1
|
Barkhade T, Nigam K, Ravi G, Rawat S, Nema SK. Investigating the effects of microwave plasma on bacterial cell structures, viability, and membrane integrity. Sci Rep 2025; 15:18052. [PMID: 40410288 PMCID: PMC12102320 DOI: 10.1038/s41598-025-02312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Plasma-mediated bacterial inactivation holds great promise but presents several challenges. This study investigates the antibacterial effect of 2.45 GHz non-thermal microwave (MW) plasma on Staphylococcus aureus (S. aureus) and Salmonella abony (S. abony) suspended in phosphate-buffered saline (PBS). A 6-log reduction in both bacterial strains was achieved within 300 s of plasma exposure. The enhanced inactivation is attributed to elevated levels of reactive oxygen species (ROS), particularly ·OH (30.30% in S. aureus, 40.13% in S. abony) and H2O2 (173.27% in S. aureus, and 391.84% in S. abony), which caused oxidative stress and membrane depolarization, detected via fluorescence spectrofluorometry. Morphological changes were confirmed through field emission scanning electron microscopy (FE-SEM). Membrane impairment led to leakage of intracellular contents such as proteins, lipids, and nucleic acids. DNA damage was evident from hyperchromic effects observed at 260 nm. Confocal microscopy revealed a qualitative increase in red fluorescent (dead) cells with longer exposure. Flow cytometry further quantified the dead cells at 88% in S. aureus and 95% in S. abony. These findings provide comprehensive insight into the bacterial inactivation mechanism and demonstrate the strong potential of non-thermal MW plasma for applications in sterilization, infection control, and food safety.
Collapse
Affiliation(s)
- Tejal Barkhade
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India.
| | - Kushagra Nigam
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
| | - Ganesh Ravi
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sudhir Kumar Nema
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Priyadarsini M, Kushwaha J, Pandey KP, Rani J, Dhoble AS. Application of flow cytometry for rapid, high-throughput, multiparametric analysis of environmental microbiomes. J Microbiol Methods 2023; 214:106841. [PMID: 37832922 DOI: 10.1016/j.mimet.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Quantification of the abundance and understanding of the dynamics of the microbial communities is essential to establish a basis for microbiome characterization. The conventional techniques used for the quantification of microbes are complicated and time-consuming. With scientific advancement, many techniques evolved and came into account. Among them, flow cytometry is a robust, high-throughput technique through which microbial dynamics, morphology, microbial distribution, physiological characteristics, and many more attributes can be studied in a high-throughput manner with comparatively less time and resources. Flow cytometry, when combined with other omics-based methods, offers a rapid and efficient platform to analyze and understand the composition of microbiome at the cellular level. The microbial diversity observed through flow cytometry will not be equivalent to that obtained by sequencing methods, but this integrated approach holds great potential for high throughput characterization of microbiomes. Flow cytometry is regarded as an established characterization tool in haematology, oncology, immunology, and medical microbiology research; however, its application in environmental microbiology is yet to be explored. This comprehensive review aims to delve into the diverse environmental applications of flow cytometry across various domains, including but not limited to bioremediation, landfills, anaerobic digestion, industrial bioprocesses, water quality regulation, and soil quality regulation. By conducting an in-depth analysis, this article seeks to shed light on the potential benefits and challenges associated with the utilization of flow cytometry in addressing environmental concerns.
Collapse
Affiliation(s)
- Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Nisar MA, Ross KE, Brown MH, Bentham R, Best G, Whiley H. Detection and quantification of viable but non-culturable Legionella pneumophila from water samples using flow cytometry-cell sorting and quantitative PCR. Front Microbiol 2023; 14:1094877. [PMID: 36793878 PMCID: PMC9922708 DOI: 10.3389/fmicb.2023.1094877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Legionella pneumophila is a waterborne pathogen and, as the causative agent of Legionnaires' disease, a significant public health concern. Exposure to environmental stresses, and disinfection treatments, promotes the formation of resistant and potentially infectious viable but non-culturable (VBNC) Legionella. The management of engineered water systems to prevent Legionnaires' disease is hindered by the presence of VBNC Legionella that cannot be detected using the standard culture (ISO11731:2017-05) and quantitative polymerase reaction (ISO/TS12869:2019) methods. This study describes a novel method to quantify VBNC Legionella from environmental water samples using a "viability based flow cytometry-cell sorting and qPCR" (VFC + qPCR) assay. This protocol was then validated by quantifying the VBNC Legionella genomic load from hospital water samples. The VBNC cells were unable to be cultured on Buffered Charcoal Yeast Extract (BCYE) agar; however, their viability was confirmed through their ATP activity and ability to infect amoeba hosts. Subsequently, an assessment of the ISO11731:2017-05 pre-treatment procedure demonstrated that acid or heat treatment cause underestimation of alive Legionella population. Our results showed that these pre-treatment procedures induce culturable cells to enter a VBNC state. This may explain the observed insensitivity and lack of reproducibility often observed with the Legionella culture method. This study represents the first time that flow cytometry-cell sorting in conjunction with a qPCR assay has been used as a rapid and direct method to quantify VBNC Legionella from environmental sources. This will significantly improve future research evaluating Legionella risk management approaches for the control of Legionnaires' disease.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E. Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Giles Best
