1
|
Katoh T, Suga H. Reprogramming the genetic code with flexizymes. Nat Rev Chem 2024; 8:879-892. [PMID: 39433956 DOI: 10.1038/s41570-024-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
In the canonical genetic code, the 61 sense codons are assigned to the 20 proteinogenic amino acids. Advancements in genetic code manipulation techniques have enabled the ribosomal incorporation of nonproteinogenic amino acids (npAAs). The critical molecule for translating messenger RNA (mRNA) into peptide sequences is aminoacyl-transfer RNA (tRNA), which recognizes the mRNA codon through its anticodon. Because aminoacyl-tRNA synthetases (ARSs) are highly specific for their respective amino acid-tRNA pairs, it is not feasible to use natural ARSs to prepare npAA-tRNAs. However, flexizymes are adaptable aminoacylation ribozymes that can be used to prepare diverse aminoacyl-tRNAs at will using amino acids activated with suitable leaving groups. Regarding recognition elements, flexizymes require only an aromatic ring in either the leaving group or side chain of the activated amino acid, and the conserved 3'-end CCA of the tRNA. Therefore, flexizymes allow virtually any amino acid to be charged onto any tRNA. The flexizyme system can handle not only L-α-amino acids with side chain modifications but also various backbone-modified npAAs. This Review describes the development of flexizyme variants and discusses their structure and mechanism and their applications in genetic code reprogramming for the synthesis of unique peptides and proteins.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Pelton JM, Hochuli JE, Sadecki PW, Katoh T, Suga H, Hicks LM, Muratov EN, Tropsha A, Bowers AA. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J Am Chem Soc 2024; 146:8016-8030. [PMID: 38470819 PMCID: PMC11151186 DOI: 10.1021/jacs.3c11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Collapse
Affiliation(s)
- Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua E. Hochuli
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ 2,4-amino acids targeting the SARS-CoV-2 main protease. Nat Chem 2023; 15:998-1005. [PMID: 37217786 PMCID: PMC10322702 DOI: 10.1038/s41557-023-01205-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - C David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Michael A McDonough
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Radford F, Rinehart J, Isaacs FJ. Mapping the in vivo fitness landscape of a tethered ribosome. SCIENCE ADVANCES 2023; 9:eade8934. [PMID: 37115918 PMCID: PMC10146877 DOI: 10.1126/sciadv.ade8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Corresponding author.
| |
Collapse
|
6
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
7
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
9
|
Coronado JN, Ngo P, Anslyn EV, Ellington AD. Chemical insights into flexizyme-mediated tRNA acylation. Cell Chem Biol 2022; 29:1071-1112. [PMID: 35413283 DOI: 10.1016/j.chembiol.2022.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system. From this mile-high view, we provide insights for understanding the chemical factors that influence flexizyme-mediated tRNA acylation. We conclude that flexizymes are primitive esterification catalysts that display a modest binding affinity to the monomer's aromatic recognition element. Together, these robust, yet flexible, flexizyme systems provide researchers with unprecedented access for preparing unnatural acyl-tRNA and the opportunity to repurpose the translation machinery for the synthesis of novel biologically derived structures beyond native proteins and peptides.
