1
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Ribeiro-Marques MD, Maschio-Lima T, Lemes TH, Siqueira JPZ, Brizzotti-Mazuchi NS, Caetano MH, Almeida BG, Mozaner LQ, Monteiro RC, Camargo ZP, Rodrigues AM, Gottardo de Almeida MT. Sporothrix pathogenic clade: Molecular analysis of animal and human clinical isolates. Med Mycol 2022; 61:6939828. [PMID: 36535634 DOI: 10.1093/mmy/myac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sporotrichosis is a subcutaneous mycosis that affects animals and humans. Varying in severity, occurrences range from local lesions to systemic involvement. It is caused by thermodimorphic and saprobic fungi from the Sporothrix pathogenic clade. This study aimed to identify the species and the sexual idiomorph distribution patterns responsible for diagnosed cases of sporotrichosis in São José do Rio Preto, Brazil. We included 188 isolates of Sporothrix sp. from feline lesions and 27 of human origin, which underwent molecular identification and genotyping for mating-type MAT1-1 and MAT1-2. The results showed that Sporothrix brasiliensis is the prevalent species in feline sporotrichosis outbreaks with the overwhelming presence of a single mating-type, MAT1-2 (P <.0001), suggesting a prevalently clonal form of spread. Morphological analyses did not discriminate among cryptic species in the genus Sporothrix, and molecular identification was essential for the correct identification of the species responsible for the observed cases of sporotrichosis. Distribution analyses of MAT1-2 isolates support the hypothesis of unidirectional migration from the current epidemics in São Paulo and Rio de Janeiro to the municipality of São José do Rio Preto.
Collapse
Affiliation(s)
- Mariela Domiciano Ribeiro-Marques
- Department of Dermatological, Infectious, and Parasitic Diseases, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo,Brazil
| | - Taiza Maschio-Lima
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo,Brazil
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo,Brazil
| | - João Paulo Zen Siqueira
- Department of Dermatological, Infectious, and Parasitic Diseases, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo,Brazil
| | - Natália Seron Brizzotti-Mazuchi
- Department of Dermatological, Infectious, and Parasitic Diseases, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo,Brazil
| | - Maicon Henrique Caetano
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo,Brazil
| | - Bianca Gottardo Almeida
- Department of Dermatological, Infectious, and Parasitic Diseases, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo,Brazil
| | - Leticia Queiroz Mozaner
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo,Brazil
| | - Ruan Campos Monteiro
- Department of Microbiology, Immunology and Parasitology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Zoilo Pires Camargo
- Department of Microbiology, Immunology and Parasitology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Margarete Teresa Gottardo de Almeida
- Department of Dermatological, Infectious, and Parasitic Diseases, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo,Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo,Brazil
| |
Collapse
|
3
|
Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Differ in Life History Strategy. FRONTIERS IN PLANT SCIENCE 2021; 12:715377. [PMID: 34421967 PMCID: PMC8374082 DOI: 10.3389/fpls.2021.715377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that have the potential to improve crop yield. These multinucleate organisms are either "homokaryotic" or "dikaryotic". In AMF dikaryons, thousands of nuclei originating from two parental strains coexist in the same cytoplasm. In other fungi, homokaryotic and dikaryotic strains show distinct life history traits (LHTs), such as variation in growth rates and fitness. However, how such traits compare between dikaryons and homokaryons of AMF is unknown. To address this, we measured 20 LHT of four dikaryons and five homokaryons of the model fungus Rhizophagus irregularis across root organ cultures of three host plants (carrot, chicory, and tobacco). Our analyses show that dikaryons have clearly distinct life history strategies (LHSs) compared to homokaryons. In particular, spores of homokaryons germinate faster and to a higher proportion than dikaryons, whereas dikaryons grow significantly faster and create a more complex hyphal network irrespective of host plant species. Our study links AMF nuclear status with key LHT with possible implications for mycorrhizal symbiotic functioning.