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia,Flow Cytometry Facility, Flinders University, Bedford Park, SA, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia,*Correspondence: Harriet Whiley, ✉
| |
Collapse
|
4
|
Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation. Int J Mol Sci 2022; 23:ijms231912027. [PMID: 36233328 PMCID: PMC9570054 DOI: 10.3390/ijms231912027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Implant-associated infection due to biofilm formation is a growing problem. Given that silver nanoparticles (Ag-NPs) have shown antibacterial effects, our goal is to study their effect against multispecies biofilm involved in the development of peri-implantitis. To this purpose, Ag-NPs were synthesized by laser ablation in de-ionized water using two different lasers, leading to the production of colloidal suspensions. Subsequently, part of each suspension was subjected to irradiation one and three times with the same laser source with which it was obtained. Ag-NPs were immobilized on the surface of titanium discs and the resultant materials were compared with unmodified titanium coupons. Nanoparticles were physico-chemically analysed to determine their shape, crystallinity, chemical composition, and mean diameter. The materials were incubated for 90 min or 48 h, to evaluate bacterial adhesion or biofilm formation respectively with Staphylococcus aureus or oral mixed bacterial flora composed of Streptococcus oralis, Actinomyces naeslundii, Veionella dispar, and Porphyromonas gingivalis. Ag-NPs help prevent the formation of biofilms both by S. aureus and by mixed oral bacterial flora. Nanoparticles re-irradiated three times showed the biggest antimicrobial effects. Modifying dental implants in this way could prevent the development of peri-implantitis.
Collapse
|
5
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Malmo C, Giordano I, Mauriello G. Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactobacillus reuteri DSM 17938. Foods 2021; 10:foods10020217. [PMID: 33494235 PMCID: PMC7909834 DOI: 10.3390/foods10020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Cells of the probiotic strain Limosilactobacillus reuteri DSM 17938 and of the non-probiotic strain Lactiplantibacillus plantarum 48M were microencapsulated in alginate matrix by emulsion technique. Survival of microorganisms in the microcapsules was tested against gastrointestinal (GI) simulated conditions and heat stress. Results demonstrated that the microencapsulation process improved vitality of Lactiplantibacillus plantarum 48M cells after GI conditions exposure, allowing survival similarly to the probiotic Limosilactobacillus reuteri DSM 17938. Moreover, microencapsulation was able to protect neither Limosilactobacillus reuteri DSM 17938 nor Lactiplantibacillus plantarum 48M cells when exposed to heat treatments. Microencapsulated Limosilactobacillus reuteri DSM 17938 cells were still able to produce reuterin, an antimicrobial agent, as well as free cells.
Collapse
|
7
|
Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102324. [PMID: 33181276 DOI: 10.1016/j.nano.2020.102324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/04/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
Abstract
Nanotechnology offers many novel infection-control strategies that may help prevent and treat antimicrobial-resistant bacterial infections. Here, we synthesized polydopamine, photothermal-nanoparticles (PDA-NPs) without further surface-functionalization to evaluate their potential with respect to biofilm-control. Most ESKAPE-panel pathogens in suspension with photothermal-nanoparticles showed three- to four-log-unit reductions upon Near-Infra-Red (NIR)-irradiation, but for enterococci only less than two-log unit reduction was observed. Exposure of existing Staphylococcus aureus biofilms to photothermal-nanoparticles followed by NIR-irradiation did not significantly kill biofilm-inhabitants. This indicates that the biofilm mode of growth poses a barrier to penetration of photothermal-nanoparticles, yielding dissipation of heat to the biofilm-surrounding rather than in its interior. Staphylococcal biofilm-growth in the presence of photothermal-nanoparticles could be significantly prevented after NIR-irradiation because PDA-NPs were incorporated in the biofilm and heat dissipated inside it. Thus, unmodified photothermal nanoparticles have potential for prophylactic infection-control, but data also constitute a warning for possible development of thermo-resistance in infectious pathogens.
Collapse
|
8
|
Espina L. An approach to increase the success rate of cultivation of soil bacteria based on fluorescence-activated cell sorting. PLoS One 2020; 15:e0237748. [PMID: 32866195 PMCID: PMC7458294 DOI: 10.1371/journal.pone.0237748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 12/05/2022] Open
Abstract
Soil microbiota are considered a source of undiscovered bioactive compounds, yet cultivation of most bacteria within a sample remains generally unsuccessful. Two main reasons behind the unculturability of bacteria are the presence of cells in a viable but not culturable state (such as dormant cells) and the failure to provide the necessary growth requirements in vitro (leading to the classification of some bacterial taxa as yet-to-be-cultured). The present work focuses on the development of a single procedure that helps distinguish between both phenomena of unculturability based on viability staining coupled with flow cytometry and fluorescence-activated cell sorting. In the selected soil sample, the success rate of cultured bacteria was doubled by selecting viable and metabolically active bacteria. It was determined that most of the uncultured fraction was not dormant or dead but likely required different growth conditions. It was also determined that the staining process introduced changes in the taxonomic composition of the outgrown bacterial biomass, which should be considered for further developments. This research shows the potential of flow cytometry and fluorescence-activated cell sorting applied to soil samples to improve the success rate of bacterial cultivation by estimating the proportion of dormant and yet-to-be-cultured bacteria and by directly excluding dormant cells from being inoculated into growth media.
