1
|
Kirichuk O, Srimasorn S, Zhang X, Roberts ARE, Coche-Guerente L, Kwok JCF, Bureau L, Débarre D, Richter RP. Competitive Specific Anchorage of Molecules onto Surfaces: Quantitative Control of Grafting Densities and Contamination by Free Anchors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18410-18423. [PMID: 38049433 PMCID: PMC10734310 DOI: 10.1021/acs.langmuir.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.
Collapse
Affiliation(s)
- Oksana Kirichuk
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Sumitra Srimasorn
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaoli Zhang
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Abigail R. E. Roberts
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Liliane Coche-Guerente
- Département
de Chimie Moléculaire, Université
Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | - Jessica C. F. Kwok
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lionel Bureau
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Ralf P. Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Seto H, Harada M, Nagaura H, Taniguchi H, Murakami T, Kimura I, Hirohashi Y, Shinto H. Formation of glyco-functionalized interfaces for protein binding using polyphenolic glycoside. Carbohydr Res 2020; 492:108002. [PMID: 32278120 DOI: 10.1016/j.carres.2020.108002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
In this study, a polyphenolic glycoside (α-glucosyl rutin) was used to form glyco-functionalized interfaces for protein binding. α-Glucosyl rutin was coated onto precious metals, metal oxides, and synthetic polymers, including polyethylene and polytetrafluoroethylene with poor surface modifiability. The glyco-functionalized interfaces bound strongly and specifically to concanavalin A and Bauhinia purpurea lectin, which have different carbohydrate specificities. Competitive adsorption tests demonstrated that the binding sites for the abovementioned lectins were glucosyl and rhamnosyl residues, respectively. The glyco-functionalized interfaces maintained the protein binding ability after being stored in aqueous solution for 1 day and in air for 160 days. Once the glyco-functionalized interfaces were formed on gold, silicon dioxide, polystyrene, and polytetrafluoroethylene using α-glucosyl rutin, all the glyco-functionalized interfaces bound to concanavalin A rather than peanut agglutinin.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mao Harada
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hidenori Nagaura
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Honoka Taniguchi
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tatsuya Murakami
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Ichiro Kimura
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yumiko Hirohashi
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroyuki Shinto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
4
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
5
|
Fast E, Schlimm A, Lautenschläger I, Clausen KU, Strunskus T, Spormann C, Lindhorst TK, Tuczek F. Improving the Switching Capacity of Glyco-Self-Assembled Monolayers on Au(111). Chemistry 2020; 26:485-501. [PMID: 31660639 PMCID: PMC6973251 DOI: 10.1002/chem.201903644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Indexed: 11/26/2022]
Abstract
Self-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs. Different concepts, in particular self-dilution and rigid biaryl backbones, have been investigated. The required SH-functionalized azobenzene glycoconjugates were synthesized through a modular approach, and the respective glyco-SAMs were fabricated on Au(111). Their photoswitching properties have been extensively investigated by applying a powerful set of methods (IRRAS, XPS, and NEXAFS). Indeed, the combination of tailor-made biaryl-azobenzene glycosides and suitable diluent molecules led to photoswitchable glyco-SAMs with a significantly enhanced and unprecedented switching capacity.
Collapse
Affiliation(s)
- Ellen Fast
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Alexander Schlimm
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Irene Lautenschläger
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Kai Uwe Clausen
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Thomas Strunskus
- Institute for Materials Science—Multicomponent MaterialsChristian-Albrechts-University KielKaisertr. 224143KielGermany
| | - Carina Spormann
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Felix Tuczek
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| |
Collapse
|
6
|
Di Iorio D, Huskens J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020; 9:53-66. [PMID: 31921546 PMCID: PMC6948118 DOI: 10.1002/open.201900290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
In the study of multivalent interactions at interfaces, as occur for example at cell membranes, the density of the ligands or receptors displayed at the interface plays a pivotal role, affecting both the overall binding affinities and the valencies involved in the interactions. In order to control the ligand density at the interface, several approaches have been developed, and they concern the functionalization of a wide range of materials. Here, different methods employed in the modification of surfaces with controlled densities of ligands are being reviewed. Examples of such methods encompass the formation of self-assembled monolayers (SAMs), supported lipid bilayers (SLBs) and polymeric layers on surfaces. Particular emphasis is given to the methods employed in the study of different types of multivalent biological interactions occurring at the functionalized surfaces and their working principles.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
7
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
8
|
Xu D, Arnold K, Liu J. Using structurally defined oligosaccharides to understand the interactions between proteins and heparan sulfate. Curr Opin Struct Biol 2018; 50:155-161. [PMID: 29684759 DOI: 10.1016/j.sbi.2018.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS) is widely present on the animal cell surface and in the extracellular matrix. HS achieves its biological functions by interacting with proteins to change proteins' conformation, oligomerization state and cellular location. The challenging question to study HS is how to dissect the relationship between the structures of HS and the biological activities. In the past several years, crucial techniques have been developed to overcome this challenge. A novel chemoenzymatic method to synthesize structurally defined HS oligosaccharides has offered a key access to this class of sulfated carbohydrate molecules. Recent rapid progress of HS microarray technology allows screening of the interaction of a target protein with a large number of HS oligosaccharides. The improved availability of HS oligosaccharides and HS microarray analysis will undoubtedly accelerate the investigation of the contribution of the specific sulfated carbohydrate structures of HS in a wide range of biological contexts.
