1
|
Sangamesh VC, Jayaswamy PK, Krishnaraj VM, Kuriakose NK, Hosmane GB, Shetty JK, Patil P, Shetty S, Bhandary R, Shetty P. AnxA2-EGFR pro-inflammatory signaling potentiates EMT-induced fibrotic stress and its modulation by short-chain fatty acid butyrate in idiopathic pulmonary fibrosis. Toxicol Appl Pharmacol 2025; 499:117342. [PMID: 40239744 DOI: 10.1016/j.taap.2025.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive extracellular matrix deposition, leading to irreversible lung scarring. This study explores the underlying molecular mechanisms of IPF and delves into membrane-anchored synergism between EGFR and AnxA2, which amplifies fibrotic stress and plays a pivotal role in promoting pulmonary fibroblast activation and fibrosis. Indeed, these interactions create a synergistic effect that promotes the loss of epithelial traits and the transition to a mesenchymal phenotype, thereby contributing to fibrotic stress and disease progression. In addition, this study also explores the potential of butyrate, a short-chain fatty acid, as a therapeutic agent in reducing fibrotic stress by modulating AnxA2-EGFR signaling. Pre-treatment with butyrate significantly dampens AnxA2-EGFR signaling and Galectin-3 expression, effectively curbing prolonged EGFR phosphorylation. The suppression of upstream signaling leads to a reduction in the angiogenic marker VEGF and a decrease in pro-inflammatory mediators such as TNF-α and IL-6. Collectively, our findings highlight the critical role of EGFR-AnxA2 signaling and Galectin 3 in the pathogenesis of IPF, and highlight butyrate as a potential therapeutic agent for alleviating fibrotic stress.
Collapse
Affiliation(s)
- Vinay C Sangamesh
- NITTE (Deemed to be University), Nitte University Center for Science Education and Research, Deralakatte, Mangalore 575018, Karnataka, India
| | - Pavan K Jayaswamy
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Vijay M Krishnaraj
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Nithin K Kuriakose
- NITTE (Deemed to be University), Nitte University Center for Science Education and Research, Deralakatte, Mangalore 575018, Karnataka, India
| | - Giridhar B Hosmane
- NITTE (Deemed to be University), Department of Pulmonary Medicine, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Jayaprakash K Shetty
- NITTE (Deemed to be University), Department of Pathology, K. S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Prakash Patil
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Sukanya Shetty
- NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Roopa Bhandary
- NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- NITTE (Deemed to be University), Central Research Laboratory, KS. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India; NITTE (Deemed to be University), Department of Biochemistry, K.S. Hegde Medical Academy, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
2
|
Zhi Y, Shu M, Tang P, Li Y, Guo M, Deng J, Mo H, Wu M, Liu B, Mai Y, Ling J, Zhao X, Zhang X, Zuo W. Overexpression of Decorin Optimizes the Treatment Efficacy of Umbilical Cord Mesenchymal Stem Cells in Bleomycin-Induced Pulmonary Fibrosis in Rats. Stem Cells Int 2025; 2025:6324980. [PMID: 40438789 PMCID: PMC12119169 DOI: 10.1155/sci/6324980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/02/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-term, diffuse pulmonary parenchyma lesion that primarily affects middle-aged and older adults. It is characterized by pulmonary interstitial fibrosis of unknown cause. The death rate upon diagnosis is higher than that of many other cancer types. Mesenchymal stem cell (MSC) treatment of organ fibrosis is a hot topic in preclinical and clinical research because it effectively treats IPF. In recent years, decorin (DCN) has been regarded as a critical mediator for its anti-inflammatory and antifibrotic effects. The purpose of this study was to generate human umbilical cord MSCs (HUC-MSCs) that overexpress DCN and to investigate the safety, mechanism, and effectiveness of using these cells to cure pulmonary fibrosis caused by bleomycin (BLM). First, lentiviral (LV) particles carrying the therapeutic DCN gene (LV-DCN) and control LV particles were created and transfected using the plasmid vector GV208 to create a viral solution for infecting HUC-MSCs. These solutions were used to create a DCN overexpression cell line and an MSC-Con. cell line infected with the control lentivirus. Intratracheal injection of BLM was used to establish a rat model of pulmonary fibrosis. On the second day following modeling, different treatments were administered, and the body weight and survival status of the rats were noted. The relevant tests were performed on days 15 and 29 following modeling. The results demonstrated that the overexpression of DCN did not affect the properties of HUC-MSCs and that these cells were effective in treating IPF. MSC-Con. and MSC-DCN reduced systemic inflammation by reducing serum interleukin (IL) 1β. Both cell types successfully treated pulmonary fibrosis in rats, as demonstrated by hematoxylin and eosin (HE) and Masson staining. MSC-DCN showed better efficacy due to lower mortality, higher weight gain, less alveolar inflammation, and less fibrosis. The safety of venous transplantation with MSCs was established by HE staining of the heart, liver, spleen, and kidney, as well as serum lactate dehydrogenase (LDH), creatinine (CRE), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels. Immunohistochemical (IHC) staining of CD68 and CD206 in lung tissue and in vitro experiments on THP-1-induced M2 macrophage polarization and transforming growth factor-beta 1 (TGF-β1)-induced MRC-5 fibrosis indicated that MSC-DCN may mitigate lung inflammation by altering macrophage recruitment and polarization and inhibiting TGF-β1 expression to reduce fibrous hyperplasia and collagen deposition, thereby improving the treatment of BLM-induced IPF.
Collapse
Affiliation(s)
- Yaofeng Zhi
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Minghui Shu
- Department of Geriatric Medicine, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, Guangdong, China
| | - Pingsheng Tang
- Department of Cardiovascular, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, Guangdong, China
| | - Yingjie Li
- Department of Respiratory, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, Guangdong, China
| | - Min Guo
- Traditional Chinese Medicine Department, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong, China
| | - Jiongrui Deng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Meimei Wu
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Baoyi Liu
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yanyang Mai
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jie Ling
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Xulin Zhao
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wanli Zuo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Key Laboratory of Precision and Clinical Translation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Department of Respiratory, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, Guangdong, China
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| |
Collapse
|
3
|
Xu C, Yi M, Xiao Z, Xiang F, Wu M, Zhang Z, Zheng Y, Gong Y, Li Y, Su L, Liao Y, Zhang P, Xia B, Liao D, Lin L. New idea of Fuke Qianjin capsule in treating sequelae of pelvic inflammatory disease: Anti-inflammatory in the early stage and reparative in the later stage. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119066. [PMID: 39528116 DOI: 10.1016/j.jep.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sequelae of pelvic inflammatory disease (SPID) occurs in female internal genitalia and surrounding connective tissue. Recent clinical studies have shown that the traditional Chinese medicine Fuke Qianjin capsule (FKQ) can shorten the course of this disease, but its pharmacological effects and potential mechanism have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the efficacy and underlying mechanisms of FKQ in the treatment of SPID. METHODS In this study, we first established a mixed infection model to explore the protective effect of FKQ on common pathogens of SPID. Afterwards, mixed bacterial infection and mechanical injury were used in a SPID rat model to explore the protective mechanism of FKQ on SPID rats. Inflammation, repair and immune cells were tested. RESULTS FKQ has a protective effect against infections caused by SPID pathogenic bacterial and may reduce mortality from mixed infections. In the SPID model, FKQ improved pathological damage to the uterus, reduced the area of uterine fibrosis, and inhibited the levels of cytokines (TNF-α, IL-6, IL-1β, IL-18, TGF-β1 and VEGF) caused by pathogenic bacteria. Moreover, FKQ treatment reduced the accumulation of NLRP3, Caspase-1, GSDMD Vimentin, and Cytokeratin 18 in the uterus and suppressed the expression of TGF-β1 and VEGF in the fallopian tubes, thereby reducing inflammation and promoting mucosal repair. In addition, FKQ can restore the immune function balance of SPID rats by increasing the proportion of Treg cells in the spleen and thymus in a rat model of SPID, reducing the proportion of Th17 lymphocytes, and promoting an immunological balance of Treg/Th17 cells, thereby regulating the immune system of the body. CONCLUSION In summary, FKQ treatment for SPID is the result of a fourfold combination of antibacterial, anti-inflammatory, reparative and immune-enhancing activities.
