1
|
Dong J, Du J, Liu R, Gao X, Wang Y, Ma L, Yang Y, Wu J, Yu J, Liu N. Depressive Disorder Affects TME and Hormonal Changes Promoting Tumour Deterioration Development. Immunology 2025. [PMID: 40341563 DOI: 10.1111/imm.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/10/2025] Open
Abstract
Cancer patients often suffer from depression, the presence of which promotes the deterioration of the cancer patient's condition and thus affects the patient's survival. However, the exact mechanisms underlying the relationship between depression and tumour progression remain unclear, and this complexity involves multi-system and multi-level interactions, with several key challenges remaining in current research. First, the extreme complexity of biological systems. Depression and tumors involve multiple pathways such as neuroendocrine, immune system, and metabolism, respectively, and there are nonlinear interactions between these pathways (e.g., HPA axis activation affects both immunosuppression and tumor angiogenesis), so it is difficult to isolate the predominant role of a single mechanism, and there are feedback loops (e.g., inflammatory factors (e.g., IL-6) can both induce depressive symptoms and promote tumor growth) form a "feedback loop between depression and tumors" that makes it difficult to determine the direction of causality. Second, the potential blind spot of mechanism research. There is insufficient direct evidence for the brain-tumor axis, and it is known that the vagus nerve or sympathetic nerves can directly modulate the tumor microenvironment (TME) (e.g., via β-adrenergic receptors), but there is a lack of technical support for in vivo imaging on how the CNS remotely affects tumors through the neural circuits; whereas depression-associated disturbances of the intestinal flora or in certain stages of tumor development (e.g., metastatic) or specific microenvironments (e.g., areas of hyper-infiltrating T-cells) may have long-term effects on the tumors, but such changes are difficult to capture in short-term experiments and cannot be precisely temporally resolved by existing technologies. However, there are limitations in current research methods. Existing studies have relied on mouse models of chronic stress (e.g., chronic unpredictable stress), but the "depression-like behaviour" of mice is fundamentally different from the clinical manifestations of depression in humans, and the TME (e.g., immune composition) is different from that of humans. Finally, for patients with cancer-associated depression, clinical treatment is usually a two-pronged strategy, but the combination of anticancer and antidepressant drugs has limitations, such as drug-drug interactions, safety issues, and the challenge of individualised treatment in clinical practice. Therefore, by elucidating the relationship between depression and tumour bidirectional effects, this review relatively clarifies how depression affects TME to promote tumour progression by influencing changes in immunosuppression, hormonal changes, glutamate/glutamate receptors, and intestinal flora. Further, some potential therapeutic strategies are proposed for the clinical treatment of this group of patients through the above pathological mechanism; at the same time, it was found that antidepressant drugs have potential antitumor activity, and their dual pharmacological effects may provide synergistic therapeutic benefits for patients with cancer-associated depressive disorders. This finding not only expands the choice of drugs for tumour therapy but also provides a new theoretical basis for comprehensive treatment strategies in the field of psycho-oncology.
Collapse
Affiliation(s)
- Jingjing Dong
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Juan Du
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Ruyun Liu
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yixiao Wang
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Lin Ma
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wu
- College of Basic Medicine, Ningxia Medical University, Yin Chuan, China
| | - Jianqiang Yu
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Ning Liu
- Department of Pharmacy, Ningxia Medical University, Yin Chuan, China
| |
Collapse
|
2
|
Yi F, Tao S, Wu H. Bilirubin metabolism in relation to cancer. Front Oncol 2025; 15:1570288. [PMID: 40291905 PMCID: PMC12021636 DOI: 10.3389/fonc.2025.1570288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste product, but recent studies have found it to have antioxidant and anti-tumor effects. With the extensive research on the mechanism of malignant tumor development, the antioxidant effect of bilirubin is increasingly becoming a hotspot in anti-cancer research. At present, there are two main views on the relationship between bilirubin and cancer, namely, its pro-cancer and anti-cancer effects, and in recent years, studies on the relationship between bilirubin and cancer have not been systematically summarized, which is not conducive to the further investigation of the role of bilirubin on cancer. To understand the multifaceted role of bilirubin in tumorigenesis as well as to develop more effective and affordable antitumor therapies, this review provides an overview of the effects of bilirubin on tumors in terms of oxidative, inflammatory, and cellular signaling pathways, as well as the resulting therapeutic ideas and approaches.
