1
|
Miri H, Rahimzadeh P, Hashemi M, Nabavi N, Aref AR, Daneshi S, Razzaghi A, Abedi M, Tahmasebi S, Farahani N, Taheriazam A. Harnessing immunotherapy for hepatocellular carcinoma: Principles and emerging promises. Pathol Res Pract 2025; 269:155928. [PMID: 40184729 DOI: 10.1016/j.prp.2025.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HCC is considered as one of the leadin causes of death worldwide, with the ability of resistance towards therapeutics. Immunotherapy, particularly ICIs, have provided siginficant insights towards harnessing the immune system. The present review introduces the concepts and possibilities of immunotherapy for HCC treatment, emphasizing its underlying mechanisms and capacity to enhance patient results, focusing on both pre-clinical and clinical insights. The functions of TME and immune evasion mechanisms typical of HCC would be evaluated along with how contemporary immunotherapeutic approaches are designed to address these challenges. Furthermore, the clinical application of immunotherapy in HCC is discussed, emphasizing recent trial findings demonstrating the effectiveness and safety of drugs. In addition, the problems caused by immune evasion and resistance would be discussed to increase potential of immunotherapy along with combination therapy.
Collapse
Affiliation(s)
- Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Alireza Razzaghi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Tang Y, Hu H, Chen S, Hao B, Xu X, Zhu H, Zhan W, Zhang T, Hu H, Chen G. Multi-omics analysis revealed the novel role of NQO1 in microenvironment, prognosis and immunotherapy of hepatocellular carcinoma. Sci Rep 2025; 15:8591. [PMID: 40074806 PMCID: PMC11903666 DOI: 10.1038/s41598-025-92700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
NAD(P)H dehydrogenase quinone 1 (NQO1) is overexpressed in various cancers and is strongly associated with an immunosuppressive microenvironment and poor prognosis. In this study, we explored the role of NQO1 in the microenvironment, prognosis and immunotherapy of Hepatocellular carcinoma (HCC) using multi-omics analysis and machine learning. The results revealed that NQO1 was significantly overexpressed in HCC cells. NQO1+HCC cells were correlated with poor prognosis and facilitated tumor-associated macrophages (TAMs) polarization to M2 macrophages. We identified core NQO1-related genes (NRGs) and developed the NRGs-related risk-scores in hepatocellular carcinoma (NRSHC). The comprehensive nomogram integrating NRSHC, age, and pathological tumor-node-metastasis (pTNM) Stage achieved an area under the curve (AUC) above 0.7, demonstrating its accuracy in predicting survival outcomes and immunotherapy responses of HCC patients. High-risk patients exhibited worse prognoses but greater sensitivity to immunotherapy. Additionally, a web-based prediction tool was designed to enhance clinical utility. In conclusion, NQO1 may play a critical role in M2 polarization and accelerates HCC progression. The NRSHC model and accompanying tools offer valuable insights for personalized HCC treatment.
Collapse
Affiliation(s)
- Ya Tang
- School of Public Health, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Haihong Hu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyuan Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuefeng Xu
- Department of Function, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Zhu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
| | - Wendi Zhan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China.
- Research Center for Clinical Trial, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Hongjuan Hu
- Department of Public Health Service, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Guodong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of General Surgery, Turpan City People's Hospital, Turpan, 838000, China.
| |
Collapse
|
3
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Hargis M, Danos D, Malinosky HR, Galatas A, McManus S, Byerley A, Efishat MA, Lyons JM, Sullivan K, Moaven O. Disparities in Access to Care in the Multimodal Treatment of Primary Nonmetastatic Liver Cancers and Their Impact on Patient Outcomes. J Surg Oncol 2025. [PMID: 39844616 DOI: 10.1002/jso.28065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Liver cancer incidence and mortality have been shown to differ by race, ethnicity, and geography. This study aims to analyze disparities in the multimodal treatment of liver cancers in Louisiana. METHODS Cases of nonmetastatic liver cancer in Louisiana from 2010 to 2020 were obtained from the Louisiana Tumor Registry. Generalized linear mixed models were used to model the receipt of therapy. RESULTS A total of 2948 patients met inclusion criteria where 30.5% received no therapy. Multivariable models identified patients with increased odds of pursuing no treatment which include those 70 and older, no domestic partner, uninsured, high poverty, and rural residence (p < 0.05). CONCLUSIONS Available therapeutic modalities are underutilized in Louisiana with a considerable number of patients receiving no treatment for liver cancer. Older age, no domestic partner, uninsured, rural residence, and high poverty are risk factors for not receiving treatment. Allocating resources to these patients is an important step in reversing inequities.
Collapse
Affiliation(s)
- McKenzie Hargis
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Denise Danos
- Department of Community Science and Health Policy, Louisiana State University (LSU) Health School of Medicine, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
| | - Hannah R Malinosky
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Aimée Galatas
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Syndey McManus
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Ann Byerley
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
| | - Mohammad Al Efishat
- Department of Surgery, Louisiana State University (LSU) Health, Baton Rouge, Louisiana, USA
- Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | - John M Lyons
- Department of Surgery, Louisiana State University (LSU) Health, Baton Rouge, Louisiana, USA
- Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | - Kevin Sullivan
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, Louisiana, USA
- LSU-LCMC Cancer Center, New Orleans, Louisiana, USA
- Department of Interdisciplinary Oncology, Louisiana State University (LSU) Health School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Dai Z, Chen C, Zhou Z, Zhou M, Xie Z, Liu Z, Liu S, Chen Y, Li J, Liu B, Shen J. Circulating Biomarkers Predict Immunotherapeutic Response in Hepatocellular Carcinoma Using a Machine Learning Method. J Hepatocell Carcinoma 2024; 11:2133-2144. [PMID: 39493265 PMCID: PMC11531708 DOI: 10.2147/jhc.s474593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy is a promising treatment for cancer. However, the response rate to ICI therapy in hepatocellular carcinoma (HCC) patients is low (approximately 30%). Thus, an approach to predict whether a patient will benefit from ICI therapy is required. This study aimed to design a classifier based on circulating indicators to identify patients suitable for ICI therapy. Methods This retrospective study included HCC patients who received immune checkpoint inhibitor therapy between March 2017 and September 2023 at Nanjing Drum Tower Hospital and Jinling Hospital. The levels of the 17 serum biomarkers and baseline patients' characters were assessed to discern meaningful circulating indicators related with survival benefits using random forest. A prognostic model was then constructed to predict survival of patients after treatment. Results A total of 369 patients (mean age 56, median follow-up duration 373 days,) were enrolled in this study. Among the 17 circulating biomarkers, 11 were carefully selected to construct a classifier. Receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.724. Notably, patients classified into the low-risk group exhibited a more positive prognosis (P = 0.0079; HR, 0.43; 95% CI 0.21-0.87). To enhance efficacy, we incorporated 11 clinical features. The extended model incorporated 12 circulating indicators and 5 clinical features. The AUC of the refined classifier improved to 0.752. Patients in the low-risk group demonstrated superior overall survival compared with those in the high-risk group (P = 0.026; HR 0.39; 95% CI 0.11-1.37). Conclusion Circulating biomarkers are useful in predicting therapeutic outcomes and can help in making clinical decisions regarding the use of ICI therapy.
