1
|
Mazzocca A, Fais S. New hypotheses for cancer generation and progression. Med Hypotheses 2021; 152:110614. [PMID: 34087614 DOI: 10.1016/j.mehy.2021.110614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Since Nixon famously declared war on cancer in 1971, trillions of dollars have been spent on cancer research but the life expectancy for most forms of cancer is still poor. There are many reasons for the partial success of cancer translational research. One of these can be the predominance of certain paradigms that potentially narrowed the vision in interpreting cancer. The main paradigm to explain carcinogenesis is based on DNA mutations, which is well interpreted by the somatic mutation theory (SMT). However, a different theory claims that cancer is instead a tissue disease as proposed by the Tissue Organization Field Theory (TOFT). Here, we propose new hypotheses to explain the origin and pathogenesis of cancer. In this perspective, the systemic-evolutionary theory of cancer (SETOC) is discussed as well as how the microenvironment affects the adaptation of transformed cells and the reversion to a unicellular-like or embryo-like phenotype.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
2
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Gilbert ES, Little MP, Preston DL, Stram DO. Issues in Interpreting Epidemiologic Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation. J Natl Cancer Inst Monogr 2020; 2020:176-187. [PMID: 32657345 PMCID: PMC7355296 DOI: 10.1093/jncimonographs/lgaa004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
This article addresses issues relevant to interpreting findings from 26 epidemiologic studies of persons exposed to low-dose radiation. We review the extensive data from both epidemiologic studies of persons exposed at moderate or high doses and from radiobiology that together have firmly established radiation as carcinogenic. We then discuss the use of the linear relative risk model that has been used to describe data from both low- and moderate- or high-dose studies. We consider the effects of dose measurement errors; these can reduce statistical power and lead to underestimation of risks but are very unlikely to bring about a spurious dose response. We estimate statistical power for the low-dose studies under the assumption that true risks of radiation-related cancers are those expected from studies of Japanese atomic bomb survivors. Finally, we discuss the interpretation of confidence intervals and statistical tests and the applicability of the Bradford Hill principles for a causal relationship.
Collapse
Affiliation(s)
- Ethel S Gilbert
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Daniel O Stram
- Department of Preventive Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Cancer associated fibroblast: Mediators of tumorigenesis. Matrix Biol 2020; 91-92:19-34. [PMID: 32450219 DOI: 10.1016/j.matbio.2020.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
It is well accepted that the tumor microenvironment plays a pivotal role in cancer onset, development, and progression. The majority of clinical interventions are designed to target either cancer or stroma cells. These emphases have been directed by one of two prevailing theories in the field, the Somatic Mutation Theory and the Tissue Organization Field Theory, which represent two seemingly opposing concepts. This review proposes that the two theories are mutually inclusive and should be concurrently considered for cancer treatments. Specifically, this review discusses the dynamic and reciprocal processes between stromal cells and extracellular matrices, using pancreatic cancer as an example, to demonstrate the inclusivity of the theories. Furthermore, this review highlights the functions of cancer associated fibroblasts, which represent the major stromal cell type, as important mediators of the known cancer hallmarks that the two theories attempt to explain.
Collapse
|
5
|
Nakai S, Tamiya H, Imura Y, Nakai T, Yasuda N, Wakamatsu T, Tanaka T, Outani H, Takenaka S, Hamada K, Myoui A, Araki N, Ueda T, Yoshikawa H, Naka N. Eribulin Suppresses Clear Cell Sarcoma Growth by Inhibiting Cell Proliferation and Inducing Melanocytic Differentiation Both Directly and Via Vascular Remodeling. Mol Cancer Ther 2019; 19:742-754. [PMID: 31796507 DOI: 10.1158/1535-7163.mct-19-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
Clear cell sarcoma (CCS) is a rare but chemotherapy-resistant and often fatal high-grade soft-tissue sarcoma (STS) characterized by melanocytic differentiation under control of microphthalmia-associated transcription factor (MITF). Eribulin mesilate (eribulin) is a mechanistically unique microtubule inhibitor commonly used for STS treatment, particularly liposarcoma and leiomyosarcoma. In this study, we examined the antitumor efficacy of eribulin on four human CCS cell lines and two mouse xenograft models. Eribulin inhibited CCS cell proliferation by inducing cell-cycle arrest and apoptosis, shrunk CCS xenograft tumors, and increased tumor vessel density. Eribulin induced MITF protein upregulation and stimulated tumor cell melanocytic differentiation through ERK1/2 inactivation (a MITF negative regulator) in vitro and in vivo Moreover, tumor reoxygenation, probably caused by eribulin-induced vascular remodeling, attenuated cell growth and inhibited ERK1/2 activity, thereby upregulating MITF expression and promoting melanocytic differentiation. Finally, downregulation of MITF protein levels modestly debilitated the antiproliferative effect of eribulin on CCS cells. Taken together, eribulin suppresses CCS through inhibition of cell proliferation and promotion of tumor differentiation by acting both directly on tumor cells and indirectly through tumor reoxygenation.