Collapse
Affiliation(s)
- Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Meijin Yi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhikui Xiao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Mengyao Wu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuanqing Zheng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Liang Su
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yingyan Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
4
|
Wang Y, Peng M, Yang X, Tu L, Liu J, Yang Y, Li R, Tang X, Hu Y, Zhang G, Zhao Q, Lu Q. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118935. [PMID: 39396718 DOI: 10.1016/j.jep.2024.118935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillaria cirrhosa D. Don (FCD) is a traditional Chinese medicine used to treat respiratory disorders, known for its effects in clearing heat, moistening the lungs, resolving phlegm, and relieving cough. Additionally, the total alkaloids extracted from FCD can alleviate asthma symptoms and reduce airway inflammation. However, no studies have investigated the effects of total alkaloids on lung macrophages. AIM OF THE STUDY This study explored whether the total alkaloids of FCD (TAs-FCD) reduce M2 macrophage polarization and, consequently, attenuate airway remodeling in asthmatic mice. This study further elucidated its mechanism of action in treating allergic asthma. MATERIALS AND METHODS The extracted TAs-FCD was analyzed for its composition using UPLC-Q-TOF/MS. Network pharmacology was employed to identify the active ingredients and potential mechanisms of TAs-FCD in the treatment of allergic asthma. A mouse model of ovalbumin-induced allergic asthma was established, adopted, and validated through in vivo experiments. Hematoxylin-eosin staining (H&E), immunohistochemistry (IHC), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time fluorescence quantitative polymerase chain reaction (q-PCR) were used to investigate the role of TAs-FCD in inhibiting M2 macrophage polarization in the context of allergic asthma. RESULTS A total of 66 active ingredients were screened from 116 compounds using SWISSADME. The targets of these 66 compounds were predicted by SwissTargetPrediction, resulting in 808 unique drug targets after excluding duplicates. Additionally, 1756 targets related to allergic asthma were identified from the DisGeNET, Genecard, and OMIM databases. This led to 267 cross-targets between the active ingredient targets and allergic asthma targets, including interleukin (IL)-1β, tumor necrosis factor (TNF), and STAT3. Animal experiments demonstrated that TAs-FCD improved histopathological injury in mouse lungs, reduced peri-airway collagen fiber accumulation, airway mucus secretion, and airway smooth muscle proliferation. TAs-FCD also lowered IL-1β, TNF-α and IL-4 levels in lung tissues and alleviated airway inflammation. Furthermore, TAs-FCD significantly reduced levels of Arg1 and CD206, which are closely associated with M2 macrophages, and downregulated the expression of p-STAT3 and p-JAK2. CONCLUSION TAs-FCD may inhibit M2 macrophage polarization by regulating the JAK2/STAT3 pathway, thereby alleviating airway remodeling and inflammation in allergic asthmatic mice.
Collapse
Affiliation(s)
- Yu Wang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Meihao Peng
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xin Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Liming Tu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jiamin Liu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xue Tang
- Chengdu Analytical Applications Center, Shimadzu (China) Co Ltd., Chengdu, 610023, China
| | - Yuqing Hu
- Shangri-La Tianquan Chuanbei Technology Co., Ltd., Yunnan, 674401, China
| | - Guowu Zhang
- Shangri-La Tianquan Chuanbei Technology Co., Ltd., Yunnan, 674401, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
5
|
Lim B, Kim SC, Kim HJ, Kim JH, Seo YJ, Lim C, Park Y, Sheet S, Kim D, Lim DH, Park K, Lee KT, Kim WI, Kim JM. Single-cell transcriptomics of bronchoalveolar lavage during PRRSV infection with different virulence. Nat Commun 2025; 16:1112. [PMID: 39875369 PMCID: PMC11775223 DOI: 10.1038/s41467-024-54676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes. Viral tracking reveals less than 5% of macrophages are directly infected, and further analysis indicates bystander cell death, likely regulated by exosomal microRNAs as a significant factor. In contrast, the peak intermediate infection shows a delayed lung-damage time point with fewer cell population modifications. Furthermore, anti-inflammatory M2-like macrophages (SPP1-CXCL14high) are identified and their counts increase during the peak lung-damage time point, likely contributing to local defense and lung recovery, which is not observed in high virulent infection. These findings provide a comprehensive description of the immune cellular landscape and differential PRRSV virulence mechanisms, which will help build new hypotheses to understand PRRSV pathogenesis and other respiratory infections.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hwan-Ju Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jae-Hwan Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Young-Jun Seo
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chiwoong Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yejee Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
6
|
Liang J, Ran Y, Hu C, Zhou J, Ye L, Su W, Liu Z, Xi J. Inhibition of HIF-1α ameliorates pulmonary fibrosis by suppressing M2 macrophage polarization through PRMT1/STAT6 signals. Int Immunopharmacol 2025; 146:113931. [PMID: 39733638 DOI: 10.1016/j.intimp.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung interstitial disease of unknown etiology with a fatal outcome. M2 macrophages have been recognized to play a significant role in PF pathogenesis. The role of protein hypoxia-inducible factor 1-α (HIF-1α) in M2 macrophage polarization in PF is largely unknown. This study aimed to investigate the role of macrophage HIF-1α in the regulation of PF. METHODS PF was induced in C57BL/6 mice by the intratracheal injection of bleomycin (BLM), and small hairpin RNA (shRNA) lentiviral construct specifically targeting HIF-1α were designed for in vitro and in vivo experiments. In the in vitro experiment, bone marrow-derived macrophages (BMDMs) were used to explore molecular mechanism analysis. In the in vivo experiment, mice were administered BLM intratracheally on day 0, treated with shRNA on day 7, and sacrificed on day 21. Histopathological techniques (H&E and Masson's trichrome staining) were used to evaluate PF severity. Western blot, immunofluorescence, quantitative real-time PCR, and flow cytometry were performed to explore the underlying mechanisms. RESULTS HIF-1α was upregulated and macrophages polarized toward M2 phenotype in BLM-induced mouse pulmonary fibrosis models. By constructing HIF-1α knockdown shRNA lentiviral construct, we found that the knockdown of HIF-1α in macrophages significantly suppressed M2-type polarization in vitro, hence alleviating fibrosis in lung epithelial cells. Further results revealed that HIF-1α in macrophages promoted M2-type polarization by mediating the signal transducer and activator of transcription 6 (STAT6) arginine methylation. Meanwhile, its arginine methylation modification site is at position Arg27. Further experiments indicated that the regulation of STAT6 arginine methylation by HIF-1α mainly depended on the protein arginine methyltransferase 1 (PRMT1). Finally, animal experiments demonstrated that Knockdown of HIF-1α, PRMT1, and STAT6 relieved the BLM-induced pulmonary fibrosis of mice. CONCLUSION HIF-1α may act as a novel factor to promote macrophage of the M2 program. Therapeutic approaches to target macrophage HIF-1α may act as a new therapeutic strategy to combat PF in the future.
Collapse
Affiliation(s)
- Jingjing Liang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Ran
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Changbin Hu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jie Zhou
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Dong S, Fang H, Zhu J, Wu Z, Liu Y, Zhu J, Ma B, Chen Q, Yang Y. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis. ACS NANO 2025; 19:2742-2758. [PMID: 39791575 DOI: 10.1021/acsnano.4c15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
For idiopathic pulmonary fibrosis (IPF), interleukin 11 (IL-11) is a pivotal cytokine that stimulates the transformation of fibroblasts into myofibroblasts, thus accelerating the progression of pulmonary fibrosis. Here, we develop an innovative inhalable small interfering RNA (siRNA) delivery system termed PEI-GBZA, which demonstrates impressive efficiency in loading siIL-11 targeting IL-11 (siIL-11) and substantially suppresses the differentiation of fibroblasts into myofibroblasts and epithelial-mesenchymal transition (EMT), reduces neutrophil and macrophage recruitment, and ultimately relieves the established fibrotic lesions in the IPF model. PEI-GBZA is prepared by modifying low-molecular-weight polyethylenimine (PEI) with 4-guanidinobenzoic acid (GBZA). The resulting PEI-GBZA may effectively encapsulate siIL-11 through a variety of interactions such as hydrophobic, hydrogen bonding, and electrostatic interactions, creating stable carrier/siIL-11 nanoparticles (PEI-GBZA/siIL-11 NPs). Upon inhalation, PEI-GBZA/siIL-11 NPs demonstrate effective retention in fibrotic lesions, leading to a marked mitigation of disease progression in a bleomycin-induced pulmonary fibrosis model. Impressively, this inhalation therapy exhibits negligible systemic toxicity. This work provides a universal and noninvasive RNA therapeutic delivery platform that holds significant promise for respiratory diseases. The potential for clinical application of this platform is substantial, offering a frontier for the treatment of IPF and potentially other pulmonary disorders.