Collapse
Affiliation(s)
- Jaime N Coronado
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Phuoc Ngo
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
11
|
Goto Y, Suga H. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides. Acc Chem Res 2021; 54:3604-3617. [PMID: 34505781 DOI: 10.1021/acs.accounts.1c00391] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although macrocyclic peptides bearing exotic building blocks have proven their utility as pharmaceuticals, the sources of macrocyclic peptide drugs have been largely limited to mimetics of native peptides or natural product peptides. However, the recent emergence of technologies for discovering de novo bioactive peptides has led to their reconceptualization as a promising therapeutic modality. For the construction and screening of libraries of such macrocyclic peptides, our group has devised a platform to conduct affinity-based selection of massive libraries (>1012 unique sequences) of in vitro expressed macrocyclic peptides, which is referred to as the random nonstandard peptides integrated discovery (RaPID) system. The RaPID system integrates genetic code reprogramming using the FIT (flexible in vitro translation) system, which is largely facilitated by flexizymes (flexible tRNA-aminoacylating ribozymes), with mRNA display technology.We have demonstrated that the RaPID system enables rapid discovery of various de novo pseudo-natural peptide ligands for protein targets of interest. Many examples discussed in this Account prove that thioether-closed macrocyclic peptides (teMPs) obtained by the RaPID system generally exhibit remarkably high affinity and specificity, thereby potently inhibiting or activating a specific function(s) of the target. Moreover, such teMPs are used for a wide range of biochemical applications, for example, as crystallization chaperones for intractable transmembrane proteins and for in vivo recognition of specific cell types. Furthermore, recent studies demonstrate that some teMPs exhibit pharmacological activities in animal models and that even intracellular proteins can be inhibited by teMPs, illustrating the potential of this class of peptides as drug leads.Besides the ring-closing thioether linkage in the teMPs, genetic code reprogramming by the FIT system allows for incorporation of a variety of other exotic building blocks. For instance, diverse nonproteinogenic amino acids, hydroxy acids (ester linkage), amino carbothioic acid (thioamide linkage), and abiotic foldamer units have been successfully incorporated into ribosomally synthesized peptides. Despite such enormous successes in the conventional FIT system, multiple or consecutive incorporation of highly exotic amino acids, such as d- and β-amino acids, is yet challenging, and particularly the synthesis of peptides bearing non-carbonyl backbone structures remains a demanding task. To upgrade the RaPID system to the next generation, we have engaged in intensive manipulation of the FIT system to expand the structural diversity of peptides accessible by our in vitro biosynthesis strategy. Semilogical engineering of tRNA body sequences led to a new suppressor tRNA (tRNAPro1E2) capable of effectively recruiting translation factors, particularly EF-Tu and EF-P. The use of tRNAPro1E2 in the FIT system allows for not only single but also consecutive and multiple elongation of exotic amino acids, such as d-, β-, and γ-amino acids as well as aminobenzoic acids. Moreover, the integration of the FIT system with various chemical or enzymatic posttranslational modifications enables us to expand the range of accessible backbone structures to non-carbonyl moieties prominent in natural products and peptidomimetics. In such systems, FIT-expressed peptides undergo multistep backbone conversions in a one-pot manner to yield designer peptides composed of modified backbones such as azolines, azoles, and ring-closing pyridines. Our current research endeavors focus on applying such in vitro biosynthesis systems for the discovery of bioactive de novo pseudo-natural products.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Adaligil E, Song A, Cunningham CN, Fairbrother WJ. Ribosomal Synthesis of Macrocyclic Peptides with Linear γ 4- and β-Hydroxy-γ 4-amino Acids. ACS Chem Biol 2021; 16:1325-1331. [PMID: 34270222 DOI: 10.1021/acschembio.1c00292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the ribosomal elongation of linear γ4- and β-hydroxy-γ4-amino acids (statines) to expand the nonproteinogenic amino acid repertoire of natural product-like combinatorial peptide libraries. First, we demonstrated the successful ribosomal incorporation of four linear γ4-amino acids (γ4Gly, (S)-γ4Ala, (S)-γ4Nva, and (R)-γ4Leu) into a 10-mer macrocyclic peptide scaffold. Given the promising effects reported for statines on the cell permeability of macrocyclic peptides, we also designed and tested the ribosomal incorporation of six statines derived from Ala and d-val. Four Ala-derived statines were successfully incorporated into peptides, and γ4SAla3R-OH (GP2) showed a similar efficiency of incorporation to that of (S)-β2hAla and l-Ala. These new building blocks might confer the important pharmacological properties of protease resistance and membrane permeability to macrocyclic peptides and expand the diversity of future combinatorial peptide libraries that can be translated by the ribosome.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Christian N. Cunningham
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Wayne J. Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| |
Collapse
|
13