Collapse
Affiliation(s)
- Sho Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironari Tamiya
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Imura
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Kawachi General Hospital, Kawachi, Japan
| | - Naohiro Yasuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Wakamatsu
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Tanaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Hidetatsu Outani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Hamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Myoui
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuhito Araki
- Department of Orthopaedic Surgery, Ashiya Municipal Hospital, Ashiya, Japan
| | - Takafumi Ueda
- Department of Orthopaedic Surgery, Osaka National Hospital, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan. .,Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Platt JL, Cascalho M. Cell Fusion in Malignancy: A Cause or Consequence? A Provocateur or Cure? Cells 2019; 8:E587. [PMID: 31207918 PMCID: PMC6628134 DOI: 10.3390/cells8060587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/13/2023] Open
Abstract
Cell fusion has been observed in malignancy, and cancer cells have been found especially apt to fuse with other cells. Investigation of human and experimental malignancies suggests spontaneous fusion of normal cells can induce manifold genetic changes and manifestations of malignant transformation. Fusion of transformed cells with other cells can promote the progression of cancer to more malignant forms. However, observations in various fields suggest cell fusion also potentially contributes to natural defenses against cancer. Thus, cell fusion potentially corrects genetic and/or phenotypic changes underlying malignant transformation. Cell fusion also might help nonmalignant cells in tumors thwart tumor growth. Perhaps most importantly, cell fusion may generate genetic changes that lead to the expression of neoantigens, provide the mass of neoantigen expression needed to elicit immunity, and promote the function of antigen-presenting cells in a way that favors protective immunity as a defense against malignancy. To the extent that cell fusion promotes cellular, tissue, and/or systemic resistance to malignancy, the propensity of tumor cells to fuse with other cells might constitute a natural defense against malignancy.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Li G, Wang K, Li Y, Ruan J, Wang C, Qian Y, Zu S, Dai B, Meng Y, Zhou R, Ge J, Chen F. Role of eIF3a in 4-amino-2-trifluoromethyl-phenyl retinate-induced cell differentiation in human chronic myeloid leukemia K562 cells. Gene 2018; 683:195-209. [PMID: 30340049 DOI: 10.1016/j.gene.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
4-amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been demonstrated its anti-tumor effect through inducing differentiation and inhibiting proliferation. Eukaryotic initiation factor 3a (eIF3a) plays a critical role in affecting tumor cell proliferation and differentiation. However, whether eIF3a is implicated in chronic myeloid leukemia cells differentiation remains unclear. Our results demonstrated that eIF3a could be suppressed by ATPR in K562 cells. The results also confirmed that ATPR could arrest cell cycle in G0/G1 phase and induced differentiation. Moreover, over-expression of eIF3a promoted not only protein expression of c-myc and cyclin D1, but also prevented the expression of p-Raf-1, p-ERK and the myeloid differentiation markers CD11b and CD14 and had an influence on inducing the morphologic mature. However, silencing eIF3a expression by small interfering RNA could have an adverse effect on K562 cells. In addition, PD98059 (a MEK inhibitor) could block cell differentiation of CML cells and contributed to the expression of c-myc and cyclin D1. In conclusion, these results indicated that eIF3a played an important role in ATPR-induced cell differentiation in K562 cells, its mechanism might be related to its ability in regulating the activation of ERK1/2 signaling pathway in vitro.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Cycle Checkpoints
- Cell Differentiation/drug effects
- Down-Regulation
- Eukaryotic Initiation Factor-3/genetics
- Eukaryotic Initiation Factor-3/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- Retinoids/pharmacology
Collapse
Affiliation(s)
- Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ke Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jinging Ruan
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cong Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yuejiao Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Shengqin Zu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Beibei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yao Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Renpeng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jingfang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
8
|
Engvild KC. Cancer follows chromosome missegregation when all endogenous repair mechanisms fail. Med Hypotheses 2018; 120:121-123. [PMID: 30220330 DOI: 10.1016/j.mehy.2018.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 11/28/2022]
Abstract
Almost all solid tumors consist of aneuploid cells with highly abnormal chromosome numbers. Such cancer cells could very well originate from chromosome missegregation which is a disturbingly common phenomenon, happening in 0.01 to 4 percent of cell divisions. Missegregated cells are aneuploid, typically lacking a chromosome or having one in surplus. Missegregated cells have mutation in the gene dose of the perhaps a thousand genes on a chromosome in one step. After missegregation cell division cannot be done right, as at least one daughter cell has a faulty chromosome number. At division in cells with surplus chromosomes the number will tend to increase due to mismatch in the division machinery. The organism has a number of repair mechanisms in place to prevent potential damage of accumulating aneuploidy. The first is the roll-back of the cell division itself, leading to tetraploidy or sometimes two nuclei in one cell; another is the prevention of further divisions. A very important one is induction of apoptosis, the cellular suicide. A special case is the elimination of the nucleus itself in the formation of red blood cells. Many aneuploid cells are probably eliminated by the immune system. A hypothetical mechanism would be the prevention of metastasis. Missegregation increases with age when the chromosomes lose their protective telomere ends at the Hayflick limit after about 50 divisions, and the unraveled chromosomes fuse and break. For cancer to develop all of these repair mechanisms must fail. The hypothesis offers a straightforward rationale for the multiple hit hypothesis of cancer development.
Collapse
Affiliation(s)
- Kjeld C Engvild
- Eco Center, Technical University of Denmark, Roskilde, Denmark.
| |
Collapse
|
9
|
How does the social environment during life course embody in and influence the development of cancer? Int J Public Health 2018; 63:811-821. [DOI: 10.1007/s00038-018-1131-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
|
10
|
A Possible Role for Philosophy: Bridging the Conceptual Divide in Cancer Research. Acta Biotheor 2018. [DOI: 10.1007/s10441-018-9326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci 2017; 7:61. [PMID: 29177029 PMCID: PMC5693707 DOI: 10.1186/s13578-017-0188-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease without a unified explanation for its cause so far. Our recent work demonstrates that cancer cells share similar regulatory networks and characteristics with embryonic neural cells. Based on the study, I will address the relationship between tumor and neural cells in more details. I collected the evidence from various aspects of cancer development in many other studies, and integrated the information from studies on cancer cell properties, cell fate specification during embryonic development and evolution. Synthesis of the information strongly supports that cancer cells share much more similarities with neural progenitor/stem cells than with mesenchymal-type cells and that tumorigenesis represents a process of gradual loss of cell or lineage identity and gain of characteristics of neural cells. I also discuss cancer EMT, a concept having been under intense debate, and possibly the true meaning of EMT in cancer initiation and development. This synthesis provides fresh insights into a unified explanation for and a previously unrecognized nature of tumorigenesis, which might not be revealed by studies on individual molecular events. The review will also present some brief suggestions for cancer research based on the proposed model of tumorigenesis.