Collapse
Affiliation(s)
- Shengting Dong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yi Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Benting Ma
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
8
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
9
|
Wang Y, Geng X, Guo Z, Chu D, Liu R, Cheng B, Cui H, Li C, Li J, Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med 2024; 56:2313680. [PMID: 38335557 PMCID: PMC10860428 DOI: 10.1080/07853890.2024.2313680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-β1 (TGF-β1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-β1, TGF-βR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-β1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS TGF-β1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Maimaitijiang A, Huang Q, Wu Y, Sun S, Chen Q. Transglutaminase 2 inhibition ameliorates cardiac fibrosis in myocardial infarction by inducing M2 macrophage polarization in vitro and in vivo. Cytojournal 2024; 21:58. [PMID: 39737120 PMCID: PMC11683372 DOI: 10.25259/cytojournal_32_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear. This study aimed to discover the functions and possible mechanisms of TG2 in MI. Material and Methods C57BL/6 mice were classified into three groups (six mice per group): Sham, MI, and MI+GK921 groups. GK921 acts as a TG2 inhibitor. Cardiac function, myocardial cell apoptosis, fibrosis, and macrophage phenotype in mouse experiments were detected through echocardiography, terminal deoxynucleotidyl transferase dUTP nick end labeling, Masson staining, immunofluorescence, and flow cytometry, respectively. The in vitro study involved the treatment of mouse cardiac fibroblasts isolated from mice with transforming growth factor β1 (TGF-β1) and evaluation of fibrosis through the detection of the expressions of fibrosis-associated proteins using Western blot. Bone marrow-derived macrophages (BMDMs) obtained from mice were triggered by interleukin (IL)-4, and the type of macrophages was determined through flow cytometry. Results In in vivo experiments, GK921 substantially improved cardiac injury and fibrosis, induced M2 macrophage polarization, and suppressed the TGF-β1/small mother against decapentaplegic 3 (Smad3) pathway in MI mice. Moreover, TG2 knockdown considerably decreased the expressions of fibrosis-associated proteins in TGF-β1-triggered mouse cardiac fibroblasts, which indicates the repressive effect of TG2 knockdown on fibrosis. In addition, the inhibition effect of TG2 downregulation on the TGF-β1/Smad3 pathway was proven in TGF-β1-treated mouse cardiac fibroblasts in vitro. Moreover, TG2 inhibition remarkably increased M2 macrophage polarization in IL-4-induced BMDMs. Conclusion TG2 inhibition facilitated M2 macrophage polarization to provide protection against MI-caused cardiac fibrosis in mice, and these effects may be attained through modulation of the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yurong Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengjia Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Wang J, Xia Z, Qing B, Chen Y, Gu L, Chen H, Ge Z, Yuan Y. DsbA-L activates TGF-β1/SMAD3 signaling and M2 macrophage polarization by stimulating AKT1 and NLRP3 to promote pulmonary fibrosis. Mol Med 2024; 30:228. [PMID: 39580448 PMCID: PMC11585156 DOI: 10.1186/s10020-024-00983-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive and difficult-to-heal lung disease that poses a significant threat to human life and health. This study aimed to investigate the potential pathological mechanisms of PF and to identify new avenues for the treatment of PF. METHODS Clinical samples were collected to assess the effect of disulfide-bond A oxidoreductase-like protein (DsbA-L) on PF. TGF-β1-induced MLE-12 cell model and bleomycin (BLM)-induced mice model were established. Changes in physiological morphology and fibrosis were observed in the lung tissues. The degree of apoptosis and the mitochondrial function was analyzed. The expression of relative cytokines was examined. The CD68+/CD206+ ratio was determined to indicate M2 macrophage polarization. RESULTS The expression of DsbA-L was upregulated in patients with PF and PF-like models. In vitro, DsbA-L overexpression exacerbated TGF-β1-induced the deposition of extracellular matrix (ECM), apoptosis, inflammation, and mitochondrial damage, whereas DsbA-L silencing exerted the opposite effects. DsbA-L silencing inhibited the activation of AKT1, NLRP3, and SMAD3 by TGF-β1. MLE-12 cells silencing DsbA-L limited the polarization of RAW264.7 cells towards the M2 phenotype. AKT1 agonist or NLRP3 agonist reversed the role of DsbA-L silencing in inhibiting the TGF-β1/SMAD3 pathway and M2 macrophage polarization. In vivo, DsbA-L knockout protected mice from PF-like pathological damage caused by BLM. CONCLUSION DsbA-L exhibited a significant profibrotic effect in lung epithelial cells and mice, which increased the levels of AKT1 and NLRP3 to activate the TGF-β1/SMAD3 pathway and M2 macrophage polarization. These findings could shed light on new clues for comprehension and treatment of PF.
Collapse
Affiliation(s)
- Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenglian Ge
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Li X, Zhou B, Xu F, Liu H, Jia X. Causal effect of immune cells on idiopathic pulmonary fibrosis: A mendelian randomization study. Heart Lung 2024; 68:9-17. [PMID: 38865855 DOI: 10.1016/j.hrtlng.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND A key component of idiopathic pulmonary fibrosis (IPF) is the involvement of immune cells. However, the causal interaction between different immune cell signatures and IPF remain inconclusive. OBJECTIVES Based on publicly accessible data, our study utilized the Mendelian randomization (MR) approach to determine the causative relevance of complex immune cell phenotypes in IPF. METHODS We deployed a two-sample Mendelian randomization approach to evaluate the causal interaction between immune cell markers and IPF. All data regarding 731 immune signatures and IPF were acquired from two genome-wide association studies (GWAS) that are accessible to the public. The original study adopted the inverse variance weighted (IVW) method, followed by sensitivity analyses aimed at eliminating heterogeneity and pleiotropy. Additionally, Multivariate Mendelian randomization (MVMR) was utilized to identify the independent risk factors in our study. RESULTS The summary dataset for IPF was accessed from the Finnish Genetic Consortium R9, comprising 2018 patients and 373,064 controls. And the dataset for immune signatures was conducted in 3,757 Sardinian individuals. By conducting IVW and extensive sensitivity analyses, univariate Mendelian randomization (UVMR) identified one immunophenotype that remained causally associated with IPF after false discovery rate (FDR) correction: CD39 on CD39+ CD8+T cells (odd ratio [OR] = 0.850, 95 % confidence interval [CI] = 0.787-0.918, P = 3.68 × 10-5). The causal association with IPF was further validated using MVMR. CONCLUSIONS Based on rigorous MR analysis methods and FDR correction, our study demonstrated that CD39 on CD39+ CD8+T cells showed a protective effect against IPF, providing effective insights for preventing and diagnosing pulmonary fibrosis.
Collapse
Affiliation(s)
- Xuannian Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bowen Zhou
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huaman Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinhua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
13
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
14
|
Seo J, Ha G, Lee G, Nasiri R, Lee J. Modeling tumor-immune interactions using hybrid spheroids and microfluidic platforms for studying tumor-associated macrophage polarization in melanoma. Acta Biomater 2024:S1742-7061(24)00629-9. [PMID: 39461691 DOI: 10.1016/j.actbio.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tumor-associated macrophages (TAMs), as key components of tumor microenvironment (TME), exhibit phenotypic plasticity in response to environmental cues, causing polarization into either pro-inflammatory M1 phenotypes or immunosuppressive M2 phenotypes. Although TAM has been widely studied for its crucial involvement in the initiation, progression, metastasis, and immune regulation of cancer cells, there have been limited attempts to understand how the metastatic potentials of cancer cells influence TAM polarization within TME. Here, we developed a miniaturized TME model using a 3D hybrid system composed of murine melanoma cells and macrophages, aiming to investigate interactions between cancer cells exhibiting various metastatic potentials and macrophages within TME. The increase in spheroid size within this model was associated with a reduction in cancer cell viability. Examining macrophage surface marker expression and cytokine secretion indicated the development of diverse TMEs influenced by both spheroid size and the metastatic potential of cancer cells. Furthermore, a high-throughput microfluidic platform equipped with trapping systems and hybrid spheroids was employed to simulate the tumor-immune system of complex TMEs and for comparative analysis with traditional 3D culture models. This study provides insight into TAM polarization in melanoma with different heterogeneities by modeling cancer-immune systems, which can be potentially employed for immune-oncology research, drug screening, and personalized therapy. STATEMENT OF SIGNIFICANCE: This study presents the development of a 3D hybrid spheroid system designed to model tumor-immune interactions, providing a detailed analysis of how melanoma cell metastatic potential influences tumor-associated macrophage (TAM) polarization. By utilizing a microfluidic platform, we are able to replicate and investigate the complex tumor-immune system of the tumor microenvironments (TMEs) under continuous flow conditions. Our model holds significant potential for high-throughput drug screening and personalized medicine applications, offering a versatile tool for advancing cancer research and treatment strategies.
