1
|
Wang Q, Tang X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2025; 69:157-168. [PMID: 38494073 PMCID: PMC11954800 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tang
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Wang C, Shi ZZ. Exosomes in esophageal cancer: function and therapeutic prospects. Med Oncol 2024; 42:18. [PMID: 39601925 DOI: 10.1007/s12032-024-02543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide. Exosomes are a type of extracellular vesicles produced by eukaryotic cells and present in all body fluids. Recent studies have revealed that exosomes can be used as a tool for cell signaling and have great potential in cancer diagnosis and treatment strategies. This article reviews the research progress of exosomes in EC in recent years, mainly including the mechanism of action, diagnostic markers, therapeutic targets, and drug carriers. The challenges faced are discussed to provide guidelines for further research in future.
Collapse
Affiliation(s)
- Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Tang Q, Chen W, Ke H, Lan C. Optical imaging detection of extracellular vesicles of miR-146 modified bone marrow mesenchymal stem cells promoting spinal cord injury repair. SLAS Technol 2024; 29:100172. [PMID: 39067816 DOI: 10.1016/j.slast.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Bone Marrow mesenchymal Stem Cells (BMSCs) are considered as an important source of cells for regenerative medicine, In particular, Bone Marrow mesenchymal Stem Cells Exosomes (BMSCs-EXO) have the most significant effect in the treatment of Spinal Cord Injury (SCI), but the mechanism of action is still unknown. This study found that compared with other SCI groups, BMSCs-EXO loaded with miR-146a could significantly improve the functional recovery of the hind limbs of SCI rats. Hematoxylin and eosin (H&E) indicated that the lesion area of spinal cord injury was less, nissl staining indicated that the number of nissl bodies remained more; the mechanism may be through inhibiting the expression of IRAK1 and TRAF6, blocking the activation of NF-κB p65, reducing the expression of TNF-α, IL-1β and IL-6 inflammatory factors and oxidative stress, improving the SCI microenvironment, and promoting the repair of neural function. In general, we found that BMSCs-EXO loaded with miR-146a could reduce the inflammatory response and oxidative stress in SCI by inhibiting the activation of IRAK1/TRAF6/NF-κB p65 signaling pathway, and promote the recovery of neurological function in SCI rats.
Collapse
Affiliation(s)
- Qianli Tang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 533000, China
| | - Wu Chen
- Department of Neurosurgery, The Peoples Hospital of Baise, Baise 533009, China
| | - Huang Ke
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 533000, China; Department of Trauma Orthopedics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Bais 533009, China
| | - Changgong Lan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 533000, China; Department of Trauma Orthopedics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Bais 533009, China; Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Youjiang Medical University for Nationalities, Baise 533009, China; Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Youjiang Medical University for Nationalities, Baise 533009, China; Guangxi Key Laboratory of Clinical Medical Research on Bone and Joint Degenerative Diseases Cohort, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533009, China.
| |
Collapse
|
4
|
Kim M, Song CY, Lee JS, Ahn YR, Choi J, Lee SH, Shin S, Na HJ, Kim HO. Exosome Isolation Using Chitosan Oligosaccharide Lactate-1-Pyrenecarboxylic Acid-Based Self-Assembled Magnetic Nanoclusters. Adv Healthc Mater 2024; 13:e2303782. [PMID: 38430208 DOI: 10.1002/adhm.202303782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chi-Yeon Song
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jin Sil Lee
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang Hoon Lee
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hee Jun Na
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
5
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Sarcinella A, Femminò S, Brizzi MF. Extracellular Vesicles: Emergent and Multiple Sources in Wound Healing Treatment. Int J Mol Sci 2023; 24:15709. [PMID: 37958693 PMCID: PMC10650196 DOI: 10.3390/ijms242115709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Non-healing wound- and tissue-injury are commonly experienced worldwide by the aging population. The persistence of disease commonly leads to tissue infection, resulting in severe clinical complications. In the last decade, extracellular vesicles (EVs) have been considered promising and emergent therapeutic tools to improve the healing processes. Therefore, efforts have been directed to develop a cell-free therapeutic platform based on EV administration to orchestrate tissue repair. EVs derived from different cell types, including fibroblast, epithelial, and immune cells are recruited to the injured sites and in turn take part in scar formation. EVs are nano-sized particles containing a heterogeneous cargo consisting of lipids, proteins, and nucleic acids protected from degradation by their lipid bilayer. Noteworthy, since EVs have natural biocompatibility and low immunogenicity, they represent the ideal therapeutic candidates for regenerative purposes. Indeed, EVs are released by several cell types, and even if they possess unique biological properties, their functional capability can be further improved by engineering their content and functionalizing their surface, allowing a specific cell cargo delivery. Herein, we provide an overview of preclinical data supporting the contribution of EVs in the repair and regenerative processes, focusing on different naïve EV sources, as well as on their engineering, to offer a scalable and low-cost therapeutic option for tissue repair.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.S.); (S.F.)
| |
Collapse
|
7
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
8
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
9
|
Scassiotti RF, de Paula Coutinho M, Pinto Santos SI, Ferreira Pinto PA, Ferreira de Almeida M, Karam RG, Maria da Silva Rosa P, Martins DDS, Coelho da Silveira J, Ambrósio CE. Adipose and amnion-derived mesenchymal stem cells: Extracellular vesicles characterization and implication for reproductive biotechnology. Theriogenology 2023; 198:264-272. [PMID: 36623429 DOI: 10.1016/j.theriogenology.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The stem cell-based research for reproductive biotechnology has been widely studied and shows promise for repairing defective tissue or degenerated cells to treat different diseases. The adipose tissue and amniotic membrane have awakened great interest in regenerative medicine and arises as a promising source of mesenchymal stem cells. Both types, adipose and amniotic derived mesenchymal stem cells (AMSCs) are multipotent cells with an enhanced ability to differentiate into multiple lineages.. We aimed to evaluate the effect of basal supplementation of exosomes in cell cultures with canine amniotic mesenchymal stem cells (MSCs). Mesenchymal stem cells derived from canine amniotic and adipose tissue were isolated and cultured performing cell passages until 80-90% confluence was reached. The growth curve was determined and peak cell growth was observed in the second passage. The cells were then characterized and differentiated into adipogenic, chondrogenic and osteogenic lineages. Extracellular vesicles from amnion were isolated using an ultracentrifugation protocol and characterized by nanosight analysis. To evaluate their ability to improve cellular viability in naturally inefficient passages, exosomes were co-cultures to the MSC cells. The results showed a 15-20% increase in the expansion rate of cultures supplemented with vesicles extracted in the first and second passages when compared to the control group. Statistical analysis using the Dunnett test (p ≤ 0.05) corroborated this result, showing a positive correlation between supplementation and expansion rate. These results indicate not only the importance of exosomes in the cell communication process but also the feasibility of the culture supplementation protocol for therapeutic purposes. The potential of the AMSCs for reproductive biotechnology is undoubted, however, their application to repair reproductive disorders and the involved mechanisms remain elusive. The strategies to enable the Adipose Stem Cells and AMSCs application in reproductive biotechnology and optimize their use for tissue regeneration open new venues using exosomes interactions.