Collapse
Affiliation(s)
- Zhiyan Dai
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chao Chen
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Jinling Hospital, Clinical College of Nanjing Medical University, Nanjing, 21002, People’s Republic of China
| | - Ziyan Zhou
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mingzhen Zhou
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhengyao Xie
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyao Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Siyuan Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yiqiang Chen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jingjing Li
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jie Shen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
7
|
Zhan Z, Cheng J, Liu F, Tao S, Wang L, Lin X, Ye Y. Combination of microparticles vaccine with MSI-1436 exerts a strong immune response for hepatocellular carcinoma. J Leukoc Biol 2024; 116:565-578. [PMID: 39012079 DOI: 10.1093/jleuko/qiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Although tumor cell-derived microparticles (MPs) vaccines have reportedly induced antitumor immune reactions for various cancers, the mechanism by which MPs derived from Hepa1-6 cells are taken up by dendritic cells (DCs) and provide the MPs antigens message to CD8+ T cells to exert their anti-hepatocellular carcinoma (HCC) effects remain unclear. Furthermore, the role of MPs in combination with the small-molecule drug MSI-1436, an inhibitor of protein tyrosine phosphatase 1B (PTP1B), in HCC has not yet been reported. In this study, protein mass spectrometry combined with cytology revealed that MPs are mainly taken up by DCs via the clathrin-mediated endocytosis and phagocytosis pathway and localized mainly in lysosomes. High concentration of tumor necrosis factor-α and interferon-γ was detected in CD8+ T cells stimulated with MPs-loaded DCs. Moreover, MPs combined with MSI-1436 further suppressed the proliferation of HCC cells in C57BL/6 tumor-bearing mice, which was closely correlated with CD4+/CD8+ T cells counts in peripheral blood, spleen, and the tumor microenvironment. Mechanistically, the combination of MPs and MSI-1436 exerts a more powerful anti-HCC effect, which may be related to the further inhibition of the expression of PTP1B. Overall, MPs combined with MSI-1436 exerted stronger antitumor effects than MPs or MSI-1436 alone. Therefore, the combination of MPs and MSI-1436 may be a promising means of treating HCC.
Collapse
Affiliation(s)
- Zhao Zhan
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Jiaqing Cheng
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Fang Liu
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Shili Tao
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Xiandong Lin
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| |
Collapse
|
8
|
Garcia A, Mathew SO. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2446. [PMID: 39001508 PMCID: PMC11240753 DOI: 10.3390/cancers16132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of death among many associated liver diseases. Various conventional strategies have been utilized for treatment, ranging from invasive surgeries and liver transplants to radiation therapy, but fail due to advanced disease progression, late screening/staging, and the various etiologies of HCC. This is especially evident within racially distinct populations, where incidence rates are higher and treatment outcomes are worse for racial/ethnic minorities than their Caucasian counterparts. However, with the rapid development of genetic engineering and molecular and synthetic biology, many novel strategies have presented promising results and have provided potential treatment options. In this review, we summarize past treatments, how they have shaped current treatments, and potential treatment strategies for HCC that may prove more effective in the future.
Collapse
Affiliation(s)
- Alexsis Garcia
- Department of Microbiology, Immunology & Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen O Mathew
- Department of Microbiology, Immunology & Genetics, UNT Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
10
|
Yuan Z, Yang X, Hu Z, Gao Y, Yan P, Zheng F, Guo Y, Wang X, Zhou J. Characterization of a predictive signature for tumor microenvironment and immunotherapy response in hepatocellular carcinoma involving neutrophil extracellular traps. Heliyon 2024; 10:e30827. [PMID: 38765048 PMCID: PMC11097059 DOI: 10.1016/j.heliyon.2024.e30827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Neutrophil extracellular traps (NETs) and other factors play a significant role in impacting the prognosis of patients with Hepatocellular carcinoma (HCC). Nevertheless, further research is warranted to fully elucidate the prognostic implications of NETs in patients with HCC. We employed a hierarchical clustering technique to examine the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data and identified subtypes associated with NETs. Subsequently, we utilized LASSO regression analysis to identify a distinct gene expression pattern within these subtypes. The strength of this signature was further validated through analysis of TCGA-LIHC and International Cancer Genome Consortium-Liver Cancer (ICGC-LIRI-JP) data. Our findings resulted in the construction of a six-gene signature related to NETs, which can predict survival outcomes in HCC patients. To enhance the predictive accuracy of our tool, we developed a nomogram that integrates the NETs signature with clinicopathological characteristics. We validated the significance of NETs in HCC patients using qRT-PCR and immunohistochemistry assays, along with in vitro experiments targeting high-risk genes. Furthermore, our exploration of the immune microenvironment uncovered augmented immune-specific metrics within the low-risk cohort, implying potential disparities in immune-related attributes between the high-risk and low-risk contingents. In summary, the NETs signature we discovered serves as a valuable biomarker and provides guidance for personalized therapy in HCC patients.
Collapse
Affiliation(s)
- Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Penghua Yan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fan Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yangyang Guo
- Department of General Surgery, Ningbo First Hospital, Ningbo, 315000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Whenzhou Medical University, Ruian, 325200, Zhejiang Province, China
| | - Jingzong Zhou
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
11
|
Singh K, Kumar P, Singh AK, Singh N, Singh S, Tiwari KN, Agrawal S, Das R, Singh A, Ram B, Tripathi AK, Mishra SK. In silico and network pharmacology analysis of fucosterol: a potent anticancer bioactive compound against HCC. Med Oncol 2024; 41:130. [PMID: 38676780 DOI: 10.1007/s12032-024-02374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein-protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.
Collapse
Affiliation(s)
- Kajal Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nancy Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, 391760, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shreni Agrawal
- Department of Bioscience and Biotechnology, Banasthali Vidhyapith, Tonk, Rajsthan, India
| | - Richa Das
- Department of Bioscience and Biotechnology, Banasthali Vidhyapith, Tonk, Rajsthan, India
| | - Anuradha Singh
- Department of Biosciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Bhuwal Ram
- Department of Dravyaguna, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Amit Kumar Tripathi
- School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 203201, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
12
|
Guo D, Zhang M, Wei T, Zhang X, Shi X, Tang H, Ding M, Li J, Zhang S, Guo W. NFKBIZ regulates NFκB signaling pathway to mediate tumorigenesis and metastasis of hepatocellular carcinoma by direct interaction with TRIM16. Cell Mol Life Sci 2024; 81:167. [PMID: 38581570 PMCID: PMC10998794 DOI: 10.1007/s00018-024-05182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and mortality rates. NFKBIZ, a member of the nuclear factor kappa B inhibitory family, is closely related to tumor progression. However, the precise role of NFKBIZ in HCC remains unclear. To explore this, we conducted a series of experiments from clinic to cells. Western blot and qPCR revealed a significant downregulation of NFKBIZ in human HCC tissues. Clinical character analysis showed that the patients with lower NFKBIZ expression had poorer prognosis and higher clinical stage. By using CCK-8, wound healing, transwell invasion and migration assay, we discovered that NFKBIZ expression was reversely associated with the proliferation, invasion, and migration ability of HCC cells in vitro. Additionally, the results obtained from xenograft assay and lung metastasis models showed that NFKBIZ overexpression inhibited the growth and metastasis of HCC cells in vivo. Western blot and immunofluorescence assay further revealed that NFKBIZ mediated HCC cell growth and migration by regulating NFκB signaling transduction. Finally, flow cytometry, protein degradation assay and Co-immunoprecipitation indicated that TRIM16 can enhance NFKBIZ ubiquitination by direct interactions at its K48 site, which may thereby alleviate HCC cell apoptosis to induce the insensitivity to sorafenib. In conclusion, our study demonstrated that NFKBIZ regulated HCC tumorigenesis and metastasis by mediating NFκB signal transduction and TRIM16/NFKBIZ/NFκB axis may be the underlying mechanism of sorafenib insensitivity in HCC.