Collapse
Affiliation(s)
- Junki Seo
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Giheon Ha
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Geonho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Rohollah Nasiri
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States
| | - Junmin Lee
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
15
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
16
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
17
|
Choi I, Han IH, Cha N, Kim HY, Bae H. Therapeutic effects of MEL-dKLA by targeting M2 macrophages in pulmonary fibrosis. Biomed Pharmacother 2024; 178:117246. [PMID: 39096617 DOI: 10.1016/j.biopha.2024.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease characterized by excessive extracellular matrix accumulation and myofibroblast proliferation with limited treatment options available. M2 macrophages are pivotal in pulmonary fibrosis, where they induce the epithelial-to-mesenchymal and fibroblast-to-myofibroblast transitions. In this study, we evaluated whether MEL-dKLA, a hybrid peptide that can eliminate M2 macrophages, could attenuate pulmonary fibrosis in a cell co-culture system and in a bleomycin-induced mouse model. Our findings demonstrated that the removal of M2 macrophages using MEL-dKLA stimulated reprogramming to an antifibrotic environment, which effectively suppressed epithelial-to-mesenchymal and fibroblast-to-myofibroblast transition responses in lung epithelial and fibroblast cells and reduced extracellular matrix accumulation both in vivo and in vitro. Moreover, MEL-dKLA exhibited antifibrotic efficacy without damaging tissue-resident macrophages in the bleomycin-induced mouse model. Collectively, our findings suggest that MEL-dKLA may be a new therapeutic option for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Ilseob Choi
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ik-Hwan Han
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nari Cha
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hye Yeon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
19
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
20
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
21
|
Qi J, Wu Y, Guo Z, Zhu S, Xiong J, Hu F, Liang X, Ye X. Fibroblast growth factor 21 alleviates idiopathic pulmonary fibrosis by inhibiting PI3K-AKT-mTOR signaling and stimulating autophagy. Int J Biol Macromol 2024; 273:132896. [PMID: 38851619 DOI: 10.1016/j.ijbiomac.2024.132896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive pulmonary disease with an unclear pathogenesis and no available specific drug treatment. The principal etiological factors are lung inflammation caused by environmental factors, damage to alveolar epithelial cells, leading to epithelial-mesenchymal transition (EMT), and the abnormal proliferation of fibroblasts. Here, we have demonstrated that fibroblast growth factor 21 (FGF21) ameliorates IPF via the autophagy pathway. We administered FGF21 to bleomycin (BLM)-treated mice, which ameliorated their defects in lung function, reduced the accumulation of collagen, restored tissue structure, reduced the deposition of hydroxyproline, reduced the expression of collagen I and α-SMA and increased the expression of E-cadherin. The expression of LC3BII and the number of autophagosomes were significantly higher in the lungs. The expression of AKT and mTOR was significantly reduced by FGF21 treatment. We also determined the effects of FGF21 in A549 cells treated with TGF-β, and found that FGF21 significantly inhibits activation of the AKT signaling pathway, thereby reducing TGF-β-induced EMT and preventing the uncontrolled proliferation of fibroblasts. We conclude that FGF21 ameliorates IPF by inhibiting the PI3K-AKT-mTOR signaling pathway and activating autophagy, which provides a theoretical basis for FGF21 to be used for the treatment of IPF.
Collapse
Affiliation(s)
- Jianying Qi
- School of chemical engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuanyuan Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian 116023, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jingjing Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Fei Hu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian 116023, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
22
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
23
|
Zhou T, Lin L, Zhan Y, Zhang Z, Jiang Y, Wu M, Xue D, Chen L, Weng X, Huang Z. Bortezomib restrains M2 polarization and reduces CXCL16-associated CXCR6 +CD4 T cell chemotaxis in bleomycin-induced pulmonary fibrosis. Mol Med 2024; 30:70. [PMID: 38789926 PMCID: PMC11127379 DOI: 10.1186/s10020-024-00836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. METHODS A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. RESULTS Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-β1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. CONCLUSIONS Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lan Lin
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yawen Zhan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyao Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Xue
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Limin Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhenghui Huang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
24
|
Sun Y, Ren Y, Song LY, Wang YY, Li TG, Wu YL, Li L, Yang ZS. Targeting iron-metabolism:a potential therapeutic strategy for pulmonary fibrosis. Biomed Pharmacother 2024; 172:116270. [PMID: 38364737 DOI: 10.1016/j.biopha.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Iron homeostasisis is integral to normal physiological and biochemical processes of lungs. The maintenance of iron homeostasis involves the process of intake, storage and output, dependening on iron-regulated protein/iron response element system to operate tightly metabolism-related genes, including TFR1, DMT1, Fth, and FPN. Dysregulation of iron can lead to iron overload, which increases the virulence of microbial colonisers and the occurrence of oxidative stress, causing alveolar epithelial cells to undergo necrosis and apoptosis, and form extracellular matrix. Accumulated iron drive iron-dependent ferroptosis to exacerbated pulmonary fibrosis. Notably, the iron chelator deferoxamine and the lipophilic antioxidant ferritin-1 have been shown to attenuate ferroptosis and inhibit lipid peroxidation in pulmonary fibrosis. The paper summarises the regulatory mechanisms of dysregulated iron metabolism and ferroptosis in the development of pulmonary fibrosis. Targeting iron metabolism may be a potential therapeutic strategy for the prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Yin-Ying Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, 1076 Yuhua Road Kunming, Yunnan 650500, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Ying-Li Wu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Li Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China.
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
25
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
26
|
Huang H, Li M, Luo M, Zheng J, Li Q, Wang X, Liu Y, Li D, Xi L, Liu H. Neutrophil extracellular traps (NETs) and Th-2 dominant immune responses in chronic granulomatous chromobalstomycosis. Med Mycol 2024; 62:myae008. [PMID: 38318638 DOI: 10.1093/mmy/myae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 02/07/2024] Open
Abstract
Chromoblastomycosis (CBM), a chronic, granulomatous, suppurative mycosis of the skin and subcutaneous tissue, is caused by several dematiaceous fungi. The formation of granulomas, tissue proliferation, and fibrosis in response to these pathogenic fungi is believed to be intricately linked to host immunity. To understand this complex interaction, we conducted a comprehensive analysis of immune cell infiltrates, neutrophil extracellular traps (NETs) formation, and the fibrosis mechanism in 20 CBM lesion biopsies using immunohistochemical and immunofluorescence staining methods. The results revealed a significant infiltration of mixed inflammatory cells in CBM granulomas, prominently featuring a substantial presence of Th2 cells and M2 macrophages. These cells appeared to contribute to the production of collagen I and III in the late fibrosis mechanism, as well as NETs formation. The abundance of Th2 cytokines may act as a factor promoting the bias of macrophage differentiation toward M2, which hinders efficient fungal clearance while accelerates the proliferation of fibrous tissue. Furthermore, the expression of IL-17 was noted to recruit neutrophils, facilitating subsequent NETs formation within CBM granulomas to impede the spread of sclerotic cells. Understanding of these immune mechanisms holds promise for identifying therapeutic targets for managing chronic granulomatous CBM.
Collapse
Affiliation(s)
- Huan Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Minying Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Mingfen Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyue Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, WA, DC, USA
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongfang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Perez-Favila A, Garza-Veloz I, Hernandez-Marquez LDS, Gutierrez-Vela EF, Flores-Morales V, Martinez-Fierro ML. Antifibrotic Drugs against Idiopathic Pulmonary Fibrosis and Pulmonary Fibrosis Induced by COVID-19: Therapeutic Approaches and Potential Diagnostic Biomarkers. Int J Mol Sci 2024; 25:1562. [PMID: 38338840 PMCID: PMC10855955 DOI: 10.3390/ijms25031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the health and economy of the global population. Even after recovery from the disease, post-COVID-19 symptoms, such as pulmonary fibrosis, continue to be a concern. This narrative review aims to address pulmonary fibrosis (PF) from various perspectives, including the fibrotic mechanisms involved in idiopathic and COVID-19-induced pulmonary fibrosis. On the other hand, we also discuss the current therapeutic drugs in use, as well as those undergoing clinical or preclinical evaluation. Additionally, this article will address various biomarkers with usefulness for PF prediction, diagnosis, treatment, prognosis, and severity assessment in order to provide better treatment strategies for patients with this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y CS, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (I.G.-V.); (L.d.S.H.-M.); (E.F.G.-V.); (V.F.-M.)