Collapse
Affiliation(s)
- Ying Cao
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061 China
| |
Collapse
|
12
|
Nakai T, Imura Y, Tamiya H, Yamada S, Nakai S, Yasuda N, Kaneko K, Outani H, Takenaka S, Hamada K, Myoui A, Araki N, Ueda T, Itoh K, Yoshikawa H, Naka N. Trabectedin is a promising antitumor agent potentially inducing melanocytic differentiation for clear cell sarcoma. Cancer Med 2017; 6:2121-2130. [PMID: 28745431 PMCID: PMC5603837 DOI: 10.1002/cam4.1130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/28/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
Clear cell sarcoma is an aggressive soft tissue sarcoma and highly resistant to conventional chemotherapy and radiation therapy. This devastating disease is defined by EWSR1-ATF1 fusion gene resulting from chromosomal translocation t(12;22)(q13;q12) and characterized by melanocytic differentiation. A marine-derived antineoplastic agent, trabectedin, inhibits the growth of myxoid liposarcoma and Ewing sarcoma by causing adipogenic differentiation and neural differentiation, respectively. In this study, we examined the antitumor effects and mechanism of action of trabectedin on human clear cell sarcoma cell lines. We showed that trabectedin decreased the cell proliferation of five clear cell sarcoma cell lines in a dose-dependent manner in vitro and reduced tumor growth of two mouse xenograft models. Flow cytometry and immunoblot analyses in vitro and immunohistochemical analysis in vivo revealed that trabectedin-induced G2/M cell cycle arrest and apoptosis. Furthermore, trabectedin increased the expression of melanocytic differentiation markers along with downregulation of ERK activity in vitro and the rate of melanin-positive cells in vivo. These results suggest that trabectedin has potent antitumor activity against clear cell sarcoma cells by inducing cell cycle arrest, apoptosis, and, in part, by promoting melanocytic differentiation through inactivation of ERK signaling. Our present study indicates that trabectedin is a promising differentiation-inducing agent for clear cell sarcoma.
Collapse
Affiliation(s)
- Takaaki Nakai
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Yoshinori Imura
- Musculoskeletal Oncology ServiceOsaka International Cancer Institute3‐1‐69, OtemaeChuo‐kuOsaka541‐8567Japan
| | - Hironari Tamiya
- Musculoskeletal Oncology ServiceOsaka International Cancer Institute3‐1‐69, OtemaeChuo‐kuOsaka541‐8567Japan
| | - Shutaro Yamada
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Sho Nakai
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Naohiro Yasuda
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Keiko Kaneko
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Hidetatsu Outani
- Musculoskeletal Oncology ServiceOsaka International Cancer Institute3‐1‐69, OtemaeChuo‐kuOsaka541‐8567Japan
| | - Satoshi Takenaka
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Kenichiro Hamada
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Akira Myoui
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Nobuhito Araki
- Musculoskeletal Oncology ServiceOsaka International Cancer Institute3‐1‐69, OtemaeChuo‐kuOsaka541‐8567Japan
| | - Takafumi Ueda
- Department of Orthopaedic SurgeryOsaka National Hospital2‐1‐14 HoenzakaChuo‐kuOsaka540‐0006Japan
| | - Kazuyuki Itoh
- Research InstituteNozaki Tokushukai2‐10‐50 TanigawaDaitoOsaka574‐0074Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Norifumi Naka
- Department of Orthopaedic SurgeryOsaka University Graduate School of Medicine2‐2 YamadaokaSuitaOsaka565‐0871Japan
- Musculoskeletal Oncology ServiceOsaka International Cancer Institute3‐1‐69, OtemaeChuo‐kuOsaka541‐8567Japan
| |
Collapse
|
13
|
Zhang Z, Lei A, Xu L, Chen L, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J Biol Chem 2017. [PMID: 28634230 DOI: 10.1074/jbc.m117.785865] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells.
Collapse
Affiliation(s)
- Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Anhua Lei
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Liyang Xu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Lu Chen
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Xiaoli Yang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Min Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China.
| |
Collapse
|
14
|
Little MP, Hendry JH. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer. PLoS Comput Biol 2017; 13:e1005391. [PMID: 28196079 PMCID: PMC5347390 DOI: 10.1371/journal.pcbi.1005391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/01/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, United States of
America
| | - Jolyon H. Hendry
- Christie Medical Physics and Engineering, Christie Hospital and
University of Manchester, Wilmslow Road, Manchester M20 4BX, United
Kingdom
| |
Collapse
|
15
|
Meeting or Exceeding Physical Activity Guidelines is Associated with Reduced Risk for Cancer in Mexican-Americans. ACTA ACUST UNITED AC 2016; 4:1-7. [PMID: 28529961 DOI: 10.12691/ajcp-4-1-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epidemiologic studies have shown that inadequate physical activity was associated with cancers in whites and other ethnic groups, but in Mexican-Americans data are limited. This study aimed to measure the association between physical activity and reported cancer risk in Mexican-Americans. METHODS Participants were drawn from the Cameron County Hispanic Cohort (n=3,391), a randomly selected Mexican-American cohort in Texas on the US-Mexico border. Physical activity was assessed using the International Physical Activity Questionnaire. Cancer was self-reported by the participants as being told by a health care provider that they had cancer. RESULTS Ninety-nine participants of the cohort (2.94%) reported a diagnosis of cancer. Compared to participants who did not meet US physical activity guidelines, subjects who met physical activity guidelines of 150 moderate and vigorous minutes per week (≥ 600 METs) reduced their risk for cancer by 87% (OR=0.13; 95% CI: 0.03-0.54), and subjects with total minutes per week of moderate and vigorous/strenuous activity greater than 745 METs decreased cancer risk by 86% [odds ratio (OR)=0.14; 95% confidence interval (CI): 0.03-0.60] comparing with their counterparts, after adjusting for age, gender, body mass index, smoking and alcohol drinking status, education and total portions of fruit and vegetable intake. CONCLUSIONS Meeting or exceeding recommended levels of moderate and vigorous physical activity was associated with a significantly reduced risk of reporting cancer by Mexican-Americans. Meeting or exceeding recommended levels of physical activity appears to be an effective target for cancer prevention and control among Mexican-Americans independent of BMI and other factors.