Collapse
Affiliation(s)
- Rodrigo Ferreira Scassiotti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Meline de Paula Coutinho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Sarah Ingrid Pinto Santos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Priscilla Avelino Ferreira Pinto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Matheus Ferreira de Almeida
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Rafael Garcia Karam
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering - FZEA, Universidade de São Paulo, Pirassununga, Brazil.
| |
Collapse
|
10
|
Aguiar Koga BA, Fernandes LA, Fratini P, Sogayar MC, Carreira ACO. Role of MSC-derived small extracellular vesicles in tissue repair and regeneration. Front Cell Dev Biol 2022; 10:1047094. [PMID: 36935901 PMCID: PMC10014555 DOI: 10.3389/fcell.2022.1047094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 03/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Letícia Alves Fernandes
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Ana Claudia Oliveira Carreira, ,
| |
Collapse
|
11
|
He J, Ren W, Wang W, Han W, Jiang L, Zhang D, Guo M. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res 2021; 12:2385-2402. [PMID: 34973131 PMCID: PMC9458566 DOI: 10.1007/s13346-021-01087-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles secreted by a variety of living cells, which have a certain degree of natural targeting as nano-carriers. Almost all exosomes released by cells will eventually enter the blood circulation or be absorbed by other cells. Under the action of content sorting mechanism, some specific surface molecules can be expressed on the surface of exosomes, such as tetraspanins protein and integrin. To some extent, these specific surface molecules can fuse with specific cells, so that exosomes show specific cell natural targeting. In recent years, exosomes have become a drug delivery system with low immunogenicity, high biocompatibility and high efficacy. Nucleic acids, polypeptides, lipids, or small molecule drugs with therapeutic function are organically loaded into exosomes, and then transported to specific types of cells or tissues in vivo, especially tumor tissues, to achieve targeting drug delivery. The natural targeting of exosome has been found and recognized in some studies, but there are still many challenges in effective clinical treatments. The use of the natural targeting of exosomes alone is incapable of accurately transporting the goods loaded to specific sites. Besides, the natural targeting of exosomes is still an open question in disease targeting and efficient gene/chemotherapy combined therapy. Engineering transformation and modification on exosomes can optimize its natural targeting and deliver the goods to a specific location, providing wide use in clinical treatment. This review summarizes the research progress of exosomal natural targeting and transformation strategy of obtained targeting after transformation. The mechanism of natural targeting and obtained targeting after transformation are also reviewed. The potential value of exosomal targeting in clinical application is also discussed.
Collapse
Affiliation(s)
- Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenyan Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Mengqi Guo
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
12
|
Çelik P, Derkuş B, Erdoğan K, Barut D, Manga EB, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv 2021; 54:107869. [PMID: 34793882 DOI: 10.1016/j.biotechadv.2021.107869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Bacterial membrane vesicles are cupped-shaped structures formed by bacteria in response to environmental stress, genetic alteration, antibiotic exposure, and others. Due to the structural similarities shared with the producer organism, they can retain certain characteristics like stimulating immune responses. They are also able to carry molecules for long distances, without changes in the concentration and integrity of the molecule. Bacteria originally secrete membrane vesicles for gene transfer, excretion, cell to cell interaction, pathogenesis, and protection against phages. These functions are unique and have several innovative applications in the pharmaceutical industry that have attracted both scientific and commercial interest.This led to the development of efficient methods to artificially stimulate vesicle production, purification, and manipulation in the lab at nanoscales. Also, for specific applications, engineering methods to impart pathogen antigens against specific diseases or customization as cargo vehicles to deliver payloads to specific cells have been reported. Many applications of bacteria membrane vesicles are in cancer drugs, vaccines, and adjuvant development with several candidates in clinical trials showing promising results. Despite this, applications in therapy and commercialization stay timid probably due to some challenges one of which is the poor understanding of biogenesis mechanisms. Nevertheless, so far, bacterial membrane vesicles seem to be a reliable and cost-efficient technology with several therapeutic applications. Research toward characterizing more membrane vesicles, genetic engineering, and nanotechnology will enable the scope of applications to widen. This might include solutions to other currently faced medical and healthcare-related challenges.
