1
|
Park SY, Song J, Choi DH, Park U, Cho H, Hong BH, Silberberg YR, Lee DY. Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis. Appl Microbiol Biotechnol 2024; 108:123. [PMID: 38229404 PMCID: PMC10791731 DOI: 10.1007/s00253-023-12997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
There is a growing interest in perfusion or continuous processes to achieve higher productivity of biopharmaceuticals in mammalian cell culture, specifically Chinese hamster ovary (CHO) cells, towards advanced biomanufacturing. These intensified bioprocesses highly require concentrated feed media in order to counteract their dilution effects. However, designing such condensed media formulation poses several challenges, particularly regarding the stability and solubility of specific amino acids. To address the difficulty and complexity in relevant media development, the biopharmaceutical industry has recently suggested forming dipeptides by combining one from problematic amino acids with selected pairs to compensate for limitations. In this study, we combined one of the lead amino acids, L-tyrosine, which is known for its poor solubility in water due to its aromatic ring and hydroxyl group, with glycine as the partner, thus forming glycyl-L-tyrosine (GY) dipeptide. Subsequently, we investigated the utilization of GY dipeptide during fed-batch cultures of IgG-producing CHO cells, by changing its concentrations (0.125 × , 0.25 × , 0.5 × , 1.0 × , and 2.0 ×). Multivariate statistical analysis of culture profiles was then conducted to identify and correlate the most significant nutrients with the production, followed by in silico model-guided analysis to systematically evaluate their effects on the culture performance, and elucidate metabolic states and cellular behaviors. As such, it allowed us to explain how the cells can more efficiently utilize GY dipeptide with respect to the balance of cofactor regeneration and energy distribution for the required biomass and protein synthesis. For example, our analysis results uncovered specific amino acids (Asn and Gln) and the 0.5 × GY dipeptide in the feed medium synergistically alleviated the metabolic bottleneck, resulting in enhanced IgG titer and productivity. In the validation experiments, we tested and observed that lower levels of Asn and Gln led to decreased secretion of toxic metabolites, enhanced longevity, and elevated specific cell growth and titer. KEY POINTS: • Explored the optimal Tyr dipeptide for the enhanced CHO cell culture performance • Systematically analyzed effects of dipeptide media by model-guided approach • Uncovered synergistic metabolic utilization of amino acids with dipeptide.
Collapse
Affiliation(s)
- Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Jinsung Song
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Uiseon Park
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Hyeran Cho
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Bee Hak Hong
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Yaron R Silberberg
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea.
| |
Collapse
|
2
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
3
|
Cheng J, Zhang Y, Tian Y, Cao L, Liu X, Miao S, Zhao L, Ye Q, Zhou Y, Tan WS. Development of a novel tyrosine-based selection system for generation of recombinant Chinese hamster ovary cells. J Biosci Bioeng 2024; 137:221-229. [PMID: 38220502 DOI: 10.1016/j.jbiosc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanmin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou 310051, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Ruppen I, Verscheure L, Vandenheede I, Ortiz A, de Melo IS, Liebig T, Sandra P, Beydon ME, Sandra K. Characterization of mAb size heterogeneity originating from a cysteine to tyrosine substitution using denaturing and native LC-MS. J Pharm Biomed Anal 2023; 236:115743. [PMID: 37757547 DOI: 10.1016/j.jpba.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Upon assessing the comparability between a biosimilar mAb and its reference product by non-reducing CE-SDS, increased levels of a heavy-heavy-light chain (HHL) variant, present as a low molecular weight (LMW) peak, were observed. RPLC-MS applied at top, middle-up and bottom-up level revealed the existence of Cys-to-Tyr substitutions, predominantly at position HC226 involved in connecting LC and HC, explaining the abundant HHL levels. Antigen binding was not impacted by the presence of this size variant suggesting a non-covalent association of Tyr substituted HHL and LC. The latter complex is not maintained in the denaturing conditions associated with CE-SDS and RPLC-MS. Its existence could, nevertheless, be confirmed by native SEC-MS which preserves non-covalent protein interactions during separation and electrospray ionization. Amino acid analysis furthermore demonstrated a depletion of Cys during the fed-batch process indicating that the observed size/sequence variant is not of genetic but rather of metabolic origin. Native SEC-MS showed that supplementing the cell culture medium with Cys halts misincorporation of Tyr and promotes the formation of the desired mAb structure. To the best of our knowledge, Cys-to-Tyr substitutions preventing interchain disulfide bridge formation have not been described earlier. This observation adds to the impressive structural heterogeneity reported to date for mAbs.
Collapse
Affiliation(s)
- Isabel Ruppen
- mAbxience Research, Manuel Pombo Angulo 28, 28050 Madrid, Spain
| | | | | | - Alexia Ortiz
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | - Timo Liebig
- mAbxience Research, Manuel Pombo Angulo 28, 28050 Madrid, Spain
| | - Pat Sandra
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | - Koen Sandra
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium.
| |
Collapse
|
5
|
Cadang L, Tam CYJ, Moore BN, Fichtl J, Yang F. A Highly Efficient Workflow for Detecting and Identifying Sequence Variants in Therapeutic Proteins with a High Resolution LC-MS/MS Method. Molecules 2023; 28:molecules28083392. [PMID: 37110623 PMCID: PMC10144261 DOI: 10.3390/molecules28083392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Large molecule protein therapeutics have steadily grown and now represent a significant portion of the overall pharmaceutical market. These complex therapies are commonly manufactured using cell culture technology. Sequence variants (SVs) are undesired minor variants that may arise from the cell culture biomanufacturing process that can potentially affect the safety and efficacy of a protein therapeutic. SVs have unintended amino acid substitutions and can come from genetic mutations or translation errors. These SVs can either be detected using genetic screening methods or by mass spectrometry (MS). Recent advances in Next-generation Sequencing (NGS) technology have made genetic testing cheaper, faster, and more convenient compared to time-consuming low-resolution tandem MS and Mascot Error Tolerant Search (ETS)-based workflows which often require ~6 to 8 weeks data turnaround time. However, NGS still cannot detect non-genetic derived SVs while MS analysis can do both. Here, we report a highly efficient Sequence Variant Analysis (SVA) workflow using high-resolution MS and tandem mass spectrometry combined with improved software to greatly reduce the time and resource cost associated with MS SVA workflows. Method development was performed to optimize the high-resolution tandem MS and software score cutoff for both SV identification and quantitation. We discovered that a feature of the Fusion Lumos caused significant relative under-quantitation of low-level peptides and turned it off. A comparison of common Orbitrap platforms showed that similar quantitation values were obtained on a spiked-in sample. With this new workflow, the amount of false positive SVs was decreased by up to 93%, and SVA turnaround time by LC-MS/MS was shortened to 2 weeks, comparable to NGS analysis speed and making LC-MS/MS the top choice for SVA workflow.