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Katoh T, Suga H. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Hammerling MJ, Yoesep DJ, Jewett MC. Single enzyme RT-PCR of full-length ribosomal RNA. Synth Biol (Oxf) 2020; 5:ysaa028. [PMID: 33409375 PMCID: PMC7772474 DOI: 10.1093/synbio/ysaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete Escherichia coli 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Okuma R, Kuwahara T, Yoshikane T, Watanabe M, Dranchak P, Inglese J, Shuto S, Goto Y, Suga H. A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropane-containing Building Block Leads to Thiol-independent Inhibitors of Phosphoglycerate Mutase. Chem Asian J 2020; 15:2631-2636. [PMID: 32633882 PMCID: PMC9547493 DOI: 10.1002/asia.202000700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Indexed: 01/20/2023]
Abstract
Here we report the construction of an mRNA-encoded library of thioether-closed macrocyclic peptides by using an N-chloroacetyl-cyclopropane-containing exotic initiator whose structure is more constrained than the ordinary N-chloroacetyl-α-amino acid initiators. The use of such an initiator has led to a macrocycle library with significantly suppressed population of lariat-shaped species compared with the conventional libraries. We previously used a conventional library and identified a small lariat thioether-macrocycle with a tail peptide with a C-terminal free Cys whose sidechain plays an essential role in potent inhibitory activity against a parasitic model enzyme, phosphoglycerate mutase. On the other hand, the cyclopropane-containing macrocycle library has yielded a larger thioether-macrocycle lacking a free Cys residue, which exhibits potent inhibitory activity to the same enzyme with a different mode of action. This result indicates that such a cyclopropane-containing macrocycle library would allow us to access mechanistically distinct macrocycles.
Collapse
Affiliation(s)
- Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Tomoki Kuwahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takafumi Yoshikane
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Lee J, Schwarz KJ, Kim DS, Moore JS, Jewett MC. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat Commun 2020; 11:4304. [PMID: 32855412 PMCID: PMC7452890 DOI: 10.1038/s41467-020-18001-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials. Backbone extended monomers are poorly compatible with the natural ribosomes, impeding their polymerization into polypeptides. Here the authors design non-canonical amino acid analogs with cyclic structures or extended carbon chains and used an engineered ribosome to improve tRNA-charging and incorporation into peptides.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
20
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Tsiamantas C, Rogers JM, Suga H. Initiating ribosomal peptide synthesis with exotic building blocks. Chem Commun (Camb) 2020; 56:4265-4272. [PMID: 32267262 DOI: 10.1039/d0cc01291b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribosomal peptide synthesis begins almost exclusively with the amino acid methionine, across all domains of life. The ubiquity of methionine initiation raises the question; to what extent could polypeptide synthesis be realized with other amino acids, proteinogenic or otherwise? This highlight describes the breadth of building blocks now known to be accepted by the ribosome initiation machinery, from subtle methionine analogues to large exotic non-proteinogenic structures. We outline the key methodological developments that have enabled these discoveries, including the exploitation of methionyl-tRNA synthetase promiscuity, synthetase and tRNA engineering, and the utilization of artificial tRNA-loading ribozymes, flexizymes. Using these methods, the number and diversity of validated initiation building blocks is rapidly expanding permitting the use of the ribosome to synthesize ever more artificial polymers in search of new functional molecules.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
23
|
Katoh T, Suga H. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code. J Am Chem Soc 2020; 142:4965-4969. [PMID: 32129615 DOI: 10.1021/jacs.9b12280] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because γ-amino acids generally undergo rapid self-cyclization upon esterification on the carboxyl group, for example, γ-aminoacyl-tRNA, there are no reports of the ribosomal elongation of γ-amino acids to the best of our knowledge. To avoid such self-cyclization, we utilized cyclic γ-amino acids and demonstrated their elongation into a peptide chain. Although the incorporation of the cyclic γ-amino acids is intrinsically slow, we here show that the combination of elongation factor P and engineered tRNAs improves cyclic γ-amino acid incorporation efficiency. Via this method, thioether-macrocyclic peptides containing not only cyclic γ-amino acids but also d-α-, N-methyl-α-, and cyclic β-amino acids were expressed under the reprogrammed genetic code. Ribosomally synthesized macrocyclic peptide libraries containing cyclic γ-amino acids should be applicable to in vitro screening methodologies such as mRNA display for discovering novel peptide drugs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
25
|
Katoh T, Suga H. Flexizyme-catalyzed synthesis of 3'-aminoacyl-NH-tRNAs. Nucleic Acids Res 2019; 47:e54. [PMID: 30843032 PMCID: PMC6511858 DOI: 10.1093/nar/gkz143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 11/15/2022] Open
Abstract