Collapse
Affiliation(s)
- Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingjie Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Huang Z, Wu Z, Zhang L, Yan L, Jiang H, Ai J. The safety and efficacy of TACE combined with HAIC, PD-1 inhibitors, and tyrosine kinase inhibitors for unresectable hepatocellular carcinoma: a retrospective study. Front Oncol 2024; 14:1298122. [PMID: 38318115 PMCID: PMC10838967 DOI: 10.3389/fonc.2024.1298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Objective To assess the effectiveness and safety of transarterial chemoembolization (TACE) in combination with hepatic artery infusion chemotherapy (HAIC)、PD-1 inhibitors, and tyrosine kinase inhibitors(TKI) for unresectable hepatocellular carcinoma (HCC). Methods A retrospective analysis was performed on 158 unresectable HCC patients admitted to the First Affiliated Hospital of Nanchang University between May 2019 and October 2022. The patients were split into two groups based on the type of treatment they received: TACE combined with HAIC,PD-1 and TKI group (THPK) and TACE combined with PD-1 and TKI group (TPK). The response was evaluated using modified solid tumor Efficacy Assessment Criteria (mRECIST). Kaplan-Meier curves were used to analyze the overall survival (OS). OS-influencing factors were identified using the Cox proportional risk regression model. Results Finally, 63 patients who received THPK treatment and 60 patients who had TPK treatment were included. The THPK group had higher DCR (77.78% vs. 55.00%, P=0.007) and ORR (20.63% vs. 13.34%, P=0.282) than the TPK group did. The survival analysis curve also showed that the median OS was substantially longer in the THPK group than in the TPK group (OS: 21 months vs. 14 months, P=0.039). After multivariate Cox regression-corrected analysis, extrahepatic metastases (P=0.002) and methemoglobin >400 (P=0.041) were adverse influences on OS, but the THPK group (relative to the TPK group) was an independent favorable prognostic factor for OS (P=0.027). The results of the subgroup analysis showed that the addition of HAIC therapy to TPK treatment in patients with BCLC stage C, age ≦60 years, ECOG grade 0 and lobular distribution of tumors prolonged overall survival time and improved prognosis. Except for nausea, there was no difference in the adverse events between the two groups. Conclusion In patients with unresectable HCC, the THPK group had a longer OS and similar adverse events compared to the TPK group. In the future, TACE-HAIC in combination with targeted and immunotherapy may be a more effective therapeutic option for hepatocellular carcinoma that cannot be surgically removed.
Collapse
Affiliation(s)
| | | | | | | | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Wu Y, Mou J, Zhou G, Yuan C. CASC19: An Oncogenic Long Non-coding RNA in Different Cancers. Curr Pharm Des 2024; 30:1157-1166. [PMID: 38544395 DOI: 10.2174/0113816128300061240319034243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 06/28/2024]
Abstract
A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.
Collapse
Affiliation(s)
- Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
15
|
Zeng YL, Gao F, Zhang C, Ren PP, Ma L, Wang X, Wang R, Kang Y, Li K. USF1 modulates transcription and cellular functions by regulating multiple transcription factors in Huh7 cells. Oncol Lett 2023; 26:532. [PMID: 38020298 PMCID: PMC10655063 DOI: 10.3892/ol.2023.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma (HCC), is a malignant tumor that has high rates of metastasis and mortality worldwide. Upstream transcription factor 1 (USF1) is a canonical transcription factor (TF) and is associated with the pathogenesis of several cancers, but its biological functions and molecular targets in HCC remain unclear. Huh7 cells that overexpress USF1 were used with whole transcriptome profiling through RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing methods to investigate the downstream targets of USF1. Reverse transcription-quantitative PCR was then used to validate the downstream targets. The results showed that USF1 significantly regulates 350 differentially expressed genes (DEGs). The upregulated DEGs were primarily protein-coding genes enriched in immune and inflammation response pathways, while the downregulated DEGs were mainly coding long non-coding (lnc)RNAs, indicating the regulatory function of USF1. It was also demonstrated that USF1 directly binds to the promoter region of 2,492 genes, which may be involved in the viral progression and cell proliferation pathways. By integrating these two datasets, 16 overlapped genes were detected, including downregulated lncRNA-NEAT1 and upregulated TF-ETV5. The downregulated lncRNA-NEAT1 showed reverse expression pattern and prognosis result compared with that of USF1 in patients with liver cancer, while upregulated TF-ETV5 showed consistent results with USF1. Promoter region motif analysis indicated that ETV5 has more binding motifs and genes than USF1 itself for USF1-regulated DEGs, indicating that USF1 may indirectly modulate gene expression by regulating ETV5 expression in Huh7 cells. The study also validated the direct interaction between USF1 and the promoter of ETV5 using ChIP-qPCR. In summary, the results demonstrated that USF1 binds to the promoter region of thousands of genes and affects a large part of DEGs indirectly. Downstream genes, including lncRNA-NEAT1 and TF-ETV5, may also have potential functions in the regulated network by USF1 and have potential functions in the progression of HCC. The present findings suggested that USF1 and its downstream targets could be potential targets for HCC therapy in the future.
Collapse
Affiliation(s)
- Yan-Li Zeng
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Fei Gao
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Can Zhang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Pei-Pei Ren
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li Ma
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Wang
- Department of Infectious Diseases, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Ruzhen Wang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yi Kang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ke Li
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
16
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Wang P, Cao J, Feng Z, Tang Y, Han X, Mao T, Li S, Guo Q, Ke X, Zhang X. Oroxylin a promoted apoptotic extracellular vesicles transfer of glycolytic kinases to remodel immune microenvironment in hepatocellular carcinoma model. Eur J Pharmacol 2023; 957:176037. [PMID: 37660969 DOI: 10.1016/j.ejphar.2023.176037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Although oroxylin A, a natural flavonoid compound, suppressed progression of hepatocellular carcinoma, whether the tumor microenvironment especially the communication between cancer cells and immune cells was under its modulation remained obscure. Here we investigated the effect of extracellular vesicles from cancer cells elicited by oroxylin A on macrophages in vitro. The data shows oroxylin A elicits apoptosis-related extracellular vesicles through caspase-3-mediated activation of ROCK1in HCC cells, which regulates M1-like polarization of macrophage. Moreover, oroxylin A downregulates the population of M2-like macrophage and promotes T cells infiltration in tumor microenvironment, accompanied by suppression of HCC development and enhancement of immune checkpoint inhibitor treatment in mice model. Mechanistically, glycolytic proteins enriched in oroxylin A-elicited extracellular vesicles from HCC cells are transferred to macrophages where ROS-dependent NLRP3 inflammasome is activated, therefore contributing to anti-tumor phenotype of macrophage. Taken together, this study highlights that oroxylin A promotes metabolic shifts between tumor cells and immune cells, facilitates to inhibit tumor development, and improves immunotherapy response in HCC model.