Collapse
Affiliation(s)
- Lance Cadang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Chi Yan Janet Tam
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | | | - Juergen Fichtl
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Feng Yang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Doyle K, Tsopanoglou A, Fejér A, Glennon B, del Val IJ. Automated assembly of hybrid dynamic models for CHO cell culture processes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Lin J, Xie M, Liu D, Gao Z, Zhao X, Ma H, Ding S, Li SM, Li S, Liu Y, Zhou F, Hu H, Chen T, Chen H, Xie M, Yang B, Cheng J, Ma M, Nan Y, Ju D. Characterization of light chain c-terminal extension sequence variant in one bispecific antibody. Front Chem 2022; 10:994472. [PMID: 36204149 PMCID: PMC9530627 DOI: 10.3389/fchem.2022.994472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Protein modifications such as post-translational modifications (PTMs) and sequence variants (SVs) occur frequently during protein biosynthesis and have received great attention by biopharma industry and regulatory agencies. In this study, an aberrant peak near light chain (LC) was observed in the non-reduced capillary electrophoresis sodium dodecyl sulfate (nrCE-SDS) electrophoretogram during cell line development of one bispecific antibody (BsAb) product, and the detected mass was about 944 Da higher than LC. The corresponding peak was then enriched by denaturing size-exclusion chromatography (SEC-HPLC) and further characterized by nrCE-SDS and peptide mapping analyses. De novo mass spectra/mass spectra (MS/MS) analysis revealed that the aberrant peak was LC related sequence variant, with the truncated C-terminal sequence “SFNR” (“GEC”deleted) linked with downstream SV40 promotor sequence “EAEAASASELFQ”. The unusual sequence was further confirmed by comparing with the direct synthetic peptide “SFNREAEAASASELFQ”. It was demonstrated by mRNA sequencing of the cell pool that the sequence variant was caused by aberrant splicing at the transcription step. The prepared product containing this extension variant maintained well-folded structure and good functional properties though the LC/Heavy chain (HC) inter-chain disulfide was not formed. Several control strategies to mitigate the risk of this LC related sequence variant were also proposed.
Collapse
Affiliation(s)
- Jun Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Mengyu Xie
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Dan Liu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Zhen Gao
- Genor Biopharma Co., Ltd., Shanghai, China
| | | | - Hongxia Ma
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Sheng Ding
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Shu mei Li
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Song Li
- Genor Biopharma Co., Ltd., Shanghai, China
| | | | - Fang Zhou
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Hao Hu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Tao Chen
- Genor Biopharma Co., Ltd., Shanghai, China
| | - He Chen
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Min Xie
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Bo Yang
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Jun Cheng
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Mingjun Ma
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- *Correspondence: Dianwen Ju,
| |
Collapse
|
8
|
Zhang A, Chen Z, Li M, Qiu H, Lawrence S, Bak H, Li N. A general evidence-based sequence variant control limit for recombinant therapeutic protein development. MAbs 2021; 12:1791399. [PMID: 32744138 PMCID: PMC7531532 DOI: 10.1080/19420862.2020.1791399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence variants (SVs) resulting from unintended amino acid substitutions in recombinant therapeutic proteins have increasingly gained attention from both regulatory agencies and the biopharmaceutical industry given their potential impact on efficacy and safety. With well-optimized production systems, such sequence variants usually exist at very low levels in the final protein products due to the high fidelity of DNA replication and protein biosynthesis process in mammalian expression systems such as Chinese hamster ovary cell lines. However, their levels can be significantly elevated in cases where the selected production cell line has unexpected DNA mutations or the manufacturing process is not fully optimized, for example, if depletion of certain amino acids occurs in the cell culture media in bioreactors. Therefore, it is important to design and implement an effective monitoring and control strategy to prevent or minimize the possible risks of SVs during the early stage of product and process development. However, there is no well-established guidance from the regulatory agencies or consensus across the industry to assess and manage SV risks. A question frequently asked is: What levels of SVs can be considered acceptable during product and process development, but also have no negative effects on drug safety and efficacy in patients? To address this critical question, we have taken a holistic approach and conducted a comprehensive sequence variant analysis. To guide biologic development, a general SV control limit of 0.1% at individual amino acid sites was proposed and properly justified based on extensive literature review, SV benchmark survey of approved therapeutic proteins, and accumulated experience on SV control practice at Regeneron.
Collapse
Affiliation(s)
- Aming Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Zhengwei Chen
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Shawn Lawrence
- Preclinical Manufacturing and Process Development , Tarrytown, New York, USA
| | - Hanne Bak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| |
Collapse
|
9
|
Identification, characterization and control of a sequence variant in monoclonal antibody drug product: a case study. Sci Rep 2021; 11:13233. [PMID: 34168178 PMCID: PMC8225904 DOI: 10.1038/s41598-021-92338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence modifications, that can result in altered physicochemical and or biological properties, is therefore desirable in product manufacturing. Because of their low abundance, and finite resolving power of conventional analytical techniques, they are often overlooked in early drug development. Here, we present a case study where trace amount of a sequence variant is identified in a monoclonal antibody (mAb) based therapeutic protein by LC-MS/MS and the structural and functional features of the SV containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent and inconspicuous nature of the variant in process chromatography. We present the extensive characterization of a sequence variant in protein biopharmaceutical and first report on control of sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method during the purification steps.
Collapse
|
10
|
Scientific Best Practices for Primary Sequence Confirmation and Sequence Variant Analysis in the Development of Therapeutic Proteins. J Pharm Sci 2020; 110:619-626. [PMID: 33212163 DOI: 10.1016/j.xphs.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
In this commentary, we will provide a high-level introduction into LC-MS product characterization methodologies deployed throughout biopharmaceutical development. The ICH guidelines for early and late phase filings is broad so that it is applicable to diverse biotherapeutic products in the clinic and industry pipelines. This commentary is meant to address areas of protein primary sequence confirmation and sequence variant analysis where ambiguity exists in industry on the specific scope of work that is needed to fulfill the general guidance that is given in sections Q5b and Q6b. This commentary highlights the discussion and outcomes of two recent workshops centering on the application of LC-MS to primary structure confirmation and sequence variant analysis (SVA) that were held at the 2018 and 2019 CASSS Practical Applications of Mass Spectrometry in the Biotechnology Industry Symposia in San Francisco, CA and Chicago, IL, respectively. Recommendations from the conferences fall into two distinct but related areas; 1) consolidation of opinions amongst industry stakeholders on the specific definitions of peptide mapping and peptide sequencing for primary structure confirmation and the technologies used for both, as they relate to regulatory expectations and submissions and 2) development of fit-for-purpose strategy to define appropriate assay controls in SVA experiments.