Collapse
Affiliation(s)
- Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, SUNY, Buffalo, NY 14214, USA.
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
10
|
Gray CJ, Sánchez-Ruíz A, Šardzíková I, Ahmed YA, Miller RL, Reyes Martinez JE, Pallister E, Huang K, Both P, Hartmann M, Roberts HN, Šardzík R, Mandal S, Turnbull JE, Eyers CE, Flitsch SL. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins. Anal Chem 2017; 89:4444-4451. [PMID: 28318230 DOI: 10.1021/acs.analchem.6b04122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Antonio Sánchez-Ruíz
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Ivana Šardzíková
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Yassir A Ahmed
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Rebecca L Miller
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Juana E Reyes Martinez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato , Col. Noria Alta S/N, Guanajuato 36050, México
| | - Edward Pallister
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Kun Huang
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Peter Both
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Mirja Hartmann
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Hannah N Roberts
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Robert Šardzík
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Santanu Mandal
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jerry E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Sabine L Flitsch
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
11
|
Formisano N, Bhalla N, Heeran M, Reyes Martinez J, Sarkar A, Laabei M, Jolly P, Bowen CR, Taylor JT, Flitsch S, Estrela P. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosens Bioelectron 2016; 85:103-109. [DOI: 10.1016/j.bios.2016.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
|
12
|
Biggs CI, Walker M, Gibson MI. "Grafting to" of RAFTed Responsive Polymers to Glass Substrates by Thiol-Ene and Critical Comparison to Thiol-Gold Coupling. Biomacromolecules 2016; 17:2626-33. [PMID: 27409356 PMCID: PMC4979048 DOI: 10.1021/acs.biomac.6b00662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Surface-grafted polymers have been widely applied to modulate biological interfaces and introduce additional functionality. Polymers derived from reversible addition-fragmentation transfer (RAFT) polymerization have a masked thiol at the ω-chain end providing an anchor point for conjugation and in particular displays high affinity for gold surfaces (both flat and particulate). In this work, we report the direct grafting of RAFTed polymers by a "thiol-ene click" (Michael addition) onto glass substrates rather than gold, which provides a more versatile surface for subsequent array-based applications but retains the simplicity. The immobilization of two thermoresponsive polymers are studied here, poly[oligo(ethylene glycol) methyl ether methacrylate] (pOEGMA) and poly(N-isopropylacrylamide) (pNIPAM). Using a range of surface analysis techniques the grafting efficiency was compared to thiol-gold and was quantitatively compared to the gold alternative using quartz crystal microbalance. It is shown that this method gives easy access to grafted polymer surfaces with pNIPAM resulting in significantly increased surface coverage compared to pOEGMA. The nonfouling (protein resistance) character of these surfaces is also demonstrated.
Collapse
Affiliation(s)
- Caroline I. Biggs
- Department of Chemistry, Warwick Medical School, and Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Marc Walker
- Department of Chemistry, Warwick Medical School, and Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, Warwick Medical School, and Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
13
|
Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses. MICROARRAYS 2016; 5:microarrays5010003. [PMID: 27600069 PMCID: PMC5003448 DOI: 10.3390/microarrays5010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
Microarray technologies inspired the development of carbohydrate arrays. Initially, carbohydrate array technology was hindered by the complex structures of glycans and their structural variability. The first designs of glycoarrays focused on the HTP (high throughput) study of protein-glycan binding events, and subsequently more in-depth kinetic analysis of carbohydrate-protein interactions. However, the applications have rapidly expanded and now achieve successful discrimination of selective interactions between carbohydrates and, not only proteins, but also viruses, bacteria and eukaryotic cells, and most recently even live cell responses to immobilized glycans. Combining array technology with other HTP technologies such as mass spectrometry is expected to allow even more accurate and sensitive analysis. This review provides a broad overview of established glycoarray technologies (with a special focus on glycosaminoglycan applications) and their emerging applications to the study of complex interactions between glycans and whole living cells.