Structural analysis of ribosomes in complex with aminoacyl- and/or peptidyl-transfer RNA (tRNA) often suffers from rapid hydrolysis of the ester bond of aminoacyl-tRNAs. To avoid this issue, several methods to introduce an unhydrolyzable amide bond instead of the canonical ester bond have been developed to date. However, the existing methodologies require rather complex steps of synthesis and are often inapplicable to a variety of amino acids including those with noncanonical structures. Here, we report a new method to synthesize 3'-aminoacyl-NH-tRNAs by means of flexizymes-ribozymes capable of charging amino acids onto tRNAs. We show that two types of flexizymes, dFx and eFx, are able to charge various amino acids, including nonproteinogenic ones, onto tRNA or microhelix RNA bearing the 3'-deoxy-3'-amino-adenosine. Due to the versatility of the flexizymes toward any pair of nonproteinogenic amino acids and full-length or fragment tRNAs, this method provides researchers an opportunity to use a wide array of hydrolytically stable 3'-aminoacyl-NH-tRNAs and analogs for various studies.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Lee J, Schwieter KE, Watkins AM, Kim DS, Yu H, Schwarz KJ, Lim J, Coronado J, Byrom M, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Expanding the limits of the second genetic code with ribozymes. Nat Commun 2019; 10:5097. [PMID: 31704912 PMCID: PMC6841967 DOI: 10.1038/s41467-019-12916-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming. Here we report the systematic synthesis of 37 substrates based on 4 chemically diverse scaffolds (phenylalanine, benzoic acid, heteroaromatic, and aliphatic monomers) with different electronic and steric factors. Of these substrates, 32 were acylated onto tRNA and incorporated into peptides by in vitro translation. Based on the design rules derived from this expanded alphabet, we successfully predicted the acylation of 6 additional monomers that could uniquely be incorporated into peptides and direct N-terminal incorporation of an aldehyde group for orthogonal bioconjugation reactions.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew M Watkins
- Departments of Biochemistry and Physics, Stanford University, Stanford, 94305, CA, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Hao Yu
- Departments of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jaime Coronado
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Michelle Byrom
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
| |
Collapse
|
27
|
Hirose H, Tsiamantas C, Katoh T, Suga H. In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. Curr Opin Biotechnol 2019; 58:28-36. [DOI: 10.1016/j.copbio.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
|
28
|
Tsiamantas C, Otero-Ramirez ME, Suga H. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System. Methods Mol Biol 2019; 2001:299-315. [PMID: 31134577 DOI: 10.1007/978-1-4939-9504-2_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide's N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
29
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
30
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
31
|
Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun (Camb) 2018; 53:1931-1940. [PMID: 28091672 DOI: 10.1039/c6cc06951g] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the fundamental nature of RNA catalysis and the potential mechanism of a shift from the "RNA world" to proteinaceous life lead us to identify a set of ribozymes (flexizymes) capable of promiscuous tRNA acylation. Whilst theoretically and mechanistically interesting in their own right, flexizymes have turned out to have immense practical value for the simple synthesis of tRNAs acylated with unusual amino acids, which in turn can be used for the ribosomal synthesis of peptides containing non-canonical residues. Using this technique, it is possible to synthesise peptides containing a range of structural features (macrocyclic backbones, backbone N-methylation, d-stereochemistry, etc.) commonly observed in natural product secondary metabolites, a chemical class that has historically been a rich source of drug-like molecules. Moreover, when combined with biochemical display screening technologies, this synthetic approach can be used to generate (and screen for target affinity) extremely diverse (in excess of 1012 compound) chemical libraries, making it an extraordinary tool for drug discovery. The current review charts the history of flexizyme technology and its use for non-canonical peptide synthesis and screening.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Saitama 332-0012, Japan
| |
Collapse
|
32
|
Goto Y, Suga H. ArtificialIn VitroBiosynthesis Systems for the Development of Pseudo-Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-PRESTO, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-CREST, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Goto Y. Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems. YAKUGAKU ZASSHI 2018; 138:55-61. [DOI: 10.1248/yakushi.17-00186-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
34
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan J. McCarver
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Joseph Carpenter
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | | | - Michael A. Poss
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Martin D. Eastgate
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Michael M. Miller
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| |
Collapse
|
35
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016; 56:728-732. [PMID: 27860140 DOI: 10.1002/anie.201608207] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/01/2016] [Indexed: 01/01/2023]
Abstract
A method for the decarboxylative macrocyclization of peptides bearing N-terminal Michael acceptors has been developed. This synthetic method enables the efficient synthesis of cyclic peptides containing γ-amino acids and is tolerant of functionalities present in both natural and non-proteinogenic amino acids. Linear precursors ranging from 3 to 15 amino acids cyclize effectively under this photoredox method. To demonstrate the preparative utility of this method in the context of bioactive molecules, we synthesized COR-005, a somatostatin analogue that is currently in clinical trials.