Collapse
|
11
|
Boddapati S, Gilmore J, Boone K, Bushey J, Ross J, Gfeller B, McFee W, Rao R, Corrigan G, Chen A, Clarke H, Valliere-Douglass J, Bhargava S. Evidence for co-translational misincorporation of non-canonical amino acid hydroxyproline in recombinant antibodies produced in Chinese Hamster Ovary (CHO) cell lines. PLoS One 2020; 15:e0241250. [PMID: 33119652 PMCID: PMC7595273 DOI: 10.1371/journal.pone.0241250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023] Open
Abstract
With the advent of highly sensitive technologies such as tandem mass spectrometry and next-generation sequencing, recombinant antibodies are now routinely analyzed for the presence of low-level sequence variants including amino acid misincorporations. During mAb cell culture process development, we found that proline was replaced with the non-canonical amino acid, hydroxyproline, in the protein sequence. We investigated the relationship between proline content in the cell culture media and proline sequence variants and found that the proline concentration was inversely correlated with the amount of sequence variants detected in the protein sequence. Hydroxyproline incorporation has been previously reported in recombinant proteins produced in mammalian expression systems as a post-translational modification. Given the dependency on proline levels, the mechanism was then investigated. To address the possibility of co-translational misincorporation of hydroxyproline, we used tandem mass spectrometry to measure incorporation of stable-isotope labelled hydroxyproline added to the feed of a production bioreactor. We discovered co-translational misincorporation of labelled hydroxyproline in the recombinant antibody. These findings are significant, since they underscore the need to track non-canonical amino acid incorporation as a co-translational event in CHO cells. Understanding the mechanism of hydroxyproline incorporation is crucial in developing an appropriate control strategy during biologics production.
Collapse
Affiliation(s)
- Shanta Boddapati
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
- * E-mail:
| | - Jason Gilmore
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Kyle Boone
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - John Bushey
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Jonathan Ross
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Brian Gfeller
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - William McFee
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Romesh Rao
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Greg Corrigan
- Upstream Manufacturing, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Aaron Chen
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Howard Clarke
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | | | - Swapnil Bhargava
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| |
Collapse
|
12
|
Markert S, Torkler S, Hohmann K, Popp O. Traces matter: Targeted optimization of monoclonal antibody N-glycosylation based on/by implementing automated high-throughput trace element screening. Biotechnol Prog 2020; 36:e3042. [PMID: 32583628 DOI: 10.1002/btpr.3042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/02/2023]
Abstract
The use of high-throughput systems in cell culture process optimization offers various opportunities in biopharmaceutical process development. Here we describe the potential for acceleration and enhancement of product quality optimization and de novo bioprocess design regarding monoclonal antibody N-glycosylation by using an iterative statistical Design of Experiments (DoE) strategy based on our automated microtiter plate-based system for suspension cell culture. In our example, the combination of an initial screening of trace metal building blocks with a comprehensive DoE-based screening of 13 different trace elemental ions at three concentration levels in one run revealed most effective levers for N-glycan processing and biomass formation. Obtained results served to evaluate optimal concentration ranges and the right supplementation timing of relevant trace elements at shake flask and 2 L bioreactor scale. This setup identified manganese, copper, zinc, and iron as major factors. Manganese and copper acted as inverse key players in N-glycosylation, showing a positive effect of manganese and a negative effect of copper on glycan maturation in a zinc-dependent manner. Zinc and iron similarly improved cell growth and biomass formation. These findings allowed determining optimal concentration ranges for all four trace elements to establish control on desired product quality attributes regarding premature afucosylated and mature galactosylated glycan species. Our results demonstrates the power of combining robotics with DoE screening to enhance product quality optimization and to improve process understanding, thus, enabling targeted product quality control.
Collapse
Affiliation(s)
- Sven Markert
- Pharmaceutical Biotech Production and Development, Roche Diagnostics GmbH, Pharmaceutical Biotech Production and Development, Penzberg, Germany
| | - Stephanie Torkler
- Cell Culture Research, Roche Diagnostics GmbH, Cell Culture Research, Pharma Research and Early Development, Roche Innovation Center Munich, pRED, LMR, Penzberg, Germany
| | - Katharina Hohmann
- Cell Culture Research, Roche Diagnostics GmbH, Cell Culture Research, Pharma Research and Early Development, Roche Innovation Center Munich, pRED, LMR, Penzberg, Germany
| | - Oliver Popp
- Cell Culture Research, Roche Diagnostics GmbH, Cell Culture Research, Pharma Research and Early Development, Roche Innovation Center Munich, pRED, LMR, Penzberg, Germany
| |
Collapse
|
13
|
Zhang W, Liu X, Tang H, Zhang X, Zhou Y, Fan L, Wang H, Tan WS, Zhao L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol 2020; 104:6953-6966. [PMID: 32577803 DOI: 10.1007/s00253-020-10744-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures. KEY POINTS: • Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell. • This study revealed the bottleneck of decreased qmAbupon the deficiency of tyrosine. • The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.
Collapse
Affiliation(s)
- Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xuping Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Yanan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Hangzhou, 311404, Zhejiang, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China.
| |
Collapse
|
14
|
The DNA methylation landscape in cancer. Essays Biochem 2020; 63:797-811. [PMID: 31845735 PMCID: PMC6923322 DOI: 10.1042/ebc20190037] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
As one of the most abundant and well-studied epigenetic modifications, DNA methylation plays an essential role in normal development and cellular biology. Global alterations to the DNA methylation landscape contribute to alterations in the transcriptome and deregulation of cellular pathways. Indeed, improved methods to study DNA methylation patterning and dynamics at base pair resolution and across individual DNA molecules on a genome-wide scale has highlighted the scope of change to the DNA methylation landscape in disease states, particularly during tumorigenesis. More recently has been the development of DNA hydroxymethylation profiling techniques, which allows differentiation between 5mC and 5hmC profiles and provides further insights into DNA methylation dynamics and remodeling in tumorigenesis. In this review, we describe the distribution of DNA methylation and DNA hydroxymethylation in different genomic contexts, first in normal cells, and how this is altered in cancer. Finally, we discuss DNA methylation profiling technologies and the most recent advances in single-cell methods, bisulfite-free approaches and ultra-long read sequencing techniques.
