria under environmental stress. In this study, we report a unidirectional alteration in antibiotic resistance from susceptibility to increased resistance. Highly sensitive Salmonella enterica serovar Typhimurium isolates from organic farm systems quickly acquired tetracycline resistance under antibiotic pressure in simulated farm soil environments within 2 weeks, with expression of antibiotic resistance-related genes that was significantly upregulated. Conversely, originally resistant S Typhimurium isolates from conventional farm systems lost little of their resistance when transferred to environments without antibiotic pressure. Additionally, multidrug-resistant S Typhimurium isolates genetically shared relevancy with pathogenic S Typhimurium isolates, whereas susceptible isolates clustered with nonpathogenic strains. These results provide detailed discussion and explanation about the genetic alterations and simultaneous acquisition of antibiotic resistance in S Typhimurium in agricultural environments.
Collapse
|
30
|
Scortti M, Han L, Alvarez S, Leclercq A, Moura A, Lecuit M, Vazquez-Boland J. Epistatic control of intrinsic resistance by virulence genes in Listeria. PLoS Genet 2018; 14:e1007525. [PMID: 30180166 PMCID: PMC6122793 DOI: 10.1371/journal.pgen.1007525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/29/2018] [Indexed: 01/31/2023] Open
Abstract
Elucidating the relationships between antimicrobial resistance and virulence is key to understanding the evolution and population dynamics of resistant pathogens. Here, we show that the susceptibility of the gram-positive bacterium Listeria monocytogenes to the antibiotic fosfomycin is a complex trait involving interactions between resistance and virulence genes and the environment. We found that a FosX enzyme encoded in the listerial core genome confers intrinsic fosfomycin resistance to both pathogenic and non-pathogenic Listeria spp. However, in the genomic context of the pathogenic L. monocytogenes, FosX-mediated resistance is epistatically suppressed by two members of the PrfA virulence regulon, hpt and prfA, which upon activation by host signals induce increased fosfomycin influx into the bacterial cell. Consequently, in infection conditions, most L. monocytogenes isolates become susceptible to fosfomycin despite possessing a gene that confers high-level resistance to the drug. Our study establishes the molecular basis of an epistatic interaction between virulence and resistance genes controlling bacterial susceptibility to an antibiotic. The reported findings provide the rationale for the introduction of fosfomycin in the treatment of Listeria infections even though these bacteria are intrinsically resistant to the antibiotic in vitro.
Collapse
Affiliation(s)
- Mariela Scortti
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| | - Lei Han
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
- Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Jose Vazquez-Boland
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Akhter S, Lund BA, Ismael A, Langer M, Isaksson J, Christopeit T, Leiros HKS, Bayer A. A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. Eur J Med Chem 2017; 145:634-648. [PMID: 29348071 DOI: 10.1016/j.ejmech.2017.12.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023]
Abstract
β-Lactam antibiotics are of utmost importance when treating bacterial infections in the medical community. However, currently their utility is threatened by the emergence and spread of β-lactam resistance. The most prevalent resistance mechanism to β-lactam antibiotics is expression of β-lactamase enzymes. One way to overcome resistance caused by β-lactamases, is the development of β-lactamase inhibitors and today several β-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic data from 33 fragment-enzyme complexes, the fragments could be classified into R1 or R2 binders by their overall binding conformation in relation to the binding of the R1 and R2 side groups of imipenem. Moreover, binding interactions attractive for future inhibitor design were found and their usefulness explored by the rational design and evaluation of merged inhibitors from orthogonally binding fragments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory potential in the low micromolar range (IC50 = 2.9 μM). For these inhibitors, the complex X-ray structures revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions observed with the mono-substituted fragments were also identified in the merged structures.
Collapse
Affiliation(s)
- Sundus Akhter
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Bjarte Aarmo Lund
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Manuel Langer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Tony Christopeit
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
32
|
Yang Q, Li M, Spiller OB, Andrey DO, Hinchliffe P, Li H, MacLean C, Niumsup P, Powell L, Pritchard M, Papkou A, Shen Y, Portal E, Sands K, Spencer J, Tansawai U, Thomas D, Wang S, Wang Y, Shen J, Walsh T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 2017; 8:2054. [PMID: 29233990 PMCID: PMC5727292 DOI: 10.1038/s41467-017-02149-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022] Open
Abstract
MCR-1 is a lipid A modifying enzyme that confers resistance to the antibiotic colistin. Here, we analyse the impact of MCR-1 expression on E. coli morphology, fitness, competitiveness, immune stimulation and virulence. Increased expression of mcr-1 results in decreased growth rate, cell viability, competitive ability and significant degradation in cell membrane and cytoplasmic structures, compared to expression of catalytically inactive MCR-1 (E246A) or MCR-1 soluble component. Lipopolysaccharide (LPS) extracted from mcr-1 strains induces lower production of IL-6 and TNF, when compared to control LPS. Compared to their parent strains, high-level colistin resistance mutants (HLCRMs) show reduced fitness (relative fitness is 0.41-0.78) and highly attenuated virulence in a Galleria mellonella infection model. Furthermore, HLCRMs are more susceptible to most antibiotics than their respective parent strains. Our results show that the bacterium is challenged to find a delicate equilibrium between expression of MCR-1-mediated colistin resistance and minimalizing toxicity and thus ensuring cell survival.