Collapse
Affiliation(s)
- PınarAytar Çelik
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir 26110, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Burak Derkuş
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| | - Kübra Erdoğan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Enuh Blaise Manga
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Yalın Yıldırım
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Ahmet Çabuk
- Department of Biology, Faculty of Science and Letter, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
13
|
Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021; 12:716407. [PMID: 34394121 PMCID: PMC8355618 DOI: 10.3389/fimmu.2021.716407] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized, lipid bilayer-enclosed structures, share structural similarities with viruses secreted from all types of cells, including those lining the respiratory tract. Importantly, the interplay between exosomes and viruses could be potentially exploited for antiviral drug and vaccine development. Exosomes are produced by virus-infected cells and play crucial roles in mediating communication between infected and uninfected cells. SARS-CoV-2 modulates the production and composition of exosomes, and can exploit exosome formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Exosomes have been exploited for therapeutic benefits in patients afflicted with various diseases including COVID-19. Furthermore, the administration of exosomes loaded with immunomodulatory cargo in combination with antiviral drugs represents a novel intervention for the treatment of diseases such as COVID-19. In particular, exosomes derived from mesenchymal stem cells (MSCs) are used as cell-free therapeutic agents. Mesenchymal stem cell derived exosomes reduces the cytokine storm and reverse the inhibition of host anti-viral defenses associated with COVID-19 and also enhances mitochondrial function repair lung injuries. We discuss the role of exosomes in relation to transmission, infection, diagnosis, treatment, therapeutics, drug delivery, and vaccines, and present some future perspectives regarding their use for combating COVID-19.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Min Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
14
|
Bruno S, Herrera Sanchez MB, Chiabotto G, Fonsato V, Navarro-Tableros V, Pasquino C, Tapparo M, Camussi G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front Cell Dev Biol 2021; 9:644088. [PMID: 33981703 PMCID: PMC8107725 DOI: 10.3389/fcell.2021.644088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Human liver stem cells (HLSCs) were described for the first time in 2006 as a new stem cell population derived from healthy human livers. Like mesenchymal stromal cells, HLSCs exhibit multipotent and immunomodulatory properties. HLSCs can differentiate into several lineages under defined in vitro conditions, such as mature hepatocytes, osteocytes, endothelial cells, and islet-like cell organoids. Over the years, HLSCs have been shown to contribute to tissue repair and regeneration in different in vivo models, leading to more than five granted patents and over 15 peer reviewed scientific articles elucidating their potential therapeutic role in various experimental pathologies. In addition, HLSCs have recently completed a Phase 1 study evaluating their safety post intrahepatic injection in infants with inherited neonatal onset hyperammonemia. Even though a lot of progress has been made in understanding HLSCs over the past years, some important questions regarding the mechanisms of action remain to be elucidated. Among the mechanisms of interaction of HLSCs with their environment, a paracrine interface has emerged involving extracellular vesicles (EVs) as vehicles for transferring active biological materials. In our group, the EVs derived from HLSCs have been studied in vitro as well as in vivo. Our attention has mainly been focused on understanding the in vivo ability of HLSC–derived EVs as modulators of tissue regeneration, inflammation, fibrosis, and tumor growth. This review article aims to discuss in detail the role of HLSCs and HLSC-EVs in these processes and their possible future therapeutic applications.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Victor Navarro-Tableros
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
15
|
Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol 2021; 9:636136. [PMID: 33968924 PMCID: PMC8100527 DOI: 10.3389/fcell.2021.636136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Stem cell transplantation has become a promising approach for the treatment of IHD in recent decades. It is generally recognized that preclinical cell-based therapy is effective and have yielded encouraging results, which involves preventing or reducing myocardial cell death, inhibiting scar formation, promoting angiogenesis, and improving cardiac function. However, clinical studies have not yet achieved a desired outcome, even multiple clinical studies showing paradoxical results. Besides, many fundamental puzzles remain to be resolved, for example, what is the optimal delivery timing and approach? Additionally, limited cell engraftment and survival, challenging cell fate monitoring, and not fully understood functional mechanisms are defined hurdles to clinical translation. Here we review some of the current dilemmas in stem cell-based therapy for IHD, along with our efforts and opinions on these key issues.
Collapse
Affiliation(s)
- Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Dong Han
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasond, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
16
|
Derkus B. Human cardiomyocyte-derived exosomes induce cardiac gene expressions in mesenchymal stromal cells within 3D hyaluronic acid hydrogels and in dose-dependent manner. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:2. [PMID: 33469781 PMCID: PMC7815535 DOI: 10.1007/s10856-020-06474-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Accomplishing a reliable lineage-specific differentiation of stem cells is vital in tissue engineering applications, however, this need remained unmet. Extracellular nanovesicles (particularly exosomes) have previously been shown to have this potential owing to their rich biochemical content including proteins, nucleic acids and metabolites. In this work, the potential of human cardiomyocytes-derived exosomes to induce in vitro cardiac gene expressions in human mesenchymal stem cells (hMSCs) was evaluated. Cardiac exosomes (CExo) were integrated with hyaluronic acid (HA) hydrogel, which was functionalized with tyramine (HA-Tyr) to enable the development of 3D (three dimensional), robust and bioactive hybrid cell culture construct through oxidative coupling. In HA-Tyr/CExo 3D hybrid hydrogels, hMSCs exhibited good viability and proliferation behaviours. Real time quantitative polymerase chain reaction (RT-qPCR) results demonstrated that cells incubated within HA-Tyr/CExo expressed early cardiac progenitor cell markers (GATA4, Nkx2.5 and Tbx5), but not cTnT, which is expressed in the late stages of cardiac differentiation and development. The expressions of cardiac genes were remarkably increased with increasing CExo concentration, signifying a dose-dependent induction of hMSCs. This report, to some extent, explains the potential of tissue-specific exosomes to induce lineage-specific differentiation. However, the strategy requires further mechanistic explanations so that it can be utilized in translational medicine.
Collapse
Affiliation(s)
- Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
17
|
Derkus B, Emregul E. Ultrasonics-Assisted Effective Isolation and Characterization of Exosomes from Whole Organs. Methods Mol Biol 2021; 2207:25-34. [PMID: 33113125 DOI: 10.1007/978-1-0716-0920-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes, natural and nanovesicular structures surrounded by a lipid membrane, tend to be secreted toward extracellular environments by almost all cell types. Late studies have shown them to be effective in several complex biological processes like cancer development and metastasis, immune system regulation, cellular signal transduction, stem cell differentiation, and regeneration of damaged tissues. Although there are many studies dealing with the role of exosomes in the aforementioned fields, the mechanisms remained largely unknown. There is therefore a need for further study on exosome isolation from different sources. While researchers mostly use serum, plasma, urine, and cell culture media as a source for exosome isolation, there are no studies dealing with direct isolation of exosomes from whole organs in literature. In this study, we propose a protocol for effective isolation of exosomes from whole organs. Mouse brain, heart, and liver were chosen as the sources of exosomes in this study. Isolated exosomes were successfully characterized with BCA test, western blot, transmission electron microscopy and ELISA.