Collapse
|
15
|
Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction. Appl Microbiol Biotechnol 2019; 103:8315-8326. [PMID: 31418052 DOI: 10.1007/s00253-019-10048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
The cell culture medium is an intricate mixture of components which has a tremendous effect on cell growth and recombinant protein production. Regular cell culture medium includes various components, and the decision about which component should be included in the formulation and its optimum amount is an underlying issue in biotechnology industries. Applying conventional techniques to design an optimal medium for the production of a recombinant protein requires meticulous and immense research. Moreover, since the medium formulation for the production of one protein could not be the best choice for another protein, hence, the most suitable media should be determined for each recombinant cell line. Accordingly, medium formulation becomes a laborious, time-consuming, and costly process in biomanufacturing of recombinant protein, and finding alternative strategies for medium development seems to be crucial. In silico modeling is an attractive concept to be adapted for medium formulation due to its high potential to supersede laboratory examinations. By emerging the high-throughput datasets, scientists can disclose the knowledge about the effect of medium components on cell growth and metabolism, and via applying this information through systems biology approach, medium formulation optimization could be accomplished in silico with no need of significant amount of experimentation. This review demonstrates some of the applications of systems biology as a powerful tool for medium development and illustrates the effect of medium optimization with system-level analysis on the production of recombinant proteins in different host cells.
Collapse
|
16
|
Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures. Metab Eng 2019; 54:54-68. [DOI: 10.1016/j.ymben.2019.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/23/2019] [Accepted: 03/02/2019] [Indexed: 12/23/2022]
|
17
|
Tang H, Zhang X, Zhang W, Fan L, Wang H, Tan WS, Zhao L. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl Microbiol Biotechnol 2019; 103:6483-6494. [PMID: 31190239 DOI: 10.1007/s00253-019-09921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
Tyrosine (Tyr), as one of the least soluble amino acids, is essential to monoclonal antibody (mAb) production in recombinant Chinese hamster ovary (rCHO) cell cultures since its roles on maintaining the specific productivity (qmAb) and avoiding Tyr sequence variants. To understand the effects of Tyr on cell performance and its underlying mechanisms, rCHO cell-producing mAbs were cultivated at various cumulative Tyr addition concentrations (0.6 to 5.5 mM) in fed-batch processes. Low Tyr concentrations gave a much lower peak viable cell density (VCD) during the growth phase and also induced rapid cell death and pH decrease during the production phase, resulting in a low efficient fed-batch process. Autophagy was initiated following the inhibition of mTOR under the Tyr starvation condition. Excessive autophagy subsequently induced autophagic cell death, which was found as the major type of cell death in this study. Additionally, the results obtained here demonstrate that the decrease in culture pH under the Tyr starvation condition was associated with the autophagy and such pH drop might be attributed to the lysosome acidification and cell lysis.
Collapse
Affiliation(s)
- Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xintao Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Zhejiang, 311404, Hangzhou, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
18
|
Beck A, Liu H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies (Basel) 2019; 8:antib8010018. [PMID: 31544824 PMCID: PMC6640695 DOI: 10.3390/antib8010018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) intended for therapeutic usage are required to be thoroughly characterized, which has promoted an extensive effort towards the understanding of the structures and heterogeneity of this major class of molecules. Batch consistency and comparability are highly relevant to the successful pharmaceutical development of mAbs and related products. Small structural modifications that contribute to molecule variants (or proteoforms) differing in size, charge or hydrophobicity have been identified. These modifications may impact (or not) the stability, pharmacokinetics, and efficacy of mAbs. The presence of the same type of modifications as found in endogenous immunoglobulin G (IgG) can substantially lower the safety risks of mAbs. The knowledge of modifications is also critical to the ranking of critical quality attributes (CQAs) of the drug and define the Quality Target Product Profile (QTPP). This review provides a summary of the current understanding of post-translational and physico-chemical modifications identified in recombinant mAbs and endogenous IgGs at physiological conditions.
Collapse
Affiliation(s)
- Alain Beck
- Biologics CMC and developability, IRPF, Center d'immunologie Pierre Fabre, St Julien-en-Genevois CEDEX, 74160 Saint-Julien en Genevois, France.
| | - Hongcheng Liu
- Anokion, 50 Hampshire Street, Suite 402, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
|
20
|
Wong HE, Huang CJ, Zhang Z. Amino Acid Misincorporation Propensities Revealed through Systematic Amino Acid Starvation. Biochemistry 2018; 57:6767-6779. [DOI: 10.1021/acs.biochem.8b00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- H. Edward Wong
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
21
|
Rehder DS, Wisniewski CJ, Liu D, Ren D, Farnan D, Schenauer MR. Expression vector-derived heterogeneity in a therapeutic IgG4 monoclonal antibody. MAbs 2018; 11:145-152. [PMID: 30365358 DOI: 10.1080/19420862.2018.1540254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While characterizing a therapeutic IgG4 monoclonal antibody (mAb), we observed a variant with a mass 1177 Da larger than the predominant mAb form that could not be ascribed to previously described modifications. Through successive rounds of experimentation, we localized the mass addition to the C-terminus of the heavy chain (HC). During this process we observed that when the mAb was broken down into separate domains, the Fc and the 1177 Da-modified Fc could be chromatographically separated. Separation allowed collection of native and modified Fc fractions for LC/MS peptide mapping. A unique peptide present in the modified fraction was de novo sequenced and demonstrated to be a modified form of the HC C-terminus lacking two native residues (GK) and gaining twelve additional non-native residues (EAEAASASELFQ). Aware of other mAb variants with genetic origins, we sought to understand whether this modification too had a genetic basis. In silico translation of the expression vector encoding the mAb demonstrated that a normally non-coding section of nucleotides in the + 1 reading frame relative to the HC C-terminal coding region could have led to a transcript with the non-native C-terminal extension. Two potential mechanisms for how this nucleotide sequence might have fused to the native HC coding region and led to expression of the extension product are presented.