Collapse
Affiliation(s)
- Fengyun Yi
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Zhang X, Cui Y, Zhang X, Zhang Z, Yu Q, Li T, Li S. Preparation and structure-function relationships of homogalacturonan-rich and rhamnogalacturonan-I rich pectin: A review. Int J Biol Macromol 2025; 304:140775. [PMID: 39924012 DOI: 10.1016/j.ijbiomac.2025.140775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Pectin has multiple functions and is widely used in the food industry. It is an acidic heteropolysaccharide found in most plants, mainly consisting of two regions: homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). HG and RG-I rich pectin have unique structures and functional properties, which can be obtained through specific preparation methods. Some emerging physics assisted preparation strategies are more advantageous for preparing specific structures with higher purity and efficiency than traditional preparation methods. HG and RG-I rich pectin have unique processing and functional properties, but sometimes a proper ratio of HG and RG-I pectin may have better effects than individuals. Therefore, it is speculated that there may be some synergistic effects between the two pectin structures. A comprehensive understanding of the preparation, structure, and functional relationship of HG and RG-I rich pectin is crucial for the efficient preparation of pectin with targeted functions.
Collapse
Affiliation(s)
- Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qianhui Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Zhang X, Peng C, Xiong X, Lian J. Examining the influence of tumor-infiltrating macrophages on breast cancer outcomes and identifying relevant genes for diagnostic purposes. Discov Oncol 2024; 15:502. [PMID: 39331271 PMCID: PMC11436547 DOI: 10.1007/s12672-024-01397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVE The purpose of this research was to investigate how different types of immune cells impact the outlook of individuals with breast cancer, as well as identify the essential genes associated with immune cell subtype enrichment. METHODS The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were used to obtain global transcriptome sequencing data sets of breast tissue. The study utilized the CIBERSORT algorithm to determine the presence of 22 different types of immune cells in both breast cancer tissue and normal breast tissue.Immune cell infiltration content was utilized to conduct univariate COX analysis in order to identify risk factors linked to breast cancer prognosis. RESULTS Univariate COX analysis indicates that Macrophages M1 and B cells naive are beneficial factors for the outlook of individuals with breast cancer (P < 0.05), while Macrophages M2 and Monocytes are detrimental factors for the prognosis of breast cancer patients (P < 0.05). The high infiltration group of macrophage M2 had a poorer prognosis compared to the low infiltration group (P < 0.001); Conversely, the high infiltration group of macrophage M1 had a better prognosis than the low infiltration group (P = 0.002). CONCLUSION The study provided an overview of immune cell infiltration in breast cancer tissues, identifying macrophage M1 and macrophage M2 as potential factors in breast cancer development and progression. Additionally, genes associated with macrophage phenotype were analyzed, offering insights into macrophage polarization mechanisms.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Medical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huanghe West Road 1, Huaian, Jiangsu, China
| | - Cheng Peng
- Department of Medical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huanghe West Road 1, Huaian, Jiangsu, China
| | - Xuesong Xiong
- Department of Medical Laboratory, The Fifth People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Jianchun Lian
- Department of Medical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huanghe West Road 1, Huaian, Jiangsu, China.