Collapse
Affiliation(s)
- Peiwen Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhi Feng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yufang Tang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaolei Han
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Tianxiao Mao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sichan Li
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xue Ke
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiaobo Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
18
|
Liu Q, Song Q, Luo C, Wei J, Xu Y, Zhao L, Wang Y. A novel bispecific antibody as an immunotherapeutic agent in hepatocellular carcinoma. Mol Immunol 2023; 162:125-132. [PMID: 37677989 DOI: 10.1016/j.molimm.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and highly fatal malignancies in humans worldwide with increasing prevalence and limited therapeutic options. For many decades, many researchers have attempted to find effective curative methods for HCC and great strides have been made. GPC3 is overexpressed in HCC, but not in normal liver, making it a rational immunotherapeutic target for HCC. GC33, a humanized mAb directed against GPC3, is a safe and well-tolerated therapy choice for patients with HCC, which tested in a phase I trial in advanced HCC patients. Phase II trials of GC33 to evaluate its efficacy and safety in advanced or metastatic HCC, showed no significant differences in overall survival and progression-free survival compared with the placebo. Retrospective analysis indicates that high drug exposure and high CD16 expression may contribute to the clinical efficacy of GC33. Chugai Pharmaceutical has restarted its Phase I trial of GC33, continuing to explore its clinical value targeting GPC3 in solid tumors. To enhance the antitumor potency of GC33, we designed a GPC3/CD16A bispecific antibody (QDEB). In this study, we obtained QDEB at high purity and assessed its effectiveness in the therapy of HCC compared with GC33. In vitro cytotoxicity assays and in vivo experiments demonstrated that QDEB could enhance anti-tumor efficacy compared with GC33. CD16A activation and increased cytokines release were associated with higher anti-tumor activity. In conclusion, this bispecific antibody may possibly help develop new therapeutic strategies for HCC and develop new treatment options in the future.
Collapse
Affiliation(s)
- Qingxia Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Qifeng Song
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Cheng Luo
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Jian Wei
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yao Xu
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Liwen Zhao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yong Wang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China.
| |
Collapse
|
19
|
Raj R, Aykun N, Wehrle CJ, Maspero M, Krishnamurthi S, Estfan B, Kamath S, Aucejo F. Immunotherapy for Advanced Hepatocellular Carcinoma-a Large Tertiary Center Experience. J Gastrointest Surg 2023; 27:2126-2134. [PMID: 37464142 DOI: 10.1007/s11605-023-05783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Combination of immune-checkpoint inhibitor (ICI) and vascular endothelial growth factor (VEGF) antagonist has become the first line systemic treatment for advanced hepatocellular carcinoma (HCC). However, two-thirds of patients do not respond to ICI-based treatments and biomarkers for response remain elusive. METHODS Patients with advanced HCC who received Atezolizumab/Bevacizumab combination or Nivolumab during 2016-2022 were identified in our Liver Cancer Database. Retrospective review of their clinical data was performed to investigate parameters that could be predictive of immunotherapy response. RESULTS 96 patients received Atezolizumab/Bevacizumab (n=60) or Nivolumab (n=36). Median age at diagnosis was 67.1 years. 70 patients had received treatment and 26 patients were treatment naïve before starting immunotherapy. Mean pre-treatment AFP was 9780.7 (±32035) ng/mL. Confirmed objective response (complete or partial) was seen in 29% of the population (n=27). Disease remained stable in 12% (n=11) and progressed in 60% (n=56). On univariate analysis, pre-treatment AFP>400 ng/mL was associated with objective response (OR=4.5, 95% CI:1.7-11.9, p=0.0015), while white race (OR=0.35, 95% CI:0.13-0.92, p=0.030) and prior radiotherapy (OR=0.14, 95% CI:0.01-1.1, p=0.033) or systemic therapy with TKIs (OR=0.25, 95% CI:0.08-0.81, p=0.017) were associated with poor response. On multivariate analysis only AFP>400 ng/mL remained associated with response (OR=3.7, 95% CI:1.3-10.5, p=0.014). Overall survival (OS) at one and three years was 86% and 43% in responders, and 45% and 29% in non-responders, respectively. CONCLUSION In our institutional experience, treatment naivety and pre-treatment AFP>400 ng/mL were associated with objective response. Prospective studies aimed at identifying factors associated with response to immunotherapy will aide patient selection.
Collapse
Affiliation(s)
- Roma Raj
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| | - Nihal Aykun
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Chase J Wehrle
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Marianna Maspero
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA
| | - Smitha Krishnamurthi
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Bassam Estfan
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Suneel Kamath
- Cleveland Clinic Foundation, Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland, OH, USA
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases and Surgery Institute, Department of Hepato-pancreato-biliary & Liver Transplant Surgery, OH, Cleveland, USA.
| |
Collapse
|
20
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
21
|
Cerreto M, Cardone F, Cerrito L, Stella L, Santopaolo F, Pallozzi M, Gasbarrini A, Ponziani FR. The New Era of Systemic Treatment for Hepatocellular Carcinoma: From the First Line to the Optimal Sequence. Curr Oncol 2023; 30:8774-8792. [PMID: 37887533 PMCID: PMC10605429 DOI: 10.3390/curroncol30100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most common primary liver cancer and is considered a major global health problem as one of the leading causes of cancer-related death in the world. Due to the increase in life expectancy and the epidemiological growth of specific risk factors, such as metabolic dysfunction-associated steatotic liver disease (MASLD), the incidence of HCC is growing globally, and mortality rates are still high. Moreover, patients frequently present at an intermediate or advanced tumor stage, when curative treatments, such as surgical resection, liver transplantation or ablation are no longer applicable. In these cases, trans-arterial chemoembolization (TACE), trans-arterial radioembolization (TARE), and systemic therapy are the only suitable options to achieve disease control. The multi-kinase inhibitor Sorafenib has been the only systemic treatment available for unresectable advanced HCC for almost a decade, but in the last couple of years new therapeutic options have emerged. Recent advances in understanding the interactions between the tumor and its microenvironment, especially cancer immune escape, led to the advent of immunotherapy. Currently, first-line systemic treatment for HCC is represented by the combination of the immune checkpoint inhibitor (ICI) Atezolizumab plus Bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody, but many other ICIs have been investigated, such as Nivolumab, Pembrolizumab, Durvalumab and Ipilimumab. However, the problem of second- and third-line therapies, and the correct sequence of treatments remains open and is not addressed in most studies. This explains the urge to find new systemic treatments that can improve the survival and quality of life in patients that can go beyond the first line of treatment. The aim of this paper is to offer a complete overview of the most recent innovations in systemic treatments for unresectable locally advanced and metastatic HCC, including emerging therapies, with a particular focus on treatment sequences. Moreover, we will provide an outlook on possible future approaches to patients who progress beyond first-line therapies.