Collapse
Affiliation(s)
- Douglas S Rehder
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Chris J Wisniewski
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Denfeng Liu
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Diya Ren
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Dell Farnan
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | | |
Collapse
|
22
|
Lin TJ, Beal KM, Brown PW, DeGruttola HS, Ly M, Wang W, Chu CH, Dufield RL, Casperson GF, Carroll JA, Friese OV, Figueroa B, Marzilli LA, Anderson K, Rouse JC. Evolution of a comprehensive, orthogonal approach to sequence variant analysis for biotherapeutics. MAbs 2018; 11:1-12. [PMID: 30303443 PMCID: PMC6343769 DOI: 10.1080/19420862.2018.1531965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Amino acid sequence variation in protein therapeutics requires close monitoring during cell line and cell culture process development. A cross-functional team of Pfizer colleagues from the Analytical and Bioprocess Development departments worked closely together for over 6 years to formulate and communicate a practical, reliable sequence variant (SV) testing strategy with state-of-the-art techniques that did not necessitate more resources or lengthen project timelines. The final Pfizer SV screening strategy relies on next-generation sequencing (NGS) and amino acid analysis (AAA) as frontline techniques to identify mammalian cell clones with genetic mutations and recognize cell culture process media/feed conditions that induce misincorporations, respectively. Mass spectrometry (MS)-based techniques had previously been used to monitor secreted therapeutic products for SVs, but we found NGS and AAA to be equally informative, faster, less cumbersome screening approaches. MS resources could then be used for other purposes, such as the in-depth characterization of product quality in the final stages of commercial-ready cell line and culture process development. Once an industry-wide challenge, sequence variation is now routinely monitored and controlled at Pfizer (and other biopharmaceutical companies) through increased awareness, dedicated cross-line efforts, smart comprehensive strategies, and advances in instrumentation/software, resulting in even higher product quality standards for biopharmaceutical products.
Collapse
Affiliation(s)
- T Jennifer Lin
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Kathryn M Beal
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Paul W Brown
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | | | - Mellisa Ly
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Wenge Wang
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Chia H Chu
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Robert L Dufield
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Gerald F Casperson
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - James A Carroll
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Olga V Friese
- b Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Chesterfield , MO , USA
| | - Bruno Figueroa
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Lisa A Marzilli
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Karin Anderson
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| | - Jason C Rouse
- a Biotherapeutics Pharmaceutical Sciences , Pfizer, Inc , Andover , MA , USA
| |
Collapse
|
23
|
Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies. Biotechnol Prog 2018; 34:1407-1426. [DOI: 10.1002/btpr.2706] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Frank V. Ritacco
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Yongqi Wu
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Anurag Khetan
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| |
Collapse
|
24
|
Qian Y, Chen Z, Huang X, Wang X, Xu X, Kirov S, Ludwig R, Qian NX, Ravi K, Tao L, Borys MC, Li ZJ. Early identification of unusually clustered mutations and root causes in therapeutic antibody development. Biotechnol Bioeng 2018; 115:2377-2382. [PMID: 29777592 DOI: 10.1002/bit.26728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/29/2018] [Accepted: 05/17/2018] [Indexed: 11/08/2022]
Abstract
This study reports findings of an unusual cluster of mutations spanning 22 bp (base pairs) in a monoclonal antibody expression vector. It was identified by two orthogonal methods: mass spectrometry on expressed protein and next-generation sequencing (NGS) on the plasmid DNA. While the initial NGS analysis confirmed the designed sequence modification, intact mass analysis detected an additional mass of the antibody molecule expressed in CHO cells. The extra mass was eventually found to be associated with unmatched nucleotides in a distal region by checking full-length sequence alignment plots. Interestingly, the complementary sequence of the mutated sequence was a reverse sequence of the original sequence and flanked by two 10-bp reverse-complementary sequences, leading to an undesirable DNA recombination. The finding highlights the necessity of rigorous examination of expression vector design and early monitoring of molecule integrity at both DNA and protein levels to prevent clones from having sequence variants during cell line development.
Collapse
Affiliation(s)
- Yueming Qian
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Zhiqiang Chen
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Xin Huang
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Xuning Wang
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Xuankuo Xu
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Stefan Kirov
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Richard Ludwig
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Nan-Xin Qian
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Kandasamy Ravi
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Li Tao
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Michael C Borys
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Zheng Jian Li
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| |
Collapse
|
25
|
Hu D, Zhao L, Wang J, Fan L, Liu X, Wang H, Tan WS. Physiological responses of Chinese hamster ovary cells to a productivity-enhancing yeast extract. J Biosci Bioeng 2018; 126:636-643. [PMID: 29853300 DOI: 10.1016/j.jbiosc.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 12/23/2022]
Abstract
Hydrolysates play important roles in enhancing the productivity of recombinant proteins in mammalian cell cultures. Lacking of detailed understanding of the mechanisms, hydrolysate is commonly regarded as an unstable factor which should be used with cautions. A yeast extract (YE) was approved to improve the Fc-fusion protein productivity in a recombinant Chinese hamster ovary (CHO) cell line. To elucidate the responses of cells to hydrolysates, we further elaborate their physiological changes during the processes in the presence and absence of YE. Firstly, cell sizes and the cellular components including dry cell weight, cellular fatty acid, and total cellular protein were increased in the presence of YE. Then, by comparing the extracellular and intracellular concentrations of the main metabolites and their consumption rates, we excluded the possibility of nutrient depletion in the absence of YE and observed a distinct improvement on the net consumption rates of metabolites in the presence of YE. Furthermore, the increase on the contents of intracellular nucleotides illustrated an abundance of the nucleic acid precursors and energy charge for recombinant protein synthesis in the presence of YE. In conclusion, this study systematically elucidated YE enhanced cell mass and capacity, activated substrate and energy metabolism of cells in addition to a boost in product synthesis process. The findings provide valuable information for process optimization and cell engineering.
Collapse
Affiliation(s)
- Dongdong Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co. Ltd., Fuyang, Hangzhou, Zhejiang 311404, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
26
|
Park SY, Reimonn TM, Agarabi CD, Brorson KA, Yoon S. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations. Biotechnol Prog 2018; 34:793-805. [DOI: 10.1002/btpr.2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Seo-Young Park
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| | - Thomas M. Reimonn
- Program in Bioinformatics and Integrative Biology; University of Massachusetts Medical School; Worcester MA, United States
| | - Cyrus D. Agarabi
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Kurt A. Brorson
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Seongkyu Yoon
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| |
Collapse
|
27
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
28
|
Griaud F, Winter A, Denefeld B, Lang M, Hensinger H, Straube F, Sackewitz M, Berg M. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry. MAbs 2017; 9:1337-1348. [PMID: 28846476 PMCID: PMC5680803 DOI: 10.1080/19420862.2017.1366395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6–9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.