Collapse
Affiliation(s)
- Burak Derkus
- Chemistry Department, Faculty of Science, Ankara University, Ankara, Turkey.
| | - Emel Emregul
- Chemistry Department, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Zhang Y, Wang K, Pan J, Yang S, Yao H, Li M, Li H, Lei H, Jin H, Wang F. Exosomes mediate an epithelial-mesenchymal transition cascade in retinal pigment epithelial cells: Implications for proliferative vitreoretinopathy. J Cell Mol Med 2020; 24:13324-13335. [PMID: 33047885 PMCID: PMC7701536 DOI: 10.1111/jcmm.15951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes have recently emerged as a pivotal mediator of many physiological and pathological processes. However, the role of exosomes in proliferative vitreoretinopathy (PVR) has not been reported. In this study, we aimed to investigate the role of exosomes in PVR. Transforming growth factor beta 2 (TGFß-2) was used to induce epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, as an in vitro model of PVR. Exosomes from normal and EMTed RPE cells were extracted and identified. We incubated extracted exosomes with recipient RPE cells, and co-cultured EMTed RPE cells and recipient RPE cells in the presence of the exosome inhibitor GW4869. Both experiments suggested that there are further EMT-promoting effects of exosomes from EMTed RPE cells. MicroRNA sequencing was also performed to identify the miRNA profiles in exosomes from both groups. We identified 34 differentially expressed exosomal miRNAs (P <. 05). Importantly, miR-543 was found in exosomes from EMTed RPE cells, and miR-543-enriched exosomes significantly induced the EMT of recipient RPE cells. Our study demonstrates that exosomal miRNA is differentially expressed in RPE cells during EMT and that these exosomal miRNAs may play pivotal roles in EMT induction. Our results highlight the importance of exosomes as cellular communicators within the microenvironment of PVR.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaizhe Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiabin Pan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haipei Yao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hetian Lei
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Haiying Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Kassem DH, Kamal MM. Mesenchymal Stem Cells and Their Extracellular Vesicles: A Potential Game Changer for the COVID-19 Crisis. Front Cell Dev Biol 2020; 8:587866. [PMID: 33102489 PMCID: PMC7554315 DOI: 10.3389/fcell.2020.587866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) is a global public health crisis. The high infectivity of the disease even from non-symptomatic infected patients, together with the lack of a definitive cure or preventive measures are all responsible for disease outbreak. The severity of COVID-19 seems to be mostly dependent on the patients' own immune response. The over-activation of the immune system in an attempt to kill the virus, can cause a "cytokine storm" which in turn can induce acute respiratory distress syndrome (ARDS), as well as multi-organ damage, and ultimately may lead to death. Thus, harnessing the immunomodulatory properties of mesenchymal stem cells (MSCs) to ameliorate that cytokine-storm can indeed provide a golden key for the treatment of COVID-19 patients, especially severe cases. In fact, MSCs transplantation can improve the overall outcome of COVID-19 patients via multiple mechanisms; first through their immunomodulatory effects which will help to regulate the infected patient inflammatory response, second via promoting tissue-repair and regeneration, and third through their antifibrotic effects. All these mechanisms will interplay and intervene together to enhance lung-repair and protect various organs from any damage resulting from exaggerated immune-response. A therapeutic modality which provides all these mechanisms undoubtedly hold a strong potential to help COVID-19 patients even those with the worst condition to hopefully survive and recover.
Collapse
Affiliation(s)
- Dina H. Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M. Kamal
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
20
|
Owen A, Newsome PN. Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation? Front Immunol 2020; 11:1306. [PMID: 32636850 PMCID: PMC7318292 DOI: 10.3389/fimmu.2020.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
In response to the global burden of liver disease there has been a commensurate increase in the demand for liver transplantation. However, due to a paucity of donor organs many centers have moved toward the routine use of marginal allografts, which can be associated with a greater risk of complications and poorer clinical outcomes. Mesenchymal stromal cells (MSC) are a multi-potent progenitor cell population that have been utilized to modulate aberrant immune responses in acute and chronic inflammatory conditions. MSC exert an immunomodulatory effect on innate and adaptive immune systems through the release of both paracrine soluble factors and extracellular vesicles. Through these routes MSC can switch the regulatory function of the immune system through effects on macrophages and T regulatory cells enabling a switch of phenotype from injury to restoration. A key benefit seems to be their ability to tailor their response to the inflammatory environment without compromising the host ability to fight infection. With over 200 clinical trials registered to examine MSC therapy in liver disease and an increasing number of trials of MSC therapy in solid organ transplant recipients, there is increasing consideration for their use in liver transplantation. In this review we critically appraise the potential role of MSC therapy in the context of liver transplantation, including their ability to modulate reperfusion injury, their role in the reduction of medium term complications in the biliary tree and their potential to enhance tolerance in transplanted organs.
Collapse
Affiliation(s)
- Andrew Owen
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
21
|
Zhang S, Hou Y, Yang J, Xie D, Jiang L, Hu H, Hu J, Luo C, Zhang Q. Application of mesenchymal stem cell exosomes and their drug-loading systems in acute liver failure. J Cell Mol Med 2020; 24:7082-7093. [PMID: 32492261 PMCID: PMC7339207 DOI: 10.1111/jcmm.15290] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell exosomes are nanoscale membrane vesicles released from stem cells of various origins that can regulate signal transduction pathways between liver cells, and their functions in intercellular communication have been recognized. Due to their natural substance transport properties and excellent biocompatibility, exosomes can also be used as drug carriers to release a variety of substances, which has great prospects in the treatment of critical and incurable diseases. Different types of stem cell exosomes have been used to study liver diseases. Due to current difficulties in the treatment of acute liver failure (ALF), this review will outline the potential of stem cell exosomes for ALF treatment. Specifically, we reviewed the pathogenesis of acute liver failure and the latest progress in the use of stem cell exosomes in the treatment of ALF, including the role of exosomes in inhibiting the ALF inflammatory response and regulating signal transduction pathways, the advantages of stem cell exosomes and their use as a drug‐loading system, and their pre‐clinical application in the treatment of ALF. Finally, the clinical research status of stem cell therapy for ALF and the current challenges of exosome clinical transformation are summarized.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Hou
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Yang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Linrui Jiang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingjing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Caizhu Luo