Collapse
Affiliation(s)
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2018; 108:1028-1046. [PMID: 27738200 DOI: 10.3852/16-042] [Citation(s) in RCA: 667] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Katy Lazarus
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
| | - Igor Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, NCAUR-ARS-USDA, 1815 N. University Street, Peoria, Illinois 61604
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas N Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045
| | - Jessie Uehling
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Rytas Vilgalys
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Merlin M White
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California 92521
| |
Collapse
|
5
|
The influence of the mating type on virulence of Mucor irregularis. Sci Rep 2017; 7:10629. [PMID: 28878325 PMCID: PMC5587739 DOI: 10.1038/s41598-017-10954-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Mucor irregularis is an emerging fungal pathogen that cause cutaneous infection and could cause death. However, little is known about its mechanism of pathogenesis. There is evidence suggesting virulence vary with mating types in fungi, including the Mucorales. Here, we characterized the mating type locus of M. irregularis and the mating type ratio of 17 clinical isolates in China. Genomic data indicated M. irregularis is heterothallic having two mating types – bearing either SexP or SexM allele. Also, we employed a mice model to study the inflammation and pathological effects of different mating types. The comparison of the inflammatory response, cytokine profiles and Th-1, Th-2 and Th-17 cells numbers in each mating type treated mice showed that the severity and disease progress were enhanced in (+) mating type treated mice. One (+/0) mutant strain, with multiple mutations at the mating locus, had defects in sexual mating ability but appeared to be more virulent than the (−) mating type. Although (+) mating type appeared to be more virulent, most of our clinical isolates presented belonged to (−) mating type. Our findings support the involvement of MAT genes in sexual fertility, and the influence of mating type on the severity of cutaneous infection.
Collapse
|
6
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
7
|
Pearce TL, Scott JB, Hay FS, Pethybridge SJ. Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. PHYTOPATHOLOGY 2016; 106:1521-1529. [PMID: 27398744 DOI: 10.1094/phyto-01-16-0038-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tan spot of pyrethrum (Tanacetum cinerariifolium) is caused by the ascomycete Didymella tanaceti. To assess the evolutionary role of ascospores in the assumed asexual species, the structure and arrangement of mating-type (MAT) genes were examined. A single MAT1-1 or MAT1-2 idiomorph was identified in all isolates examined, indicating that the species is heterothallic. The idiomorphs were flanked upstream and downstream by regions encoding pyridoxamine phosphate oxidase-like and DNA lyase-like proteins, respectively. A multiplex MAT-specific polymerase chain reaction assay was developed and used to genotype 325 isolates collected within two transects in each of four fields in Tasmania, Australia. The ratio of isolates of each mating-type in each transect was consistent with a 1:1 ratio. The spatial distribution of the isolates of the two mating-types within each transect was random for all except one transect for MAT1-1 isolates, indicating that clonal patterns of each mating-type were absent. However, evidence of a reduced selection pressure on MAT1-1 isolates was observed, with a second haplotype of the MAT1-1-1 gene identified in 4.4% of MAT1-1 isolates. In vitro crosses between isolates with opposite mating-types failed to produce ascospores. Although the sexual morph could not be induced, the occurrence of both mating-types in equal frequencies suggested that a cryptic sexual mode of reproduction may occur within field populations.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
8
|
|
9
|
|
10
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
11
|