Collapse
Affiliation(s)
- François Griaud
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Andrej Winter
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Blandine Denefeld
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Manuel Lang
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Héloïse Hensinger
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Frank Straube
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Mirko Sackewitz
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Matthias Berg
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| |
Collapse
|
29
|
Lin TJ, Beal KM, DeGruttola HS, Brennan S, Marzilli LA, Anderson K. Utilization of sequence variants as biomarkers to analyze population dynamics in cloned cell lines. Biotechnol Bioeng 2017; 114:1744-1752. [DOI: 10.1002/bit.26298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tzihsuan Jennifer Lin
- Cell Line Development, Bioprocess R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer Inc; Andover 01810 Massachusetts
- Mass Spectrometry and Biophysical Characterization, Analytical R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc; Andover Massachusetts
| | - Kathryn M. Beal
- Cell Line Development, Bioprocess R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer Inc; Andover 01810 Massachusetts
| | | | - Steven Brennan
- Cell Line Development, Bioprocess R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer Inc; Andover 01810 Massachusetts
| | - Lisa A. Marzilli
- Mass Spectrometry and Biophysical Characterization, Analytical R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc; Andover Massachusetts
| | - Karin Anderson
- Cell Line Development, Bioprocess R&D; Biotherapeutics Pharmaceutical Sciences, Pfizer Inc; Andover 01810 Massachusetts
| |
Collapse
|
30
|
Wang X, Pan T. Stress Response and Adaptation Mediated by Amino Acid Misincorporation during Protein Synthesis. Adv Nutr 2016; 7:773S-9S. [PMID: 27422514 PMCID: PMC4942860 DOI: 10.3945/an.115.010991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Translation of genetic information into functional proteins is critical for all cellular life. Accurate protein synthesis relies on proper aminoacylation of transfer RNAs (tRNAs) and decoding of mRNAs by the ribosome with the use of aminoacyl-tRNAs. Mistranslation can lead to pathologic consequences. All cells contain elaborate quality control mechanisms in translation, although translational fidelity may be regulated by various factors such as nutrient limitation or reactive oxygen species. Translation fidelity is maintained via the accuracy of tRNA aminoacylation by the aminoacyl-tRNA synthetases and matching of the mRNA codon with the tRNA anticodon by the ribosome. Stringent substrate discrimination and proofreading are critical in aminoacylating tRNAs with their cognate amino acid to maintain high accuracy of translation. Although the composition of the cellular proteome generally adheres to the genetic code, accumulating evidence indicates that cells can also deliberately mistranslate; they synthesize mutant proteins that deviate from the genetic code in response to stress or environmental changes. Mistranslation with tRNA charged with noncognate amino acids can expand the proteome to enhance stress response and help adaptation. Here, we review current knowledge on mistranslation through tRNA misacylation and describe advances in our understanding of translational control in the regulation of stress response and human diseases.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
31
|
Purdie JL, Kowle RL, Langland AL, Patel CN, Ouyang A, Olson DJ. Cell culture media impact on drug product solution stability. Biotechnol Prog 2016; 32:998-1008. [DOI: 10.1002/btpr.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Jennifer L. Purdie
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Ronald L. Kowle
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Amie L. Langland
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Chetan N. Patel
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Anli Ouyang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Donald J. Olson
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| |
Collapse
|
32
|
Zalai D, Hevér H, Lovász K, Molnár D, Wechselberger P, Hofer A, Párta L, Putics Á, Herwig C. A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells. Appl Microbiol Biotechnol 2016; 100:7011-24. [PMID: 26910040 PMCID: PMC4947490 DOI: 10.1007/s00253-016-7380-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022]
Abstract
The integration of physiological knowledge into process control strategies is a cornerstone for the improvement of biopharmaceutical cell culture technologies. The present contribution investigates the applicability of specific productivity as a physiological control parameter in a cell culture process producing a monoclonal antibody (mAb) in CHO cells. In order to characterize cell physiology, the on-line oxygen uptake rate (OUR) was monitored and the time-resolved specific productivity was calculated as physiological parameters. This characterization enabled to identify the tight link between the deprivation of tyrosine and the decrease in cell respiration and in specific productivity. Subsequently, this link was used to control specific productivity by applying different feeding profiles. The maintenance of specific productivity at various levels enabled to identify a correlation between the rate of product formation and the relative abundance of high-mannose glycoforms. An increase in high mannose content was assumed to be the result of high specific productivity. Furthermore, the high mannose content as a function of cultivation pH and specific productivity was investigated in a design of experiment approach. This study demonstrated how physiological parameters could be used to understand interactions between process parameters, physiological parameters, and product quality attributes.
Collapse
Affiliation(s)
- Dénes Zalai
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary.,Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Helga Hevér
- Spectroscopic Research Department, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Krisztina Lovász
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Dóra Molnár
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Patrick Wechselberger
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.,CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
| | - Alexandra Hofer
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - László Párta
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Ákos Putics
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria. .,CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria.
| |
Collapse
|
33
|
Lian Z, Wu Q, Wang T. Identification and characterization of a -1 reading frameshift in the heavy chain constant region of an IgG1 recombinant monoclonal antibody produced in CHO cells. MAbs 2015; 8:358-70. [PMID: 26652198 PMCID: PMC4966638 DOI: 10.1080/19420862.2015.1116658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 01/16/2023] Open
Abstract
Frameshifts lead to complete alteration of the intended amino acid sequences, and therefore may affect the biological activities of protein therapeutics and pose potential immunogenicity risks. We report here the identification and characterization of a novel -1 frameshift variant in a recombinant IgG1 therapeutic monoclonal antibody (mAb) produced in Chinese hamster ovary cells during the cell line selection studies. The variant was initially observed as an atypical post-monomer fragment peak in size exclusion chromatography. Characterization of the fragment peak using intact and reduced liquid chromatography-mass spectrometry (LC-MS) analyses determined that the fragment consisted of a normal light chain disulfide-linked to an aberrant 26 kDa fragment that could not be assigned to any HC fragment even after considering common modifications. Further analysis using LC-MS/MS peptide mapping revealed that the aberrant fragment contained the expected HC amino acid sequence (1-232) followed by a 20-mer novel sequence corresponding to expression of heavy chain DNA sequence in the -1 reading frame. Examination of the DNA sequence around the frameshift initiation site revealed that a mononucleotide repeat GGGGGG located in the IgG1 HC constant region was most likely the structural root cause of the frameshift. Rapid identification of the frameshift allowed us to avoid use of a problematic cell line containing the frameshift as the production cell line. The frameshift reported here may be observed in other mAb products and the hypothesis-driven analytical approaches employed here may be valuable for rapid identification and characterization of frameshift variants in other recombinant proteins.