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Bruno S, Antico F, Brizzi MF, Quesenberry PJ, Camussi G. Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Front Cell Dev Biol 2020; 8:188. [PMID: 32266268 PMCID: PMC7105599 DOI: 10.3389/fcell.2020.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Limitations in the current therapeutic strategies for the prevention of progression of chronic kidney disease (CKD) to end stage renal disease has been a drawback to improving patient recovery. It is therefore imperative that a solution is found to alleviate this problem and improve the health and well-being of patients overall. Aristolochic acid (AA) induced nephropathy, a type of nephrotoxic CKD is characterised by cortical tubular injury, inflammation, leading to interstitial fibrosis. Extracellular vesicles derived from human bone marrow mesenchymal stem cells (MSC-EVs) display therapeutic properties in various disease models including kidney injury. In the current study, we intended to investigate the ability of MSC-EVs on ameliorating tubular injury and interstitial fibrosis in a mouse model of aristolochic acid nephropathy (AAN). The chronic model of AAN is comprised of an intraperitoneal injection of AA in NSG mice, followed by a three-day incubation period and then inoculation of MSC-EVs intravenously. This routine was performed on a weekly basis for four consecutive weeks, accompanied by the monitoring of body weight of all mice. Blood and tissue samples were collected post sacrifice. All animals administered with AA developed kidney injury and renal fibrosis. A gradual loss of body weight was observed, together with a deterioration in kidney function. Although no significant recovery was observed in weight loss following treatment with MSC-EVs, a significant reduction in: blood creatinine and blood urea nitrogen (BUN), tubular necrosis, and interstitial fibrosis was observed. In addition, infiltration of CD45 positive immune cells, fibroblasts, and pericytes which were elevated in the interstitium post AA induced injury, were also significantly reduced by MSC-EVs. Kidneys were also subjected to molecular analyses to evaluate the regulation of pro-fibrotic genes. MSC-EVs significantly reduced AA induction of the pro-fibrotic genes α-Sma, Tgfb1 and Col1a1. A downregulation in pro-fibrotic genes was also observed in fibroblasts activated by AA injured mTECs in vitro. Furthermore, meta-analyses of miRNAs downregulated by MSC-EVs, such as miR21, revealed the regulation of multiple pathways involved in kidney injury including fibrosis, inflammation, and apoptosis. These results therefore suggest that MSC-EVs could play a regenerative and anti-fibrotic role in AAN through the transfer of biologically active cargo that regulates the disease both at a protein and genetic level.
Collapse
Affiliation(s)
- Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | | | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Antico
- FORB, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Peter J. Quesenberry
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Bruno S, Pasquino C, Herrera Sanchez MB, Tapparo M, Figliolini F, Grange C, Chiabotto G, Cedrino M, Deregibus MC, Tetta C, Camussi G. HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-alcoholic Steatohepatitis. Mol Ther 2019; 28:479-489. [PMID: 31757759 PMCID: PMC7001005 DOI: 10.1016/j.ymthe.2019.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released virtually by all cell types. Several studies have shown that stem cell-derived EVs may mimic both in vitro and in vivo the biological effects of the cells. We recently demonstrated that non-alcoholic steatohepatitis (NASH) is inhibited by treatment with human liver stem cells (HLSCs). The aim of the present study was to evaluate whether EVs released by HLSCs influence the progression of NASH, induced by a diet deprived of methionine and choline, in immunocompromised mice. EV treatment was initiated after 2 weeks of diet with a biweekly administration of three different doses. Bio-distribution evaluated by optical imaging showed a preferential accumulation in normal and, in particular, in fibrotic liver. EV treatment significantly improved liver function and reduced signs of liver fibrosis and inflammation at both morphological and molecular levels. In particular, we observed that, out of 29 fibrosis-associated genes upregulated in NASH liver, 28 were significantly downregulated by EV treatment. In conclusion, HLSC-derived EVs display anti-fibrotic and anti-inflammatory effects in a model of chronic liver disease, leading to an improvement of liver function.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, Torino, Italy; 2i3T Società per la Gestione dell'Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Federico Figliolini
- Molecular Biotechnology Centre, University of Torino, Torino, Italy; 2i3T Società per la Gestione dell'Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Torino, Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Maria Chiara Deregibus
- 2i3T Società per la Gestione dell'Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Torino, Torino, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy; Molecular Biotechnology Centre, University of Torino, Torino, Italy.
| |
Collapse
|
24
|
Eylem CC, Yilmaz M, Derkus B, Nemutlu E, Camci CB, Yilmaz E, Turkoglu MA, Aytac B, Ozyurt N, Emregul E. Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of colorectal cancer in both clinical samples and cell culture. Cancer Lett 2019; 469:186-194. [PMID: 31669517 DOI: 10.1016/j.canlet.2019.10.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
Exosomes are naturally secreted nano-vesicles consisting of biochemical molecules including RNAs, metabolites, lipids, and proteins, that emerge as diagnostic tools and disease-specific reporters. Here we offer a systematic and integrative approach for the simultaneous analysis of altered molecules namely metabolites, lipids, and proteins. These components tend to augment the discovery of low abundance signature components, and assist in explanation of molecular basis of colorectal cancer (CRC). In order to investigate CRC-derived exosomes, we selected mi-R19a, miR-21, miR-92a, and miR-1246 positive exosomes for downstream experiments. The overall multi-omic changes were investigated comparatively in cell culture and serum samples. Following a systematic multi-omic study, 37 (cell culture) and 31 (serum) metabolites; 130 (cell culture) and 56 (serum) lipids; 9 (cell culture) and 13 (serum) proteins were seen to be differentially expressed (p < 0.05), enabling discrimination between CRC and control. By using these enriched components, we demonstrated that the joint pathways mainly involving fatty acid and amino acid metabolism related pathways changed in CRC significantly. We conclude that this study increases our understanding of molecular basis of CRC, and provides potential exosomal biomarkers for the non-invasive detection, and discrimination of CRC.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230, Ankara, Turkey
| | - Mehmet Yilmaz
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| | - Burak Derkus
- Biomedical Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230, Ankara, Turkey
| | - Can Berk Camci
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| | - Erkan Yilmaz
- Biotechnology Institute, Ankara University, 06560, Ankara, Turkey
| | - Mehmet Akif Turkoglu
- Department of General Surgery, Faculty of Medicine, Gazi University, 06560, Ankara, Turkey
| | - Bulent Aytac
- Department of General Surgery, Faculty of Medicine, Gazi University, 06560, Ankara, Turkey
| | - Neslihan Ozyurt
- Medical Oncology, School of Medicine, Ankara University, 06590, Ankara, Turkey