| |
Collapse
|
5
|
Fu W, Chang X, Ye K, Zheng Z, Lai Q, Ge M, Shi Y. Genome-wide analysis reveals the MORC3-mediated repression of PD-L1 expression in head and neck cancer. Front Cell Dev Biol 2024; 12:1410130. [PMID: 39329063 PMCID: PMC11425343 DOI: 10.3389/fcell.2024.1410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Programmed death-ligand 1 (PD-L1) plays essential roles in the negative regulation of anti-tumor immunity. However, the regulatory mechanisms of PD-L1 expression need further exploration. MORC family CW-type zinc finger 3 (MORC3) is a transcriptional factor that regulates innate immune responses, but the expression and roles of MORC3 in cancers remain largely unknown. The present study explored the expression of MORC3 in cancers at both transcriptional and translational levels. Methods The target genes and pathways were analyzed using RNA interference (RNAi), RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR) technology in head and neck cancer cells. The expression of MORC3 and its target genes were also analyzed in single cancer cells. Results MORC3 was significantly downregulated in multiple cancers, including head and neck cancer, and low expression of MORC3 was associated with poor overall survival. MORC3 knockdown significantly increased the expression of many immune-related genes, including interferon (IFN)-associated genes [MX dynamin like GTPase 2 (MX2), interferon induced protein with tetratricopeptide repeats 1 (IFIT1), interferon induced protein with tetratricopeptide repeats 2 (IFIT2), interferon regulatory factor 7 (IRF7), interferon regulatory factor 9 (IRF9), interferon induced protein 44 like (IFI44L), interferon induced transmembrane protein 1 (IFITM1), interferon induced transmembrane protein 3 (IFITM3), interferon induced protein 44 (IFI44), and interferon induced with helicase C domain 1 (IFIH1)]. MORC3 knockdown significantly upregulated PD-L1 and signal transducer and activator of transcription 1 (STAT1) expression. Moreover, the LINC00880 immune-related long non-coding RNA (lnc-RNA) was upregulated by MORC3 knockdown. Silencing LINC00880 attenuated PD-L1 expression. MORC3 knockdown also increased the expression of cellular proliferation-related genes and promoted cancer cell proliferation. Conclusion The present study demonstrated that MORC3 regulates IFN-associated pathways and is a novel repressor of PD-L1 expression and cancer cell proliferation.
Collapse
Affiliation(s)
- Wenxuan Fu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Xiaomeng Chang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Kun Ye
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Zige Zheng
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Qianyi Lai
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Minyang Ge
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Yan Shi
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| |
Collapse
|
6
|
Song N, Wang Z, Shi P, Cui K, Fan Y, Zeng L, Di W, Li J, Su W, Wang H. Comprehensive analysis of signaling lymphocyte activation molecule family as a prognostic biomarker and correlation with immune infiltration in clear cell renal cell carcinoma. Oncol Lett 2024; 28:354. [PMID: 38881710 PMCID: PMC11176890 DOI: 10.3892/ol.2024.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer and accounts for 2-3% of all cancer cases. Furthermore, a growing number of immunotherapy approaches are being used in antitumor treatment. Signaling lymphocyte activation molecule family (SLAMF) members have been well studied in several cancers, whereas their roles in ccRCC have not been investigated. The present study comprehensively assessed the molecular mechanisms of SLAMF members in ccRCC, performed using The Cancer Genome Atlas database, with analysis of gene transcription, prognosis, biological function, clinical features, tumor-associated immune cells and the correlation with programmed cell death protein 1/programmed death-ligand 1 immune checkpoints. Simultaneously, the Tumor Immune Dysfunction and Exclusion algorithm was used to predict the efficacy of immune checkpoint blockade (ICB) therapy in patients with high and low SLAMF expression levels. The results demonstrated that all SLAMF members were highly expressed in ccRCC, and patients with high expression levels of SLAMF1, 4, 7 and 8 had a worse prognosis that those with low expression. SLAMF members were not only highly associated with immune activation but also with immunosuppressive agents. The level of immune cell infiltration was associated with the prognosis of patients with ccRCC with high SLAMF expression. Moreover, high ICB response rates were observed in patients with high expression levels of SMALF1 and 4. In summary, SLAMF members may serve as future potential biomarkers for predicting the prognosis of ccRCC and emerge as a novel immunotherapy target.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Ziwei Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pingyu Shi
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Kai Cui
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yanwu Fan
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Liqun Zeng
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Wenyu Di