| |
Collapse
|
28
|
Wang Q, Shang Y, Li Y, Li X, Wang X, He Y, Ma J, Ning S, Chen H. Identification of cuproptosis-related diagnostic biomarkers in idiopathic pulmonary fibrosis. Medicine (Baltimore) 2024; 103:e36801. [PMID: 38215148 PMCID: PMC10783416 DOI: 10.1097/md.0000000000036801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with clinical and pathological heterogeneity. Recent studies have identified cuproptosis as a novel cell death mechanism. However, the role of cuproptosis-related genes in the pathogenesis of IPF is still unclear. Two IPF datasets of the Gene Expression Omnibus database were studied. Mann-Whitney U test, correlation analysis, functional enrichment analyses, single-sample gene set enrichment analysis, CIBERSORT, unsupervised clustering, weighted gene co-expression network analysis, and receiver operating characteristic curve analysis were used to conduct our research. The dysregulated cuproptosis-related genes and immune responses were identified between IPF patients and controls. Two cuproptosis-related molecular clusters were established in IPF, the high immune score group (C1) and the low immune score group (C2). Significant heterogeneity in immunity between clusters was revealed by functional analyses results. The module genes with the strongest correlation to the 2 clusters were identified by weighted gene co-expression network analysis results. Seven hub genes were found using the Cytoscape software. Ultimately, 2 validated diagnostic biomarkers of IPF, CDKN2A and NEDD4, were obtained. Subsequently, the results were validated in GSE47460. Our investigation illustrates that CDKN2A and NEDD4 may be valid biomarkers that were useful for IPF diagnosis and copper-related clustering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Shang
- Department of Respiration, The First Hospital of Harbin, Harbin, China
| | - Yupeng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincheng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaowu He
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Wu J, Xiong W, Li J, Liao H, Chai J, Huang X, Lai S, Kozlov S, Chu X, Xu X. Peptide TK-HR from the Skin of Chinese Folk Medicine Frog Hoplobatrachus Rugulosus Accelerates Wound Healing via the Activation of the Neurokinin-1 Receptor. J Med Chem 2023; 66:16002-16017. [PMID: 38015459 DOI: 10.1021/acs.jmedchem.3c01434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 μg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-β-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.
Collapse
Affiliation(s)
- Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinqiao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hang Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shian Lai
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
30
|
Bao S, Chen T, Chen J, Zhang J, Zhang G, Hui Y, Li J, Yan S. Multi-omics analysis reveals the mechanism of action of ophiopogonin D against pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155078. [PMID: 37734252 DOI: 10.1016/j.phymed.2023.155078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with limited therapeutic strategies. Therefore, there is an urgent need to search for safe and effective drugs to treat this condition. Ophiopogonin D (OP-D), a steroidal saponin compound extracted from ophiopogon, possesses various pharmacological properties, including anti-inflammatory, antioxidant, and antitumor effects. However, the potential pharmacological effect of OP-D on pulmonary fibrosis remains unknown. PURPOSE The aim of this study was to investigate whether OP-D can improve pulmonary fibrosis and to explore its mechanism of action. METHODS The effect of OP-D on pulmonary fibrosis was investigated in vitro and in vivo using a mouse model of IPF induced by bleomycin and an in vitro model of human embryonic lung fibroblasts induced by transforming growth factor-β1 (TGF-β1). The mechanism of action of OP-D was determined using multi-omics techniques and bioinformatics. RESULTS OP-D attenuated epithelial-mesenchymal transition and excessive deposition of extracellular matrix in the lungs, promoted the apoptosis of lung fibroblasts, and blocked the differentiation of lung fibroblasts into myofibroblasts. The multi-omics techniques and bioinformatics analysis revealed that OP-D blocked the AKT/GSK3β pathway, and the combination of a PI3K/AKT inhibitor and OP-D was effective in alleviating pulmonary fibrosis. CONCLUSION This study demonstrated for the first time that OP-D can reduce lung inflammation and fibrosis. OP-D is thus a potential new drug for the prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Hui
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
31
|
Tang LH, Dai M, Wang DH. ANO6 is a reliable prognostic biomarker and correlates to macrophage polarization in breast cancer. Medicine (Baltimore) 2023; 102:e36049. [PMID: 37960776 PMCID: PMC10637410 DOI: 10.1097/md.0000000000036049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate the value of Anoctamin 6 (ANO6) in breast cancer (BC) by analyzing its expression, prognostic impact, biological function, and its association with immune characteristics. We initially performed the expression and survival analyses, followed by adopting restricted cubic spline to analyze the nonlinear relationship between ANO6 and overall survival (OS). Stratified and interaction analyses were conducted to further evaluate its prognostic value in BC. Next, we performed enrichment analyses to explore the possible pathways regulated by ANO6. Finally, the correlations between ANO6 and immune characteristics were analyzed to reveal its role in immunotherapy. Lower ANO6 expression was observed in BC than that in the normal breast group, but its overexpression independently predicted poor OS among BC patients (P < .05). Restricted cubic spline analysis revealed a linear relationship between ANO6 and OS (P-Nonlinear > 0.05). Interestingly, menopause status was an interactive factor in the correlation between ANO6 and OS (P for interaction = 0.016). Additionally, ANO6 was involved in stroma-associated pathways, and its elevation was significantly linked to high stroma scores and macrophage polarization (P < .05). Moreover, ANO6 was notably correlated with immune checkpoint expression levels, and scores of tumor mutation burden and microsatellite instability (all P < .05). ANO6 was an independent prognostic factor for BC, and might be a potential target for the BC treatment. Besides, ANO6 might affect BC progression via the regulation of stroma-related pathways and macrophage polarization.
Collapse
Affiliation(s)
- Long-Huan Tang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| | - Min Dai
- Department of General Surgery, Hai'an Hospital Affiliated to Nantong University, Hai'an, China
| | - Dong-Hai Wang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| |
Collapse
|
32
|
Kosyreva A, Vishnyakova P, Tsvetkov I, Kiseleva V, Dzhalilova DS, Miroshnichenko E, Lokhonina A, Makarova O, Fatkhudinov T. Advantages and disadvantages of treatment of experimental ARDS by M2-polarized RAW 264.7 macrophages. Heliyon 2023; 9:e21880. [PMID: 38027880 PMCID: PMC10658332 DOI: 10.1016/j.heliyon.2023.e21880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality. Systemic administration of 'educated' macrophages is intended at their homing in lungs in order to mitigate the pro-inflammatory cytokine production and reduce the risks of 'cytokine storm' and related severe complications. Acute respiratory distress syndrome (ARDS) is the main mortality factor in pneumonia including SARS-CoV-associated cases. This study aimed to evaluate the influence of infusions of RAW 264.7 murine macrophage cell line polarized towards M2 phenotype on the development of LPS-induced ARDS in mouse model. The results indicate that the M2-polarized RAW 264.7 macrophage infusions in the studied model of ARDS promote relocation of lymphocytes from their depots in immune organs to the lungs. In addition, the treatment facilitates expression of M2-polarization markers Arg1, Vegfa and Tgfb and decreases of M1-polarization marker Cd38 in lung tissues, which can indicate the anti-inflammatory response activation. However, treatment of ARDS with M2-polarized macrophages didn't change the neutrophil numbers in the lungs. Moreover, the level of the Arg1 protein in lungs decreased throughtout the treatment with M2 macrophages, which is probably because of the pro-inflammatory microenvironment influence on the polarization of macrophages towards M1. Thus, the chemical polarization of macrophages is unstable and depends on the microenvironment. This adverse effect can be reduced through the use of primary autologous macrophages or some alternative methods of M2 polarization, notably siRNA-mediated.
Collapse
Affiliation(s)
- A.M. Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - P.A. Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - I.S. Tsvetkov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - V.V. Kiseleva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - D. Sh. Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - E.A. Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - A.V. Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - O.V. Makarova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - T.H. Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| |
Collapse
|
33
|
Yang H, Cheng H, Dai R, Shang L, Zhang X, Wen H. Macrophage polarization in tissue fibrosis. PeerJ 2023; 11:e16092. [PMID: 37849830 PMCID: PMC10578305 DOI: 10.7717/peerj.16092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Fibrosis can occur in all major organs with relentless progress, ultimately leading to organ failure and potentially death. Unfortunately, current clinical treatments cannot prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are urgently needed. In recent years, a growing body of research shows that macrophages are involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different phenotypes. Some studies have found that regulating macrophage polarization can inhibit the development of inflammation and cancer. However, the exact mechanism of macrophage polarization in different tissue fibrosis has not been fully elucidated. This review will discuss the major signaling pathways relevant to macrophage-driven fibrosis and profibrotic macrophage polarization, the role of macrophage polarization in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and investigational drugs currently in development, and hopefully, provide a useful review for the future treatment of fibrosis.