Kües U. In memory of Lorna Ann Casselton, CBE, MA, PhD, DSc, MAE, FRS. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Lehr NA, Wang Z, Li N, Hewitt DA, López-Giráldez F, Trail F, Townsend JP. Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa. PLoS One 2014; 9:e110398. [PMID: 25329823 PMCID: PMC4203796 DOI: 10.1371/journal.pone.0110398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Many fungi form complex three-dimensional fruiting bodies, within which the meiotic machinery for sexual spore production has been considered to be largely conserved over evolutionary time. Indeed, much of what we know about meiosis in plant and animal taxa has been deeply informed by studies of meiosis in Saccharomyces and Neurospora. Nevertheless, the genetic basis of fruiting body development and its regulation in relation to meiosis in fungi is barely known, even within the best studied multicellular fungal model Neurospora crassa. We characterized morphological development and genome-wide transcriptomics in the closely related species Neurospora crassa, Neurospora tetrasperma, and Neurospora discreta, across eight stages of sexual development. Despite diverse life histories within the genus, all three species produce vase-shaped perithecia. Transcriptome sequencing provided gene expression levels of orthologous genes among all three species. Expression of key meiosis genes and sporulation genes corresponded to known phenotypic and developmental differences among these Neurospora species during sexual development. We assembled a list of genes putatively relevant to the recent evolution of fruiting body development by sorting genes whose relative expression across developmental stages increased more in N. crassa relative to the other species. Then, in N. crassa, we characterized the phenotypes of fruiting bodies arising from crosses of homozygous knockout strains of the top genes. Eight N. crassa genes were found to be critical for the successful formation of perithecia. The absence of these genes in these crosses resulted in either no perithecium formation or in arrested development at an early stage. Our results provide insight into the genetic basis of Neurospora sexual reproduction, which is also of great importance with regard to other multicellular ascomycetes, including perithecium-forming pathogens, such as Claviceps purpurea, Ophiostoma ulmi, and Glomerella graminicola.
Collapse
Affiliation(s)
- Nina A. Lehr
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - David A. Hewitt
- Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania, United States of America
- Wagner Free Institute of Science, Philadelphia, Pennsylvania, United States of America
| | - Francesc López-Giráldez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
The MAT1-1:MAT1-2 ratio of Sporothrix globosa isolates in Japan. Mycopathologia 2014; 179:81-6. [PMID: 25230800 DOI: 10.1007/s11046-014-9808-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
In order to understand the reproductive biology of pathogenic species in the Sporothrix schenckii complex, we characterized the partial mating type (MAT1-1) loci of Sporothrix schenckii, as well as the S. globosa MAT1-1-1 gene, which encoded 262 amino acid sequences. The data confirmed that the MAT1-1 locus of S. globosa was divergent from the MAT1-2 locus of the opposite mating type, suggesting that the fungus is heterothallic. To determine the mating type ratio of 20 isolates from Japanese patients, we analyzed the MAT loci by specific PCR amplification of MAT1-1-1 and MAT1-2-1 genes. The MAT1-1-1 was detected in 5 isolates but not in the other 15 isolates with the presence of MAT1-2-1. The MAT1-1:1-2 ratio of S. globosa isolates in Japan was estimated to be 1:3. Phylogenetic analysis indicated that the sequences of the MAT1-1-1 were identical among S. globosa isolates but different from S. schenckii and Ophiostoma montium.
Collapse
|
14
|
Karácsony Z, Gácser A, Vágvölgyi C, Scazzocchio C, Hamari Z. A dually located multi-HMG-box protein of Aspergillus nidulans has a crucial role in conidial and ascospore germination. Mol Microbiol 2014; 94:383-402. [PMID: 25156107 DOI: 10.1111/mmi.12772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/28/2022]
Abstract
Seven HMG-box proteins of Aspergillus nidulans have been identified in the genomic databases. Three of these have the characteristics of non-specific DNA-binding proteins. One of these, AN1267 (HmbB), comprises one canonical HMG-box in its C-terminus and upstream of the canonical box two structurally related boxes, to be called Shadow-HMG-boxes. This protein defines, together with the Podospora anserina mtHMG1, a clade of proteins present in the Pezizomycotina, with orthologues in some of the Taphrinomycotina. HmbB localizes primarily to the mitochondria but occasionally in nuclei. The deletion of the cognate gene results in a number of pleiotropic effects, including those on hyphal morphology, sensitivity to oxidative stress, absence of sterigmatocystin production and changes in the profile of conidial metabolites. The most striking phenotype of deletion strains is a dramatic decrease in conidial and ascospore viability. We show that this is most likely due to the protein being essential to maintain mitochondrial DNA in spores.