Collapse
|
16
|
Jung J, Gilbert MR, Park DM. Isolation and Propagation of Glioma Stem Cells from Acutely Resected Tumors. Methods Mol Biol 2016; 1516:361-369. [PMID: 27044042 PMCID: PMC10758280 DOI: 10.1007/7651_2016_342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Gliomas are characterized by striking intratumoral cellular heterogeneity. A consistent method to isolate undifferentiated GSC fraction from clinical specimens provides an opportunity to establish in vitro models that more closely mirror the in vivo state compared to traditional serum containing culture methods. Here we describe techniques involved with isolation, identification, and expansion of human malignant glioma-derived stem cells using a serum-free growth condition.
Collapse
Affiliation(s)
- Jinkyu Jung
- Department of Stem Cell Biology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, NIH, 9030 Old Georgetown Road, Bethesda, MD, 20817, USA
| | - Deric M Park
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, NIH, 9030 Old Georgetown Road, Bethesda, MD, 20817, USA.
| |
Collapse
|
17
|
Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 2015; 150:33-46. [PMID: 25595324 DOI: 10.1016/j.pharmthera.2015.01.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
18
|
Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev 2015; 27:463-81. [PMID: 24982317 DOI: 10.1128/cmr.00124-13] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved.
Collapse
|
19
|
Braun E. The unforeseen challenge: from genotype-to-phenotype in cell populations. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:036602. [PMID: 25719211 DOI: 10.1088/0034-4885/78/3/036602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization-exploration evolving by global, non-specific, dynamics of gene activity-is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.
Collapse
Affiliation(s)
- Erez Braun
- Department of Physics and Network Biology Research Laboratories, Technion, Haifa 32000, Israel
| |
Collapse
|
20
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 2014; 3:113. [PMID: 24409421 PMCID: PMC3885817 DOI: 10.3389/fcimb.2013.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/21/2013] [Indexed: 01/07/2023] Open
Abstract
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| |
Collapse
|
22
|
Agathocleous M, Harris WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol 2013; 23:484-92. [DOI: 10.1016/j.tcb.2013.05.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
|
23
|
Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, Little MP. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res 2013; 752:84-98. [PMID: 23262375 PMCID: PMC4091999 DOI: 10.1016/j.mrrev.2012.12.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/17/2022]
Abstract
Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Sisko Salomaa
- STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki, Finland
| | - Eric Wright
- School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Nethergate, Dundee, DD1 4HN, Scotland, UK
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Südring 75, 18051 Rostock, Germany
| | - Oleg V Belyakov
- Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark
| | | | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, 6120 Executive Boulevard, Rockville, MD 20852, USA
| |
Collapse
|
24
|
Investigation of transcriptional responses of juvenile mouse bone marrow to power frequency magnetic fields. Mutat Res 2013; 745-746:40-5. [PMID: 23523963 DOI: 10.1016/j.mrfmmm.2013.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 01/07/2023]
Abstract
To seek alterations in gene transcription in bone marrow cells following in vivo exposure of juvenile mice to power frequency magnetic fields, young (21-24-day old) C57BL/6 mice were exposed to a 100μT 50Hz magnetic field for 2h. Transcription was analysed by three methods, High Coverage Expression Profiling (HiCEP), Illumina microarrays and quantitative real-time polymerase chain reaction (QRT-PCR). A pilot HiCEP experiment with 6 exposed (E) and 6 non-exposed (NE) mice identified four candidate responsive transcripts (two unknown transcripts (AK152075 and F10-NED), phosphatidylinositol binding clathrin assembly protein (Picalm) and exportin 7 (Xpo7)). A larger experiment compared 19 E and 15 NE mice using two independent QRT-PCR assays and repeated microarray assays. No significant field-dependent changes were seen, although Picalm showed a trend to significance in one QRT-PCR assay (E/NE=0.91; P=0.06). However, the study was underpowered to detect an effect of this magnitude (52% power at P=0.05). These data indicate the current experimental constraints in detecting small changes in transcription that may occur in response to magnetic fields. These constraints result from technical limitations in the accuracy of assays and biological variation, which together were sufficient to account statistically for the number of differentially expressed transcripts identified in the pilot experiment.
Collapse
|
25
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
26
|
Duesberg P, McCormack A. Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 2013; 12:783-802. [PMID: 23388461 PMCID: PMC3610726 DOI: 10.4161/cc.23720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance long-established mitosis genes, cancer karyotypes vary spontaneously but are stabilized perpetually by clonal selections for autonomy. To test this theory we have analyzed neoplastic clones, presumably immortalized by transfection with overexpressed telomerase or with SV40 tumor virus, for the predicted clonal yet flexible karyotypes. The following results were obtained: (1) All immortal tumorigenic lines from cells transfected with overexpressed telomerase had clonal and flexible karyotypes; (2) Searching for the origin of such karyotypes, we found spontaneously increasing, random aneuploidy in human fibroblasts early after transfection with overexpressed telomerase; (3) Late after transfection, new immortal tumorigenic clones with new clonal and flexible karyotypes were found; (4) Testing immortality of one clone during 848 unselected generations showed the chromosome number was stable, but the copy numbers of 36% of chromosomes drifted ± 1; (5) Independent immortal tumorigenic clones with individual, flexible karyotypes arose after individual latencies; (6) Immortal tumorigenic clones with new flexible karyotypes also arose late from cells of a telomerase-deficient mouse rendered aneuploid by SV40 virus. Because immortality and tumorigenicity: (1) correlated exactly with individual clonal but flexible karyotypes; (2) originated simultaneously with such karyotypes; and (3) arose in the absence of telomerase, we conclude that clonal and flexible karyotypes generate the immortality of cancers.