Collapse
Affiliation(s)
- Laura Espina
- Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Pan H, Dong K, Rao L, Zhao L, Wang Y, Liao X. The Association of Cell Division Regulated by DicC With the Formation of Viable but Non-culturable Escherichia coli O157:H7. Front Microbiol 2020; 10:2850. [PMID: 31921032 PMCID: PMC6915034 DOI: 10.3389/fmicb.2019.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
The viable but non-culturable (VBNC) state, in which bacteria fail to grow on routine culture media but are actually alive, has been widely recognized as a strategy adopted by bacteria to cope with stressful environments. However, little is known regarding the molecular mechanism of VBNC formation. Here, we aimed to elucidate the specific roles of cell division regulatory proteins and the cell growth rate during VBNC Escherichia coli O157:H7 formation. We have previously found that expression of dicC is reduced by 20.08-fold in VBNC E. coli O157:H7 compared to non-VBNC cells. Little is known about DicC except that it, along with DicA, appears to act as a regulator of cell division by regulating expression of the cell division inhibitor DicB. First, our results showed that the VBNC cell number increased in the ΔdicC mutant as well as the DicA-overexpressing strain but decreased in the DicC-overexpressing strain induced by high-pressure carbon dioxide, acid, and H2O2. Furthermore, the growth rates of both the DicA-overexpressing strain and the ΔdicC mutant were higher than that of the control strain, while DicC-overexpressing strain grew significantly more slowly than the vector strain. The level of the dicB gene, regulated by dicA and dicC and inhibiting cell division, was increased in the DicC-overexpressing strain and decreased in the ΔdicC mutant and DicA-overexpressing strain, which was consistent with the growth phenotypes. In addition, the dwarfing cell morphology of the ΔdicC mutant and DicA-overexpressing strain were observed by SEM and TEM. Taken together, our study demonstrates that DicC negatively regulates the formation of the VBNC state, and DicA enhances the ability of cells to enter the VBNC state. Besides, the cell growth rate and dwarfing cell morphology may be correlated with the formation of the VBNC state.
Collapse
Affiliation(s)
- Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liang Zhao
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
10
|
Marine macroalgae-associated heterotrophic Firmicutes and Gamma-proteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch Microbiol 2020; 202:905-920. [DOI: 10.1007/s00203-019-01800-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
11
|
Cal-Sabater P, Caro I, Castro MJ, Cao MJ, Mateo J, Quinto EJ. Flow Cytometry to Assess the Counts and Physiological State of Cronobacter sakazakii Cells after Heat Exposure. Foods 2019; 8:foods8120688. [PMID: 31888256 PMCID: PMC6963341 DOI: 10.3390/foods8120688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that is associated with outbreaks of neonatal necrotizing enterocolitis, septicaemia, and meningitis. Reconstituted powdered infant formulae is the most common vehicle of infection. The aim of the present study is to gain insight into the physiological states of C. sakazakii cells using flow cytometry to detect the compromised cells, which are viable but non-culturable using plate-based methods, and to evaluate the impact of milk heat treatments on those populations. Dead-cell suspensions as well as heat-treated and non-heat-treated cell suspensions were used. After 60 or 65 °C treatments, the number of compromised cells increased as a result of cells with compromised membranes shifting from the heat-treated suspension. These temperatures were not effective at killing all bacteria but were effective at compromising their membranes. Thus, mild heat treatments are not enough to guarantee the safety of powered infant formulae. Flow cytometry was capable of detecting C. sakazakii’s compromised cells that cannot be detected with classical plate count methods; thus, it could be used as a screening test to decrease the risk derived from the presence of pathogenic viable but non-culturable cells in this food that is intended for newborns’ nutrition.
Collapse
Affiliation(s)
- Paloma Cal-Sabater
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
| | - María J. Castro
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - María J. Cao
- Department of Nursery, Faculty of Nursery, University of Valladolid, 47005 Valladolid, Spain; (M.J.C.); (M.J.C.)
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain;
| | - Emiliano J. Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.C.-S.); (I.C.)