Collapse
Affiliation(s)
- Zoltán Karácsony
- University of Szeged Faculty of Sciences and Informatics, Department of Microbiology, H-6726, Szeged, Közép fasor 52, Hungary
| | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Mucormycosis is an increasingly common fungal infection with unacceptably high mortality. The recent sequencing genome projects of Mucorales and the development of gene manipulation have enabled significant advances in understanding the pathogenesis of mucormycosis. Therefore, we review the pathogenesis of mucormycosis and highlight potential development of novel diagnostic and therapeutic modalities against this lethal disease. RECENT FINDINGS Much of the work has been focused on the role of iron uptake in the virulence of Mucorales. Additionally, host receptors and fungal ligands involved in the process of tissue invasion as well as sporangiospore size and sex loci and their contribution to virulence of Mucorales are discussed. Finally, the role of innate and adaptive immunity in protection against Mucorales and new evidence about drug-induced apoptosis in these fungi are discussed. SUMMARY Recent discoveries introduce several potentially novel diagnostic and therapeutic modalities, which are likely to improve management and outcome for mucormycosis. Future preclinical and clinical research is warranted to develop these diagnostic and therapeutic strategies.
Collapse
|
16
|
Kano R, Anzawa K, Mochizuki T, Nishimoto K, Hiruma M, Kamata H, Hasegawa A. Sporothrix schenckii(sensu strictS. globosa) mating type 1-2 (MAT1-2) gene. J Dermatol 2013; 40:726-30. [DOI: 10.1111/1346-8138.12226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/26/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Rui Kano
- Department of Pathobiology; Nihon University School of Veterinary Medicine; Fujisawa; Japan
| | - Kazushi Anzawa
- Department of Dermatology; Kanazawa Medical University; Uchinada; Japan
| | - Takashi Mochizuki
- Department of Dermatology; Kanazawa Medical University; Uchinada; Japan
| | | | - Masataro Hiruma
- Department of Dermatology and Allergology; Juntendo University Nerima Hospital; Hachioji; Japan
| | - Hiroshi Kamata
- Department of Pathobiology; Nihon University School of Veterinary Medicine; Fujisawa; Japan
| | | |
Collapse
|
17
|
Asalf B, Gadoury DM, Tronsmo AM, Seem RC, Cadle-Davidson L, Brewer MT, Stensvand A. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. PHYTOPATHOLOGY 2013; 103:717-724. [PMID: 23384856 DOI: 10.1094/phyto-09-12-0252-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The formation of chasmothecia by the strawberry powdery mildew pathogen (Podosphaera aphanis) is widespread but often sporadic throughout the range of strawberry cultivation. In some production regions, notably in warmer climates, chasmothecia are reportedly rare. We confirmed that the pathogen is heterothallic, and that initiation of chasmothecia is not only dependent upon the presence of isolates of both mating types but also largely suppressed at temperatures >13°C. Compared with incubation at a constant temperature of 25°C, progressively more chasmothecia were initiated when temperatures were decreased to 13°C for progressively longer times. At lower temperatures, production of chasmothecia was associated with a decline in but not total cessation of conidial formation, and pairings of compatible isolates sporulated abundantly at 25°C. We developed mating-type markers specific to P. aphanis and used these to confirm the presence of both mating types in populations that had not yet initiated chasmothecia. The geographic discontinuity of chasmothecia production and the sporadic and seemingly unpredictable appearance of chasmothecia in P. aphanis are possibly due to the combined influence of heterothallism and suppression of chasmothecia formation by high temperatures.