Collapse
Affiliation(s)
- Maria Cerreto
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Ferdinando Cardone
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Lucia Cerrito
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Leonardo Stella
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Maria Pallozzi
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit—CEMAD, Centro Malattie Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (M.C.); (F.C.); (L.C.); (L.S.); (F.S.); (M.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Persano M, Rimini M, Tada T, Suda G, Shimose S, Kudo M, Cheon J, Finkelmeier F, Lim HY, Rimassa L, Presa J, Masi G, Yoo C, Lonardi S, Tovoli F, Kumada T, Sakamoto N, Iwamoto H, Aoki T, Chon HJ, Himmelsbach V, Pressiani T, Kawaguchi T, Montes M, Vivaldi C, Soldà C, Piscaglia F, Hiraoka A, Sho T, Niizeki T, Nishida N, Steup C, Iavarone M, Di Costanzo G, Marra F, Scartozzi M, Tamburini E, Cabibbo G, Foschi FG, Silletta M, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Ochi H, Yasuda S, Toyoda H, Ogawa C, Nishimura T, Hatanaka T, Kakizaki S, Shimada N, Kawata K, Tada F, Ohama H, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Imai M, Kosaka H, Naganuma A, Koizumi Y, Nakamura S, Kaibori M, Iijima H, Hiasa Y, Cammarota A, Burgio V, Cascinu S, Casadei-Gardini A. Clinical outcomes with atezolizumab plus bevacizumab or lenvatinib in patients with hepatocellular carcinoma: a multicenter real-world study. J Cancer Res Clin Oncol 2023; 149:5591-5602. [PMID: 36509984 DOI: 10.1007/s00432-022-04512-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study is to compare response rates of lenvatinib and atezolizumab plus bevacizumab, in first-line real-world setting. METHODS Overall cohort included Western and Eastern hepatocellular carcinoma (HCC) patient populations from 46 centres in 4 countries (Italy, Germany, Japan, and Republic of Korea). RESULTS 1312 patients were treated with lenvatinib, and 823 patients were treated with atezolizumab plus bevacizumab. Objective response rate (ORR) was 38.6% for patients receiving lenvatinib, and 27.3% for patients receiving atezolizumab plus bevacizumab (p < 0.01; odds ratio 0.60). For patients who achieved complete response (CR), overall survival (OS) was not reached in both arms, but the result from univariate Cox regression model showed 62% reduction of death risk for patients treated with atezolizumab plus bevacizumab (p = 0.05). In all multivariate analyses, treatment arm was not found to be an independent factor conditioning OS. Comparing ORR achieved in the two arms, there was a statistically significant difference in favor of lenvatinib compared to atezolizumab plus bevacizumab in all subgroups except for Eastern patients, Child-Pugh B patients, presence of portal vein thrombosis, α-feto-protein ≥ 400 ng/mL, presence of extrahepatic disease, albumin-bilirubin (ALBI) grade 2, and no previous locoregional procedures. CONCLUSION Lenvatinib achieves higher ORR in all patient subgroups. Patients who achieve CR with atezolizumab plus bevacizumab can achieve OS so far never recorded in HCC patients. This study did not highlight any factors that could identify patient subgroups capable of obtaining CR.
Collapse
Affiliation(s)
- Mara Persano
- Medical Oncology, University Hospital of Cagliari, Cagliari, Italy
| | - Margherita Rimini
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Via Olgettina n. 60, Milan, Italy.
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Jaekyung Cheon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ho Yeong Lim
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Gianluca Masi
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Changhoon Yoo
- Department of Oncology, ASAN Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sara Lonardi
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Vera Himmelsbach
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tiziana Pressiani
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | | | - Caterina Vivaldi
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Caterina Soldà
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Christoph Steup
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Firenze, Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital of Cagliari, Cagliari, Italy
| | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale G Panico, Tricase City Hospital, Tricase, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127, Palermo, Italy
| | | | - Marianna Silletta
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Department of Gastroenterology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hironori Ochi
- Hepato-biliary Center, Japanese Red Cross Matsuyama Hospital, Matsuyama, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan
| | - Kazuhito Kawata
- Department of Hepatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hideko Ohama
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yohei Koizumi
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Valentina Burgio
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Via Olgettina n. 60, Milan, Italy
| | - Stefano Cascinu
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
24
|
Ding X, Yao T, Liu X, Fan Z, Liu Y. A macropinocytosis-related gene signature predicts the prognosis and immune microenvironment in hepatocellular carcinoma. Front Oncol 2023; 13:1143013. [PMID: 37064147 PMCID: PMC10097907 DOI: 10.3389/fonc.2023.1143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Background Available treatments for hepatocellular carcinoma (HCC), a common human malignancy with a low survival rate, remain unsatisfactory. Macropinocytosis (MPC), a type of endocytosis that involves the non-specific uptake of dissolved molecules, has been shown to contribute to HCC pathology; however, its biological mechanism remains unknown. Methods The current study identified 27 macropinocytosis-related genes (MRGs) from 71 candidate genes using bioinformatics. The R software was used to create a prognostic signature model by filtering standardized mRNA expression data from HCC patients and using various methods to verify the reliability of the model and indicate immune activity. Results The prognostic signature was constructed using seven MPC-related differentially expressed genes, GSK3B, AXIN1, RAC1, KEAP1, EHD1, GRB2, and SNX5, through LASSO Cox regression. The risk score was acquired from the expression of these genes and their corresponding coefficients. HCC patients in the discovery and validation cohorts were stratified, and the survival of low-risk score patients was improved in both cohorts. Time-dependent ROC analysis indicated that the model's prediction reliability was the highest in the short term. Subsequent immunologic analysis, including KEGG, located the immune action pathway of the differentially expressed genes in the direction of the cancer pathway, etc. Immune infiltration and immune checkpoint tests provided valuable guidance for future follow-up experiments. Conclusion A risk model with MRGs was constructed to effectively predict HCC patient prognoses and suggest changes in the immune microenvironment during the disease process. The findings should benefit the development of a prognostic stratification and treatment strategy for HCC.