Collapse
Affiliation(s)
- Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
27
|
Neural stem cells in Drosophila: molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells Int 2012; 2012:486169. [PMID: 22737173 PMCID: PMC3377361 DOI: 10.1155/2012/486169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/31/2012] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisions are key features of this proliferation. The molecular mechanisms that underlie the asymmetric cell divisions by which these neuroblasts self-renew and generate lineages of differentiating progeny have been studied extensively and involve two major protein complexes, the apical complex which maintains polarity and controls spindle orientation and the basal complex which is comprised of cell fate determinants and their adaptors that are segregated into the differentiating daughter cells during mitosis. Recent molecular genetic work has established Drosophila neuroblasts as a model for neural stem cell-derived tumors in which perturbation of key molecular mechanisms that control neuroblast proliferation and the asymmetric segregation of cell fate determinants lead to brain tumor formation. Identification of novel candidate genes that control neuroblast self-renewal and differentiation as well as functional analysis of these genes in normal and tumorigenic conditions in a tissue-specific manner is now possible through genome-wide transgenic RNAi screens. These cellular and molecular findings in Drosophila are likely to provide valuable genetic links for analyzing mammalian neural stem cells and tumor biology.
Collapse
|
28
|
Mutolo MJ, Morris KJ, Leir SH, Caffrey TC, Lewandowska MA, Hollingsworth MA, Harris A. Tumor suppression by collagen XV is independent of the restin domain. Matrix Biol 2012; 31:285-9. [PMID: 22531369 DOI: 10.1016/j.matbio.2012.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/18/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Non-fibrillar collagen XV is a chondroitin sulfate modified glycoprotein that is associated with the basement membrane zone in many tissues. Its precise functions remain to be fully elucidated though it clearly plays a critical role in the structural integrity of the extracellular matrix. Loss of collagen XV from the basement membrane zone precedes invasion of a number of tumor types and we previously showed that collagen XV functions as a dose-dependent suppressor of tumorigenicity in cervical carcinoma cells. The carboxyl terminus of another non-fibrillar collagen (XVIII) is cleaved to produce endostatin, which has anti-angiogenic effects and thus may act as a tumor suppressor in vivo. Since collagen XV has structural similarity with collagen XVIII, its C-terminal restin domain could confer tumor suppressive functions on the molecule, though our previous data did not support this. We now show that expression of collagen XV enhances the adhesion of cervical carcinoma cells to collagen I in vitro as does the N-terminus and collagenous regions of collagen XV, but not the restin domain. Destruction of a cysteine residue in the collagenous region that is critical for intermolecular interactions of collagen XV abolished the enhanced adhesion to collagen I. Finally, we demonstrate that unlike full length collagen XV, expression of the restin domain alone does not suppress tumorigenicity of cervical carcinoma cells in vivo; hence, this process is dependent on functions and interactions of other parts of the protein.
Collapse
Affiliation(s)
- Michael J Mutolo
- Human Molecular Genetics Program, Children's Memorial Research Center, and Department of Pediatrics, Northwestern University Feinberg School of Medicine, 2300 Children's Plaza #211, Chicago, IL 60614, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Antagonistic regulation of apoptosis and differentiation by the Cut transcription factor represents a tumor-suppressing mechanism in Drosophila. PLoS Genet 2012; 8:e1002582. [PMID: 22438831 PMCID: PMC3305397 DOI: 10.1371/journal.pgen.1002582] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/19/2012] [Indexed: 01/19/2023] Open
Abstract
Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process. Apoptosis is a highly conserved cellular function to remove excessive or unstable cells in diverse developmental processes and disease-responses. An important example is the elimination of cells unable to differentiate, which have the potential to generate tumors. Despite the significance of this process, the mechanisms coupling loss of differentiation and apoptosis have remained elusive. Using cell-type specification in Drosophila as a model, we now identify a conserved regulatory logic that underlies cell-type specific removal of uncommitted cells by apoptosis. We find that the transcription factor Cut activates differentiation, while it simultaneously represses cell death via the direct regulation of a pro-apoptotic gene. We show that this regulatory interaction occurs in many diverse cell types and is essential for normal development. Using in vivo Drosophila cancer models, we demonstrate that apoptosis activation in differentiation-compromised cells is an immediate-early cancer prevention mechanism. Importantly, we show that this type of regulatory wiring is also found in vertebrates and that other cell-type specification factors might employ a similar mechanism for tumor suppression. Thus, our findings suggest that the coupling of differentiation and apoptosis by individual transcription factors is a widely used and evolutionarily conserved cancer prevention module, which is hard-wired into the developmental program.
Collapse
|
30
|
Nicholson JM. Collegiality and careerism trump critical questions and bold new ideas: a student's perspective and solution. The structure of scientific funding limits bold new ideas. Bioessays 2012; 34:448-50. [PMID: 22371162 DOI: 10.1002/bies.201200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Funding agencies (and journals) seem to be discriminating against ideas that are contrary to the mainstream, leading to leading to the preferential funding of predictable and safe research over radically new ideas. To remedy this problem a restructuring of the scientific funding system is needed, e.g. by utilizing laymen--together with scientists--to evaluate grant proposals.
Collapse
Affiliation(s)
- Joshua M Nicholson
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
31
|
Soto AM, Sonnenschein C. The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays 2011; 33:332-40. [PMID: 21503935 DOI: 10.1002/bies.201100025] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The somatic mutation theory (SMT) of cancer has been and remains the prevalent theory attempting to explain how neoplasms arise and progress. This theory proposes that cancer is a clonal, cell-based disease, and implicitly assumes that quiescence is the default state of cells in multicellular organisms. The SMT has not been rigorously tested, and several lines of evidence raise questions that are not addressed by this theory. Herein, we propose experimental strategies that may validate the SMT. We also call attention to an alternative theory of carcinogenesis, the tissue organization field theory (TOFT), which posits that cancer is a tissue-based disease and that proliferation is the default state of all cells. Based on epistemological and experimental evidence, we argue that the TOFT compellingly explains carcinogenesis, while placing it within an evolutionarily relevant context.