Collapse
Affiliation(s)
- Stefan J McCarver
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Jennifer X Qiao
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Joseph Carpenter
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Robert M Borzilleri
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael A Poss
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Martin D Eastgate
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael M Miller
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
36
|
Rogers JM, Suga H. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org Biomol Chem 2015; 13:9353-63. [PMID: 26280393 DOI: 10.1039/c5ob01336d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protein synthesis machinery of the cell, the ribosome and associated factors, is able to accurately follow the canonical genetic code, that which maps RNA sequence to protein sequence, to assemble functional proteins from the twenty or so proteinogenic amino acids. A number of innovative methods have arisen to take advantage of this accurate, and efficient, machinery to direct the assembly of non-proteinogenic amino acids. We review and compare these routes to 'reprogram the genetic code' including in vitro translation, engineered aminoacyl tRNA synthetases, and RNA 'flexizymes'. These studies show that the ribosome is highly tolerant of unnatural amino acids, with hundreds of unusual substrates of varying structure and chemistries being incorporated into protein chains. We also discuss how these methods have been coupled to selection techniques, such as phage display and mRNA display, opening up an exciting new avenue for the production of proteins and peptides with properties and functions beyond that which is possible using proteins composed entirely of the proteinogenic amino acids.
Collapse
Affiliation(s)
- J M Rogers
- Department of Chemistry, The University of Tokyo, Graduate School of Science, Tokyo, Japan.
| | | |
Collapse
|
37
|
Terasaka N, Iwane Y, Geiermann AS, Goto Y, Suga H. Recent developments of engineered translational machineries for the incorporation of non-canonical amino acids into polypeptides. Int J Mol Sci 2015; 16:6513-31. [PMID: 25803109 PMCID: PMC4394545 DOI: 10.3390/ijms16036513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/03/2022] Open
Abstract
Genetic code expansion and reprogramming methodologies allow us to incorporate non-canonical amino acids (ncAAs) bearing various functional groups, such as fluorescent groups, bioorthogonal functional groups, and post-translational modifications, into a desired position or multiple positions in polypeptides both in vitro and in vivo. In order to efficiently incorporate a wide range of ncAAs, several methodologies have been developed, such as orthogonal aminoacyl-tRNA-synthetase (AARS)–tRNA pairs, aminoacylation ribozymes, frame-shift suppression of quadruplet codons, and engineered ribosomes. More recently, it has been reported that an engineered translation system specifically utilizes an artificially built genetic code and functions orthogonally to naturally occurring counterpart. In this review we summarize recent advances in the field of ribosomal polypeptide synthesis containing ncAAs.