Collapse
Affiliation(s)
- Belachew Asalf
- Department of Plant and Environment Sciences, Norwegian University of Life Sciences, Norway.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kalkanci A, Kadioglu A, Wilson D, Jacobsen MD. Gene expression in fungi. IMA Fungus 2012; 2:29-32. [PMID: 22679585 PMCID: PMC3317368 DOI: 10.5598/imafungus.2011.02.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/06/2011] [Indexed: 10/24/2022] Open
Abstract
This contribution is based on the four presentations made at the Special Interest Group (SIG) meeting titled Gene Expression in Fungi held during IMC9 in Edinburgh. This overview is independent from other articles published or that will be published by each speaker. In the SIG meeting, basic principles of in vivo animal models for virulence studies were discussed. Infection associated genes of Candida albicans and fungal adaptation to the host was summarized. Azole susceptibility was evaluated as a combined result of several changes in expression of pertinent genes. Gene transfer in fungi, resulting in fungal evolution and gene adaptation to environmental factors, was reported.
Collapse
Affiliation(s)
- Ayse Kalkanci
- Gazi University Faculty of Medicine, Department of Medical Microbiology, Ankara, 06500 Turkey
| | | | | | | |
Collapse
|
19
|
Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, Heitman J, Lee SC. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 2011; 7:e1002086. [PMID: 21698218 PMCID: PMC3116813 DOI: 10.1371/journal.ppat.1002086] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/14/2011] [Indexed: 01/08/2023] Open
Abstract
Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex.
Collapse
Affiliation(s)
- Charles H. Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Cervantes
- Departamento de Genetica y Microbiologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Deborah J. Springer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Rosa M. Ruiz-Vazquez
- Departamento de Genetica y Microbiologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (SCL)
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (SCL)
| |
Collapse
|
20
|
Whittle CA, Sun Y, Johannesson H. Evolution of synonymous codon usage in Neurospora tetrasperma and Neurospora discreta. Genome Biol Evol 2011; 3:332-43. [PMID: 21402862 PMCID: PMC3089379 DOI: 10.1093/gbe/evr018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems.
Collapse
Affiliation(s)
- C A Whittle
- Department of Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Evidence of the accumulation of allele-specific non-synonymous substitutions in the young region of recombination suppression within the mating-type chromosomes of Neurospora tetrasperma. Heredity (Edinb) 2011; 107:305-14. [PMID: 21386869 DOI: 10.1038/hdy.2011.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently, little is known about the origin and early evolution of sex chromosomes. This is largely due to the fact that ancient non-recombining sex chromosomes are highly degenerated, and thus provide little information about the early genomic events in their evolution. The Neurospora tetrasperma mating-type (mat) chromosomes contain a young (<6 Mya) and large region (>6.6 Mb) of suppressed recombination, thereby providing a model system to study early stages of sex chromosome evolution. Here, we examined alleles of 207 genes located on the N. tetrasperma mat a and mat A chromosomes to test for signs of genomic alterations at the protein level in the young region of recombination suppression. We report that the N. tetrasperma mat a and mat A chromosomes have each independently accumulated allele-specific non-synonymous codon substitutions in a time-dependent, and gene-specific manner in the recombinationally suppressed region. In addition, examination of the ratio (ω) of non-synonymous substitutions (dN) to synonymous substitutions (dS) using maximum likelihood analyses, indicates that such changes are associated with relaxed purifying selection, a finding consistent with genomic degeneration. We also reveal that sex specific biases in mutation rates or selection pressures are not necessary for genomic alterations in sex chromosomes, and that recombination suppression in itself is sufficient to explain these results. The present findings extend our current understanding of genomic events associated within the young region of recombination suppression in these fungal sex-regulating chromosomes.