Collapse
Affiliation(s)
- Ana M Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
32
|
Plankar M, Jerman I, Krašovec R. On the origin of cancer: Can we ignore coherence? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:380-90. [DOI: 10.1016/j.pbiomolbio.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/09/2011] [Indexed: 01/06/2023]
|
33
|
Heng HHQ, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ. The evolutionary mechanism of cancer. J Cell Biochem 2010; 109:1072-84. [PMID: 20213744 DOI: 10.1002/jcb.22497] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identification of the general molecular mechanism of cancer is the Holy Grail of cancer research. Since cancer is believed to be caused by a sequential accumulation of cancer gene mutations, the identification, characterization, and targeting of common genetic alterations and their defined pathways have dominated the field for decades. Despite the impressive data accumulated from studies of gene mutations, epigenetic dysregulation, and pathway alterations, an overwhelming amount of diverse molecular information has offered limited understanding of the general mechanisms of cancer. To solve this paradox, the newly established genome theory is introduced here describing how somatic cells evolve within individual patients. The evolutionary mechanism of cancer is characterized using only three key components of somatic cell evolution that include increased system dynamics induced by stress, elevated genetic and epigenetic heterogeneity, and genome alteration mediated natural selection. Cancer progression represents a macro-evolutionary process where karyotype change or genome replacement plays the key dominant role. Furthermore, the recently identified relationship between the evolutionary mechanism and a large number of diverse individual molecular mechanisms is discussed. The total sum of all the individual molecular mechanisms is equal to the evolutionary mechanism of cancer. Individual molecular mechanisms including all the molecular mechanisms described to date are stochastically selected and unpredictable and are therefore clinically impractical. Recognizing the fundamental importance of the underlying basis of the evolutionary mechanism of cancer mandates the development of new strategies in cancer research.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201.
| | | | | | | | | | | |
Collapse
|
34
|
Henrique D, Bally-Cuif L. A cross-disciplinary approach to understanding neural stem cells in development and disease. Development 2010; 137:1933-8. [PMID: 20501588 DOI: 10.1242/dev.052621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Company of Biologists recently launched a new series of workshops aimed at bringing together scientists with different backgrounds to discuss cutting edge research in emerging and cross-disciplinary areas of biology. The first workshop was held at Wilton Park, Sussex, UK, and the chosen theme was 'Neural Stem Cells in Development and Disease', which is indeed a hot topic, not only because of the potential use of neural stem cells in cell replacement therapies to treat neurodegenerative diseases, but also because alterations in their behaviour can, in certain cases, lie at the origin of brain tumours and other diseases.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
35
|
Little MP. Do non-targeted effects increase or decrease low dose risk in relation to the linear-non-threshold (LNT) model? Mutat Res 2010; 687:17-27. [PMID: 20105434 PMCID: PMC3076714 DOI: 10.1016/j.mrfmmm.2010.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper we review the evidence for departure from linearity for malignant and non-malignant disease and in the light of this assess likely mechanisms, and in particular the potential role for non-targeted effects. Excess cancer risks observed in the Japanese atomic bomb survivors and in many medically and occupationally exposed groups exposed at low or moderate doses are generally statistically compatible. For most cancer sites the dose-response in these groups is compatible with linearity over the range observed. The available data on biological mechanisms do not provide general support for the idea of a low dose threshold or hormesis. This large body of evidence does not suggest, indeed is not statistically compatible with, any very large threshold in dose for cancer, or with possible hormetic effects, and there is little evidence of the sorts of non-linearity in response implied by non-DNA-targeted effects. There are also excess risks of various types of non-malignant disease in the Japanese atomic bomb survivors and in other groups. In particular, elevated risks of cardiovascular disease, respiratory disease and digestive disease are observed in the A-bomb data. In contrast with cancer, there is much less consistency in the patterns of risk between the various exposed groups; for example, radiation-associated respiratory and digestive diseases have not been seen in these other (non-A-bomb) groups. Cardiovascular risks have been seen in many exposed populations, particularly in medically exposed groups, but in contrast with cancer there is much less consistency in risk between studies: risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding and effect modification by well known (but unobserved) risk factors. In the absence of a convincing mechanistic explanation of epidemiological evidence that is, at present, less than persuasive, a cause-and-effect interpretation of the reported statistical associations for cardiovascular disease is unreliable but cannot be excluded. Inflammatory processes are the most likely mechanism by which radiation could modify the atherosclerotic disease process. If there is to be modification by low doses of ionizing radiation of cardiovascular disease through this mechanism, a role for non-DNA-targeted effects cannot be excluded.
Collapse
Affiliation(s)
- M P Little
- Department of Epidemiology and Biostatistics, Imperial College School of Public Health, Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
36
|
Little MP. Cancer models, genomic instability and somatic cellular Darwinian evolution. Biol Direct 2010; 5:19; discussion 19. [PMID: 20406436 PMCID: PMC2873266 DOI: 10.1186/1745-6150-5-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/20/2010] [Indexed: 01/03/2023] Open
Abstract
The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI) is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12), the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK) (Math. Biosci. 1979:47;55-77), the generalized MVK model of Little (Biometrics 1995:51;1278-1291) and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238).