- Correspondence:
| |
Collapse
|
12
|
Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int 2019; 119:530-540. [DOI: 10.1016/j.foodres.2017.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022]
|
13
|
González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr Rev Food Sci Food Saf 2018; 17:1261-1276. [DOI: 10.1111/1541-4337.12378] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fabián González-Rivas
- Faculty of Health Sciences at Manresa; Univ. of Vic Central Univ. of Catalonia; Manresa Spain
| | - Carolina Ripolles-Avila
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Fabio Fontecha-Umaña
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Abel Guillermo Ríos-Castillo
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - José Juan Rodríguez-Jerez
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| |
Collapse
|
14
|
In Vitro Activity of Bacteriophages Against Planktonic and Biofilm Populations Assessed by Flow Cytometry. Methods Mol Biol 2018. [PMID: 29119430 DOI: 10.1007/978-1-4939-7395-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The in vitro activity of bacteriophages against planktonic cultures and biofilms is commonly evaluated by culture methods. However, these methods can lead to an underestimation of total bacterial cells when they undergo different physiological states.This chapter describes the methodology used to assess the in vitro activity of bacteriophages against planktonic cultures of bacteria in different metabolic states and biofilm populations by flow cytometry.
Collapse
|
15
|
Randazzo W, Jiménez-Belenguer A, Settanni L, Perdones A, Moschetti M, Palazzolo E, Guarrasi V, Vargas M, Germanà MA, Moschetti G. Antilisterial effect of citrus essential oils and their performance in edible film formulations. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Moghoofei M, Fazeli H, Poursina F, Nasr Esfahani B, Moghim S, Vaez H, Hadifar S, Ghasemian Safaei H. Morphological and Bactericidal Effects of Amikacin, Meropenem and Imipenem on Pseudomonas aeruginosa. Jundishapur J Microbiol 2015; 8:e25250. [PMID: 26855743 PMCID: PMC4735832 DOI: 10.5812/jjm.25250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa might be converted to coccoid bacteria under antibiotic stress. Bacterial conversion would increase resistance to antibiotics due to changes in cell wall crosslink or decreased metabolic activity. Morphology of P. aeruginosa under stress conditions (presence of antibiotics) can be changed to elongated bacilli, U shape and finally coccoid bacteria. Results of several researches showed that coccoid bacteria are one of the most important aspects of drug resistance. It would be the major reason for treatment failure. OBJECTIVES The aim of this study was to determine in vitro morphological and bactericidal effects of amikacin, meropenem and imipenem on P. aeruginosa isolated from clinical specimens. MATERIALS AND METHODS Eight P. aeruginosa isolates obtained from clinical samples of burned patients and standard strain ATCC 27853 were used in this study. Isolates were identified by biochemical tests and confirmed by PCR method using ITS specific primer. Minimum inhibitory concentrations (MICs) of three antibiotics were determined by E-test method. Bacteria were exposed to antibiotics at different concentrations. Bacterial morphology in different days was examined by specific microscope and viability of isolates was examined by flow cytometry. RESULTS All used antibiotics at sub MIC concentration had capability to induce coccoid bacteria. The highest rate of induced coccoid bacteria was 98.2% after 8 days, with contribution of imipenem and meropenem at 2 μg/mL concentration. Amikacin at 4 μg/mL concentration induced lower rate of coccoid bacteria (55.05%). Amikacin had a strong bactericidal effect on coccoid bacteria at 8 μg/mL concentration. Imipenem and meropenem showed very weak bactericidal effect on coccoid bacteria. CONCLUSIONS Induction of coccoid form of P. aeruginosa may be one of the important reasons for antibiotic treatment failure; therefore, prescribed dose of antibiotics should be carefully managed to prevent increasing antibiotic resistance and coccoid bacteria induction.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hossein Fazeli
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Farkhondeh Poursina
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Sharareh Moghim
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hamid Vaez
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Shima Hadifar
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hajieh Ghasemian Safaei
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| |
Collapse
|
17
|
Al-Hashimi AM, Mason TJ, Joyce EM. Combined Effect of Ultrasound and Ozone on Bacteria in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11697-11702. [PMID: 25982841 DOI: 10.1021/es5045437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study is to assess the synergetic effect of combined ultrasound and ozone treatment on the biological disinfection of water on a large-scale application using viable plate counts and flow cytometry. Escherichia coli B bacteria in saline suspension was treated using a commercially available combined ultrasound and ozone system (USO3 (Ultrasonic Systems Gmbh)) for 16 min. Two analytical methods were used to assess the results in terms of live and dead cells in the bulk liquid: standard viable plate counting recorded in terms of colony forming units per milliliter and flow cytometry. In the latter case 1 mL of bacterial suspension was stained simultaneously with the fluorescent stains SYTO9 and propidium iodide (PI). Transmission electron microscopy was used to generate images identifying the biological effects of different treatments using ultrasound and ozone on bacterial cell walls. Results demonstrated that treatment with ozone alone (1 mg/L) resulted in a significant reduction (93%) in the number of live cells after 16 min treatment whereas ultrasound alone showed only a small reduction (24%). However, a combination of ozone and ultrasound showed a synergistic effect and enhanced the inactivation to 99% after 4 min. A combined ultrasound and ozone treatment of bacterial suspensions using a commercial system affords a promising method for water disinfection that is better than treatment using either method alone. Standard viable plate count analysis is normally used to assess the effectiveness of disinfection treatments; however flow cytometry proved to be a more sensitive method to determine the actual effects in terms of not only live and dead cells but also damaged cells. This type of analysis (cell damage) is difficult if not impossible to achieve using traditional plate counting methodology.