Collapse
Affiliation(s)
- Xinjiang Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Yao
- College of Life Science, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwen Fan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanxing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Zhang J, Hu C, Xie X, Qi L, Li C, Li S. Immune Checkpoint Inhibitors in HBV-Caused Hepatocellular Carcinoma Therapy. Vaccines (Basel) 2023; 11:vaccines11030614. [PMID: 36992198 DOI: 10.3390/vaccines11030614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the main risk factor for the development of hepatocellular carcinoma (HCC), the most common type of liver cancer, with high incidence and mortality worldwide. Surgery, liver transplantation, and ablation therapies have been used to treat early HBV-caused HCC (HBV-HCC); meanwhile, in the advanced stage, chemoradiotherapy and drug-targeted therapy are regularly considered, but with limited efficacy. Recently, immunotherapies, such as tumor vaccine therapy, adoptive cell transfer therapy, and immune checkpoint inhibitor therapy, have demonstrated promising efficacy in cancer treatment. In particular, immune checkpoint inhibitors can successfully prevent tumors from achieving immune escape and promote an anti-tumor response, thereby boosting the therapeutic effect in HBV-HCC. However, the advantages of immune checkpoint inhibitors in the treatment of HBV-HCC remain to be exploited. Here, we describe the basic characteristics and development of HBV-HCC and introduce current treatment strategies for HBV-HCC. Of note, we review the principles of immune checkpoint molecules, such as programmed cell death protein 1(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in HBV-HCC, as well as related inhibitors being considered in the clinic. We also discuss the benefits of immune checkpoint inhibitors in the treatment of HBV-HCC and the efficacy of those inhibitors in HCC with various etiologies, aiming to provide insights into the use of immune checkpoint inhibitors for the treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jin Zhang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Changwei Hu
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxiao Xie
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Linzhi Qi
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shangze Li
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Wu S, Qin L, Yang J, Wang J, Shen Y. Association between F-box-only protein 43 overexpression and hepatocellular carcinoma pathogenesis and prognosis. Cancer Med 2023; 12:10062-10076. [PMID: 36710413 PMCID: PMC10166908 DOI: 10.1002/cam4.5660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Despite great advances in the prevention, diagnosis, treatment, and management regarding hepatocellular carcinoma (HCC), the overall prognosis of HCC remains unfavorable. The expression profile, prognostic role, and biological functions of F-box-only protein 43 (FBXO43) in HCC remain unclear. Here, we determine the expression profile and prognostic value of FBXO43 in patients with HCC. MATERIALS AND METHODS A total of 467 HCC patients and their clinicopathological data were collected from the Second Affiliated Hospital of Jiaxing University, the Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. The expression profile, prognostic value, biological functions, and underlying mechanism of its involvement of FBXO43 were explored based on TCGA, Gene Expression Omnibus (GEO), LinkedOmics, and Cancer Dependency Map (DepMap). The expression of FBXO43 in 93 paired liver tissues was investigated via immunohistochemical staining, tissue microarray analysis, and Western blot. The prognostic value was assessed using survival analysis. RESULTS FBXO43 RNA was upregulated in HCC liver tissues and was associated with an unfavorable prognosis (p < 0.05). Furthermore, FBXO43 protein was overexpressed in HCC liver tissues compared with that in paired normal liver tissues. Overexpression of FBXO43 protein was significantly associated with advanced TNM stage, large tumor size, lymphatic invasion, distant metastasis, earlier cancer recurrence, and decreased overall survival after radical surgery (p < 0.05). Cox regression analysis showed that FBXO43 had significant prognostic value in HCC. Importantly, FBXO43 and its co-expressed genes were mainly involved in cell cycle regulation, DNA replication, metabolic regulation, and so on. FBXO43 knockdown could significantly affect the HCC cell lines growth and proliferation. CONCLUSIONS We first revealed that FBXO43 was overexpressed in liver HCC tissues at the RNA and protein levels and served as an independent prognostic factor for HCC patients. Therefore, FBXO43 is worth investigating as a potential HCC treatment target.
Collapse
Affiliation(s)
- Shaohan Wu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lei Qin
- Department of General Surgery, Hepatobiliary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juqin Yang
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Wang
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yiyu Shen
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
27
|
Identification of Prognostic and Predictive Biomarkers and Druggable Targets among 205 Antioxidant Genes in 21 Different Tumor Types via Data-Mining. Pharmaceutics 2023; 15:pharmaceutics15020427. [PMID: 36839749 PMCID: PMC9959161 DOI: 10.3390/pharmaceutics15020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Oxidative stress is crucial in carcinogenesis and the response of tumors to treatment. Antioxidant genes are important determinants of resistance to chemotherapy and radiotherapy. We hypothesized that genes involved in the oxidative stress response may be valuable as prognostic biomarkers for the survival of cancer patients and as druggable targets. (2) Methods: We mined the KM Plotter and TCGA Timer2.0 Cistrome databases and investigated 205 antioxidant genes in 21 different tumor types within the context of this investigation. (3) Results: Of 4347 calculations with Kaplan-Meier statistics, 84 revealed statistically significant correlations between high gene expression and worse overall survival (p < 0.05; false discovery rate ≤ 5%). The tumor types for which antioxidant gene expression was most frequently correlated with worse overall survival were renal clear cell carcinoma, renal papillary cell carcinoma, and hepatocellular carcinoma. Seventeen genes were clearly overexpressed in tumors compared to their corresponding normal tissues (p < 0.001), possibly qualifying them as druggable targets (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3, GSS, PDIA4, PDIA6, PRDX1, SELENOH, SELENON, STIP1, TXNDC9, TXNDC12, TXNL1, TXNL4A, and TXNRD1). (4) Conclusions: We concluded that a sub-set of antioxidant genes might serve as prognostic biomarkers for overall survival and as druggable targets. Renal and liver tumors may be the most suitable entities for this approach.
Collapse
|
28
|
Zhu L, Zhang XP, Xu S, Hu MG, Zhao ZM, Zhao GD, Xiao ZH, Liu R. Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front Immunol 2023; 13:1111246. [PMID: 36700197 PMCID: PMC9868629 DOI: 10.3389/fimmu.2022.1111246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and CD4+ T lymphocytes can inhibit hepatocarcinogenesis and mediate tumor regression. However, few studies have focused on the prognostic power of CD4+ Tconv-related lncRNAs in HCC patients. Method We obtained data from TCGA and GEO databases and identified CD4+Tconv-related lncRNAs in HCC. The risk score was constructed using lasso regression and the model was validated using two validation cohorts. The RS was also assessed in different clinical subgroups, and a nomogram was established to further predict the patients' outcomes. Furthermore, we estimated the immune cell infiltration and cancer-associated fibroblasts (CAFs) through TIMER databases and assessed the role of RS in immune checkpoint inhibitors response. Results We constructed a CD4+ Tconv-related lncRNAs risk score, including six lncRNAs (AC012073.1, AL031985.3, LINC01060, MKLN1-AS, MSC-AS1, and TMCC1-AS1), and the RS had good predictive ability in validation cohorts and most clinical subgroups. The RS and the T stage were included in the nomogram with optimum prediction and the model had comparable OS prediction power compared to the AJCC. Patients in the high-risk group had a poor immune response phenotype, with high infiltrations of macrophages, CAFs, and low infiltrations of NK cells. Immunotherapy and chemotherapy response analysis indicated that low-risk group patients had good reactions to immune checkpoint inhibitors. Conclusion We constructed and validated a novel CD4+ Tconv-related lncRNAs RS, with the potential predictive value of HCC patients' survival and immunotherapy response.