Collapse
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College Faculty of Medicine, London, UK.
| |
Collapse
|
37
|
Maenhaut C, Dumont JE, Roger PP, van Staveren WCG. Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 2009; 31:149-58. [PMID: 19858069 DOI: 10.1093/carcin/bgp259] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The concept of cancer stem cells (CSC) embodies two aspects: the stem cell as the initial target of the oncogenic process and the existence of two populations of cells in cancers: the CSC and derived cells. The second is discussed in this review. CSC are defined as cells having three properties: a selectively endowed tumorigenic capacity, an ability to recreate the full repertoire of cancer cells of the parent tumor and the expression of a distinctive repertoire of surface biomarkers. In operational terms, the CSC are among all cancer cells those able to initiate a xenotransplant. Other explicit or implicit assumptions exist, including the concept of CSC as a single unique infrequent population of cells. To avoid such assumptions, we propose to use the operational term tumor-propagating cells (TPC); indeed, the cells that initiate transplants did not initiate the cancer. The experimental evidence supporting the explicit definition is analyzed. Cancers indeed contain a fraction of cells mainly responsible for the tumor development. However, there is evidence that these cells do not represent one homogenous population. Moreover, there is no evidence that the derived cells result from an asymmetric, qualitative and irreversible process. A more general model is proposed of which the CSC model could be one extreme case. We propose that the TPC are multiple evolutionary selected cancer cells with the most competitive properties [maintained by (epi-)genetic mechanisms], at least partially reversible, quantitative rather than qualitative and resulting from a stochastic rather than deterministic process.
Collapse
Affiliation(s)
- C Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université Libre de Bruxelles, Campus Erasme Hospital, Brussels, Belgium
| | | | | | | |
Collapse
|
38
|
Park DM, Rich JN. Biology of glioma cancer stem cells. Mol Cells 2009; 28:7-12. [PMID: 19655094 DOI: 10.1007/s10059-009-0111-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022] Open
Abstract
Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for in vitro and in vivo growth, a property intimately linked to the cell's differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the so-called glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.
Collapse
Affiliation(s)
- Deric M Park
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | |
Collapse
|
39
|
Heng HHQ, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 2009; 220:538-47. [PMID: 19441078 DOI: 10.1002/jcp.21799] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic and epigenetic heterogeneity (the main form of non-genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the "noise" of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non-coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini-review, we have briefly analyzed a number of mis-conceptions regarding cancer heterogeneity, followed by the re-evaluation of cancer heterogeneity within a framework of the genome-centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A. Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 2009; 251:6-12. [PMID: 19332841 DOI: 10.1148/radiol.2511081686] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, England.
| | | | | | | | | |
Collapse
|
41
|
Abstract
A limited number of adult stem cells (SCs) maintain the homoestasis of different tissues through the lifetime of the individual by generating differentiating daughters and renewing themselves. Errors in the SC division rate or in the fine balance between self-renewal and differentiation might result in tissue overgrowth or depletion, two potentially lethal conditions. A few types of SCs have been identified in Drosophila. These include the SCs of the adult intestine and malpighian tubes, (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Singh et al., 2007), the prohematocytes that maintain the population of cells involved in the immunoresponse (Lanot et al., 2001; Lemaitre and Hoffmann, 2007), the SC of the follicle epithelia in the ovary (Nystul and Spradling, 2007), germ line SCs (GSCs) of both sexes (Fuller and Spradling, 2007) and neuroblasts (NBs), the fly neural SCs (Yu et al., 2006; Chia et al., 2008; Knoblich, 2008). Drosophila SCs have proved a fruitful model system to unveil some aspects of the molecular logic that sustains SC function. This review focuses on results obtained in the last few years from the study of NBs, particularly from the standpoint of the possible functional connection between asymmetric SC division and cancer.
Collapse
Affiliation(s)
- J Januschke
- Cell Division Group, IRB-Barcelona, PCB, c/Baldiri Reixac 10-12, Barcelona, Spain
| | | |
Collapse
|
42
|
Li L, McCormack AA, Nicholson JM, Fabarius A, Hehlmann R, Sachs RK, Duesberg PH. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. ACTA ACUST UNITED AC 2009; 188:1-25. [PMID: 19061776 DOI: 10.1016/j.cancergencyto.2008.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/05/2008] [Indexed: 01/10/2023]
Abstract
The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
The role of cell differentiation in controlling cell multiplication and cancer. J Cancer Res Clin Oncol 2008; 134:725-41. [DOI: 10.1007/s00432-008-0381-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
44
|
Stindl R. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells. Med Hypotheses 2008; 71:126-40. [PMID: 18294777 DOI: 10.1016/j.mehy.2008.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 01/21/2023]
Abstract
Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how 'tumor-unspecific' aneuploidy leads to cancer.
Collapse
Affiliation(s)
- Reinhard Stindl
- Department of Molecular and Cell Biology, 353 Donner Hall, University of California at Berkeley, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
45
|
Gottlieb B, Beitel LK, Trifiro M. Will knowledge of human genome variation result in changing cancer paradigms? Bioessays 2007; 29:678-85. [PMID: 17563087 DOI: 10.1002/bies.20595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our incomplete understanding of carcinogenesis may be a significant reason why some cancer mortality rates are still increasing. This lack of understanding is likely due to a research approach that relies heavily on genetic comparison between cancerous and non-cancerous tissues and cells, which has led to the identification of genes of cancer proliferation rather than differentiation. Recent observations showing that a tremendous degree of natural human genetic variation occurs are likely to lead to a shift in the basic paradigms of cancer genetics, in that there is a need to consider both the nature of the genes involved, and the idea that not every genetic variation identified in these genes may be associated with carcinogenesis. Based on studies using LCM and micro-genetic analyses, we propose that significant cancer initiating events may take place during the very early stages of development of cancer-susceptible tissues and that using such techniques might greatly help us in our understanding of carcinogenesis.