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jinsong Li
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
7
|
Jin S, Liu W, He X, Zhang Y, Chen W, Wu Y, Liu J. VISTA deficiency exerts anti-tumor effects in breast cancer through regulating macrophage polarization. Int Immunopharmacol 2024; 136:112365. [PMID: 38820964 DOI: 10.1016/j.intimp.2024.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Growing evidence had showed that tumor-associated macrophages (TAMs) have a tumor-promoting M2 phenotype which could drive pathological phenomena. In breast cancer, TAMs are abundantly present and may play an important role in the development of breast cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel inhibitory checkpoint and immunotherapy target for tumor through regulating immune response. However, its effects on macrophages have not been investigated, which was also the focus of this study. Here, the scRNA-seq data further revealed that VISTA was highly expressed in multiple macrophage subclusters. In vitro experiments showed that the absence of VISTA enhanced the M1 polarization of macrophages, inhibited the M2 polarization of macrophages and the proliferation and phagocytosis of 4 T1 cells induced by M2-CM. VISTA regulated the activation of STAT1 and STAT6 signaling pathways in the process of macrophage polarization. In vivo experiments demonstrated that VISTA deficient mice exhibited reduced tumor growth, possibly due to the increase of M1 macrophages and the decrease of M2 macrophages. In summary, our study is the first to reveal the effect of VISTA on macrophages in breast cancer, which showed that VISTA affects tumor growth by critically regulating the macrophage polarization through the STAT pathway.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wanmei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yinhao Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Qing F, Sui L, He W, Chen Y, Xu L, He L, Xiao Q, Guo T, Liu Z. IRF7 Exacerbates Candida albicans Infection by Compromising CD209-Mediated Phagocytosis and Autophagy-Mediated Killing in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1932-1944. [PMID: 38709167 DOI: 10.4049/jimmunol.2300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Lina Sui
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Wenji He
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Yayun Chen
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Li Xu
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Gastroenterology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Zhiping Liu
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
9
|
He P, Dai M, Li Z, Wang X, Liu H, He Y, Jiang H. Effect of connexin 43 in LPS/IL-4-induced macrophage M1/M2 polarization: An observational study. Medicine (Baltimore) 2024; 103:e37811. [PMID: 38608055 PMCID: PMC11018209 DOI: 10.1097/md.0000000000037811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Lipopolysaccharide (LPS) and interleukin-4 (IL-4) play important roles in inducing M1 and M2 macrophage polarization. Studies have shown that LPS can promote the polarization of macrophages to M1-type and produce many pro-inflammatory cytokines, while IL-4 can promote the polarization of macrophages to M2-type and produce many anti-inflammatory cytokines. Moreover, Connexin 43 (Cx43) is widely expressed in macrophages and has various regulatory functions. However, whether Cx43 is involved in the regulation of macrophage M1/M2 polarization has not been fully studied. This study examined the role of Cx43 and M2 polarization markers using Western blot, immunofluorescence, flow cytometry. Cx43 overexpression was induced using Cx43 overexpressing lentivirus. The statistical software SPSS 20.0 (IBM Corp.) and GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA, United States) were used to analyze the results. P values < .05 were considered to indicate statistically significant differences. Our results showed that LPS promotes the polarization of macrophages to M1-type, which is accompanied by an increase in Cx43 expression from 0 to 24 hours. Moreover, the application of the Cx43-specific blockers Gap19 and Gap26 reduces the expression of macrophage M1-type polarization markers. Thus, the expression of Cx43 increases first, and then, due to the initiation of intracellular autophagy during LPS-induced macrophage M1 polarization. Cx43 is degraded and the expression of Cx43 decreases from 24 hours to 48 hours. IL-4 decreases the expression of Cx43 from 24 hours to 48 hours and promotes the transformation of macrophages to M2-type. The application of Cx43 overexpression lentivirus leads to a reduction in the expression of M2 polarization markers. IL-4-induced M2 polarization of macrophages inhibits cell autophagy, reducing Cx43 degradation and leading to an increase in Cx43 from 24 hours to 48 hours. Thus, Cx43 expression in M2-type polarization experiences a reduction at first and then an increase from 24 hours to 48 hours. The direction of macrophage polarization can be controlled by regulating the expression of Cx43, thus providing a theoretical basis for treating atherosclerosis, tumors, and other diseases associated with macrophage polarization.
