1
|
Abdel-Maksoud MS, Alatawi RA, Albalawi SSA, Alrashidi MN, Abo-Dya NE, Elsherbiny N, Ragab YM, Awaji AA, El-Sherbiny M, Elfadil H, Abd-Alhaseeb MM. Diacerein's antiproliferative effects alone and with 5-fluorouracil in an Ehrlich solid tumour model: Molecular docking, molecular dynamics Simulation studies, and experimental Verification. Eur J Pharmacol 2025; 996:177564. [PMID: 40157706 DOI: 10.1016/j.ejphar.2025.177564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
The current study used an experimental model of mammary gland carcinoma to assess the chemo-sensitizing effectiveness of the combined administration of diacerein and 5-Fluorouracil (5-FU). With docking scores of -8.1, -7.6, and -9.2 kcal/mol, respectively, the molecular docking experiments showed that diacerein exhibits significant binding affinities to Caspase-3, NF-κB, and AKT1. Molecular dynamics Simulations revealed that diacerein has favourable binding free energy (ΔGbind) of -26.7 kcal/mol for Caspase-3, -24.2 kcal/mol for NF-κB, and -39.9 kcal/mol for AKT1, combined with low root mean square deviation (RMSD) values of 3.1 Å, 1.6 Å, and 2.1 Å for the three targets respectively. To validate these findings in vivo, Ehrlich solid tumor (EST) was induced in female Swiss mice. Four groups of animals were randomly assigned: EST + vehicle, EST + 5-FU, EST + diacerein, and EST + combination. Diacerein and 5-FU combination treatment increased EST mice's life span and reduced the solid tumor's weight and volume. Furthermore, diacerein and 5-FU combination significantly suppressed oxidative stress, inhibited AKT phosphorylation, decreased downstream inflammation (NF-κB, TNF-α, IL-1β), and increased apoptosis by modulating Bax, Bcl2, P53, and caspase-3 levels in tumor tissues. In conclusion, by inhibiting the AKT/NF-κB axis, diacerein and 5-FU combination showed possible antiproliferative effectiveness in the EST model.
Collapse
Affiliation(s)
- Mohamed S Abdel-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | | | | | | | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, North Sinai, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, 71491, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia.
| | - Hassabelrasoul Elfadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
2
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
3
|
El-Sawah AA, El-Naggar NEA, Eldegla HE, Soliman HM. Bionanofactory for green synthesis of collagen nanoparticles, characterization, optimization, in-vitro and in-vivo anticancer activities. Sci Rep 2024; 14:6328. [PMID: 38491042 PMCID: PMC10943001 DOI: 10.1038/s41598-024-56064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Collagen nanoparticles (collagen-NPs) are promising biological polymer nanoparticles due to their exceptional biodegradability and biocompatibility. Collagen-NPs were bio-fabricated from pure marine collagen using the cell-free supernatant of a newly isolated strain, Streptomyces sp. strain NEAA-3. Streptomyces sp. strain NEAA-3 was identified as Streptomyces plicatus strain NEAA-3 based on its cultural, morphological, physiological properties and 16S rRNA sequence analysis. The sequence data has been deposited under accession number OR501412.1 in the GenBank database. The face-centered central composite design (FCCD) was used to improve collagen-NPs biosynthesis. The maximum yield of collagen-NPs was 9.33 mg/mL with a collagen concentration of 10 mg/mL, an initial pH of 7, an incubation time of 72 h, and a temperature of 35 °C. Using the desirability function approach, the collagen-NPs biosynthesis obtained after FCCD optimization (9.53 mg/mL) was 3.92 times more than the collagen-NPs biosynthesis obtained before optimization process (2.43 mg/mL). The TEM analysis of collagen-NPs revealed hollow sphere nanoscale particles with an average diameter of 33.15 ± 10.02 nm. FTIR spectra confirmed the functional groups of the collagen, collagen-NPs and the cell-free supernatant that are essential for the efficient capping of collagen-NPs. The biosynthesized collagen-NPs exhibited antioxidant activity and anticancer activity against HeP-G2, MCF-7 and HCT116 cell lines. Collagen-NPs assessed as an effective drug loading carrier with methotrexate (MTX), a chemotherapeutic agent. The TEM analysis revealed that the average size of MTX-loaded collagen-NPs was 35.4 ± 8.9 nm. The percentages of drug loading (DL%) and encapsulation efficiency (EE%) were respectively 22.67 and 45.81%.