Collapse
|
14
|
Hoypierres J, Dulong V, Rihouey C, Alexandre S, Picton L, Thébault P. Two methods for one-point anchoring of a linear polysaccharide on a gold surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:254-261. [PMID: 25496460 DOI: 10.1021/la504212k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two strategies to achieve a one-point anchoring of a hydrolyzed pullulan (P9000) on a gold surface are compared. The first strategy consists of forming a self-assembled monolayer of a 6-amino-1-hexanethiol (AHT) and then achieving reductive amination on the surface between the aminated surface and the aldehyde of the polysaccharide reductive end sugar. The second consists of incorporating a thiol function at the extremity of the pullulan (via the same reductive amination), leading to P9000-AHT and then immobilizing it on gold by a spontaneous reaction between solid gold and thiol. The modified pullulan was characterized by NMR and size-exclusion chromatography coupled to a light-scattering detector. P9000-AHT appears to be in a disulfide dimer form in solution but recovers its unimer form with dithiothreitol (DTT) treatment. The comparison of the two strategies by contact angle and XPS revealed that the second strategy is more efficient for the pullulan one-point anchoring. P9000-AHT even in its dimer form is easily grafted onto the surface. The grafted polymer seems to be more in a coil conformation than in a rigid brush. Furthermore, QCM measurements highlighted that the second strategy leads to a grafting density of around 3.5 × 10(13) molecules·cm(-2) corresponding to a high surface coverage. The elaboration of a dense and oriented layer of polysaccharides covalently linked to a gold surface might enhance the use of such modified polysaccharides in various fields.
Collapse
|
15
|
Weber T, Chandrasekaran V, Stamer I, Thygesen MB, Terfort A, Lindhorst TK. Schaltung bakterieller Adhäsion auf glycosylierten Oberflächen durch reversible Reorientierung der Kohlenhydratliganden. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Switching of Bacterial Adhesion to a Glycosylated Surface by Reversible Reorientation of the Carbohydrate Ligand. Angew Chem Int Ed Engl 2014; 53:14583-6. [DOI: 10.1002/anie.201409808] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 01/08/2023]
|
17
|
Hushegyi A, Tkac J. Are glycan biosensors an alternative to glycan microarrays? ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:6610-6620. [PMID: 27231487 PMCID: PMC4878710 DOI: 10.1039/c4ay00692e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Complex carbohydrates (glycans) play an important role in nature and study of their interaction with proteins or intact cells can be useful for understanding many physiological and pathological processes. Such interactions have been successfully interrogated in a highly parallel way using glycan microarrays, but this technique has some limitations. Thus, in recent years glycan biosensors in numerous progressive configurations have been developed offering distinct advantages compared to glycan microarrays. Thus, in this review advances achieved in the field of label-free glycan biosensors are discussed.
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - J Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| |
Collapse
|
18
|
Chandrasekaran V, Jacob H, Petersen F, Kathirvel K, Tuczek F, Lindhorst TK. Synthesis and Surface-Spectroscopic Characterization of Photoisomerizable glyco-SAMs on Au(111). Chemistry 2014; 20:8744-52. [DOI: 10.1002/chem.201402075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 12/31/2022]
|
19
|
Wang L, Cummings RD, Smith DF, Huflejt M, Campbell CT, Gildersleeve JC, Gerlach JQ, Kilcoyne M, Joshi L, Serna S, Reichardt NC, Parera Pera N, Pieters RJ, Eng W, Mahal LK. Cross-platform comparison of glycan microarray formats. Glycobiology 2014; 24:507-17. [PMID: 24658466 DOI: 10.1093/glycob/cwu019] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.
Collapse
Affiliation(s)
- Linlin Wang
- Biomedical Chemistry Institute, New York University Department of Chemistry, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hughes MA, Brennan PM, Bunting AS, Shipston MJ, Murray AF. Cell patterning on photolithographically defined parylene-C: SiO2 substrates. J Vis Exp 2014. [PMID: 24637580 PMCID: PMC4143168 DOI: 10.3791/50929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO2 wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO2 regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology.