Collapse
Affiliation(s)
- Pengchen He
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxing Dai
- Department of Rehabilitation Therapy, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Zongpin Li
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Hongyuan Liu
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Yixiao He
- Department of Pathology, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Han Jiang
- Department of Rehabilitation Therapy, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
10
|
Liu K, Wang H, Zhou J, Zhu S, Ma M, Xiao H, Ding Y. HMGB1 in exosomes derived from gastric cancer cells induces M2-like macrophage polarization by inhibiting the NF-κB signaling pathway. Cell Biol Int 2024; 48:334-346. [PMID: 38105539 DOI: 10.1002/cbin.12110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Gastric cancer (GC) seriously threatens human health. High mobility group protein B1 (HMGB1) and M2-like macrophages are closely associated with core events about human cancers, such as invasion, and metastasis, and cancer microenvironment. This study mainly determined the regulatory effect of HMGB1 in GC cell-derived exosomes on M2-like macrophage polarization as well as the underlying mechanism. HMGB1 was found to be highly expressed in gastric tissue specimens, which might lead to the poor prognosis of GC. High levels of HMGB1 were also observed in the plasma of GC patients, indicating the possibility that it regulates the immune microenvironment via exosomes. Further study revealed and confirmed the regulatory effect of exosomes derived from GC cells with high HMGB1 level on inducing M2-like macrophage polarization. Mechanistically, by interacting with the transcription factor POU2F1, exosomal HMGB1 inhibited the transcriptional activity of p50, resulting in the inactivation of NF-κB signaling pathway and thereby inducing M2-like macrophage polarization. Moreover, instead of promoting the proliferation of GC cells, exosomes with high HMGB1 levels induced M2-like macrophage polarization and promoted GC progression. This study reveals a novel mechanism by which HMGB1 promotes GC progression, which may provide new insights for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ke Liu
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jumei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Suyu Zhu
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hua Xiao
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi Ding
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
van Genderen MNG, Kneppers J, Zaalberg A, Bekers EM, Bergman AM, Zwart W, Eduati F. Agent-based modeling of the prostate tumor microenvironment uncovers spatial tumor growth constraints and immunomodulatory properties. NPJ Syst Biol Appl 2024; 10:20. [PMID: 38383542 PMCID: PMC10881528 DOI: 10.1038/s41540-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Inhibiting androgen receptor (AR) signaling through androgen deprivation therapy (ADT) reduces prostate cancer (PCa) growth in virtually all patients, but response may be temporary, in which case resistance develops, ultimately leading to lethal castration-resistant prostate cancer (CRPC). The tumor microenvironment (TME) plays an important role in the development and progression of PCa. In addition to tumor cells, TME-resident macrophages and fibroblasts express AR and are therefore also affected by ADT. However, the interplay of different TME cell types in the development of CRPC remains largely unexplored. To understand the complex stochastic nature of cell-cell interactions, we created a PCa-specific agent-based model (PCABM) based on in vitro cell proliferation data. PCa cells, fibroblasts, "pro-inflammatory" M1-like and "pro-tumor" M2-like polarized macrophages are modeled as agents from a simple set of validated base assumptions. PCABM allows us to simulate the effect of ADT on the interplay between various prostate TME cell types. The resulting in vitro growth patterns mimic human PCa. Our PCABM can effectively model hormonal perturbations by ADT, in which PCABM suggests that CRPC arises in clusters of resistant cells, as is observed in multifocal PCa. In addition, fibroblasts compete for cellular space in the TME while simultaneously creating niches for tumor cells to proliferate in. Finally, PCABM predicts that ADT has immunomodulatory effects on macrophages that may enhance tumor survival. Taken together, these results suggest that AR plays a critical role in the cellular interplay and stochastic interactions in the TME that influence tumor cell behavior and CRPC development.