Collapse
Affiliation(s)
- Asmaa A El-Sawah
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Heba E Eldegla
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hoda M Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
El-Sawah AA, El-Naggar NEA, Eldegla HE, Soliman HM. Green synthesis of collagen nanoparticles by Streptomyces xinghaiensis NEAA-1, statistical optimization, characterization, and evaluation of their anticancer potential. Sci Rep 2024; 14:3283. [PMID: 38332176 PMCID: PMC10853202 DOI: 10.1038/s41598-024-53342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Collagen nanoparticles (collagen-NPs) are promising biopolymeric nanoparticles due to their superior biodegradability and biocompatibility. The low immunogenicity and non-toxicity of collagen-NPs makes it preferable for a wide range of applications. A total of eight morphologically distinct actinomycetes strains were newly isolated from various soil samples in Egypt. The cell-free supernatants of these strains were tested for their ability. These strains' cell-free supernatants were tested for their ability to synthesize collagen-NPs. Five isolates had the ability to biosynthesize collagen-NPs. Among these, a potential culture, Streptomyces sp. NEAA-1, was chosen and identified as Streptomyces xinghaiensis NEAA-1 based on 16S rRNA sequence analysis as well as morphological, cultural and physiological properties. The sequence data has been deposited at the GenBank database under the accession No. OQ652077.1. Face-centered central composite design (FCCD) has been conducted to maximize collagen-NPs biosynthesis. Maximum collagen-NPs was 8.92 mg/mL under the condition of 10 mg/mL of collagen concentration, initial pH 7, incubation time of 48 h and temperature of 35 °C. The yield of collagen-NPs obtained via FCCD optimization (8.92 mg/mL) was 3.32-fold compared to the yield obtained under non-optimized conditions (2.5 mg/mL). TEM analysis of collagen-NPs showed hollow sphere nanoscale particles with mean of 32.63 ± 14.59 nm in diameter. FTIR spectra showed major peaks of amide I, amide II and amide III of collagen and also the cell-free supernatant involved in effective capping of collagen-NPs. The biosynthesized collagen-NPs exhibited anti-hemolytic, antioxidant and cytotoxic activities. The inhibitory concentrations (IC50) against MCF-7, HeP-G2 and HCT116 cell lines were 11.62 ± 0.8, 19.60 ± 1.2 and 41.67 ± 2.2 µg/mL; respectively. The in-vivo investigation showed that collagen-NPs can suppress Ehrlich ascites carcinoma (EAC) growth in mice. The collagen-NPs/DOX combination treatment showed considerable tumor growth suppression (95.58%). Collagen-NPs evaluated as nanocarrier with a chemotherapeutic agent, methotrexate (MTX). The average size of MTX loaded collagen-NPs was 42.73 ± 3.5 nm. Encapsulation efficiency percentage (EE %) was 48.91% and drug loading percentage (DL %) was 24.45%.