Collapse
Affiliation(s)
- Mark A Hughes
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh;
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital
| | - Andrew S Bunting
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
| | - Mike J Shipston
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh
| | - Alan F Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
| |
Collapse
|
21
|
Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. Enzymatic reactions on immobilised substrates. Chem Soc Rev 2014; 42:6378-405. [PMID: 23579870 DOI: 10.1039/c3cs60018a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Road, Manchester, M1 7DN, UK
| | | | | | | |
Collapse
|
22
|
O'Neill EC, Rashid AM, Stevenson CEM, Hetru AC, Gunning AP, Rejzek M, Nepogodiev SA, Bornemann S, Lawson DM, Field RA. Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials. Chem Sci 2014. [DOI: 10.1039/c3sc51829a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
24
|
Sauer J, Abou Hachem M, Svensson B, Jensen KJ, Thygesen MB. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces. Carbohydr Res 2013; 375:21-8. [PMID: 23680647 DOI: 10.1016/j.carres.2013.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
We here report a quantitative study on the binding kinetics of inhibition of the enzyme glucoamylase and how individual active site amino acid mutations influence kinetics. To address this challenge, we have developed a fast and efficient method for anchoring native acarbose to gold chip surfaces for surface plasmon resonance studies employing wild type glucoamylase and active site mutants, Y175F, E180Q, and R54L, as analytes. The key method was the chemoselective and protecting group-free oxime functionalization of the pseudo-tetrasaccharide-based inhibitor acarbose. By using this technique we have shown that at pH 7.0 the association and dissociation rate constants for the acarbose-glucoamylase interaction are 10(4)M(-1)s(-1) and 10(3)s(-1), respectively, and that the conformational change to a tight enzyme-inhibitor complex affects the dissociation rate constant by a factor of 10(2)s(-1). Additionally, the acarbose-presenting SPR surfaces could be used as a glucoamylase sensor that allowed rapid, label-free affinity screening of small carbohydrate-based inhibitors in solution, which is otherwise difficult with immobilized enzymes or other proteins.
Collapse
Affiliation(s)
- Jørgen Sauer
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
25
|
Song MS, Choi SP, Lee J, Kwon YJ, Sim SJ. Real-time, sensitive, and specific detection of promoter-polymerase interactions in gene transcription using a nanoplasmonic sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1265-1269. [PMID: 23166096 DOI: 10.1002/adma.201203467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/15/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Min Sun Song
- Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
26
|
Hughes MA, Bunting AS, Cameron K, Murray AF, Shipston MJ. Modulating patterned adhesion and repulsion of HEK 293 cells on microengineered parylene-C/SiO(2) substrates. J Biomed Mater Res A 2013; 101:349-57. [PMID: 22847960 PMCID: PMC4243025 DOI: 10.1002/jbm.a.34329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
This article describes high resolution patterning of HEK 293 cells on a construct of micropatterned parylene-C and silicon dioxide. Photolithographic patterning of parylene-C on silicon dioxide is an established and consistent process. Activation of patterns by immersion in serum has previously enabled patterning of murine hippocampal neurons and glia, as well as the human hNT cell line. Adapting this protocol we now illustrate high resolution patterning of the HEK 293 cell line. We explore hypotheses that patterning is mediated by transmembrane integrin interactions with differentially absorbed serum proteins, and also by etching the surface substrate with piranha solution. Using rationalized protein activation solutions in place of serum, we show that cell patterning can be modulated or even inverted. These cell-patterning findings assist our wider goal of engineering and interfacing functional neuronal networks via a silicon semiconductor platform.