Collapse
Affiliation(s)
- Huidan Yang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Rongrong Dai
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Lili Shang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoying Zhang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
34
|
Zhang Q, Wang Z, Xiao Q, Ge J, Wang X, Jiang W, Yuan Y, Zhuang Y, Meng Q, Jiang J, Hao W, Wei X. The effects and mechanisms of the new brominated flame retardant BTBPE on thyroid toxicity. Food Chem Toxicol 2023; 180:114027. [PMID: 37696466 DOI: 10.1016/j.fct.2023.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
35
|
Szabo I, Badii M, Gaál IO, Szabo R, Popp RA, Joosten LAB, Crişan TO, Rednic S. Enhanced Innate and Acquired Immune Responses in Systemic Sclerosis Primary Peripheral Blood Mononuclear Cells (PBMCs). Int J Mol Sci 2023; 24:14438. [PMID: 37833885 PMCID: PMC10572600 DOI: 10.3390/ijms241914438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic immune activation in systemic sclerosis is supported by the production of a plethora of cytokines with proven regulatory activities of the immune responses. This study aimed to explore PBMCs' cytokine profiles in SSc patients versus controls, as well as to investigate the balance between pro- and anti-inflammatory cytokines in association with disease duration. PBMCs were isolated from 18 SSc patients and 17 controls and further subjected to in vitro stimulation with lipopolysaccharide and heat-killed Candida albicans. Cytokine production was measured after 24 h and 7 days, respectively, using ELISA kits for interleukin (IL)-1β, IL-1 receptor antagonist (IL-1Ra), IL-6, tumor necrosis factor (TNF), IL-10, IL-17, and interferon-gamma (IFN-gamma). IL-1 β, IL-6, and TNF levels were increased in SSc patients compared with healthy volunteers irrespective of the stimulus used. IL-1Ra and Il-17 concentrations were not statistically different between groups, even though a trend toward higher levels in patients compared with their matched controls was also observed. Most cytokines demonstrated a stable course with disease progression, except for IL-10 levels, which declined over time. In conclusion, the results of this pilot study reveal that in patients with SSc a persistently enhanced immune response is established and maintained regardless of stimulus or disease duration.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ildikó O. Gaál
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Szabo
- 2nd Anesthesia Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Radu A. Popp
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Leo A. B. Joosten
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tania O. Crişan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
36
|
Daido W, Nakashima T, Masuda T, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Nestin and Notch3 collaboratively regulate angiogenesis, collagen production, and endothelial-mesenchymal transition in lung endothelial cells. Cell Commun Signal 2023; 21:247. [PMID: 37735673 PMCID: PMC10512559 DOI: 10.1186/s12964-023-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Nestin, an intermediate filament protein, participates in various pathophysiological processes, including wound healing, angiogenesis, endothelial-mesenchymal transition (EndoMT), and fibrosis. However, the pathophysiological roles of lung nestin-expressing cells remain unclear due to conflicting reports. The objective of this study is to elucidate the characteristics and functions of lung nestin-expressing cells. METHODS We conducted a series of in vitro and in vivo experiments using endothelial cell line MS1 and nestin-GFP mice. This animal model allows for nestin-expressing cell detection without the use of anti-nestin antibodies. RESULTS Lung nestin-expressing cells occurred in approximately 0.2% of CD45- cells and was co-expressed with epithelial, endothelial, and mesenchymal cell-surface markers. Importantly, virtually all nestin-expressing cells co-expressed CD31. When compared to lung nestin-nonexpressing endothelial cells, nestin-expressing endothelial cells showed robust angiogenesis with frequent co-expression of PDGFRβ and VEGFR2. During TGFβ-mediated EndoMT, the elevation of Nes mRNA expression preceded that of Col1a1 mRNA, and nestin gene silencing using nestin siRNA resulted in further upregulation of Col1a1 mRNA expression. Furthermore, Notch3 expression was regulated by nestin in vitro and in vivo; nestin siRNA resulted in reduced Notch3 expression accompanied with enhanced EndoMT. Contrary to previous reports, neither Nes mRNA expression nor nestin-expressing cells were increased during pulmonary fibrosis. CONCLUSIONS Our study showed that (1) lung nestin-expressing cells are an endothelial lineage but are distinct from nestin-nonexpressing endothelial cells; (2) nestin regulates Notch3 and they act collaboratively to regulate angiogenesis, collagen production, and EndoMT; and (3) nestin plays novel roles in lung angiogenesis and fibrosis. Video Abstract.
Collapse
Affiliation(s)
- Wakako Daido
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
37
|
Li Y, Zhao H, Hu S, Zhang X, Chen H, Zheng Q. PET imaging with [ 68Ga]-labeled TGFβ-targeting peptide in a mouse PANC-1 tumor model. Front Oncol 2023; 13:1228281. [PMID: 37781175 PMCID: PMC10540840 DOI: 10.3389/fonc.2023.1228281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose Transforming growth factor β (TGFβ) is upregulated in many types of tumors and plays important roles in tumor microenvironment construction, immune escape, invasion, and metastasis. The therapeutic effect of antibodies and nuclide-conjugated drugs targeting TGFβ has not been ideal. Targeting TGFβ with small-molecule or peptide carriers labeled with diagnostic/therapeutic nuclides is a new development direction. This study aimed to explore and confirm the imaging diagnostic efficiency of TGFβ-targeting peptide P144 coupled with [68Ga] in a PANC-1 tumor model. Procedures TGFβ-targeting inhibitory peptide P144 with stable activity was prepared through peptide synthesis and screening, and P144 was coupled with biological chelator DOTA and labeled with radionuclide [68Ga] to achieve a stable TGFβ-targeting tracer [68Ga]Ga-P144. This tracer was first used for positron emission tomography (PET) molecular imaging study of pancreatic cancer in a mouse PANC-1 tumor model. Results [68Ga]Ga-P144 had a high targeted uptake and relatively long uptake retention time in tumors and lower uptakes in non-target organs and backgrounds. Target pre-blocking experiment with the cold drug P144-DOTA demonstrated that the radioactive uptake with [68Ga]Ga-P144 PET in vivo, especially in tumor tissue, had a high TGFβ-targeting specificity. [68Ga]Ga-P144 PET had ideal imaging efficiency in PANC-1 tumor-bearing mice, with high specificity in vivo and good tumor-targeting effect. Conclusion [68Ga]Ga-P144 has relatively high specificity and tumor-targeted uptake and may be developed as a promising diagnostic tool for TGFβ-positive malignancies.
Collapse
Affiliation(s)
- Yong Li
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Hong Zhao
- Department of Nuclear Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Shan Hu
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xichen Zhang
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Haojian Chen
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Qihuang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
38
|
Li Z, Zhang X, Jin Q, Zhang Q, Yue Q, Fujimoto M, Jin G. Development of a Macrophage-Related Risk Model for Metastatic Melanoma. Int J Mol Sci 2023; 24:13752. [PMID: 37762054 PMCID: PMC10530689 DOI: 10.3390/ijms241813752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
As a metastasis-prone malignancy, the metastatic form and location of melanoma seriously affect its prognosis. Although effective surgical methods and targeted drugs are available to enable the treatment of carcinoma in situ, for metastatic tumors, the diagnosis, prognosis assessment and development of immunotherapy are still pending. This study aims to integrate multiple bioinformatics approaches to identify immune-related molecular targets viable for the treatment and prognostic assessment of metastatic melanoma, thus providing new strategies for its use as an immunotherapy. Immunoinfiltration analysis revealed that M1-type macrophages have significant infiltration differences in melanoma development and metastasis. In total, 349 genes differentially expressed in M1-type macrophages and M2-type macrophages were extracted from the MSigDB database. Then we derived an intersection of these genes and 1111 melanoma metastasis-related genes from the GEO database, and 31 intersected genes identified as melanoma macrophage immunomarkers (MMIMs) were obtained. Based on MMIMs, a risk model was constructed using the Lasso algorithm and regression analysis, which contained 10 genes (NMI, SNTB2, SLC1A4, PDE4B, CLEC2B, IFI27, COL1A2, MAF, LAMP3 and CCDC69). Patients with high+ risk scores calculated via the model have low levels of infiltration by CD8+ T cells and macrophages, which implies a poor prognosis for patients with metastatic cancer. DCA decision and nomogram curves verify the high sensitivity and specificity of this model for metastatic cancer patients. In addition, 28 miRNAs, 90 transcription factors and 29 potential drugs were predicted by targeting the 10 MMIMs derived from this model. Overall, we developed and validated immune-related prognostic models, which accurately reflected the prognostic and immune infiltration characteristics of patients with melanoma metastasis. The 10 MMIMs may also be prospective targets for immunotherapy.