Collapse
Affiliation(s)
- Asmaa A El-Sawah
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Heba E Eldegla
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hoda M Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Zhu Y, Xu Q, Zou R, Liu S, Tao R, Liu S, Li X, Wen L, Wu J, Wang J. Phenethyl isothiocyanate induces cytotoxicity and apoptosis of porcine kidney cells through Mitochondrial ROS-associated ERS pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109804. [PMID: 38013045 DOI: 10.1016/j.cbpc.2023.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Glucosinolates (GLS) in cruciferous vegetables are anti-nutritional factors. Excessive or long-term intake of GLS-containing feed is harmful to animal health and may cause kidney damage. Phenethyl isothiocyanate (PEITC) is a GLS. In this study, we investigated the inhibitory effect of PEITC on a porcine kidney (PK-15) cell line and explored the mechanism of PEITC-induced apoptosis. We found that PEITC could affect cell viability and induce cell apoptosis after incubating cells for 24 h. High concentrations of PEITC can induce intracellular ROS accumulation, resulting in impaired mitochondrial function (decreased MMP, decreased ATP) and DNA damage (increased 8-OHdG), cytochrome c in mitochondria is released into the cytoplasm and activates mitochondrial pathway apoptosis-related proteins (Bcl-2 family and caspase-9, -3). Meanwhile, PEITC could induce intracellular Ca2+ accumulation, disrupt ER homeostasis, and activate the expression levels of three ER-resident transmembrane proteins orchestrating the UPR (PERK, IRE-1α and ATF6) and ER-related proteins (GRP78 and CHOP), thereby activating ERS-pathway apoptosis-related proteins (caspase-12, -7). Our results showed that low concentration (2.5 μM) of PEITC had no damaging effect on cells. In comparison, a high concentration (10 μM) of PEITC could induce cell damage in porcine kidney cells and induce apoptosis in PK-15 cells via the Mitochondrial ROS-associated ERS pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, China
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ruili Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sha Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
6
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:cancers15082390. [PMID: 37190316 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Jia Y, Wang M, Sang X, Liu P, Gao J, Jiang K, Cheng H. Phenethyl Isothiocyanate Enhances the Cytotoxic Effects of PARP Inhibitors in High-Grade Serous Ovarian Cancer Cells. Front Oncol 2022; 11:812264. [PMID: 35155204 PMCID: PMC8825372 DOI: 10.3389/fonc.2021.812264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
While PARP inhibitor (PARPi) therapies have shown promising results in the treatment of high-grade serous ovarian cancer (HGSOC) harboring homologous recombination deficiencies, primary resistance to PARPi frequently occurs and even initial responders may eventually become resistant. Therefore, the development of novel effective combinatorial strategies to treat HGSOC is urgently needed. Here, we report that H2O2-induced oxidative stress sensitized HGSOC cells to PARPi BMN 673. Furthermore, Phenethyl isothiocyanate (PEITC) as a ROS-inducing agent significantly enhanced the cytotoxic effects of BMN 673. Mechanistically, combined use of PEITC and BMN 673 resulted in ROS overproduction and accumulation, enhanced DNA damage, G2/M arrest and apoptosis, all of which were significantly reversed by the ROS scavenger N-Acetyl-L-cysteine. We also showed that while PEITC did not further enhance the ability of BMN 673 on PARP1 trapping in HGSOC cells, the therapeutic effects of the PEITC/BMN 673 combination were at least in part dependent on the presence of PARP1. Importantly, the PEITC/BMN 673 combination potently abrogated the growth of HGSOC tumor spheroids and patient-derived organoid models of HGSOC and cervical cancer. Our findings provide a basis for further investigation of the utility of PARPi combination regimen in HGSOC and cervical cancer through ROS-mediated mechanisms.
Collapse
Affiliation(s)
- Yaxun Jia
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Min Wang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaolin Sang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Pixu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingchun Gao
- Department of Obstetrics and Gynecology, The First Hospital of Dalian Medical University, Dalian, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hailing Cheng
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Agha KA, Ibrahim TS, Elsherbiny NM, El-Sherbiny M, Abdel-Aal EH, Abdel-Samii ZK, Abo-Dya NE. Design, synthesis and pharmacological screening of novel renoprotective methionine-based peptidomimetics: Amelioration of cisplatin-induced nephrotoxicity. Bioorg Chem 2021; 114:105100. [PMID: 34246972 DOI: 10.1016/j.bioorg.2021.105100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Cisplatin (CP) is an effective chemotherapeutic agent for treatment of various types of cancer, however efforts are needed to reduce its toxic side effect. Previous studies revealed promising effect of peptides in decreasing CP induced nephrotoxicity. Herein, novel Met-based peptidomimetics were synthesized using N-acylbenzotriazole as acylating agent in high yield. Evaluation of renoprotective effect of the synthesized targets on CP treated kidney cell line (LLC-PK1) revealed that pretreatment with 1/3 IC50 of targets II, IIIa-g attenuated CP induced cell death where the IC50 of CP was raised from 3.28 µM to 9.25-41.1 µM. The most potent compounds IIIg, II and IIIb exhibited antioxidative stress in CP-treated LLC-PK1 cells as confirmed by raising GSH/GSSG ratio and SOD concentration as well as decreasing ROS and MDA. Additionally, in vivo experiments using Sprague Dawley rats showed renoprotective effect of IIIg against CP-induced nephrotoxicity as evidenced by improved results of renal function tests and attenuated CP-induced renal structural injury. Moreover, antioxidant activity of IIIg was demonstrated via its ability to reduce renal MDA level and up-regulate renal antioxidant element GSH level. Further, immunohistochemistry of renal specimens showed the ability of IIIg to restore CP-induced suppression of Nrf2. Interestingly, in vivo and in vitro studies demonstrated that IIIg had no effect on CP antiproliferative activity. An assessment of the ADMET properties revealed that targets IIIg, II and IIIb showed good drug-likeness in terms of their physicochemical, pharmacokinetic properties. The findings presented here showcase that IIIg is a promising renoprotective candidate with antioxidative stress potential.