Collapse
Affiliation(s)
- Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshihiko Iwane
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Anna-Skrollan Geiermann
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
38
|
Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Curr Opin Chem Biol 2015; 24:131-8. [DOI: 10.1016/j.cbpa.2014.11.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
|
39
|
Passioura T, Suga H. Reprogramming the genetic code in vitro. Trends Biochem Sci 2014; 39:400-8. [DOI: 10.1016/j.tibs.2014.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
|
40
|
Protein cocrystallization molecules originating from in vitro selected macrocyclic peptides. Curr Opin Struct Biol 2014; 26:24-31. [PMID: 24681557 DOI: 10.1016/j.sbi.2014.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/15/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022]
Abstract
Transmembrane proteins are intractable crystallization targets due to their low solubility and their substantial hydrophobic outer surfaces must be enclosed within a partial micelle composed of detergents to avoid aggregation. Unfortunately, encapsulation within a partial micelle diminishes specific protein-to-protein contacts needed for crystal lattice formation. In addition, the high conformational flexibility of certain transmembrane proteins reduces sample homogeneity causing difficulty in crystallization. Cocrystallization ligands, based on either antibody scaffolds or other proteinaceous non-antibody scaffolds, have greatly facilitated the crystallization of transmembrane proteins. Recently, in vitro selected macrocyclic peptide ligands have been shown to facilitate protein crystallization as well. In this review, we discuss selection strategies used for the discovery of macrocyclic peptide ligands and the three-dimensional crystal structure of the transporter PfMATE in complex with in vitro selected macrocyclic peptides.
Collapse
|
41
|
Abstract
Macrocyclic peptides are an emerging class of therapeutics that can modulate protein-protein interactions. In contrast to the heavily automated high-throughput screening systems traditionally used for the identification of chemically synthesized small-molecule drugs, peptide-based macrocycles can be synthesized by ribosomal translation and identified using in vitro selection techniques, allowing for extremely rapid (hours to days) screening of compound libraries comprising more than 10(13) different species. Furthermore, chemical modification of translated peptides and engineering of the genetic code have greatly expanded the structural diversity of the available peptide libraries. In this review, we discuss the use of these technologies for the identification of bioactive macrocyclic peptides, emphasizing recent developments.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; , , ,
| | | | | | | |
Collapse
|
42
|
Terasaka N, Suga H. Flexizymes-facilitated Genetic Code Reprogramming Leading to the Discovery of Drug-like Peptides. CHEM LETT 2014. [DOI: 10.1246/cl.130910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
43
|
Kawakami T. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation. Top Curr Chem (Cham) 2014; 362:107-35. [PMID: 25370522 DOI: 10.1007/128_2014_575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In chemical protein synthesis, peptide building blocks are prepared by solid-phase peptide synthesis (SPPS), and then connected by chemical ligation methods. The peptide thioester is one of key building blocks used in chemical protein synthesis, and improvements in the Fmoc SPPS procedure for preparing such thioesters would be highly desirable. In this review we focus on a method for peptide thioester synthesis based on the use of an intramolecular N to S acyl shift reaction as a key reaction. Amide and thioester forms at the thiol-containing residue are in equilibrium as a result of a reversible intramolecular acyl shift, which is detectable by 13C NMR. The amide form is favored under neutral conditions, while the thioester predominates under acidic conditions. Thiol auxiliaries can be employed to facilitate the formation of a thioester from an amide via an intramolecular N-S acyl shift, and the peptide thioester is formed after intermolecular transthioesterification in the presence of excess amounts of thiols. Even under neutral conditions, thiol auxiliary-containing peptides can be ligated with a cysteinyl peptide via an intramolecular N-S acyl shift, followed by native chemical ligation (NCL) in a one-pot reaction. These procedures can be applied to the chemical synthesis of proteins which are post-translationally modified.
Collapse
Affiliation(s)
- Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| |
Collapse
|
44
|
Goto Y, Iseki M, Hitomi A, Murakami H, Suga H. Nonstandard peptide expression under the genetic code consisting of reprogrammed dual sense codons. ACS Chem Biol 2013; 8:2630-4. [PMID: 24099623 DOI: 10.1021/cb400549p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We here demonstrate a translation system that is governed by a reprogrammed genetic code consisting of "dual sense codons." A dual sense codon assigns two distinct amino acids for initiation and elongation. Because multiple dual sense codons independently function without cross-readings, this system enables the expansion of the repertoire of initiators as well as elongators that can be used simultaneously.