Collapse
Affiliation(s)
- M A Hughes
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Grabosch C, Kind M, Gies Y, Schweighöfer F, Terfort A, Lindhorst TK. A ‘dual click’ strategy for the fabrication of bioselective, glycosylated self-assembled monolayers as glycocalyx models. Org Biomol Chem 2013; 11:4006-15. [DOI: 10.1039/c3ob40386f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Puvirajesinghe TM, Turnbull JE. Glycomics approaches for the bioassay and structural analysis of heparin/heparan sulphates. Metabolites 2012; 2:1060-89. [PMID: 24957775 PMCID: PMC3901230 DOI: 10.3390/metabo2041060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 01/16/2023] Open
Abstract
The glycosaminoglycan heparan sulphate (HS) has a heterogeneous structure; evidence shows that specific structures may be responsible for specific functions in biological processes such as blood coagulation and regulation of growth factor signalling. This review summarises the different experimental tools and methods developed to provide more rapid methods for studying the structure and functions of HS. Rapid and sensitive methods for the facile purification of HS, from tissue and cell sources are reviewed. Data sets for the structural analysis are often complex and include multiple sample sets, therefore different software and tools have been developed for the analysis of different HS data sets. These can be readily applied to chromatographic data sets for the simplification of data (e.g., charge separation using strong anion exchange chromatography and from size separation using gel filtration techniques. Finally, following the sequencing of the human genome, research has rapidly advanced with the introduction of high throughput technologies to carry out simultaneous analyses of many samples. Microarrays to study macromolecular interactions (including glycan arrays) have paved the way for bioassay technologies which utilize cell arrays to study the effects of multiple macromolecules on cells. Glycan bioassay technologies are described in which immobilisation techniques for saccharides are exploited to develop a platform to probe cell responses such as signalling pathway activation. This review aims at reviewing available techniques and tools for the purification, analysis and bioassay of HS saccharides in biological systems using "glycomics" approaches.
Collapse
Affiliation(s)
- Tania M Puvirajesinghe
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, 10039 Marseille, France.
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry and Cell Biology, Institute of Integrative Biology, The University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
30
|
Puvirajesinghe TM, Ahmed YA, Powell AK, Fernig DG, Guimond SE, Turnbull JE. Array-based functional screening of heparin glycans. ACTA ACUST UNITED AC 2012; 19:553-8. [PMID: 22633407 DOI: 10.1016/j.chembiol.2012.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/18/2022]
Abstract
Array methodologies have become powerful tools for interrogation of glycan-protein interactions but have critically lacked the ability to generate cell response data. Here, we report the development of a slide-based array method exemplified by measurement of activation of fibroblast growth factor signaling by heparin saccharides. Heparan sulfate-deficient Swiss 3T3 cells were overlaid onto an aminosilane-coated slide surface onto which heparin saccharides had been spotted and immobilized. The cells were transiently stimulated with FGF2 and immunofluorescence measured to assess downstream ERK1/2 phosphorylation. Activation of this signaling pathway response was restricted to cells exposed to heparin saccharides competent to activate FGF2 signaling. Differential activation of the overlaid cells by different-sized heparin saccharides was demonstrated by quantitative measurement of fluorescence intensity. This "glycobioarray" platform has significant potential as a generic tool for functional glycomics screening.
Collapse
Affiliation(s)
- Tania M Puvirajesinghe
- Centre for Glycobiology, Department of Biochemistry and Cell Biology, Institute of Integrative Biology, The University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
31
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Pandey B, Tan YH, Fujikawa K, Demchenko AV, Stine KJ. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold. J Carbohydr Chem 2012; 31:466-503. [PMID: 23519474 PMCID: PMC3601678 DOI: 10.1080/07328303.2012.683909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein.
Collapse
Affiliation(s)
- Binod Pandey
- Department of Chemistry and Biochemistry, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA ; Center for Nanoscience, University of Missouri - Saint Louis, Saint Louis, MO 63121, USA
| | | | | | | | | |
Collapse
|
33
|
Laurent N, Haddoub R, Voglmeir J, Flitsch SL. MALDI-ToF MS analysis of glycosyltransferase activities on gold surface arrays. Methods Mol Biol 2012; 808:269-284. [PMID: 22057532 DOI: 10.1007/978-1-61779-373-8_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glycan-processing enzymes such as glycosyltransferases and glycosidases are responsible for the makeup of the glycome. The definition of their substrate specificities is, therefore, a central task in glycomics. In addition, these enzymes are themselves useful synthetic tools for the generation of complex carbohydrate structures as an alternative to tedious chemical synthesis. There has been great interest in using microarrays for studying these glycoenzymes because it allows the specificity of the enzyme to be probed against a panel of immobilized potential substrates, and also expands the repertoire of sugar arrays available for further carbohydrate-protein interaction studies. In particular, self-assembled monolayers (SAMs) of alkanethiols on gold surfaces have proven to be a valuable platform for such studies due to their robustness and their biocompatible, well-defined structure. Furthermore, a direct observation of the change in mass of immobilized substrates due to enzymatic processing is possible through label-free MALDI-ToF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) technique. In this chapter, we describe the preparation of SAMs-coated gold surface arrays presenting carbohydrate or (glyco)peptide substrates, either pre-formed or directly synthesized on-chip, and MALDI-ToF MS analysis of glycosyltransferase activities on these immobilized substrates.