Collapse
Affiliation(s)
- Khalid A Agha
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Tarek S Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; College of Medicine, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Eatedal H Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Saudi Arabia
| |
Collapse
|
9
|
Aman RM, Zaghloul RA, El-Dahhan MS. Formulation, optimization and characterization of allantoin-loaded chitosan nanoparticles to alleviate ethanol-induced gastric ulcer: in-vitro and in-vivo studies. Sci Rep 2021; 11:2216. [PMID: 33500454 PMCID: PMC7838192 DOI: 10.1038/s41598-021-81183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Allantoin (ALL) is a phytochemical possessing an impressive array of biological activities. Nonetheless, developing a nanostructured delivery system targeted to augment the gastric antiulcerogenic activity of ALL has not been so far investigated. Consequently, in this survey, ALL-loaded chitosan/sodium tripolyphosphate nanoparticles (ALL-loaded CS/STPP NPs) were prepared by ionotropic gelation technique and thoroughly characterized. A full 24 factorial design was adopted using four independently controlled parameters (ICPs). Comprehensive characterization, in vitro evaluations as well as antiulcerogenic activity study against ethanol-induced gastric ulcer in rats of the optimized NPs formula were conducted. The optimized NPs formula, (CS (1.5% w/v), STPP (0.3% w/v), CS:STPP volume ratio (5:1), ALL amount (13 mg)), was the most convenient one with drug content of 6.26 mg, drug entrapment efficiency % of 48.12%, particle size of 508.3 nm, polydispersity index 0.29 and ζ-potential of + 35.70 mV. It displayed a sustained in vitro release profile and mucoadhesive strength of 45.55%. ALL-loaded CS/STPP NPs (F-9) provoked remarkable antiulcerogenic activity against ethanol-induced gastric ulceration in rats, which was accentuated by histopathological, immunohistochemical (IHC) and biochemical studies. In conclusion, the prepared ALL-loaded CS/STPP NPs could be presented to the phytomedicine field as an auspicious oral delivery system for gastric ulceration management.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa S El-Dahhan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
10
|
Salah R, Salama MF, Mahgoub HA, El-Sherbini ES. Antitumor activity of sitagliptin and vitamin B12 on Ehrlich ascites carcinoma solid tumor in mice. J Biochem Mol Toxicol 2020; 35:e22645. [PMID: 33016524 DOI: 10.1002/jbt.22645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
This study was carried out to investigate the potential effects of vitamin B12 and sitagliptin, and their possible synergistic effect with doxorubicin (DOX) on the Ehrlich solid tumor model. B12, sitagliptin, and their combination with DOX were administered to tumor-bearing mice for 21 days. Treatment with B12, sitagliptin, as well as their combinations with DOX caused a significant inhibition of tumor growth and increased the survival time. Malondialdehyde levels and the relative expression of tumor necrosis factor-α and nuclear factor kappa B were significantly decreased, whereas the total antioxidant capacity was significantly increased in all treated groups, except the DOX-treated one, when compared with the positive control group. Moreover, increased apoptosis was also observed by increased cleaved caspase-3 immunostaining and histopathological examination. In conclusion, the antitumor activity of B12 and sitagliptin could be attributed to their ability to induce apoptosis and suppress oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rania Salah
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed F Salama
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hebatallah A Mahgoub
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - El-Said El-Sherbini
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020; 34:e22597. [PMID: 32762018 DOI: 10.1002/jbt.22597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Ginsenoside Rh2 is a primary bioactive compound obtained from ginseng that indicated anticancer activities against several malignant tumors. However, previous studies have reported little about the inhibitory effect of Rh2 on osteosarcoma (OS). This study aims to explore whether Rh2 could exert anticancer effects in OS cells and further investigate the proliferation, migration, and apoptosis mechanisms induced by Rh2 in human OS U20S cell line. The viability of U20S cells was obtained by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell migration property was analyzed by wound-healing assay. Apoptosis was visualized using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and