Collapse
Affiliation(s)
- Amna M Al-Hashimi
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| | - Timothy J Mason
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| | - Eadaoin M Joyce
- The Sonochemistry Centre, Faculty of Health and Life Sciences, Coventry University , Priory Street, Coventry CV1 5FB, U.K
| |
Collapse
|
18
|
Sintes E, del Giorgio PA. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front Microbiol 2014; 5:453. [PMID: 25250018 PMCID: PMC4155813 DOI: 10.3389/fmicb.2014.00453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022] Open
Abstract
The trophic interactions between bacteria and their main predators, the heterotrophic nanoflagellates (HNFs), play a key role in the structuring and functioning of aquatic microbial food webs. Grazing regulation of bacterial communities, both of biomass and community structure, have been frequently reported. Additionally, bottom-up responses of the HNF at the population level (numerical responses) have also been extensively described. However, the functional response of HNF at the single-cell level has not been well explored. In this study, we concurrently measured the physiological structure of bacterial communities and HNF single-cell activities during re-growth cultures of natural aquatic communities. We found that changes in the abundance and proportion of the preferred, highly active bacterial prey, caused by the feeding activity of their predators (HNF), induced a negative feedback effect on the single-cell activity of these HNF. These shifts in the specific cellular activity of HNF occur at a much shorter time scale than population level shifts in flagellate abundance, and offer a complementary mechanism to explain not only the tight coupling between bacteria and HNF, but also the relative constancy of bacterial abundance in aquatic ecosystems.
Collapse
Affiliation(s)
- Eva Sintes
- Department of Limnology and Oceanography, University of ViennaVienna, Austria
| | - Paul A. del Giorgio
- Département des Sciences Biologiques, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
19
|
Klai S, Altenburger M, Spitzmüller B, Anderson A, Hellwig E, Al-Ahmad A. Antimicrobial effects of dental luting glass ionomer cements on Streptococcus mutans. ScientificWorldJournal 2014; 2014:807086. [PMID: 24795539 PMCID: PMC3982267 DOI: 10.1155/2014/807086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. METHODS Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. RESULTS Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. CONCLUSION All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo.
Collapse
Affiliation(s)
- Sina Klai
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Markus Altenburger
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Bettina Spitzmüller
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Annette Anderson
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, University Hospital and Dental School, Albert-Ludwigs-University, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Gin KYH, Goh SG. Modeling the effect of light and salinity on viable but non-culturable (VBNC) Enterococcus. WATER RESEARCH 2013; 47:3315-3328. [PMID: 23602617 DOI: 10.1016/j.watres.2013.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/26/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Enterococci have been recommended as suitable bacteria indicators for assessing the microbial quality of recreational waters. However, recent studies have shown that bacteria, including enterococci, are able to enter a viable but non-culturable (VBNC) state under environmentally stressed conditions, where they may remain undetected if culture-based methods are employed. To appreciate the extent of transformation of these cells in surface waters, a model Enterococcus organism, E. faecalis, was examined in laboratory controlled microcosms under different light and salinity conditions. Cells were detected by both standard culture-based and PMA-qPCR (propidium monoazide quantitative PCR) methods so that the VBNC cells could be enumerated. The decay rates from the culture based method (kc) and PMA-qPCR method (kp) were established for the different conditions. In general, the kC values (ranging from 0.0088 hr(-1) to 0.9755 hr(-1)) were always higher than the kP values (0.0019 hr(-1) to 0.2373 hr(-1)), implying that cells were able to retain their viability for much longer periods than what is shown by the culture-based method. In both cases, the k values generally showed an increasing trend with an increase in light irradiation, implying greater die-off with light. For freshwater microcosms, the kp values were 3-6 times lower than the kc values for different irradiation conditions, whereas for seawater the difference was up to 12 times, showing that E. faecalis adapts well to seawater. The kinetic data were used to develop models to describe the dynamics of VBNC formation in natural waters. At low light intensities (less than about 20 Wm(-2)), the proportion of VBNC cells was found to steadily increase to as high as 50%, even after 4 days. However, at higher light levels, this proportion was achieved more quickly (less than 5 h) but also diminished more rapidly. Hence, at high light levels, the percentage of VBNC cells is expected to be significant only for a few hours, whereas at low light levels, the VBNC cells can be expected to be present for a long period of time. These results have implications on the interpretation of microbial water quality data that are based on culture based methods.