Collapse
Affiliation(s)
- Nicolas Laurent
- Manchester Interdisciplinary Biocentre & School of Chemistry, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
34
|
Abstract
Glycan microarrays, carrying hundreds of different sugars on chip surfaces, have become a standard tool for the study of interactions of biomolecules with carbohydrates. The chip-based format offers important advantages, including the ability to screen in parallel several thousand binding events on a single slide, the minimal amount of sample required for one experiment, and the multivalent display of sugars on the chip that mimics the presentation of carbohydrates in nature. This chapter presents recent advances and future challenges in glycan microarray technology. We describe different immobilization and detection methods as well as applications in glycomics, drug discovery, and biomedicine.
Collapse
Affiliation(s)
- José L de Paz
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, CSIC and US, Sevilla, Spain.
| | | |
Collapse
|
35
|
Beloqui A, Sanchez-Ruiz A, Martin-Lomas M, Reichardt NC. A surface-based mass spectrometry method for screening glycosidase specificity in environmental samples. Chem Commun (Camb) 2011; 48:1701-3. [PMID: 22189916 DOI: 10.1039/c2cc16537f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new surface-based MALDI-Tof-MS glycosyl hydrolase assay has been developed in which lipid-tagged oligosaccharides, representing defined fragments of major plant cell wall polysaccharides, are immobilized via hydrophobic interactions on an alkylthiol functionalised gold sample plate and employed in the functional screening of several purified enzymes, environmental samples and saliva.
Collapse
Affiliation(s)
- Ana Beloqui
- Biofunctional Nanomaterials Department, CICbiomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | |
Collapse
|
36
|
Field RA, Andrade P, Campo VL, Carvalho I, Collet BYM, Crocker PR, Fais M, Karamanska R, Mukhopadhayay B, Nepogodiev SA, Rashid A, Rejzek M, Russell DA, Schofield CL, van Well RM. Synthetic Glycans, Glycoarrays, and Glyconanoparticles To Investigate Host Infection by Trypanosoma cruzi. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1091.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Peterson Andrade
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Vanessa L. Campo
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ivone Carvalho
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Beatrice Y. M. Collet
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Paul R. Crocker
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Margherita Fais
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Rositsa Karamanska
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Balaram Mukhopadhayay
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Sergey A. Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Abdul Rashid
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - David A. Russell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Claire L. Schofield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Renate M. van Well
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
37
|
Glycosylated self-assembled monolayers for arrays and surface analysis. Methods Mol Biol 2011. [PMID: 22057519 DOI: 10.1007/978-1-61779-373-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the past few decades, carbohydrates (glycans) have received growing attention for their many roles in biological systems, including pathogenesis, receptor-ligand interactions, and cell signaling. To unravel the biology of this important category of biomolecules, a host of new tools have been developed for glycomics investigation. At the forefront is the carbohydrate microarray, developed to immobilize functional glycans on a solid substrate to rapidly screen a variety of potential binding partners (carbohydrates, proteins, nucleic acids, cells, and viruses). The essential role played by surface modification on glycan microarray performance requires new methods to rigorously characterize glycan surface chemistries. Due to their highly reproducible nature and well-studied properties, self-assembled monolayers (SAMs) on gold are powerful models for presenting glycans on a solid substrate, engineering biomimetic microenvironments and exploring the bioactivity of immobilized carbohydrates via surface plasmon resonance (SPR). However, it can be challenging to prepare high quality glycosylated SAMs (glyco-SAMs) that retain their biological function following surface immobilization. Herein, a selection of versatile methods for the preparation of glyco-SAMs using natural and chemically modified glycans is described. This chapter will highlight the following three immobilization techniques: (1) direct self assembly using thiolated glycosides onto gold, (2) tethering aminated glycosides onto -amine-reactive SAMs, and (3) conjugating natural glycan onto divinyl sulfone-activated SAMs.