Collapse
Affiliation(s)
- Lin Zhu
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China,The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiu-Ping Zhang
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Shuai Xu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming-Gen Hu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Zhi-Ming Zhao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Guo-Dong Zhao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Zhao-Hui Xiao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Rong Liu
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China,The First Clinical Medical School, Lanzhou University, Lanzhou, China,*Correspondence: Rong Liu,
| |
Collapse
|
29
|
Liu ZC, Li LH, Li DY, Gao ZQ, Chen D, Song B, Jiang BH, Dang XW. KIAA1429 regulates alternative splicing events of cancer-related genes in hepatocellular carcinoma. Front Oncol 2022; 12:1060574. [PMID: 36505780 PMCID: PMC9732450 DOI: 10.3389/fonc.2022.1060574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most fatal malignancies with high morbidity and mortality rates in the world, whose molecular pathogenesis is incompletely understood. As an RNA-binding protein participating in the processing and modification of RNA, KIAA1429 has been proved to be implicated in the pathogenesis of multiple cancers. However, how KIAA1429 functions in alternative splicing is not fully reported. In the current study, multi-omics sequencing data were used to analyze and decipher the molecular functions and the underlying mechanisms of KIAA1429 in HCC samples. RNA sequencing data (RNA-seq) analysis demonstrated that in HCCLM3 cells, alternative splicing (AS) profiles were mediated by KIAA1429. Regulated AS genes (RASGs) by KIAA1429 were enriched in cell cycle and apoptosis-associated pathways. Furthermore, by integrating the RNA immunoprecipitation and sequencing data (RIP-seq) of KIAA1429, we found that KIAA1429-bound transcripts were highly overlapping with RASGs, indicating that KIAA1429 could globally regulate the alternative splicing perhaps by binding to their transcripts in HCCLM3 cells. The overlapping RASGs were also clustered in cell cycle and apoptosis-associated pathways. In particular, we validated the regulated AS events of three genes using clinical specimens from HCC patients, including the exon 6 of BPTF gene and a marker gene of HCC. In summary, our results shed light on the regulatory functions of KIAA1429 in the splicing process of pre-mRNA and provide theoretical basis for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-chen Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu-Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding-Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bin Song
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bing-Hua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-wei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Xiao-wei Dang,
| |
Collapse
|
30
|
Sung PS, Lee IK, Roh PR, Kang MW, Ahn J, Yoon SK. Blood-based biomarkers for immune-based therapy in advanced HCC: Promising but a long way to go. Front Oncol 2022; 12:1028728. [PMID: 36387149 PMCID: PMC9659956 DOI: 10.3389/fonc.2022.1028728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) represents a key shift in the management strategy for patients with hepatocellular carcinoma (HCC). However, there is a paucity of predictive biomarkers that facilitate the identification of patients that would respond to ICI therapy. Although several researchers have attempted to resolve the issue, the data is insufficient to alter daily clinical practice. The use of minimally invasive procedures to obtain patient-derived specimen, such as using blood-based samples, is increasingly preferred. Circulating tumor DNA (ctDNA) can be isolated from the blood of cancer patients, and liquid biopsies can provide sufficient material to enable ongoing monitoring of HCC. This is particularly significant for patients for whom surgery is not indicated, including those with advanced HCC. In this review, we summarize the current state of understanding of blood-based biomarkers for ICI-based therapy in advanced HCC, which is promising despite there is still a long way to go.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Isaac Kise Lee
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Pu Reun Roh
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
31
|
Liu J, Liu T, Zhang C, He J, Zhou D, Wang Z, Wang R. EIF2S2 is a novel independent prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Front Genet 2022; 13:992343. [PMID: 36276981 PMCID: PMC9579270 DOI: 10.3389/fgene.2022.992343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly malignant disease with poor prognosis. It is urgent to find effective biomarkers. Eukaryotic Translation Initiation Factor 2 Subunit Beta (EIF2S2) is a subunit of heterotrimeric G protein EIF2, and its function is still unclear. We studied the role of EIF2S2 in the malignant progression of liver cancer and its relationship with immune infiltration. Methods: Download the RNA expression and clinical information of EIF2S2 from the Cancer Genome Atlas (TCGA) database, analyze the relationship between the expression of EIF2S2 and the prognosis and clinicopathological characteristics of HCC, analyze the differential genes by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and tumor related immune infiltrating cells. The Protein expression level of EIF2S2 was obtained from Human Protein Atlas (HPA) databases. The relationship between EIF2S2 expression and immune infiltrates in HCC was analyzed on TIMER 2.0. The data processing analysis based on R language. Drug Sensitivity data from Genomics of Drug Sensitivity in Cancer (GDSC). Results: EIF2S2 is highly expressed in HCC patients and is associated with poor prognosis. The expression of EIF2S2 was also correlated with age, clinical stage and pathological grade. Univariate and multivariate COX regression analysis showed that EIF2S2 was an independent risk factor for survival. The receiver operating characteristic (ROC) curve of EIF2S2 also confirmed the diagnostic value of EIF2S2 in HCC patients. Through GO and KEGG enrichment analysis, EIF2S2 expression was found to be closely related to some immune pathways. The expression of EIF2S2 was correlated with memory B cell, plasma B cell, CD8+ T cell, CD4+ resting memory T cell and the expression of some immune checkpoints, such as PDCD1, TIGIT and CTLA-4. It is also more sensitive to paclitaxel, sunitinib and other drugs. Conclusion: This study shows that EIF2S2 can be used as a prognostic factor for HCC, which is closely related to immune infiltration and immune checkpoints, and may play a potential regulatory role in predicting drug sensitivity.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Tongyu Liu
- Department of Gynecology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chuanhao Zhang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Jiabei He
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Dong Zhou
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
- *Correspondence: Zhe Wang, ; Ruoyu Wang,
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
- *Correspondence: Zhe Wang, ; Ruoyu Wang,
| |
Collapse
|
32
|
Goyal P, Salem R, Mouli SK. Role of interventional oncology in hepatocellular carcinoma: Future best practice beyond current guidelines. Br J Radiol 2022; 95:20220379. [PMID: 35867889 PMCID: PMC9815732 DOI: 10.1259/bjr.20220379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally. Liver transplant remains the goal of curative treatment, but limited supply of organs decreases accessibility and prolongs waiting time to transplantation. Therefore, interventional oncology therapies have been used to treat the majority of HCC patients, including those awaiting transplant. The Barcelona Clinic Liver Cancer (BCLC) classification is the most widely used staging system in management of HCC that helps allocate treatments. Since its inception in 1999, it was updated for the fifth time in November 2021 and for the first time shaped by expert opinions outside the core BCLC group. The most recent version includes additional options for early-stage disease, substratifies intermediate disease into three groups, and lists alternates to Sorafenib that can double the expected survival of advanced-stage disease. The group also proposed a new BCLC staging schema for disease progression, and endorsed treatment stage migration (TSM) directly into the main staging and treatment algorithm. This article reviews the recent developments underlying the current BCLC guidelines and highlights ongoing research, particularly involving radioembolization, that will shape future best practice.