Collapse
Affiliation(s)
- Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Blk E1A #07-03, Singapore 117576, Singapore.
| | | |
Collapse
|
22
|
Daniel M, Imtiaz-Umer S, Fergie N, Birchall JP, Bayston R. Bacterial involvement in otitis media with effusion. Int J Pediatr Otorhinolaryngol 2012; 76:1416-22. [PMID: 22819485 DOI: 10.1016/j.ijporl.2012.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Otitis media with effusion (OME), a common chronic childhood condition affecting hearing, is thought to be a result of bacterial infection, with biofilms recently implicated. Although bacterial DNA can be detected by polymerase chain reaction in 80% of patients, typically fewer than half of effusions are positive using standard culture techniques. We adopted an alternative approach to demonstrating bacteria in OME, using a bacterial viability stain and confocal laser scanning microscopy (CLSM): staining allows detection of live bacteria without requiring growth on culture, while CLSM allows demonstration of the three-dimensional structure typical of biofilms. METHODS Effusion samples were collected at the time of ventilation tube insertion, analysed with CLSM and bacterial viability stain, and extended culture techniques performed with the intention of capturing all possible organisms. RESULTS Sixty-two effusions (42 patients) were analysed: 28 (45.2%) were culture-positive, but 51 (82.3%) were CLSM-positive. Combining the two techniques demonstrated live bacteria in 57 (91.8%) samples. Using CLSM, bacteria exhibited biofilm morphology in 25 effusions and were planktonic in 26; the proportion of samples exhibiting biofilm morphology was similar in the culture-positive and culture-negative groups (50.0% and 48.3%, respectively). Biofilm samples contained an average of 1.7 different bacterial isolates and planktonic samples 2.0, with the commonest bacteria identified being coagulase-negative staphylococci. CONCLUSION Live bacteria are present in most effusions, strongly suggesting that bacteria and biofilms are important in the aetiopathogenesis of OME.
Collapse
Affiliation(s)
- M Daniel
- Otorhinolaryngology Head & Neck Surgery, The University of Nottingham, Nottingham University Hospitals Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
23
|
Abstract
Antimicrobial surfaces for food and medical applications have historically involved antimicrobial coatings that elute biocides for effective kill in solution or at surfaces. However, recent efforts have focused on immobilized antimicrobial agents in order to avoid toxicity and the compatibility and reservoir limitations common to elutable agents. This review critically examines the assorted antimicrobial agents reported to have been immobilized, with an emphasis on the interpretation of antimicrobial testing as it pertains to discriminating between eluting and immobilized agents. Immobilization techniques and modes of antimicrobial action are also discussed.
Collapse
|
24
|
Temur E, Boyacı İH, Tamer U, Unsal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem 2010; 397:1595-604. [DOI: 10.1007/s00216-010-3676-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/29/2022]
|
25
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. Int J Food Microbiol 2009; 133:113-20. [DOI: 10.1016/j.ijfoodmicro.2009.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/21/2009] [Accepted: 05/03/2009] [Indexed: 11/21/2022]
|
27
|
Carneiro S, Amaral AL, Veloso ACA, Dias T, Peres AM, Ferreira EC, Rocha I. Assessment of physiological conditions inE. colifermentations by epifluorescent microscopy and image analysis. Biotechnol Prog 2009; 25:882-91. [DOI: 10.1002/btpr.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Determination of viable Escherichia coli using antibody-coated paramagnetic beads with fluorescence detection. Anal Bioanal Chem 2008; 393:949-56. [DOI: 10.1007/s00216-008-2531-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/12/2008] [Accepted: 11/18/2008] [Indexed: 11/26/2022]
|
29
|
Sachidanandham R, Gin KYH. Flow cytometric analysis of prolonged stress-dependent heterogeneity in bacterial cells. FEMS Microbiol Lett 2008; 290:143-8. [DOI: 10.1111/j.1574-6968.2008.01410.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Allegra S, Berger F, Berthelot P, Grattard F, Pozzetto B, Riffard S. Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol 2008; 74:7813-7816. [PMID: 18849449 PMCID: PMC2607165 DOI: 10.1128/aem.01364-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/07/2008] [Indexed: 12/28/2022] Open
Abstract
Legionella viability was monitored during heat shock treatment at 70 degrees C by a flow cytometric assay (FCA). After 30 min of treatment, for 6 of the 12 strains tested, the FCA still detected 10 to 25% of cells that were viable but nonculturable (VBNC). These VBNC cells were able to produce ATP and to be resuscitated after culture on amoebae.
Collapse
Affiliation(s)
- Séverine Allegra
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA3064, Faculté de Médecine J. Lisfranc, Université Jean Monnet, Saint-Etienne, France
| | | | | | | | | | | |
Collapse
|
31
|
Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl Environ Microbiol 2008; 74:7497-506. [PMID: 18931289 DOI: 10.1128/aem.01626-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of microbial heterogeneity at the single-cell level is a rapidly growing area of research in microbiology and biotechnology due to its significance in pathogenesis, environmental biology, and industrial biotechnologies. However, the tools available for efficiently and precisely probing such heterogeneity are limited for most bacteria. Here we describe the development and application of flow-cytometric (FC) and fluorescence-assisted cell-sorting techniques for the study of endospore-forming bacteria. We show that by combining FC light scattering (LS) with nucleic acid staining, we can discriminate, quantify, and enrich all sporulation-associated morphologies exhibited by the endospore-forming anaerobe Clostridium acetobutylicum. Using FC LS analysis, we quantitatively show that clostridial cultures commonly perform multiple rounds of sporulation and that sporulation is induced earlier by the overexpression of Spo0A, the master regulator of endospore formers. To further demonstrate the power of our approach, we employed FC LS analysis to generate compelling evidence to challenge the long-accepted view in the field that the clostridial cell form is the solvent-forming phenotype.