Collapse
Affiliation(s)
- Qiue Yang
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Mei Li
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Owen B Spiller
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Diego O Andrey
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva, Switzerland
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Pannika Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lydia Powell
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Manon Pritchard
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrei Papkou
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Yingbo Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Edward Portal
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - David Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Shaolin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
33
|
MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci Rep 2017; 7:11414. [PMID: 28900246 PMCID: PMC5595867 DOI: 10.1038/s41598-017-11597-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
Food-borne methicillin resistant Staphylococcus aureus (MRSA) is involved in two-fold higher mortality rate compared to methicillin susceptible S. aureus (MSSA). Eventhough Mysuru recognized as cleanest city in the world, prevalence of food contamination is not detailed. The aim is to screen food samples from Mysuru area and to characterize MRSA strain, employing MALDI-Biotyper, multiplex PCR to distinguish between MRSA and MSSA by PCR-coupled single strand conformation polymorphism (PCR-SSCP). Of all the food-borne pathogens, S. aureus contamination accounts for 94.37 ± 0.02% (P < 0.01), strains characterized by means of nuc genes, followed by species specific identification by Coa, Eap and SpA genes and multiplex PCR to confirm the presence of three methicillin resistant staphylococcal species simultaneously using nuc and phoP genes. Amplification of mecA gene in 159 isolates confirmed that all strains are methicillin resistant, except UOM160 (MSSA) and multi-drug resistant (MDR) in 159 isolates confirmed by 22 sets of β-lactam antibiotics. MSSA and MDR-MRSA were discriminated by PCR-SSCP using nuc gene for the first time. From the present studies, compared to conventional methods MALDI-Biotyper emerged as an effective, sensitive (>99%), robust (<2 min), and alternative tool for pathogen identification, and we developed a PCR-SSCP technique for rapid detection of MSSA and MRSA strains.
Collapse
|
34
|
Abstract
AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.IMPORTANCE Antibiotic resistance is a major public health concern. In Gram-negative bacteria, overexpression of the AcrAB-TolC multidrug efflux system confers resistance to clinically useful drugs. Here, we show that loss of AcrB efflux function causes loss of virulence in Salmonella enterica serovar Typhimurium. This is due to the reduction of bacterial factors necessary for infection, which is likely to be caused by the retention of noxious molecules inside the bacterium. We also show that, in contrast to loss of AcrB protein, loss of efflux does not induce overexpression of other efflux pumps from the same family. This indicates that there are differences between loss of efflux protein and loss of efflux that make gene deletion mutants unsuitable for studying the biological function of membrane transporters. Understanding the biological role of AcrB will help to assess the risks of targeting efflux pumps as a strategy to combat antibiotic resistance.
Collapse
|
35
|
Abstract
Many bacterial pathogens are exhibiting resistance to increasing numbers of antibiotics making it much more challenging to treat the infections caused by these microbes. In many reports in the media and perhaps even in discussions among physicians and biomedical scientists, these bacteria are frequently referred to as “bugs” with the prefix “super” appended. This terminology has a high potential to elicit unjustified inferences and fails to highlight the broader evolutionary context. Understanding the full range of biological and evolutionary factors that influence the spread and outcomes of infections is critical to formulating effective individual therapies and public health interventions. Therefore, more accurate terminology should be used to refer these multidrug-resistant bacteria.
Collapse
|
36
|
Schroeder M, Brooks BD, Brooks AE. The Complex Relationship between Virulence and Antibiotic Resistance. Genes (Basel) 2017; 8:E39. [PMID: 28106797 PMCID: PMC5295033 DOI: 10.3390/genes8010039] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/07/2017] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance, prompted by the overuse of antimicrobial agents, may arise from a variety of mechanisms, particularly horizontal gene transfer of virulence and antibiotic resistance genes, which is often facilitated by biofilm formation. The importance of phenotypic changes seen in a biofilm, which lead to genotypic alterations, cannot be overstated. Irrespective of if the biofilm is single microbe or polymicrobial, bacteria, protected within a biofilm from the external environment, communicate through signal transduction pathways (e.g., quorum sensing or two-component systems), leading to global changes in gene expression, enhancing virulence, and expediting the acquisition of antibiotic resistance. Thus, one must examine a genetic change in virulence and resistance not only in the context of the biofilm but also as inextricably linked pathologies. Observationally, it is clear that increased virulence and the advent of antibiotic resistance often arise almost simultaneously; however, their genetic connection has been relatively ignored. Although the complexities of genetic regulation in a multispecies community may obscure a causative relationship, uncovering key genetic interactions between virulence and resistance in biofilm bacteria is essential to identifying new druggable targets, ultimately providing a drug discovery and development pathway to improve treatment options for chronic and recurring infection.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences; North Dakota State University, Fargo, ND 58105, USA.
| | - Benjamin D Brooks
- Department of Electrical and Computer Engineering; North Dakota State University, Fargo, ND 58105, USA.
| | - Amanda E Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|