Collapse
Affiliation(s)
- Zhirui Lian
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Qindong Wu
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Tongtong Wang
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
34
|
|
35
|
Scott RA, Rogers R, Balland A, Brady LJ. Rapid identification of an antibody DNA construct rearrangement sequence variant by mass spectrometry. MAbs 2015; 6:1453-63. [PMID: 25484040 DOI: 10.4161/mabs.36222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During cell line development for an IgG1 antibody candidate (mAb1), a C-terminal extension was identified in 2 product candidate clones expressed in CHO-K1 cell line. The extension was initially observed as the presence of anomalous new peaks in these clones after analysis by cation exchange chromatography (CEX-HPLC) and reduced capillary electrophoresis (rCE-SDS). Reduced mass analysis of these CHO-K1 clones revealed that a larger than expected mass was present on a sub-population of the heavy chain species, which could not be explained by any known chemical or post-translational modifications. It was suspected that this additional mass on the heavy chain was due to the presence of an additional amino acid sequence. To identify the suspected additional sequence, de novo sequencing in combination with proteomic searching was performed against translated DNA vectors for the heavy chain and light chain. Peptides unique to the clones containing the extension were identified matching short sequences (corresponding to 9 and 35 amino acids, respectively) from 2 non-coding sections of the light chain vector construct. After investigation, this extension was observed to be due to the re-arrangement of the DNA construct, with the addition of amino acids derived from the light chain vector non-translated sequence to the C-terminus of the heavy chain. This observation showed the power of proteomic mass spectrometric techniques to identify an unexpected antibody sequence variant using de novo sequencing combined with database searching, and allowed for rapid identification of the root cause for new peaks in the cation exchange and rCE-SDS assays.
Collapse
Key Words
- C-terminal extension
- CAN, acetonitrile
- CEX, cation exchange
- CHO, Chinese hamster ovary
- DNA, deoxyribonucleic acid
- DTT, dithiothreitol
- Da, Dalton
- FDR, false discovery rate
- HC, heavy chain
- HPLC, high performance liquid chromatography
- LC, light chain
- MS, mass spectrometer
- MS/MS, tandem mass spectrometry
- MW, molecular weight
- NCBI, National Center for Biotechnology Information
- NCG, non-concensus glycosylation
- PSM, peptide-spectrum matches
- RP-UPLC, reversed phase ultra-high pressure liquid chromatography
- SEC, size exclusion chromatography
- TFA, trifluoracetic acid
- TOF, time of flight mass spectrometer
- UV, ultraviolet
- aa, amino acids
- mass spectrometry
- ppm, parts per million
- rCE-SDS, reduced capillary electrophoresis-sodium dodecyl sulfate
- sequence variant
Collapse
|
36
|
Zhang S, Bartkowiak L, Nabiswa B, Mishra P, Fann J, Ouellette D, Correia I, Regier D, Liu J. Identifying low-level sequence variants via next generation sequencing to aid stable CHO cell line screening. Biotechnol Prog 2015; 31:1077-85. [DOI: 10.1002/btpr.2119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng Zhang
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Lisa Bartkowiak
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Bernard Nabiswa
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Pratibha Mishra
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - John Fann
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - David Ouellette
- Process Sciences Analytics, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Ivan Correia
- Process Sciences Analytics, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Dean Regier
- Protein Science, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Junjian Liu
- Protein Science, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| |
Collapse
|
37
|
Veeravalli K, Laird MW. Toward an era of utilizing methionine overproducing hosts for recombinant protein production in Escherichia coli. Bioengineered 2015; 6:132-5. [PMID: 25801611 DOI: 10.1080/21655979.2015.1030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amino acid sequence variants, especially variants containing non-canonical amino acids such as norleucine and norvaline, are a concern during therapeutic protein production in microbial systems. Substitution of methionine residues with norleucine in recombinant proteins produced in Escherichia coli is well known. Continuous feeding of amino acids such as methionine is commonly used in E. coli fermentation processes to control incorporation of norleucine in the recombinant protein. There are several disadvantages associated with continuous feeding during a fermentation process. For example, a continuous feed increases the operational complexity and cost of a manufacturing process and results in dilution of culture medium which could result in lower cell densities and product yields. To overcome the limitations of existing approaches to prevent norleucine incorporation during E. coli fermentations, a new approach using an engineered host was developed that overproduces methionine in the cell to prevent norleucine incorporation without negatively impacting fermentation process performance and product yields. In this commentary, the results on using methionine overproducing hosts for recombinant protein production in E. coli and some "watch outs" when using these hosts for recombinant protein production are discussed.
Collapse
Affiliation(s)
- Karthik Veeravalli
- a Late Stage Cell Culture , Genentech , Inc.; South San Francisco, CA USA
| | | |
Collapse
|
38
|
An optimized approach to the rapid assessment and detection of sequence variants in recombinant protein products. Anal Bioanal Chem 2015; 407:3851-60. [PMID: 25795027 DOI: 10.1007/s00216-015-8618-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
The development of sensitive techniques to detect sequence variants (SVs), which naturally arise due to DNA mutations and errors in transcription/translation (amino acid misincorporations), has resulted in increased attention to their potential presence in protein-based biologic drugs in recent years. Often, these SVs may be below 0.1%, adding challenges for consistent and accurate detection. Furthermore, the presence of false-positive (FP) signals, a hallmark of SV analysis, requires time-consuming analyst inspection of the data to sort true from erroneous signal. Consequently, gaps in information about the prevalence, type, and impact of SVs in marketed and in-development products are significant. Here, we report the results of a simple, straightforward, and sensitive approach to sequence variant analysis. This strategy employs mixing of two samples of an antibody or protein with the same amino acid sequence in a dilution series followed by subsequent sequence variant analysis. Using automated peptide map analysis software, a quantitative assessment of the levels of SVs in each sample can be made based on the signal derived from the mass spectrometric data. We used this strategy to rapidly detect differences in sequence variants in a monoclonal antibody after a change in process scale, and in a comparison of three mAbs as part of a biosimilar program. This approach is powerful, as true signals can be readily distinguished from FP signal, even at a level well below 0.1%, by using a simple linear regression analysis across the data set with none to minimal inspection of the MS/MS data. Additionally, the data produced from these studies can also be used to make a quantitative assessment of relative levels of product quality attributes. The information provided here extends the published knowledge about SVs and provides context for the discussion around the potential impact of these SVs on product heterogeneity and immunogenicity.