Collapse
|
22
|
Degeneration in codon usage within the region of suppressed recombination in the mating-type chromosomes of Neurospora tetrasperma. EUKARYOTIC CELL 2011; 10:594-603. [PMID: 21335530 DOI: 10.1128/ec.00284-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The origin and early evolution of sex chromosomes are currently poorly understood. The Neurospora tetrasperma mating-type (mat) chromosomes have recently emerged as a model system for the study of early sex chromosome evolution, since they contain a young (<6 million years ago [Mya]), large (>6.6-Mb) region of suppressed recombination. Here we examined preferred-codon usage in 290 genes (121,831 codon positions) in order to test for early signs of genomic degeneration in N. tetrasperma mat chromosomes. We report several key findings about codon usage in the region of recombination suppression, including the following: (i) this region has been subjected to marked and largely independent degeneration among gene alleles; (ii) the level of degeneration is magnified over longer periods of recombination suppression; and (iii) both mat a and mat A chromosomes have been subjected to deterioration. The frequency of shifts from preferred codons to nonpreferred codons is greater for shorter genes than for longer genes, suggesting that short genes play an especially significant role in early sex chromosome evolution. Furthermore, we show that these degenerative changes in codon usage are best explained by altered selection efficiency in the recombinationally suppressed region. These findings demonstrate that the fungus N. tetrasperma provides an effective system for the study of degenerative genomic changes in young regions of recombination suppression in sex-regulating chromosomes.
Collapse
|
23
|
Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F. Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. THE NEW PHYTOLOGIST 2011; 189:710-722. [PMID: 20961294 DOI: 10.1111/j.1469-8137.2010.03492.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• The genome of Tuber melanosporum has recently been sequenced. Here, we used this information to identify genes involved in the reproductive processes of this edible fungus. The sequenced strain (Mel28) possesses only one of the two master genes required for mating, that is, the gene that codes for the high mobility group (HMG) transcription factor (MAT1-2-1), whereas it lacks the gene that codes for the protein containing the α-box- domain (MAT1-1-1), suggesting that this fungus is heterothallic. • A PCR-based approach was initially employed to screen truffles for the presence of the MAT1-2-1 gene and amplify the conserved regions flanking the mating type (MAT) locus. The MAT1-1-1 gene was finally identified using primers designed from the conserved regions of strains that lack the MAT1-2-1 gene. • Mating type-specific primer pairs were developed to screen asci and gleba from truffles of different origins and to genotype single ascospores within the asci. These analyses provided definitive evidence that T. melanosporum is a heterothallic species with a MAT locus that is organized similarly to those of ancient fungal lineages. • A greater understanding of the reproductive mechanisms that exist in Tuber spp. allows for optimization of truffle plantation management strategies.
Collapse
Affiliation(s)
- Andrea Rubini
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Beatrice Belfiori
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Claudia Riccioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Emilie Tisserant
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Sergio Arcioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Francesco Paolocci
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| |
Collapse
|
24
|
Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R. Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 2010; 5:e15199. [PMID: 21170349 PMCID: PMC2999568 DOI: 10.1371/journal.pone.0015199] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. Methodology/Principal Findings We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. Conclusions/Significance Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG.
Collapse
Affiliation(s)
- Tom Martin
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Herman van Tilbeurgh
- Univ Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619 Univ Paris-Sud CNRS, Orsay, France
| | - Daniel R. Ripoll
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- CNRS, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
25
|
Kano R, Yamada T, Makimura K, Kawasaki M, Mochizuki T, Kamata H, Hasegawa A. Arthroderma benhamiae (The Teleomorph of Trichophyton mentagrophytes) Mating Type-Specific Genes. Mycopathologia 2010; 171:333-7. [DOI: 10.1007/s11046-010-9383-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/18/2010] [Indexed: 11/27/2022]
|
26
|
Elleuche S, Bernhards Y, Schäfers C, Varghese JM, Nolting N, Pöggeler S. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora. Eur J Cell Biol 2010; 89:873-87. [DOI: 10.1016/j.ejcb.2010.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
27
|
Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. – Acephala applanata species complex. Fungal Genet Biol 2010; 47:761-72. [DOI: 10.1016/j.fgb.2010.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/18/2022]
|
28
|
Menkis A, Whittle CA, Johannesson H. Gene genealogies indicates abundant gene conversions and independent evolutionary histories of the mating-type chromosomes in the evolutionary history of Neurospora tetrasperma. BMC Evol Biol 2010; 10:234. [PMID: 20673371 PMCID: PMC2923516 DOI: 10.1186/1471-2148-10-234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 07/31/2010] [Indexed: 11/27/2022] Open
Abstract
Background The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (~7 Mbp) and young (< 6 MYA) region of suppressed recombination within its mating-type (mat) chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages) contained within the N. tetrasperma species complex. Results Comparative analysis of sequence divergence among alleles of 24 mat-linked genes (mat A and mat a) indicates that a large region of suppressed recombination exists within the mat chromosome for each of nine lineages of N. tetrasperma sensu latu. The recombinationally suppressed region varies in size and gene composition among lineages, and is flanked on both ends by normally recombining regions. Genealogical analyses among lineages reveals that eight gene conversion events have occurred between homologous mat A and mat a-linked alleles of genes located within the region of restricted recombination during the evolutionary history of N. tetrasperma. Conclusions We conclude that the region of suppressed recombination in the mat chromosomes has likely been subjected to independent contraction and/or expansion during the evolutionary history of the N. tetrasperma species complex. Furthermore, we infer that gene conversion events are likely a common phenomenon within this recombinationally suppressed genomic region. We argue that gene conversions might provide an efficient mechanism of adaptive editing of functional genes, including the removal of deleterious mutations, within the young recombinationally suppressed region of the mat chromosomes.