annexin V/propidium iodide (PI) staining. Relative protein expressed was confirmed through Western blot analysis. Mitochondrial membrane potential was evaluated by JC-1 staining. In this study, we used broad-spectrum anticancer drug cisplatin (CP) as a positive control. The results indicated that Rh2 remarkably inhibited cell viability of U20S cells in a dose- and time-dependent manner, and suppressed migration. TUNEL, DAPI, annexin V/PI, and JC-1 assay suggested that Rh2 could induce cellular apoptosis. Rh2 could reduce the levels of Bcl-2, caspase 3, and caspase 9, and promote the expression level of Bax in U20S cells. Moreover, Rh2 could induce apoptosis by promoting mitogen-activated protein kinase (MAPK) signaling pathway and inhibit PI3K/Akt/mTOR and nuclear factor-κB (NF-κB) signaling pathway in U20S cells. These findings indicated that Rh2 has an anticancer effect on U20S cells by regulating MAPK, PI3K/Akt/mTOR, and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Feng
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Chuyao Bi
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Elsherbiny NM, El-Sherbiny M, Zaitone SA. Diallyl trisulfide potentiates chemotherapeutic efficacy of doxorubicin in experimentally induced mammary carcinoma: Role of Notch signaling. Pathol Res Pract 2020; 216:153139. [PMID: 32853959 DOI: 10.1016/j.prp.2020.153139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of breast cancer is remarkably increasing worldwide. Therefore, introduction of new approaches along with improvement of the existing ones in cancer treatment field is of great demand. The present study was designated to investigate the anti-proliferative role of Diallyl trisulfide (DATS) alone or in combination with Doxorubicin (Doxo) in Ehrlich solid carcinoma (ESC)-bearing mice. ESC was induced in female albino mice as an experimental model for breast cancer. The anti-tumorigenic effect of DATS was mediated by suppression of Notch signaling proteins (Notch 1, JAG 1 and HES 1), attenuation of tumor inflammation (NFκB, TNF-α, IL-6, IL-1β) and proliferation (cyclin D1, Ki67) and enhancement of apoptosis (caspase 3, p53). DATS and Doxo mono-treatments displayed opposing effect regarding expression of Notch signaling proteins and cyclin D1 gene expression. However, DATS and Doxo co-treatment markedly decreased tumor volume and weight, increased animals' survival rate, and attenuated Doxo-induced tumor inflammation. In parallel, microscopic investigation displayed that ESC tumor tissues from animals treated with DATS and/or DOX showed shrinkage of tumor lesions and wider zones of apoptosis. In conclusion, DATS acts via multiple molecular targets to elicit anti-proliferative activity. Combination of DATS with Doxo -which exhibit different mechanisms of action- might be a potential novel strategy to augment Doxo-antitumor effect.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Almaarefa University, College of Medicine, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Induction of Apoptosis by Gluconasturtiin-Isothiocyanate (GNST-ITC) in Human Hepatocarcinoma HepG2 Cells and Human Breast Adenocarcinoma MCF-7 Cells. Molecules 2020; 25:molecules25051240. [PMID: 32182965 PMCID: PMC7179403 DOI: 10.3390/molecules25051240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/26/2023] Open
Abstract
Gluconasturtiin, a glucosinolate present in watercress, is hydrolysed by myrosinase to form gluconasturtiin-isothiocyanate (GNST-ITC), which has potential chemopreventive effects; however, the underlying mechanisms of action have not been explored, mainly in human cell lines. The purpose of the study is to evaluate the cytotoxicity of GNST-ITC and to further assess its potential to induce apoptosis. GNST-ITC inhibited cell proliferation in both human hepatocarcinoma (HepG2) and human breast adenocarcinoma (MCF-7) cells with IC50 values of 7.83 µM and 5.02 µM, respectively. Morphological changes as a result of GNST-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GNST-ITC in a time-dependent manner. To delineate the mechanism of apoptosis, cell cycle arrest and expression of caspases were studied. GNST-ITC induced a time-dependent G2/M phase arrest, with reduction of 82% and 93% in HepG2 and MCF-7 cell lines, respectively. The same treatment also led to the subsequent expression of caspase-3/7 and -9 in both cells demonstrating mitochondrial-associated cell death. Collectively, these results reveal that GNST-ITC can inhibit cell proliferation and can induce cell death in HepG2 and MCF-7 cancer cells via apoptosis, highlighting its potential development as an anticancer agent.