Collapse
Affiliation(s)
- Bruce Gottlieb
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
46
|
Abstract
A major challenge for The Cancer Genome Atlas (TCGA) Project is solving the high level of genetic and epigenetic heterogeneity of cancer. For the majority of solid tumors, evolution patterns are stochastic and the end products are unpredictable, in contrast to the relatively predictable stepwise patterns classically described in many hematological cancers. Further, it is genome aberrations, rather than gene mutations, that are the dominant factor in generating abnormal levels of system heterogeneity in cancers. These features of cancer could significantly reduce the impact of the sequencing approach, as it is only when mutated genes are the main cause of cancer that directly sequencing them is justified. Many biological factors (genetic and epigenetic variations, metabolic processes) and environmental influences can increase the probability of cancer formation, depending on the given circumstances. The common link between these factors is the stochastic genome variations that provide the driving force behind the cancer evolutionary process within multiple levels of a biological system. This analysis suggests that cancer is a disease of probability and the most-challenging issue to the TCGA project, as well as the development of general strategies for fighting cancer, lie at the conceptual level.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
47
|
Caussinus E, Hirth F. Asymmetric stem cell division in development and cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:205-25. [PMID: 17585502 DOI: 10.1007/978-3-540-69161-7_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asymmetric stem cell division leads to another stem cell via self-renewal, and a second cell type which can be either a differentiating progenitor or a postmitotic cell. The regulation of this balanced process is mainly achieved by polarization of the stem cell along its apical-basal axis and the basal localization and asymmetric segregation of cell fate determinants solely to the differentiating cell. It has long been speculated that disturbance of this process can induce a cancer-like state. Recent molecular genetic evidence in Drosophila melanogaster suggests that impaired polarity formation in neuroblast stem cells results in symmetric stem cell divisions, whereas defects in progenitor cell differentiation leads to mutant cells that are unable to differentiate but rather continue to proliferate. In both cases, the net result is unrestrained self-renewal of mutant stem cells, eventually leading to hyperproliferation and malignant neoplastic tissue formation. Thus, deregulated stem cells can play a pivotal role in Drosophila tumor formation. Moreover, recent evidence suggests that so-called cancer stem cells may drive the growth and metastasis of human tumors too. Indeed, cancer stem cells have already been identified in leukemia, and in solid tumors of the breast and brain. In addition, inappropriate activation of pathways promoting the self-renewal of somatic stem cells including defects in asymmetric cell division has been shown to cause neoplastic proliferation and cancer formation. Taken together, these data indicate that evolutionary conserved mechanisms regulate stem and progenitor cell self-renewal and tumor suppression via asymmetric cell division control.
Collapse
Affiliation(s)
- Emmanuel Caussinus
- Division of Cell Biology, Biozemtrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
48
|
Ruggiero RA, Bustuoabad OD. The biological sense of cancer: a hypothesis. Theor Biol Med Model 2006; 3:43. [PMID: 17173673 PMCID: PMC1764731 DOI: 10.1186/1742-4682-3-43] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/15/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most theories about cancer proposed during the last century share a common denominator: cancer is believed to be a biological nonsense for the organism in which it originates, since cancer cells are believed to be ones evading the rules that control normal cell proliferation and differentiation. In this essay, we have challenged this interpretation on the basis that, throughout the animal kingdom, cancer seems to arise only in injured organs and tissues that display lost or diminished regenerative ability. HYPOTHESIS According to our hypothesis, a tumor cell would be the only one able to respond to the demand to proliferate in the organ of origin. It would be surrounded by "normal" aged cells that cannot respond to that signal. According to this interpretation, cancer would have a profound biological sense: it would be the ultimate way to attempt to restore organ functions and structures that have been lost or altered by aging or noxious environmental agents. In this way, the features commonly associated with tumor cells could be reinterpreted as progressively acquired adaptations for responding to a permanent regenerative signal in the context of tissue injury. Analogously, several embryo developmental stages could be dependent on cellular damage and death, which together disrupt the field topography. However, unlike normal structures, cancer would have no physiological value, because the usually poor or non-functional nature of its cells would make their reparative task unattainable. CONCLUSION The hypothesis advanced in this essay might have significant practical implications. All conventional therapies against cancer attempt to kill all cancer cells. However, according to our hypothesis, the problem might not be solved even if all the tumor cells were eradicated. In effect, if the organ failure remained, new tumor cells would emerge and the tumor would reinitiate its progressive growth in response to the permanent regenerative signal of the non-restored organ. Therefore, efficient anti-cancer therapy should combine an attack against the tumor cells themselves with the correction of the organ failure, which, according to this hypothesis, is fundamental to the origin of the cancer.
Collapse
Affiliation(s)
- Raúl A Ruggiero
- División Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Oscar D Bustuoabad
- División Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| |
Collapse
|
49
|
Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 2006; 133:2639-48. [PMID: 16774999 DOI: 10.1242/dev.02429] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain development in Drosophila is characterized by two neurogenic periods, one during embryogenesis and a second during larval life. Although much is known about embryonic neurogenesis, little is known about the genetic control of postembryonic brain development. Here we use mosaic analysis with a repressible cell marker (MARCM) to study the role of the brain tumor (brat) gene in neural proliferation control and tumour suppression in postembryonic brain development of Drosophila. Our findings indicate that overproliferation in brat mutants is due to loss of proliferation control in the larval central brain and not in the optic lobe. Clonal analysis indicates that the brat mutation affects cell proliferation in a cell-autonomous manner and cell cycle marker expression shows that cells of brat mutant clones show uncontrolled proliferation, which persists into adulthood. Analysis of the expression of molecular markers, which characterize cell types in wild-type neural lineages, indicates that brat mutant clones comprise an excessive number of cells, which have molecular features of undifferentiated progenitor cells that lack nuclear Prospero (Pros). pros mutant clones phenocopy brat mutant clones in the larval central brain, and targeted expression of wild-type pros in brat mutant clones promotes cell cycle exit and differentiation of brat mutant cells, thereby abrogating brain tumour formation. Taken together, our results provide evidence that the tumour suppressor brat negatively regulates cell proliferation during larval central brain development of Drosophila, and suggest that Prospero acts as a key downstream effector of brat in cell fate specification and proliferation control.
Collapse
Affiliation(s)
- Bruno Bello
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
50
|
Abstract
Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.
Collapse
Affiliation(s)
- Julian P Venables
- University of Newcastle-upon-Tyne, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, UK.
| |
Collapse
|