Collapse
|
39
|
Popp O, Larraillet V, Kettenberger H, Gorr IH, Hilger M, Lipsmeier F, Zeck A, Beaucamp N. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells. Biotechnol Bioeng 2015; 112:1187-99. [PMID: 25545851 DOI: 10.1002/bit.25528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023]
Abstract
In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.
Collapse
Affiliation(s)
- Oliver Popp
- Pharma Research and Early Development, Cell Culture Research, Roche Innovation Center Penzberg, Nonnenwald 2, 82377 Penzberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Borisov OV, Alvarez M, Carroll JA, Brown PW. Sequence Variants and Sequence Variant Analysis in Biotherapeutic Proteins. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oleg V. Borisov
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Melissa Alvarez
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - James A. Carroll
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Paul W. Brown
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| |
Collapse
|
41
|
|
42
|
Liu H, Ponniah G, Zhang HM, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 2014; 6:1145-54. [PMID: 25517300 DOI: 10.4161/mabs.29883] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules.
Collapse
Affiliation(s)
- Hongcheng Liu
- a Protein Characterization; Alexion Pharmaceuticals Inc .; Cheshire , CT USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kyriakopoulos S, Kontoravdi C. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Biotechnol Bioeng 2014; 111:2466-76. [PMID: 24975682 DOI: 10.1002/bit.25319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/20/2023]
Abstract
A methodology to calculate the required amount of amino acids (a.a.) and glucose in feeds for animal cell culture from monitoring their levels in batch experiments is presented herein. Experiments with the designed feeds on an antibody-producing Chinese hamster ovary cell line resulted in a 3-fold increase in titer compared to batch culture. Adding 40% more nutrients to the same feed further increases the yield to 3.5 higher than in batch culture. Our results show that above a certain threshold there is no linear correlation between nutrient addition and the integral of viable cell concentration. In addition, although high ammonia levels hinder cell growth, they do not appear to affect specific antibody productivity, while we hypothesize that high extracellular lactate concentration is the cause for the metabolic shift towards lactate consumption for the cell line used. Overall, the performance of the designed feeds is comparable to that of a commercial feed that was tested in parallel. Expanding this approach to more nutrients, as well as changing the ratio of certain amino acids as informed by flux balance analysis, could achieve even higher yields.
Collapse
Affiliation(s)
- Sarantos Kyriakopoulos
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
44
|
Moghal A, Mohler K, Ibba M. Mistranslation of the genetic code. FEBS Lett 2014; 588:4305-10. [PMID: 25220850 DOI: 10.1016/j.febslet.2014.08.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/02/2023]
Abstract
During mRNA decoding at the ribosome, deviations from stringent codon identity, or "mistranslation," are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view "errors" in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non-protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.
Collapse
Affiliation(s)
- Adil Moghal
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210-1292, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | - Kyle Mohler
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA
| | - Michael Ibba
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210-1292, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
45
|
Zimmer A, Mueller R, Wehsling M, Schnellbaecher A, von Hagen J. Improvement and simplification of fed-batch bioprocesses with a highly soluble phosphotyrosine sodium salt. J Biotechnol 2014; 186:110-8. [PMID: 25014403 DOI: 10.1016/j.jbiotec.2014.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/15/2023]
Abstract
Fed-batch culture bioprocesses are currently used predominantly for the production of recombinant proteins, especially monoclonal antibodies. In these cultures, concentrated feeds are added during cultivation to prevent nutrient depletion, thus extending the cellular growth phase and increasing product concentrations. One limitation in these bioprocesses arises from the low solubility or stability of some compounds at high concentrations, in particular amino acids. This study describes the synthesis and evaluation of a phosphotyrosine disodium salt as a tyrosine source in fed-batch processes. This molecule is highly soluble in concentrated feeds at neutral pH. Mechanistic studies demonstrated that the molecule is cleaved in the cell culture supernatant after processing by released phosphatases, leading to phosphate and free L-tyrosine which can be taken up by the cells. No intact phosphotyrosine was detected intracellularly or incorporated into the sequence of the monoclonal antibody. The use of this new molecule allows the simplification of fed-batch processes in large scale manufacturing via the implementation of neutral pH, highly concentrated feeds.
Collapse
Affiliation(s)
- Aline Zimmer
- Merck Millipore, Pharm Chemical Solutions, Upstream Cell culture media R&D, Germany.
| | - Ronja Mueller
- Merck Millipore, Pharm Chemical Solutions, Upstream Cell culture media R&D, Germany
| | - Maria Wehsling
- Merck Millipore, Pharm Chemical Solutions, Upstream Cell culture media R&D, Germany
| | - Alisa Schnellbaecher
- Merck Millipore, Pharm Chemical Solutions, Upstream Cell culture media R&D, Germany
| | - Joerg von Hagen
- Merck Millipore, Pharm Chemical Solutions, Upstream Cell culture media R&D, Germany
| |
Collapse
|
46
|
Raina M, Moghal A, Kano A, Jerums M, Schnier PD, Luo S, Deshpande R, Bondarenko PV, Lin H, Ibba M. Reduced amino acid specificity of mammalian tyrosyl-tRNA synthetase is associated with elevated mistranslation of Tyr codons. J Biol Chem 2014; 289:17780-90. [PMID: 24828507 DOI: 10.1074/jbc.m114.564609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNA(Tyr) with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control.
Collapse
Affiliation(s)
- Medha Raina
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| | - Adil Moghal
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| | - Amanda Kano
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Mathew Jerums
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Paul D Schnier
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Shun Luo
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | | | | | - Henry Lin
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Michael Ibba
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| |
Collapse
|
47
|
Read EK, Bradley SA, Smitka TA, Agarabi CD, Lute SC, Brorson KA. Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog 2013; 29:745-53. [PMID: 23606649 DOI: 10.1002/btpr.1728] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Indexed: 01/23/2023]
Abstract
Fermentanomics, or a global understanding of a culture state on the molecular level empowered by advanced techniques like NMR, was employed to show that a model hybridoma culture supplied with glutamine and glucose depletes aspartate, cysteine, methionine, tryptophan, and tyrosine during antibody production. Supplementation with these amino acids prevents depletion and improves culture performance. Furthermore, no significant changes were observed in the distribution of glycans attached to the IgG3 in cultures supplemented with specific amino acids, arguing that this strategy can be implemented without fear of impact on important product quality attributes. In summary, a targeted strategy of quantifying media components and designing a supplementation strategy can improve bioprocess cell cultures when enpowered by fermentanomics tools.
Collapse
Affiliation(s)
- Erik K Read
- Div. of Monoclonal Antibodies, CDER, FDA, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|