Collapse
|
38
|
Šardzík R, Sharma R, Kaloo S, Voglmeir J, Crocker PR, Flitsch SL. Chemoenzymatic synthesis of sialooligosaccharides on arrays for studies of cell surface adhesion. Chem Commun (Camb) 2011; 47:5425-7. [PMID: 21468399 PMCID: PMC3252816 DOI: 10.1039/c1cc10745c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 11/21/2022]
Abstract
Sialooligosaccharides were generated by direct enzymatic glycosylation on arrays and the resulting surfaces were suitable for the study of carbohydrate-specific cell adhesion.
Collapse
Affiliation(s)
- Róbert Šardzík
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Ritu Sharma
- College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , UK
| | - Sara Kaloo
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Josef Voglmeir
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| | - Paul R. Crocker
- College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , UK
| | - Sabine L. Flitsch
- Manchester Interdisciplinary Biocentre & School of Chemistry , The University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . ; Fax: +44 (0)161 2751311 ; Tel: +44 (0)161 3065172
| |
Collapse
|
39
|
Dietrich PM, Horlacher T, Girard-Lauriault PL, Gross T, Lippitz A, Min H, Wirth T, Castelli R, Seeberger PH, Unger WES. Adlayers of dimannoside thiols on gold: surface chemical analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4808-4815. [PMID: 21417247 DOI: 10.1021/la104038q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C-O) and acetal moieties (O-C-O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS.
Collapse
Affiliation(s)
- Paul M Dietrich
- Surface and Thin Film Analysis WG, BAM Federal Institute for Materials Research and Testing, D-12203 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt NC. MALDI-TOF Mass Spectrometric Analysis of Enzyme Activity and Lectin Trapping on an Array of N-Glycans. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt NC. MALDI-TOF Mass Spectrometric Analysis of Enzyme Activity and Lectin Trapping on an Array of N-Glycans. Angew Chem Int Ed Engl 2011; 50:1801-4. [DOI: 10.1002/anie.201006304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/06/2022]
|
42
|
Ionic liquids in oligosaccharide synthesis: towards mucin-type glycan probes. Biochem Soc Trans 2011; 38:1368-73. [PMID: 20863315 DOI: 10.1042/bst0381368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present article provides an overview on mucins and their role in biological processes, while aiming to familiarize readers with the current tools available for the synthesis of structurally defined mucin-type glycan probes including the advantages and potential applications of using ionic liquids in the synthesis of this important class of oligosaccharides. Furthermore, we also highlight recent developments in glycoarray technology that can enable high-sensitivity and high-throughput analysis of this important class of protein-carbohydrate interactions.
Collapse
|
43
|
Pulsipher A, Yousaf MN. A renewable, chemoselective, and quantitative ligand density microarray for the study of biospecific interactions. Chem Commun (Camb) 2011; 47:523-5. [DOI: 10.1039/c0cc01509a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Adak AK, Leonov AP, Ding N, Thundimadathil J, Kularatne S, Low PS, Wei A. Bishydrazide glycoconjugates for lectin recognition and capture of bacterial pathogens. Bioconjug Chem 2010; 21:2065-75. [PMID: 20925370 PMCID: PMC2987539 DOI: 10.1021/bc100288c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bishydrazides are versatile linkers for attaching glycans to substrates for lectin binding and pathogen detection schemes. The α,ω-bishydrazides of carboxymethylated hexa(ethylene glycol) (4) can be conjugated at one end to unprotected oligosaccharides, then attached onto carrier proteins, tethered onto activated carboxyl-terminated surfaces, or functionalized with a photoactive cross-linking agent for lithographic patterning. Glycoconjugates of bishydrazide 4 can also be converted into dithiocarbamates (DTCs) by treatment with CS(2) under mild conditions, for attachment onto gold substrates. The immobilized glycans serve as recognition elements for cell-surface lectins and enable the detection and capture of bacterial pathogens such as Pseudomonas aeruginosa by their adsorption onto micropatterned substrates. A detection limit of 10³ cfu/mL is demonstrated, using a recently introduced method based on optical pattern recognition.
Collapse
Affiliation(s)
- Avijit Kumar Adak
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084
| | - Alexei P. Leonov
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084
| | | | | | - Sumith Kularatne
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084
| | - Philip S. Low
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084
| | - Alexander Wei
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084
| |
Collapse
|
45
|
Abstract
HSs (heparan sulfates) are a complex family of cell-surface and matrix polysaccharides that have diverse biological functions, underpinned by structurally diverse patterns of backbone chain modification, especially by sulfate groups. These variant structures represent a molecular code, the 'heparanome', that confers the ability to interact selectively with a wide interactome of proteins, the 'heparactome', and thereby influence a network of cellular events. It is becoming increasingly apparent that understanding the structure-activity relationships of these enigmatic molecules requires the development of a holistic systems biology view of their structure and interactions. In the present paper, I describe some of the new tools available to realize this strategy, and discuss the future potential for the combined application of glycomics and other '-omics' approaches to define the molecular code of the heparanome.