Collapse
|
32
|
Sachidanandham R, Yew-Hoong Gin K. A dormancy state in nonspore-forming bacteria. Appl Microbiol Biotechnol 2008; 81:927-41. [PMID: 18815783 PMCID: PMC7419491 DOI: 10.1007/s00253-008-1712-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/13/2008] [Accepted: 09/08/2008] [Indexed: 10/29/2022]
Abstract
While cultivation is a convenient way of proliferating and understanding bacteria, studies have shown the formation of nonculturable cells in nonspore-forming bacteria in response to environmental stress and thus in turn have generated immense interest. Whether these cells are in a state of dormancy or in a stage preceding cell death has been considered of paramount importance for the past couple of decades. In this study, osmotic-stress-induced dormant bacterial cells were separated by cell sorting and revived by osmotic down-shift in the absence of nutrients, source(s) that potentially could supply nutrients, and/or the external addition of resuscitation factor(s). Reversal of dormancy followed a definite pattern akin to population asynchrony of dormant cells, and the phenomenon was observed across three species, namely, Enterobacter sp. strain mcp11b, Klebsiella pneumonia strain mcp11d and Escherichia coli. In addition, our study precisely forecasted the presence of multiple subpopulations in dormant cells, which is explained by an emerging theory of survival mechanisms in stressful environments. These observations reveal that the state of dormancy induced by environmental stress in these nonspore-forming bacteria is "reversible" and also implies that it is an orderly and spontaneous adaptation to circumvent adverse conditions.
Collapse
Affiliation(s)
- Ramaiah Sachidanandham
- School of Civil and Environmental Engineering, Nanyang Technological University, Block N1, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | |
Collapse
|
33
|
Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008. [PMID: 18245232 DOI: 10.1128/aem.02001‐07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibacterial effect and mechanism of action of a silver ion solution that was electrically generated were investigated for Staphylococcus aureus and Escherichia coli by analyzing the growth, morphology, and ultrastructure of the bacterial cells following treatment with the silver ion solution. Bacteria were exposed to the silver ion solution for various lengths of time, and the antibacterial effect of the solution was tested using the conventional plate count method and flow cytometric (FC) analysis. Reductions of more than 5 log(10) CFU/ml of both S. aureus and E. coli bacteria were confirmed after 90 min of treatment with the silver ion solution. Significant reduction of S. aureus and E. coli cells was also observed by FC analysis; however, the reduction rate determined by FC analysis was less than that determined by the conventional plate count method. These differences may be attributed to the presence of bacteria in an active but nonculturable (ABNC) state after treatment with the silver ion solution. Transmission electron microscopy showed considerable changes in the bacterial cell membranes upon silver ion treatment, which might be the cause or consequence of cell death. In conclusion, the results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.
Collapse
|
34
|
Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008; 74:2171-8. [PMID: 18245232 DOI: 10.1128/aem.02001-07] [Citation(s) in RCA: 1065] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The antibacterial effect and mechanism of action of a silver ion solution that was electrically generated were investigated for Staphylococcus aureus and Escherichia coli by analyzing the growth, morphology, and ultrastructure of the bacterial cells following treatment with the silver ion solution. Bacteria were exposed to the silver ion solution for various lengths of time, and the antibacterial effect of the solution was tested using the conventional plate count method and flow cytometric (FC) analysis. Reductions of more than 5 log(10) CFU/ml of both S. aureus and E. coli bacteria were confirmed after 90 min of treatment with the silver ion solution. Significant reduction of S. aureus and E. coli cells was also observed by FC analysis; however, the reduction rate determined by FC analysis was less than that determined by the conventional plate count method. These differences may be attributed to the presence of bacteria in an active but nonculturable (ABNC) state after treatment with the silver ion solution. Transmission electron microscopy showed considerable changes in the bacterial cell membranes upon silver ion treatment, which might be the cause or consequence of cell death. In conclusion, the results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.