| | - Emel Emregul
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| |
Collapse
|
25
|
Abdik H, Avsar Abdik E, Hızlı Deniz AA, Taşlı PN, Şahin F. A Novel Virtue in Stem Cell Research: Exosomes and Their Role in Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:133-146. [PMID: 30729448 DOI: 10.1007/5584_2019_339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past decade a number of different stem cell types have entered the clinical applications increasingly as a therapeutic option, due to their tissue maintenance capacity at the site where they localize. Although it was initially thought that conferral of resilience to damaged tissue largely depends on the stem cells themselves through orchestration of signaling among the local epithelial and immune systems at the injury site, recent findings point out that the remarkable regenerative capacity of stem cells is rather due to their nanovesicular products that emerge as the new active players of tissue repair processes. Among these extracellular vesicles exosomes generated particularly by stem cells have been receiving a substantial interest both in the fields of stem cell biology and extracellular vesicles. In this chapter fundamental facts about stem cell biology, biogenesis of extracellular vesicles and exosomes, their structure, and function are summarized. Moreover, properties of both tumor-derived exosomes as well as those derived from stem cells are discussed relatively in-depth in terms of their influence on proximal and distal tissue physiology. Last but not the least, among countless studies in an exploding field, we summarize those that attempt to unravel the complex signaling networks through which stem cell-derived exosomes alter the fate of differentiating stem cells as well as the molecular make-up of exosomes released from differentiating stem cells by conducting thorough proteomic and genomic analyses with the ultimate goal of identifying effector gene products mediating exosomal cues in stem cell biology.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| | - Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
26
|
Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, Brizzi MF. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9:4468. [PMID: 30872726 PMCID: PMC6418239 DOI: 10.1038/s41598-019-41100-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from mesenchymal stromal cells (MSCs) have been shown to reprogram injured cells by activating regenerative processes. We herein investigate the potential therapeutic effect of EVs, shed by human bone marrow MSCs and by human liver stem-like cells (HLSCs), on the progression and reversion of fibrosis in a mouse model of diabetic nephropathy, as induced by streptozotocin. After the development of nephropathy, stem cell-derived EVs were administered weekly to diabetic mice for four weeks. The stem cell-derived EV treatment, but not the fibroblast EV treatment that was used as a control, significantly ameliorated functional parameters, such as albumin/creatinine excretion, plasma creatinine and blood urea nitrogen, which are altered in diabetic mice. Moreover, the renal fibrosis that develops during diabetic nephropathy progression was significantly inhibited in stem cell EV-treated animals. A correlation was found between the down regulation of several pro-fibrotic genes in renal tissues and the anti-fibrotic effect of HLSC and MSC EVs. A comparative analysis of HLSC and MSC EV miRNA content highlighted some common and some specific patterns of miRNAs that target predicted pro-fibrotic genes. In conclusion, stem cell-derived EVs inhibit fibrosis and prevent its progression in a model of diabetes-induced chronic kidney injury.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Stefania Tritta
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| |
Collapse
|
27
|
Pisano C, Besner GE. Potential role of stem cells in disease prevention based on a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 2019; 54:413-416. [PMID: 30236604 PMCID: PMC6380911 DOI: 10.1016/j.jpedsurg.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating disease of newborns, and despite years of research, there is no known cure. The mortality rate of infants with NEC remains as high as 20%-30%. Babies who survive NEC frequently have long term complications including short gut syndrome, developmental delays and neurological sequelae. Unfortunately, despite much research over the past years, the precise pathogenesis of the disease is still not completely understood. METHODS Our laboratory has focused on identifying novel therapies to prevent the disease, including the use of stem cells (SC), heparin-binding epidermal growth factor-like growth factor (HB-EGF) and recently, stem cell derived-exosomes, a type of nanovesicle, to combat this illness. RESULTS We have outlined the major SC lines and data suggesting potential benefit as a curative or preventive approach for NEC as well as describing several new therapeutic strategies, including stem cell derived- exosomes and HB-EGF for decreasing the incidence and severity of this disease in rat models in our lab. CONCLUSION Overall, our lab has demonstrated that these different types of SC equivalently reduce the incidence and severity of NEC and equally preserve intestinal barrier function during NEC. We have previously demonstrated that AF-MSC can protect the intestines from intestinal injury and may therefore hold strong therapeutic potential for the prevention of NEC. Most recently, our work with stem cell derived-exosomes has shown them to be equivalent to their derived SC lines in decreasing the incidence of this disease.
Collapse
Affiliation(s)
- Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
28
|
Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, Santamaría J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnology 2019; 17:16. [PMID: 30683120 PMCID: PMC6346572 DOI: 10.1186/s12951-018-0437-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Exosomes are considered key elements for communication between cells, but very little is known about the mechanisms and selectivity of the transference processes involving exosomes released from different cells. RESULTS In this study we have investigated the transfer of hollow gold nanoparticles (HGNs) between different cells when these HGNs were loaded within exosomes secreted by human placental mesenchymal stem cells (MSCs). These HGNs were successfully incorporated in the MSCs exosome biogenesis pathway and released as HGNs-loaded exosomes. Time-lapse microscopy and atomic emission spectroscopy allowed us to demonstrate the selective transfer of the secreted exosomes only to the cell type of origin when studying different cell types including cancer, metastatic, stem or immunological cells. CONCLUSIONS In this study we demonstrate the selectivity of in vitro exosomal transfer between certain cell types and how this phenomenon can be exploited to develop new specific vectors for advanced therapies. Specifically, we show how this preferential uptake can be leveraged to selectively induce cell death by light-induced hyperthermia only in cells of the same type as those producing the corresponding loaded exosomes. We describe how the exosomes are preferentially transferred to some cell types but not to others, thus providing a better understanding to design selective therapies for different diseases.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Nuria Navascués
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain
| | - Víctor Sebastián
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| | - Pilar Martín-Duque
- Fundación Araid, 50009, Zaragoza, Spain. .,Instituto Aragonés de Ciencias de la Salud (IACS/IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), 50009, Zaragoza, Spain.