Collapse
|
15
|
Giallourou NS, Rowland IR, Rothwell SD, Packham G, Commane DM, Swann JR. Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Eur J Nutr 2019; 58:2377-2391. [PMID: 30066177 PMCID: PMC6689287 DOI: 10.1007/s00394-018-1789-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Watercress is a rich source of phytochemicals with anticancer potential, including phenethyl isothiocyanate (PEITC). We examined the potential for watercress extracts and PEITC to increase the DNA damage caused by ionising radiation (IR) in breast cancer cells and to be protective against radiation-induced collateral damage in healthy breast cells. The metabolic events that mediate such responses were explored using metabolic profiling. METHODS 1H nuclear magnetic resonance spectroscopy-based metabolic profiling was coupled with DNA damage-related assays (cell cycle, Comet assay, viability assays) to profile the comparative effects of watercress and PEITC in MCF-7 breast cancer cells and MCF-10A non-tumorigenic breast cells with and without exposure to IR. RESULTS Both the watercress extract and PEITC-modulated biosynthetic pathways of lipid and protein synthesis and resulted in changes in cellular bioenergetics. Disruptions to the redox balance occurred with both treatments in the two cell lines, characterised by shifts in the abundance of glutathione. PEITC enhanced the sensitivity of the breast cancer cells to IR increasing the effectiveness of the cancer-killing process. In contrast, watercress-protected non-tumorigenic breast cells from radiation-induced damage. These effects were driven by changes in the cellular content of the antioxidant glutathione following exposure to PEITC and other phytochemicals in watercress. CONCLUSION These findings support the potential prophylactic impact of watercress during radiotherapy. Extracted compounds from watercress and PEITC differentially modulate cellular metabolism collectively enhancing the therapeutic outcomes of radiotherapy.
Collapse
Affiliation(s)
- Natasa S Giallourou
- Department of Food and Nutritional Science, University of Reading, Reading, UK
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ian R Rowland
- Department of Food and Nutritional Science, University of Reading, Reading, UK
| | - Steve D Rothwell
- Vitacress, Lower Link Farm, St Mary Bourne, Andover, Hampshire, UK
| | - Graham Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Daniel M Commane
- Department of Food and Nutritional Science, University of Reading, Reading, UK
| | - Jonathan R Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
16
|
Liu J, Huang Y, Liu Y, Chen Y. Irisin Enhances Doxorubicin-Induced Cell Apoptosis in Pancreatic Cancer by Inhibiting the PI3K/AKT/NF-κB Pathway. Med Sci Monit 2019; 25:6085-6096. [PMID: 31412018 PMCID: PMC6705179 DOI: 10.12659/msm.917625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Irisin, a myokine released from skeletal muscle following exercise, has been shown to affect the proliferation of some cancer cells and chemosensitivity of anticancer drugs like doxorubicin (DOX). However, the effects of irisin on chemosensitivity in pancreatic cancer (PC) cells have not been studied. Material/Methods In this study, the effects of irisin co-treatment with DOX or gemcitabine (GEM) on MIA PaCa-2, BxPC-3 PC cells, and H9c2 cardiomyocytes were investigated. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry, and TUNEL (TdT-mediated dUTP nick-end labeling) assays were conducted to evaluate cytotoxicity induced by DOX or GEM. Fluorescence microscopy and flow cytometry experiments were performed to assess the intracellular accumulation of DOX. Cellular levels of apoptosis-related protein expression and protein phosphorylation were determined by Western blot analyses. Results The results showed that irisin can increase the chemosensitivity of PC cells to DOX or GEM. The analyses of apoptosis indicated that irisin enhances DOX-induced cellular apoptosis by increasing the expression of cleaved PARP (poly ADP-ribose polymerase) and cleaved caspase-3, and reducing the expression of B cell lymphoma/lewkmia-2 (BCL-2) and B cell lymphoma-extra large (BCL-xL) in PC cells but not in H9c2 cells. Irisin attenuated serine/threonine kinase AKT (protein kinase B/PKB) phosphorylation and inhibited the activation of nuclear factor κB (NF-κB) signaling in PC cells. Conclusions Irisin can potentiate the cytotoxicity of doxorubicin in PC cells without increasing cardiotoxicity, possibly through inactivating the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiayu Liu
- Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, Jilin University, Changchun, Jilin, China (mainland).,School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, Jilin University, Changchun, Jilin, China (mainland).,School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, Jilin University, Changchun, Jilin, China (mainland).,School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
17
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
18
|
Extracellular cholesterol oxidase production by Streptomyces aegyptia, in vitro anticancer activities against rhabdomyosarcoma, breast cancer cell-lines and in vivo apoptosis. Sci Rep 2018; 8:2706. [PMID: 29426900 PMCID: PMC5807524 DOI: 10.1038/s41598-018-20786-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/24/2018] [Indexed: 11/08/2022] Open
Abstract
In recent years, microbial cholesterol oxidases have gained great attention due to its widespread use in medical applications for serum cholesterol determination. Streptomyces aegyptia strain NEAE-102 exhibited high level of extracellular cholesterol oxidase production using a minimum medium containing cholesterol as the sole source of carbon. Fifteen variables were screened using Plackett–Burman design for the enhanced cholesterol oxidase production. The most significant variables affecting enzyme production were further optimized by using the face-centered central composite design. The statistical optimization resulted in an overall 4.97-fold increase (15.631 UmL−1) in cholesterol oxidase production in the optimized medium as compared with the unoptimized medium before applying Plackett Burman design (3.1 UmL−1). The purified cholesterol oxidase was evaluated for its in vitro anticancer activities against five human cancer cell lines. The selectivity index values on rhabdomyosarcoma and breast cancer cell lines were 3.26 and 2.56; respectively. The in vivo anticancer activity of cholesterol oxidase was evaluated against Ehrlich solid tumor model. Compared with control mice, tumors growth was significantly inhibited in the mice injected with cholesterol oxidase alone, doxorubicin alone and cholesterol oxidase/doxorubicin combination by 60.97%, 72.99% and 97.04%; respectively. These results demonstrated that cholesterol oxidase can be used as a promising natural anticancer drug.
Collapse
|
19
|
Liao D, Guo Y, Xiang D, Dang R, Xu P, Cai H, Cao L, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the hippocampus of rats after administration of doxorubicin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:231-239. [PMID: 29430172 PMCID: PMC5796460 DOI: 10.2147/dddt.s151511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective Long-term use of doxorubicin (Dox) can cause neurobiological side effects associated with depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural function, much is still unknown concerning the biological link between the NRG1/ErbB pathway and the Dox-induced neurotoxicity. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the hippocampus of rats following Dox treatment. Materials and methods The drug was administered every 2 days at a dose of 2.5 mg/kg, and the animals in different groups were treated with intraperitoneal injection for three or seven times, respectively. Results Our data showed that the rats treated with Dox for seven times (DoxL group) exhibited depression-like behaviors, whereas the short-term treatment (DoxS group) had no effect on the behavioral changes. Dox treatment also induced the neural apoptosis with more severe neurotoxicity. Intriguingly, the expression of NRG1 and the ratio of pErbB4/ErbB4 and pErbB2/ErbB2 were significantly decreased in the DoxL group, but enhanced activation of ErbB receptors was observed in the DoxS group. In parallel, administration of Dox for seven times suppressed the downstream Akt and ERK phosphorylation, while the Akt phosphorylation was enhanced with the administration of Dox for three times. Conclusion Our data first showed the Dox-induced alterations of the NRG1/ErbB system in the hippocampus, indicating the potential involvement of the NRG1/ErbB pathway in the Dox-induced nervous system dysfunction.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital.,Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Yujin Guo
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Daxiong Xiang
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Ruili Dang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Pengfei Xu
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Hualin Cai
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital
| | - Pei Jiang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|