Collapse
Affiliation(s)
- Yuki Goto
- JST, PRESTO, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
45
|
Oba M, Shimabukuro A, Ono M, Doi M, Tanaka M. Synthesis of both enantiomers of cyclic methionine analogue: (R)- and (S)-3-aminotetrahydrothiophene-3-carboxylic acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Smith JM, Frost JR, Fasan R. Emerging strategies to access peptide macrocycles from genetically encoded polypeptides. J Org Chem 2013; 78:3525-31. [PMID: 23517465 DOI: 10.1021/jo400119s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macrocyclic peptides have emerged as attractive molecular scaffolds for the development of chemical probes and therapeutics. In this synopsis, we highlight contemporary strategies to access peptide macrocycles from ribosomally produced polypeptides. Challenges that have been tackled in this area involve orchestrating the desired macrocyclization process in the presence of unprotected polypeptide precursors and expanding the functional space encompassed by these molecules beyond that of canonical amino acid structures. Applications of these methodologies for the discovery of bioactive molecules are also discussed.
Collapse
Affiliation(s)
- Jessica M Smith
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
47
|
Passioura T, Suga H. Flexizyme-Mediated Genetic Reprogramming As a Tool for Noncanonical Peptide Synthesis and Drug Discovery. Chemistry 2013; 19:6530-6. [DOI: 10.1002/chem.201300247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Ito K, Passioura T, Suga H. Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides. Molecules 2013; 18:3502-28. [PMID: 23507778 PMCID: PMC6270345 DOI: 10.3390/molecules18033502] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/04/2013] [Accepted: 02/25/2013] [Indexed: 01/04/2023] Open
Abstract
In this review, we discuss emerging technologies for drug discovery, which yields novel molecular scaffolds based on natural product-inspired non-traditional peptides expressed using the translation machinery. Unlike natural products, these technologies allow for constructing mRNA-encoding libraries of macrocyclic peptides containing non-canonical sidechains and N-methyl-modified backbones. The complexity of sequence space in such libraries reaches as high as a trillion (>1012), affording initial hits of high affinity ligands against protein targets. Although this article comprehensively covers several related technologies, we discuss in greater detail the technical development and advantages of the Random non-standard Peptide Integration Discovery (RaPID) system, including the recent identification of inhibitors against various therapeutic targets.
Collapse
Affiliation(s)
| | | | - Hiroaki Suga
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-3-5841-8372
| |
Collapse
|
49
|
Passioura T, Suga H. Flexizymes, their evolutionary history and diverse utilities. Top Curr Chem (Cham) 2013; 344:331-45. [PMID: 23478876 DOI: 10.1007/128_2013_421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In contemporary organisms the aminoacylation of tRNAs is performed exclusively by protein aminoacyl-tRNA synthetases. However, in vitro selection experiments have identified RNA enzymes that exhibit the necessary characteristics to charge tRNA molecules with acyl groups in a way that is compatible with ribosomal translation, suggesting that such ribozymes may have fulfilled this function prior to the evolution of proteinaceous life. The current chapter provides a review of the history, structure, and function of these RNA aminoacyl synthetases, and discusses their practical application to "genetic reprogramming" and other biotechnologies.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
50
|
Genetically encoded libraries of nonstandard peptides. J Nucleic Acids 2012; 2012:713510. [PMID: 23097693 PMCID: PMC3477784 DOI: 10.1155/2012/713510] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/12/2012] [Indexed: 11/17/2022] Open
Abstract
The presence of a nonproteinogenic moiety in a nonstandard peptide often improves the biological properties of the peptide. Non-standard peptide libraries are therefore used to obtain valuable molecules for biological, therapeutic, and diagnostic applications. Highly diverse non-standard peptide libraries can be generated by chemically or enzymatically modifying standard peptide libraries synthesized by the ribosomal machinery, using posttranslational modifications. Alternatively, strategies for encoding non-proteinogenic amino acids into the genetic code have been developed for the direct ribosomal synthesis of non-standard peptide libraries. In the strategies for genetic code expansion, non-proteinogenic amino acids are assigned to the nonsense codons or 4-base codons in order to add these amino acids to the universal genetic code. In contrast, in the strategies for genetic code reprogramming, some proteinogenic amino acids are erased from the genetic code and non-proteinogenic amino acids are reassigned to the blank codons. Here, we discuss the generation of genetically encoded non-standard peptide libraries using these strategies and also review recent applications of these libraries to the selection of functional non-standard peptides.
Collapse
|