Collapse
Affiliation(s)
- Jeremy E Turnbull
- Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
46
|
Kopitzki S, Jensen KJ, Thiem J. Synthesis of benzaldehyde-functionalized glycans: a novel approach towards glyco-SAMs as a tool for surface plasmon resonance studies. Chemistry 2010; 16:7017-29. [PMID: 20432412 DOI: 10.1002/chem.200902693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In recent years the interest in tools for investigating carbohydrate-protein (CPI) and carbohydrate-carbohydrate interactions (CCI) has increased significantly. For the investigation of CPI and CCI, several techniques employing different linking methods are available. Surface plasmon resonance (SPR) imaging is a most appropriate tool for analyzing the formation of self-assembled monolayers (SAM) of carbohydrate derivatives, which can mimic the glycocalyx. In contrast to the SPR imaging methods used previously to analyze CPI and CCI, the novel approach reported herein allows a facile and rapid synthesis of linker spacers and carbohydrate derivatives and enhances the binding event by controlling the amount and orientation of ligand. For immobilization on biorepulsive amino-functionalized SPR chips by reductive amination, diverse aldehyde-functionalized glycan structures (glucose, galactose, mannose, glucosamine, cellobiose, lactose, and lactosamine) have been synthesized in several facile steps that include olefin metathesis. Effective immobilization and the first binding studies are presented for the lectin concanavalin A.
Collapse
Affiliation(s)
- Sebastian Kopitzki
- Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
47
|
Voglmeir J, Šardzík R, Weissenborn MJ, Flitsch SL. Enzymatic Glycosylations on Arrays. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:437-44. [DOI: 10.1089/omi.2010.0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Josef Voglmeir
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7ND, UK
| | - Robert Šardzík
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7ND, UK
| | - Martin J. Weissenborn
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7ND, UK
| | - Sabine L. Flitsch
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7ND, UK
| |
Collapse
|
48
|
Sardzík R, Noble GT, Weissenborn MJ, Martin A, Webb SJ, Flitsch SL. Preparation of aminoethyl glycosides for glycoconjugation. Beilstein J Org Chem 2010; 6:699-703. [PMID: 20978609 PMCID: PMC2956404 DOI: 10.3762/bjoc.6.81] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022] Open
Abstract
The synthesis of a number of aminoethyl glycosides of cell-surface carbohydrates, which are important intermediates for glycoarray synthesis, is described. A set of protocols was developed which provide these intermediates, in a short number of steps, from commercially available starting materials.
Collapse
Affiliation(s)
- Robert Sardzík
- Manchester Interdisciplinary Biocentre & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Pulsipher A, Yousaf MN. Surface chemistry and cell biological tools for the analysis of cell adhesion and migration. Chembiochem 2010; 11:745-53, 730. [PMID: 20198673 DOI: 10.1002/cbic.200900787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abigail Pulsipher
- Department of Chemistry and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
50
|
Jeffers F, Fuell C, Tailford LE, Mackenzie DA, Bongaerts RJ, Juge N. Mucin-lectin interactions assessed by flow cytometry. Carbohydr Res 2010; 345:1486-91. [PMID: 20557876 DOI: 10.1016/j.carres.2010.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 11/21/2022]
Abstract
The O-glycosylated domains of mucins and mucin-type glycoproteins contain 50-80% of carbohydrate and possess expanded conformations. Herein, we describe a flow cytometry (FCM) method for determining the carbohydrate-binding specificities of lectins to mucin. Biotinylated mucin was immobilized on streptavidin-coated beads, and the binding specificities of the major mucin sugar chains, as determined by GC-MS and MALDI-ToF, were monitored using fluorescein-labeled lectins. The specificities of lectins toward specific biotinylated glycans were determined as controls. The advantage of flexibility, multiparametric data acquisition, speed, sensitivity, and high-throughput capability makes flow cytometry a valuable tool to study diverse interactions between glycans and proteins.
Collapse
Affiliation(s)
- Faye Jeffers
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | | | | | | | | |
Collapse
|