Collapse
Affiliation(s)
- Zhaoxiang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| | - Xinyuan Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| | - Qi Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| | - Qi Yue
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| | - Manabu Fujimoto
- Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji 133002, China; (Z.L.); (X.Z.); (Q.J.); (Q.Z.); (Q.Y.)
| |
Collapse
|
39
|
Huo Y, Hu X, Lü J, Luo F, Liang J, Lei H, Lv A. Single-cell transcriptome, phagocytic activity and immunohistochemical analysis of crucian carp (Carassius auratus) in response to Rahnella aquatilis infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108970. [PMID: 37488042 DOI: 10.1016/j.fsi.2023.108970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In teleost fish, kidney is an important immune and hematopoietic organ with multiple physiological functions. However, the immune cells and cellular markers of kidney require further elucidation in crucian carp (C. auratus). Here we report on the single-cell transcriptional landscape in posterior kidney, immunohistochemical and phagocytic features of C. auratus with R. aquatilis infection. The results showed that a total of 18 cell populations were identified for the main immune cells such as monocytes/macrophages (Mo/Mφ), dendritic cells (DCs), B cells, T cells, granulocytes and hematopoietic progenitor cells (HPCs). Pseudo-time trajectory analysis was reconstructed for the immune cells using Monocle2 to obtain additional insights into their developmental lineage relationships. In the detected tissues (liver, spleen, kidney, intestine, skin, and gills) of infected fish exhibited positive immunohistochemical staining with prepared for antibody to R. aquatilis. Apoptotic cells were fluorescently demonstrated by TUNEL assay, and bacterial phagocytic activity were observed for neutrophils and Mo/Mφ cells, respectively. Moreover, a similar up-ward/down-ward expression trend of the selected immune and inflammatory genes was found in the kidney against R. aquatilis infection, which were significantly involved in TLR/NLR, ECM adhesion, phago-lysosome, apoptosis, complement and coagulation pathways. To our knowledge, this is the first report on the detailed characterization of immune cells and host-R. aquatilis interaction, which will contribute to understanding on the biology of renal immune cells and repertoire of potential markers in cyprinid fish species.
Collapse
Affiliation(s)
- Yian Huo
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiarui Lü
- School of Foreign Languages, Peking University, Beijing, 100871, China
| | - Fuli Luo
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jing Liang
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Haibo Lei
- College of Basic Science, Tianjin Agricultural University, Tianjin, 300392, China
| | - Aijun Lv
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China; Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
40
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, Zhao J, Tian F, Liu K, Dong Z, Lu J. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023; 42:2456-2470. [PMID: 37400530 DOI: 10.1038/s41388-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China.
| |
Collapse
|
41
|
Geng K, Ma X, Jiang Z, Gu J, Huang W, Wang W, Xu Y, Xu Y. WDR74 facilitates TGF-β/Smad pathway activation to promote M2 macrophage polarization and diabetic foot ulcer wound healing in mice. Cell Biol Toxicol 2023; 39:1577-1591. [PMID: 35982296 DOI: 10.1007/s10565-022-09748-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Diabetic foot ulcer (DFU) is a devastating component of diabetes progression, leading to decreased quality of life and increased mortality in diabetic patients. The underlying mechanism of DFU is not completely understood. Hence, this study aims to elucidate the mechanism involved in wound healing in mouse models of DFU. Gain- and loss-of-function studies were performed to study the roles that WDR74 and TGF-β play in mouse models of DFU and primary bone marrow-derived mouse macrophages. M1 and M2 macrophage phenotypic markers, extracellular matrix (ECM) components, and angiogenic makers were determined by RT-qPCR and/or Western blot analysis. Localization of these proteins was determined by immunofluorescence staining and/or immunohistochemistry. Interaction between WDR74 with Smad2/3 in macrophages was detected by co-immunoprecipitation. We found that WDR74 and M2 macrophages were decreased in wound tissues from DFU mice. TGF-β/Smad pathway activation increased the expression of M2 macrophage markers (arginase-1 and YM1), IL-4, while decreased expression of M1 macrophage marker (iNOS). TGF-β/Smad pathway activation also increased the production of ECM and promoted the wound closure in diabetic mice. We also noticed that WDR74 overexpression increased Smad2/3 phosphorylation, elevated the population of M2 macrophage and ECM production, and alleviated DFU. LY2109761 treatment normalized effects of TGF-β or WDR74 overexpression. In conclusion, WDR74 promoted M2 macrophage polarization, leading to improved DFU in mice, through activation of the TGF-β/Smad pathway. Graphical Headlights 1. WDR74 promotes M2 macrophage polarization and ECM production. 2. WDR74 activates the TGF-β/Smad signaling pathway. 3. TGF-β/Smad activation promotes M2 macrophage polarization in murine DFU. 4. WDR74 enhances wound healing in murine DFU.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People's Republic of China
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiumei Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People's Republic of China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People's Republic of China
| | - Junling Gu
- Endocrinology Department, The Second People's Hospital of Yibin, West China Yibin Hospital, Sichuan University, Yibin, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People's Republic of China
| | - Weiming Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yong Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People's Republic of China.
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
42
|
Shen S, Wei J, Kang W, Wang T. Elucidating shared biomarkers and pathways in kidney stones and diabetes: insights into novel therapeutic targets and the role of resveratrol. J Transl Med 2023; 21:491. [PMID: 37480086 PMCID: PMC10360253 DOI: 10.1186/s12967-023-04356-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these conditions require further investigation. METHODS To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using molecular docking simulation and first-principles calculations. RESULTS The study identified 11 potential target genes associated with kidney stones and diabetes through the intersection of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorption on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these conditions. CONCLUSIONS Overall, this investigation illuminates the discovery of common molecular mechanisms underlying kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address any limitations in the study.
Collapse
Affiliation(s)
- Shanlin Shen
- Department of Urology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiafeng Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tengteng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
43
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
44
|
Shu H, Wang Y, Zhang H, Dong Q, Sun L, Tu Y, Liao Q, Feng L, Yao L. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease. Front Pharmacol 2023; 14:1169054. [PMID: 37361201 PMCID: PMC10285316 DOI: 10.3389/fphar.2023.1169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Profibrotic phenotype of renal tubular epithelial cells (TECs) featured with epithelial to mesenchymal transition (EMT) and profibrotic factors secretion, and aberrant accumulation of CD206+ M2 macrophages are the key points in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Nevertheless, the underlying mechanisms involved remain incompletely understood. Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine protein kinase, required for intestinal nutrient transport and ion channels modulation. T-LAK-cell-originated protein kinase (TOPK) is a member of the mitogen activated protein kinase family, linked to cell cycle regulation. However, little is known about their roles in AKI-CKD transition. Methods: In this study, three models were constructed in C57BL/6 mice: low dose and multiple intraperitoneal injection of cisplatin, 5/6 nephrectomy and unilateral ureteral obstruction model. Rat renal tubular epithelial cells (NRK-52E) were dealt with cisplatin to induce profibrotic phenotype, while a mouse monocytic cell line (RAW264.7) were cultured with cisplatin or TGF-β1 to induce M1 or M2 macrophage polarization respectively. And co-cultured NRK-52E and RAW264.7 through transwell plate to explore the interaction between them. The expression of SGK3 and TOPK phosphorylation were detected by immunohistochemistry, immunofluorescence and western blot analysis. Results: In vivo, the expression of SGK3 and p-TOPK were gradually inhibited in TECs, but enhanced in CD206+ M2 macrophages. In vitro, SGK3 inhibition aggravated epithelial to mesenchymal transition through reducing the phosphorylation state of TOPK, and controlling TGF-β1 synthesis and secretion in TECs. However, SGK3/TOPK axis activation promoted CD206+ M2 macrophage polarization, which caused kidney fibrosis by mediating macrophage to myofibroblast transition (MMT). When co-cultured, the TGF-β1 from profibrotic TECs evoked CD206+ M2 macrophage polarization and MMT, which could be attenuated by SGK3/TOPK axis inhibition in macrophages. Conversely, SGK3/TOPK signaling pathway activation in TECs could reverse CD206+ M2 macrophages aggravated EMT. Discussion: We revealed for the first time that SGK3 regulated TOPK phosphorylation to mediate TECs profibrotic phenotype, macrophage plasticity and the crosstalk between TECs and macrophages during AKI-CKD transition. Our results demonstrated the inverse effect of SGK3/TOPK signaling pathway in profibrotic TECs and CD206+ M2 macrophages polarization during the AKI-CKD transition.