| | - Jesús Santamaría
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018, Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| |
Collapse
|
29
|
Effect of Adipose-Derived Stem Cells and Their Exo as Adjunctive Therapy to Nonsurgical Periodontal Treatment: A Histologic and Histomorphometric Study in Rats. Biomolecules 2018; 8:biom8040167. [PMID: 30544734 PMCID: PMC6316309 DOI: 10.3390/biom8040167] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Scaling and root planing (SRP) is of limited value in many cases, so adjunctive treatment was applied to augment its outcome. Adipose-derived stem/stromal cells (ADSCs) were investigated in periodontal regeneration with promising results. However, they have safety concerns. The exosomes (Exo.), which are extracellular vesicles mediating the action of stem/stromal cells, represent a new approach to overcome these concerns. Ligature-induced periodontitis was induced in 50 rats for 14 days, and they were divided into control (5 healthy rats for histologic comparison), SRP group, ADSCs group, and Exo. group, with evaluation intervals at 2 days, and 2 and 4 weeks, including 5 rats in each interval for each group. The specimens were evaluated for histologic description (H&E), histochemical study (Masson trichrome), and histomorphometric study, to evaluate the area % of newly formed tissues. The Exo. group revealed the best results in all intervals with significantly higher area % of newly formed tissues, followed by ADSCs and, finally, SRP. Both Exo. and ADSCs showed organized newly formed tissues with the Exo. group obtaining comparable histologic results to the normal, healthy tissues by 4 weeks. Adipose-derived stem/stromal cells and their Exo. represent a promising adjunctive treatment to SRP.
Collapse
|
30
|
Yuan KM, Zhang PH, Qi SS, Zhu QZ, Li P. Emerging Role for Exosomes in the Progress of Stem Cell Research. Am J Med Sci 2018; 356:481-486. [DOI: 10.1016/j.amjms.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023]
|
31
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
32
|
Alberti D, Grange C, Porta S, Aime S, Tei L, Geninatti Crich S. Efficient Route to Label Mesenchymal Stromal Cell-Derived Extracellular Vesicles. ACS OMEGA 2018; 3:8097-8103. [PMID: 30087935 PMCID: PMC6072237 DOI: 10.1021/acsomega.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 05/23/2023]
Abstract
Recent research results report that extracellular vesicles (EVs) have a central role in both physiological and pathological processes involving intercellular communication. Herein, a simple EVs labeling procedure based on the metabolic labeling of secreting cells (mesenchymal stroma cells, MSCs) with a fluorescein-containing bio-orthogonal dye is described. This procedure was carried out by incubating cells for 72 h with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz), a modified sugar containing an azido group that, upon incorporation on the external surface of the cytoplasmatic cell membrane, is specifically conjugated with cyclooctyne-modified fluorescein isothiocyanate (ADIBO-FITC). MSCs released fluorescent EVs did not need any further purification. Finally, cellular uptake and tracking of the fluorescein-labeled EVs were successfully assessed by targeting experiments with MSCs. The method appears of general applicability and it may be very useful opening new horizon on diagnostic and therapeutic protocols exploiting EVs.
Collapse
Affiliation(s)
- Diego Alberti
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department
of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
| | - Stefano Porta
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Tei
- Department
of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Simonetta Geninatti Crich
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
33
|
McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, Besner GE. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg 2018; 53:1215-1220. [PMID: 29661576 PMCID: PMC5994352 DOI: 10.1016/j.jpedsurg.2018.02.086] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) remains a devastating disease in premature infants. We previously showed that four stem cell (SC) types equivalently improve experimental NEC. Exosomes are intercellular nanovesicles containing RNA, miRNA, DNA, and protein. Because SC therapy faces challenges, our aim was to determine if the beneficial effects of SC are achievable with cell-free exosomes. METHODS Exosomes from four SC types were compared: (1) amniotic fluid-derived mesenchymal SC (AF-MSC); (2) bone marrow-derived MSC (BM-MSC); (3) amniotic fluid-derived neural SC (AF-NSC); and (4) neonatal enteric NSC (E-NSC). Rat pups exposed to NEC received a varying concentration of a single type of exosome with control pups receiving PBS only. Intestinal damage was graded histologically. RESULTS The incidence of NEC was 0% in unstressed pups and 60.7% in control pups subjected to NEC. Exosomes (4.0×108) reduced NEC incidence to: AF-MSC 25.0%; BM-MSC 23.1%; AF-NSC 11.1%; E-NSC 27.3%. When administered at a concentration of at least 4.0×108, all groups demonstrated a significant reduction in NEC compared to untreated pups. At this minimum concentration, there was no difference in treatment efficacy between exosomes and the SC from which they were derived. CONCLUSION Stem cell-derived exosomes reduce the incidence and severity of experimental NEC as effectively as the stem cells from which they are derived, supporting the potential for novel cell-free exosome therapy for NEC. TYPE OF STUDY Basic science.
Collapse
MESH Headings
- Amniotic Fluid/cytology
- Animals
- Animals, Newborn
- Bone Marrow Cells/cytology
- Disease Models, Animal
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/therapy
- Exosomes
- Humans
- Infant
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/therapy
- Intestines/pathology
- Mesenchymal Stem Cells/cytology
- Neural Stem Cells/cytology
- Rats, Sprague-Dawley
- Stem Cell Transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Christopher J McCulloh
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Jacob K Olson
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Yijie Wang
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Yu Zhou
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Natalie Huibregtse Tengberg
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Shivani Deshpande
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.
| |
Collapse
|
34
|
Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci 2018; 33:1131-1145. [PMID: 29603107 DOI: 10.1007/s10103-018-2495-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
The distinct role of low-level laser irradiation (LLLI) on endothelial exosome biogenesis remains unclear. We hypothesize that laser irradiation of high dose in human endothelial cells (ECs) contributes to the modulation of exosome biogenesis via Wnt signaling pathway. When human ECs were treated with LLLI at a power density of 80 J/cm2, the survival rate reduced. The potential of irradiated cells to release exosomes was increased significantly by expressing genes CD63, Alix, Rab27a, and b. This occurrence coincided with an enhanced acetylcholine esterase activity, pseudopodia formation, and reduced zeta potential value 24 h post-irradiation. Western blotting showed the induction of LC3 and reduced level of P62, confirming autophagy response. Flow cytometry and electron microscopy analyses revealed the health status of the mitochondrial function indicated by normal ΔΨ activity without any changes in the transcription level of PINK1 and Optineurin. When cells exposed to high power laser irradiation, p-Akt/Akt ratio and in vitro tubulogenesis capacity were blunted. PCR array and bioinformatics analyses showed the induction of transcription factors promoting Wnt signaling pathways and GTPase activity. Thus, LLLI at high power intensity increased exosome biogenesis by the induction of autophagy and Wnt signaling. LLLI at high power intensity increases exosome biogenesis by engaging the transcription factors related to Wnt signaling and autophagy stimulate.