Collapse
|
35
|
Peneau S, Chassaing D, Carpentier B. First evidence of division and accumulation of viable but nonculturable Pseudomonas fluorescens cells on surfaces subjected to conditions encountered at meat processing premises. Appl Environ Microbiol 2007; 73:2839-46. [PMID: 17337551 PMCID: PMC1892859 DOI: 10.1128/aem.02267-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 02/21/2007] [Indexed: 11/20/2022] Open
Abstract
Cleaning and disinfection of open surfaces in food industry premises leave some microorganisms behind; these microorganisms build up a resident flora on the surfaces. Our goal was to explore the phenomena involved in the establishment of this biofilm. Ceramic coupons were contaminated, once only, with Pseudomonas fluorescens suspended in meat exudate incubated at 10 degrees C. The mean adhering population after 1 day was 10(2) CFU x cm(-2) and 10(3) total cells x cm(-2), i.e., the total number of cells stained by DAPI (4',6'-diamidino-2-phenylindole). The coupons were subjected daily to a cleaning product, a disinfectant, and a further soiling with exudate. The result was a striking difference between the numbers of CFU, which reached 10(4) CFU x cm(-2), and the numbers of total cells, which reached 2 x 10(6) cells x cm(-2) in 10 days. By using hypotheses all leading to an overestimation of the number of dead cells, we showed that the quantity of nonculturable cells (DAPI-positive cells minus CFU) observed cannot be accounted for as an accumulation of dead cells. Some nonculturable cells are therefore dividing on the surface, although cell division is unable to continue to the stage of macrocolony formation on agar. The same phenomenon was observed when only a chlorinated alkaline product was used and the number of cells capable of reducing 5-cyano-2,3-ditolyl tetrazolium chloride was close to the number of total cells, confirming that most nonculturable cells are viable but nonculturable. Furthermore, the daily shock applied to the cells does not prompt them to enter a new lag phase. Since a single application of microorganisms is sufficient to produce this accumulation of cells, it appears that the phenomenon is inevitable on open surfaces in food industry premises.
Collapse
Affiliation(s)
- Sophie Peneau
- Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches sur la Qualité des Aliments et sur les Procédés Agro-Alimentaires, Maisons-Alfort, France
| | | | | |
Collapse
|
36
|
Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 2007; 73:3283-90. [PMID: 17384309 PMCID: PMC1907116 DOI: 10.1128/aem.02750-06] [Citation(s) in RCA: 610] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The commercially available LIVE/DEAD BacLight kit is enjoying increased popularity among researchers in various fields of microbiology. Its use in combination with flow cytometry brought up new questions about how to interpret LIVE/DEAD staining results. Intermediate states, normally difficult to detect with epifluorescence microscopy, are a common phenomenon when the assay is used in flow cytometry and still lack rationale. It is shown here that the application of propidium iodide in combination with a green fluorescent total nucleic acid stain on UVA-irradiated cells of Escherichia coli, Salmonella enterica serovar Typhimurium, Shigella flexneri, and a community of freshwater bacteria resulted in a clear and distinctive flow cytometric staining pattern. In the gram-negative bacterium E. coli as well as in the two enteric pathogens, the pattern can be related to the presence of intermediate cellular states characterized by the degree of damage afflicted specifically on the bacterial outer membrane. This hypothesis is supported by the fact that EDTA-treated nonirradiated cells exhibit the same staining properties. On the contrary, this pattern was not observed in gram-positive Enterococcus faecalis, which lacks an outer membrane. Our observations add a new aspect to the LIVE/DEAD stain, which so far was believed to be dependent only on cytoplasmic membrane permeability.
Collapse
Affiliation(s)
- Michael Berney
- Swiss Federal Institute of Aquatic Science and Technology, EAWAG, P.O. Box 611, CH-8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Herrero M, Quirós C, García LA, Díaz M. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes. Appl Environ Microbiol 2006; 72:6725-33. [PMID: 17021224 PMCID: PMC1610271 DOI: 10.1128/aem.01183-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes.
Collapse
Affiliation(s)
- Mónica Herrero
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
38
|
Sachidanandham R, Al-Shayji Y, Al-Awadhi N, Gin KYH. A cryptic Bacillus isolate exhibited narrow 16S rRNA gene sequence divergence with Bacillus thuringiensis and showed low maintenance requirements in hyper-osmotic complex substrate cultivations. Biotechnol Bioeng 2005; 91:838-47. [PMID: 15959906 DOI: 10.1002/bit.20554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A cryptic Bacillus (K90) isolate obtained from soil samples from the Kuwait desert exhibited lower maintenance requirements in complex substrate cultivations than Bacillus thuringiensis. A mathematical model was used to estimate apparent maintenance coefficients (m(c)) and these were found to be 0.336 and 0.041/h for B. thuringiensis and K90, respectively. The results also showed that the values of apparent maintenance coefficients were inversely related to the specific growth rates. Furthermore, 16S rRNA gene sequencing showed that K90 exhibited 99.81% sequence similarity to that of B. mojavensis and 92.9% with B. thuringiensis. It is evident from the dendrogram that the evolution of B. mojavensis (K90) (B. subtilis group), which may have originated after B. licheniformis could have been influenced by prolonged hyper-osmotic conditions, while B. thuringiensis that evolved before B. oleronius exhibited greater sensitivity as implied by the higher maintenance coefficient obtained for the hyper-osmotic cultures. As K90 exhibited low maintenance requirements in hyperosmotic cultures, close phylogenetic relationship with B. thuringiensis, along with the reported property of encapsulation of insecticidal crystal proteins (Cry) in Bacillus strains and endophytic nature of B. mojavensis, strongly suggest that K90 could be a promising surrogate host for the transgenic delivery of "Cry" proteins.
Collapse
Affiliation(s)
- Ramaiah Sachidanandham
- Department of Biotechnology (BTD), Food Resources and Marine Sciences Division, Kuwait Institute for Scientific Research, P.O. Box: 24885, 13109 Safat, Kuwait.
| | | | | | | |
Collapse
|