Collapse
Affiliation(s)
- Huapan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Nephrology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lulu Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuchi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Feng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
45
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Wu YX, Zhang YR, Jiang FJ, He S, Zhang YL, Chen D, Tong Y, Nie YJ, Pang QF. 4-OI ameliorates bleomycin-induced pulmonary fibrosis by activating Nrf2 and suppressing macrophage-mediated epithelial-mesenchymal transition. Inflamm Res 2023:10.1007/s00011-023-01733-z. [PMID: 37169970 DOI: 10.1007/s00011-023-01733-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVES Pulmonary fibrosis (PF) is a chronic and refractory interstitial lung disease with limited therapeutic options. 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, has been shown to have anti-oxidative and anti-inflammatory properties. However, the effect and the underlying mechanism of 4-OI on PF are still unknown. METHODS WT or Nrf2 knockout (Nrf2-/-) mice were intratracheally injected with bleomycin (BLM) to establish PF model and then treated with 4-OI. The mechanism study was performed by using RAW264.7 cells, primary macrophages, and conditional medium-cultured MLE-12 cells. RESULTS 4-OI significantly alleviated BLM-induced PF and EMT process. Mechanism studies have found that 4-OI can not only directly inhibit EMT process, but also can reduce the production of TGF-β1 by restraining macrophage M2 polarization, which in turn inhibits EMT process. Moreover, the effect of 4-OI on PF and EMT depends on Nrf2. CONCLUSION 4-OI ameliorates BLM-induced PF in an Nrf2-dependent manner, and its role in alleviating PF is partly due to the direct inhibition on EMT, and partly through indirect inhibition of M2-mediated EMT. These findings suggested that 4-OI has great clinical potential to develop as a new anti-fibrotic agent for PF therapy.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ya-Ru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan-Li Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
48
|
Ume AC, Wenegieme TY, Shelby JN, Paul-Onyia CDB, Waite AMJ, Kamau JK, Adams DN, Susuki K, Bennett ES, Ren H, Williams CR. Tacrolimus induces fibroblast-to-myofibroblast transition via a TGF-β-dependent mechanism to contribute to renal fibrosis. Am J Physiol Renal Physiol 2023; 324:F433-F445. [PMID: 36927118 PMCID: PMC10085566 DOI: 10.1152/ajprenal.00226.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Use of immunosuppressant calcineurin inhibitors (CNIs) is limited by irreversible kidney damage, hallmarked by renal fibrosis. CNIs directly damage many renal cell types. Given the diverse renal cell populations, additional targeted cell types and signaling mechanisms warrant further investigation. We hypothesized that fibroblasts contribute to CNI-induced renal fibrosis and propagate profibrotic effects via the transforming growth factor-β (TGF-β)/Smad signaling axis. To test this, kidney damage-resistant mice (C57BL/6) received tacrolimus (10 mg/kg) or vehicle for 21 days. Renal damage markers and signaling mediators were assessed. To investigate their role in renal damage, mouse renal fibroblasts were exposed to tacrolimus (1 nM) or vehicle for 24 h. Morphological and functional changes in addition to downstream signaling events were assessed. Tacrolimus-treated kidneys displayed evidence of renal fibrosis. Moreover, α-smooth muscle actin expression was significantly increased, suggesting the presence of fibroblast activation. TGF-β receptor activation and downstream Smad2/3 signaling were also upregulated. Consistent with in vivo findings, tacrolimus-treated renal fibroblasts displayed a phenotypic switch known as fibroblast-to-myofibroblast transition (FMT), as α-smooth muscle actin, actin stress fibers, cell motility, and collagen type IV expression were significantly increased. These findings were accompanied by concomitant induction of TGF-β signaling. Pharmacological inhibition of the downstream TGF-β effector Smad3 attenuated tacrolimus-induced phenotypic changes. Collectively, these findings suggest that 1) tacrolimus inhibits the calcineurin/nuclear factor of activated T cells axis while inducing TGF-β1 ligand secretion and receptor activation in renal fibroblasts; 2) aberrant TGF-β receptor activation stimulates Smad-mediated production of myofibroblast markers, notable features of FMT; and 3) FMT contributes to extracellular matrix expansion in tacrolimus-induced renal fibrosis. These results incorporate renal fibroblasts into the growing list of CNI-targeted cell types and identify renal FMT as a process mediated via a TGF-β-dependent mechanism.NEW & NOTEWORTHY Renal fibrosis, a detrimental feature of irreversible kidney damage, remains a sinister consequence of long-term calcineurin inhibitor (CNI) immunosuppressive therapy. Our study not only incorporates renal fibroblasts into the growing list of cell types negatively impacted by CNIs but also identifies renal fibroblast-to-myofibroblast transition as a process mediated via a TGF-β-dependent mechanism. This insight will direct future studies investigating the feasibility of inhibiting TGF-β signaling to maintain CNI-mediated immunosuppression while ultimately preserving kidney health.
Collapse
Affiliation(s)
- Adaku C Ume
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Tara Y Wenegieme
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Jennae N Shelby
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Chiagozie D B Paul-Onyia
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Aston M J Waite
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - John K Kamau
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Danielle N Adams
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
49
|
Chen X, Tang Q, Wang J, Zhou Y, Li F, Xie Y, Wang X, Du L, Li J, Pu J, Hu Q, Gu Z, Liu P. A DNA/DMXAA/Metal-Organic Framework Activator of Innate Immunity for Boosting Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210440. [PMID: 36656162 DOI: 10.1002/adma.202210440] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Immunotherapy has achieved revolutionary success in clinics, but it remains challenging for treating hepatocellular carcinoma (HCC) characterized by high vascularization. Here, it is reported that metal-organic framework-801 (MOF-801) can be employed as a stimulator of interferon genes (STING) through Toll-like receptor 4 (TLR4) not just as a drug delivery carrier. Notably, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) and 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) STING agonist with vascular disrupting function coordinates with MOF-801 to self-assemble into a nanoparticle (MOF-CpG-DMXAA) that effectively delivers CpG ODNs and DMXAA to cells for synergistically improving the tumor microenvironment by reprogramming tumor-associated macrophages (TAMs), promoting dendritic cells (DCs) maturation, as well as destroying tumor blood vessels. In HCC-bearing mouse models, it is demonstrated that MOF-CpG-DMXAA triggers systemic immune activation and stimulates robust tumoricidal immunity, resulting in a superior immunotherapeutic efficiency in orthotopic and recurrent HCC.
Collapse
Affiliation(s)
- Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Yuexia Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xingang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Ling Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
50
|
Kim Y, Kim J, Han SJ. Diminazene aceturate exacerbates renal fibrosis after unilateral ureteral obstruction in female mice. Kidney Res Clin Pract 2023; 42:188-201. [PMID: 37037481 PMCID: PMC10085718 DOI: 10.23876/j.krcp.22.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 04/03/2023] Open
Abstract
Background: Diminazene aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, exerts anti-inflammatory and antifibrotic effects in a variety of human chronic diseases. However, the role of DIZE in kidney fibrosis and the underlying mechanism remain unclear. Therefore, we investigated the effects of DIZE on the progression of renal fibrosis after unilateral ureteral obstruction (UUO), a well-established model of chronic kidney disease. Methods: C57BL/6 female or male mice were subjected to right UUO. Mice received 15 mg/kg DIZE or vehicle (saline) daily. On the 7th day after UUO, kidneys were collected for analysis of renal fibrosis (α-smooth muscle actin, phosphorylated SMAD3, transforming growth factor (TGF)-β, Masson’s trichrome, and Sirius red staining), inflammation (macrophage infiltration, proinflammatory cytokines/chemokines), apoptosis/necrotic cell death (TUNEL and periodic acid-Schiff staining), and ACE2 activity and messenger RNA (mRNA) expression.Results: Treatment with DIZE exacerbated renal fibrosis by upregulating the profibrotic TGF-β/SMAD3 pathway, proinflammatory cytokine/chemokines (interleukin [IL]-1β, monocyte chemoattractant protein-1, IL-6, and macrophage inflammatory protein-2) levels, M2 macrophage accumulation (CD206, IL-4, IL-10, and CX3CL1), and apoptotic/necrotic cell death in the obstructed kidneys of female mice but not male mice. However, DIZE treatment had no effect on ACE2 activity or mRNA expression.Conclusion: DIZE exacerbates UUO-induced renal fibrosis by aggravating tubular damage, apoptosis, and inflammation through independent of Ang (1–7), Ang 2 levels, and ACE2 expression/activity, rather than protecting against renal fibrosis after UUO. DIZE also has powerful effects on recruiting macrophages, including the M2-polarized subtype, in female UUO mice.
Collapse
Affiliation(s)
- Yosep Kim
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Medical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
- Jongwan Kim Department of Medical Laboratory Science, Dong-Eui Institute of Technology, 54 Yangji-ro, Busanjin-gu, Busan 47230, Republic of Korea. E-mail:
| | - Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Correspondence: Sang Jun Han Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea. E-mail:
| |
Collapse
|