Collapse
|
35
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Genc B, Bozan HR, Genc S, Genc K. Stem Cell Therapy for Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:145-174. [PMID: 30039439 DOI: 10.1007/5584_2018_247] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS). It is characterized by demyelination and neuronal loss that is induced by attack of autoreactive T cells to the myelin sheath and endogenous remyelination failure, eventually leading to functional neurological disability. Although recent evidence suggests that MS relapses are induced by environmental and exogenous triggers such as viral infections in a genetic background, its very complex pathogenesis is not completely understood. Therefore, the efficiency of current immunosuppression-based therapies of MS is too low, and emerging disease-modifying immunomodulatory agents such as fingolimod and dimethyl fumarate cannot stop progressive neurodegenerative process. Thus, the cell replacement therapy approach that aims to overcome neuronal cell loss and remyelination failure and to increase endogenous myelin repair capacity is considered as an alternative treatment option. A wide variety of preclinical studies, using experimental autoimmune encephalomyelitis model of MS, have recently shown that grafted cells with different origins including mesenchymal stem cells (MSCs), neural precursor and stem cells, and induced-pluripotent stem cells have the ability to repair CNS lesions and to recover functional neurological deficits. The results of ongoing autologous hematopoietic stem cell therapy studies, with the advantage of peripheral administration to the patients, have suggested that cell replacement therapy is also a feasible option for immunomodulatory treatment of MS. In this chapter, we overview cell sources and applications of the stem cell therapy for treatment of MS. We also discuss challenges including those associated with administration route, immune responses to grafted cells, integration of these cells to existing neural circuits, and risk of tumor growth. Finally, future prospects of stem cell therapy for MS are addressed.
Collapse
Affiliation(s)
- Bilgesu Genc
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Hemdem Rodi Bozan
- School of Medicine, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey.
| |
Collapse
|
37
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Hwang I, Hong S. Neural Stem Cells and Its Derivatives as a New Material for Melanin Inhibition. Int J Mol Sci 2017; 19:ijms19010036. [PMID: 29271951 PMCID: PMC5795986 DOI: 10.3390/ijms19010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
The pigment molecule, melanin, is produced from melanosomes of melanocytes through melanogenesis, which is a complex process involving a combination of chemical and enzymatically catalyzed reactions. The synthesis of melanin is primarily influenced by tyrosinase (TYR), which has attracted interest as a target molecule for the regulation of pigmentation or depigmentation in skin. Thus, direct inhibitors of TYR activity have been sought from various natural and synthetic materials. However, due to issues with these inhibitors, such as weak or permanent ability for depigmentation, allergy, irritant dermatitis and rapid oxidation, in vitro and in vivo, the development of new materials that inhibit melanin production is essential. A conditioned medium (CM) derived from stem cells contains many cell-secreted factors, such as cytokines, chemokines, growth factors and extracellular vesicles including exosomes. In addition, the secreted factors could negatively regulate melanin production through stimulation of a microenvironment of skin tissue in a paracrine manner, which allows the neural stem cell CM to be explored as a new material for skin depigmentation. In this review, we will summarize the current knowledge regulating depigmentation, and discuss the potential of neural stem cells and their derivatives, as a new material for skin depigmentation.
Collapse
Affiliation(s)
- Insik Hwang
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Public Health Sciences, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Public Health Sciences, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Integrated Biomedical and Life Science, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
| |
Collapse
|
39
|
Grange C, Iampietro C, Bussolati B. Stem cell extracellular vesicles and kidney injury. Stem Cell Investig 2017; 4:90. [PMID: 29270416 DOI: 10.21037/sci.2017.11.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstrate a general regenerative potential of EVs derived from mesenchymal stromal cells (MSCs) of different sources in kidney injury models. In addition, a promising new approach is the use of EVs in the graft perfusion solution for kidney conditioning before transplant. Here we summarize the application of EVs released by stem cells in preclinical models of acute and chronic renal damage, comparing animal models, use of EVs of different cell origin and of their sub-fractions, doses, route of administration and efficacy of treatment.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Corinne Iampietro
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Newton WC, Kim JW, Luo JZQ, Luo L. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy. J Mol Endocrinol 2017; 59:R155-R165. [PMID: 28835418 DOI: 10.1530/jme-17-0080] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular vesicles (EVs) secreted from a majority of cell types. Exosomes play a role in healthy and pathogenic intercellular interactions via the transfer of proteins, lipids and RNA. The contents and effects of exosomes vary depending on the properties of the originating cell. Exosomes secreted from some cell types, including stem cells, carry biological factors implicated in the protection, regeneration and angiogenesis of damaged tissues. Due to these properties, exosomes have attracted attention as a novel vector for regenerative therapies. Exosomes as a therapeutic tool could have applications for the treatment of many disorders characterized by chronic tissue damage. Exosomes derived from stem cells could be applied to repair or prevent damage from the complications of diabetes mellitus. The immunomodulatory and reparative properties of stem cell-derived exosomes could protect or even restore an early-stage type 1 diabetic patient's original islets from autoimmune destruction. Exosomes could also possibly suppress graft rejection of pancreatic islet transplants. Therefore, it is our recommendation that the treatment of diabetes mellitus using exosome-based therapies be further explored. Development of novel therapies using exosomes is slowed by a limited understanding of their mechanisms. This hurdle must be overcome to pave the way for clinical trials and ultimately the adaptation of exosomes as a therapeutic vector.
Collapse
Affiliation(s)
- William C Newton
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - Joseph W Kim
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - John Z Q Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
- Insure HealthInc., Warwick, Rhode Island, USA
| | - LuGuang Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
41
|
Zhu LL, Huang X, Yu W, Chen H, Chen Y, Dai YT. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 2017; 50. [PMID: 29057541 DOI: 10.1111/and.12871] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- L. L. Zhu
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - X. Huang
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - W. Yu
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - H. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. T. Dai
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| |
Collapse
|