Collapse
Affiliation(s)
- Audrius Menkis
- Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
30
|
Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. EUKARYOTIC CELL 2010; 9:894-905. [PMID: 20435701 DOI: 10.1128/ec.00019-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the alpha domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes.
Collapse
|
31
|
Moriyama Y, Kawano S. Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum. JOURNAL OF PLANT RESEARCH 2010; 123:139-148. [PMID: 20082112 DOI: 10.1007/s10265-009-0298-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
Direct evidence of digestion of paternal mitochondrial DNA (mtDNA) has been found in the true slime mold Physarum polycephalum. This is the first report on the selective digestion of mtDNA inside the zygote, and is striking evidence for the mechanism of maternal inheritance of mitochondria. Moreover, two mitochondrial nuclease activities were detected in this organism as-candidates for the nucleases responsible for selective digestion of mtDNA. In the true slime mold, there is an additional-feature of the uniparental inheritance of mitochondria.Although mitochondria are believed to be inherited from the maternal lineage in nearly all eukaryotes, the mating types of the true slime mold P. polycephalum is not restricted to two: there are three mating loci--matA, matB,and matC--and these loci have 16, 15, and 3 alleles,-respectively. Interestingly, the transmission patterns of mtDNA are determined by the matA locus, in a hierarchical-fashion (matA hierarchy) as follows: matA7[matA2[matA11[matA12[matA15/matA16[matA1[matA6.The strain possessing the higher status of matA would be the mtDNA donor in crosses. Furthermore, we have found that some crosses showed biparental inheritance of mitochondria.This review describes the phenomenon of hierarchical transmission of mtDNA in true slime molds, and discusses the presumed molecular mechanism of maternal and biparental inheritance.
Collapse
Affiliation(s)
- Yohsuke Moriyama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japane.
| | | |
Collapse
|
32
|
Abstract
The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.
Collapse
|
33
|
Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, Williams D, Wilhelm D, Koopman P, Flavell RA, Chi H, Ostrer H, Wells S, Cheeseman M, Greenfield A. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 2009; 7:e1000196. [PMID: 19753101 PMCID: PMC2733150 DOI: 10.1371/journal.pbio.1000196] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022] Open
Abstract
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans.
Collapse
Affiliation(s)
- Debora Bogani
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Rachel Brixey
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Sarah Beddow
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Jessica Edwards
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Debbie Williams
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Dagmar Wilhelm
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter Koopman
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Harry Ostrer
- Human Genetics Program, New York University School of Medicine, New York, New York, United States of America
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Michael Cheeseman
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
34
|
Schurko AM, Neiman M, Logsdon JM. Signs of sex: what we know and how we know it. Trends Ecol Evol 2009; 24:208-17. [DOI: 10.1016/j.tree.2008.11.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 12/26/2022]
|
35
|
|