Collapse
Affiliation(s)
- Piyush Goyal
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| | - Riad Salem
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| | - Samdeep K. Mouli
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
33
|
Jia M, Jia JK, Xu J, Xue HZ. Feasibility and Tolerability of Lenvatinib, Plus PD-1 Blockades for Patients with Unresectable Hepatocellular Carcinoma: A Retrospective Exploratory Study. Cancer Manag Res 2022; 14:2625-2638. [PMID: 36081824 PMCID: PMC9448352 DOI: 10.2147/cmar.s372125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Lenvatinib was the standard first-line therapy for patients with unresectable HCC. PD-1 blockades demonstrated promising efficacy for patients with previously-treated HCC. Therefore, this study was to investigate the feasibility and tolerability of lenvatinib plus PD-1 blockades for patients with unresectable HCC retrospectively. Methods A total of 37 patients with unresectable HCC who received lenvatinib plus PD-1 blockades in first-line setting were included in this study retrospectively. Efficacy of the patients was evaluated with the change of target lesion using mRECIST criteria per investigator and all the subjects were followed up regularly. Adverse reactions were collected and documented. Exploratory analysis between prognosis and baseline characteristics was performed using log rank test and multivariate analysis were performed using Cox regression analysis. Results The best overall response of the 37 patients suggested that complete response was observed in one patient, partial response was noted in 11 patients, stable disease was noted in 16 patients and 9 patients had progressive disease, which yielded an objective response rate (ORR) of 32.4% (95%CI: 18.0–49.8) and a disease control rate (DCR) of 75.7% (95%CI: 58.8–88.2). Furthermore, the median progression-free survival (PFS) of the 37 patients with advanced HCC was 8.3 months (95%CI: 3.34–13.26). And the median overall survival (OS) was 17.8 months (95%CI: 7.19–28.41). In addition, the median duration of response (DoR) in 12 patients with response was 9.6 months (95%CI: 3.03–16.17). Furthermore, adverse reactions that were attributed to the combination administration were detected in 36 patients (97.3%), among whom a total of 22 patients (59.5%) were observed of the grade ≥3 adverse reactions. And the most common adverse reactions were hypertension, fatigue, nausea and vomiting, and hepatotoxicity. Conclusion Lenvatinib plus PD-1 blockades demonstrated promising anticancer activity and acceptable toxicity for patients with unresectable HCC. And the conclusion should be validated in prospective clinical trials subsequently.
Collapse
Affiliation(s)
- Meng Jia
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
| | - Jiang-Kun Jia
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
| | - Huan-Zhou Xue
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- Correspondence: Huan-Zhou Xue, Department of Hepatobiliary Surgery of Henan Provincial People’s Hospital, No. 7 Wei-Wu Road, Zhengzhou, 450003, People’s Republic of China, Email
| |
Collapse
|
34
|
Zhou K, Yang J, Li X, Xiong W, Zhang P, Zhang X. N7-Methylguanosine Regulatory Genes Profoundly Affect the Prognosis, Progression, and Antitumor Immune Response of Hepatocellular Carcinoma. Front Surg 2022; 9:893977. [PMID: 35784919 PMCID: PMC9246272 DOI: 10.3389/fsurg.2022.893977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common abdominal cancer with poor survival outcomes. Although there is growing evidence that N7-methylguanosine (m7G) is closely associated with tumor prognosis, development, and immune response, few studies focus on this topic. Methods The novel m7G risk signature was constructed through the Lasso regression analysis. Its prognostic value was evaluated through a series of survival analyses and was tested in ICGC-LIRI, GSE14520, and GSE116174 cohorts. CIBERSORT, ssGSEA, and ESTIMATE methods were applied to explore the effects of the m7G risk score on tumor immune microenvironment (TIM). The GSEA method was used to evaluate the impacts of the m7G risk score on glycolysis, ferroptosis, and pyroptosis. The human protein atlas (HPA) database was used to clarify the histological expression levels of five m7G signature genes. The biofunctions of NCBP2 in hepatocellular cancer (HC) cells were confirmed through qPCR, CCK8, and transwell assays. Results Five m7G regulatory genes comprised the novel risk signature. The m7G risk score was identified as an independent prognostic factor of HCC and could increase the decision-making benefit of traditional prognostic models. Besides, we established a nomogram containing the clinical stage and m7G risk score to predict the survival rates of HCC patients. The prognostic value of the m7G model was successfully validated in ICGC and GSE116174 cohorts. Moreover, high m7G risk led to a decreased infiltration level of CD8+ T cells, whereas it increased the infiltration levels of Tregs and macrophages. The glycolysis and pyroptosis processes were found to be enriched in the HCC patients with high m7G risk. Finally, overexpression of NCBP2 could promote the proliferation, migration, and invasion of HC cells. Conclusions The m7G risk score was closely related to the prognosis, antitumor immune process, glycolysis, and malignant progression of HCC. NCBP2 has pro-oncogenic abilities, showing promise as a novel treatment target.
Collapse
Affiliation(s)
- Kexiang Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
- ChongQing Medical University, Chongqing, China
| | - Jiaqun Yang
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Xiaoyan Li
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Wei Xiong
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Pengbin Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of ChongQing Medical University, China
| | - Xuqing Zhang
- ChongQing Medical University, Chongqing, China
- Department of Infectious Diseases, The Third Affiliated Hospital of ChongQing Medical University, China
- Correspondence: Xuqing Zhang
| |
Collapse
|
35
|
Novel Gene Signatures as Prognostic Biomarkers for Predicting the Recurrence of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14040865. [PMID: 35205612 PMCID: PMC8870597 DOI: 10.3390/cancers14040865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A high percentage of patients who undergo surgical resection for hepatocellular carcinoma (HCC) experience recurrence. Therefore, identification of accurate molecular markers for predicting recurrence of HCC is important. We analyzed recurrence and non-recurrence HCC tissues using two public omics datasets comprising microarray and RNA-sequencing and found novel gene signatures associated with recurrent HCC. These molecules might be used to not only predict for recurrence of HCC but also act as potential prognostic indicators for patients with HCC. Abstract Hepatocellular carcinoma (HCC) has a high rate of cancer recurrence (up to 70%) in patients who undergo surgical resection. We investigated prognostic gene signatures for predicting HCC recurrence using in silico gene expression analysis. Recurrence-associated gene candidates were chosen by a comparative analysis of gene expression profiles from two independent whole-transcriptome datasets in patients with HCC who underwent surgical resection. Five promising candidate genes, CETN2, HMGA1, MPZL1, RACGAP1, and SNRPB were identified, and the expression of these genes was evaluated using quantitative reverse transcription PCR in the validation set (n = 57). The genes CETN2, HMGA1, RACGAP1, and SNRPB, but not MPZL1, were upregulated in patients with recurrent HCC. In addition, the combination of HMGA1 and MPZL1 demonstrated the best area under the curve (0.807, 95% confidence interval [CI] = 0.681–0.899) for predicting HCC recurrence. In terms of clinicopathological correlation, CETN2, MPZL1, RACGAP1, and SNRPB were upregulated in patients with microvascular invasion, and the expression of MPZL1 and SNRPB was increased in proportion to the Edmonson tumor differentiation grade. Additionally, overexpression of CETN2, HMGA1, and RACGAP1 correlated with poor overall survival (OS) and disease-free survival (DFS) in the validation set. Finally, Cox regression analysis showed that the expression of serum alpha-fetoprotein and RACGAP1 significantly affected OS, whereas platelet count, microvascular invasion, and HMGA1 expression significantly affected DFS. In conclusion, HMGA1 and RACGAP1 may be potential prognostic biomarkers for predicting the recurrence of HCC after surgical resection.
Collapse
|