Collapse
Affiliation(s)
- Maisa N G van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elise M Bekers
- Division of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Ye H, Yu W, Li Y, Bao X, Ni Y, Chen X, Sun Y, Chen A, Zhou W, Li J. AIM2 fosters lung adenocarcinoma immune escape by modulating PD-L1 expression in tumor-associated macrophages via JAK/STAT3. Hum Vaccin Immunother 2023; 19:2269790. [PMID: 37877820 PMCID: PMC10601527 DOI: 10.1080/21645515.2023.2269790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
This work was devised to discuss the effect of AIM2 on the immunosuppression of LUAD tumors, as well as its molecular mechanism. An allograft mouse model was built. Mouse macrophages were isolated and collected. The infiltration level of Mø and expression of M1 Mø, M2 Mø markers, and PD-L1 were assayed by IHC and flow cytometry. Expression levels of M1 Mø and M2 Mø marker genes and PD-L1 were detected by qPCR. The expression of proteins linked with JAK/STAT3 was tested by western blot. CD8+T cells and NK cells were activated in vitro and co-cultured with mouse macrophages, and their cytotoxicity was detected by LDH method. The proportion of CD206+PD-L1+ cells and the activation and proliferation of CD8+T cells were assayed by flow cytometry. Multicolor immunofluorescence was utilized to assay the co-localization of proteins. AIM2 demonstrated a high expression in LUAD, exhibiting a conspicuous positive correlation with the expression of the M2 Mø markers as well as PD-L1. Expression of M1 markers was upregulated after knockdown of AIM2, while M2 markers expression and PD-L1 were downregulated, and the colocalization of proteins linked with PD-L1 and M2 Mø was decreased. The infiltration and cytotoxicity of CD8+T cells and NK cells increased after silencing AIM2. After the knockdown of AIM2, which was enriched in the JAK/STAT3 pathway, the phosphorylation levels of JAK1, JAK2, and STAT3 were reduced, the immune infiltration level of CD8+T cells increased, and the co-localization level of PD-L1 and PD-1 dropped. The activity and proliferation level of CD8+T cells were increased with the reduced PD-1 expression. AIM2 fosters M2 Mø polarization and PD-L1 expression via the JAK/STAT3 pathway. Moreover, AIM2 promotes the immune escape of LUAD via the PD-1/PD-L1 axis. Our work may blaze a trail for the clinical treatment of LUAD.
Collapse
Affiliation(s)
- Hua Ye
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Yu
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunlei Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Bao
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yangyang Ni
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangxiang Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yangjie Sun
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ali Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weilong Zhou
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jifa Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Nasir I, McGuinness C, Poh AR, Ernst M, Darcy PK, Britt KL. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol 2023; 44:971-985. [PMID: 37995659 DOI: 10.1016/j.it.2023.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Collapse
Affiliation(s)
- Ibraheem Nasir
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Conor McGuinness
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia; Cancer Immunology Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Wang R, Zeng H, Xiao X, Zheng J, Ke N, Xie W, Lin Q, Zhang H. Identification of prognostic biomarkers of breast cancer based on the immune-related gene module. Autoimmunity 2023; 56:2244695. [PMID: 37584152 DOI: 10.1080/08916934.2023.2244695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Breast cancer (BC) is highly malignant and its mortality rate remains high. The development of immunotherapy has gradually improved the prognosis and survival rate of patients. Therefore, identifying molecular markers concerned with BC immunity is of great importance for the treatment of this disease. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) was utilized as the training set while the BC expression dataset from the gene expression omnibus database was taken as the validation set here. Weighted gene co-expression network analysis combined with Pearson analysis and Tumor immune estimation resource (TIMER) was used to obtain immune cell-related hub gene module. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on this module. Then, receiver operating characteristic curves combining Kaplan-Meier was used to evaluate the effectiveness of the model. Feature genes were screened and the independence of risk score was evaluated by univariate and multivariate Cox analyses. Differences in immune characteristics were analyzed via single-sample gene set enrichment analysis and CIBERSORT, and differences in gene mutation frequency were assessed via GenVisR analysis. Finally, the expression levels of prognostic feature genes in BC cells were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In this study, cell immune-related gene modules in TCGA-BRCA were successfully excavated, and a five-gene (TNFRSF14, NFKBIA, DLG3, IRF2, and CYP27A1) prognostic model was established. The prognostic model could effectively forecast the prognosis and survival rate of BC patients. The result showed that human leukocyte antigen-related proteins and macrophage M2 scores were remarkably highly expressed in the high-risk group, whereas CD8+ T cells, natural killer cells, M1, and other anti-tumor cells were lowly expressed. The model could be used as an independent prognostic factor to predict the prognosis of BC patients. The results of qRT-PCR validation were consistent with the results in the database, that is, except DLG3, the other four feature genes were lowly expressed in BC. The five-gene model established in this study can predict the prognostic and immune mode of BC patients effectively, which is anticipated to become a feasible molecular target for BC therapy.
Collapse
Affiliation(s)
- Ruijuan Wang
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Huanhong Zeng
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xueming Xiao
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Junjie Zheng
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Naizhuo Ke
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenjun Xie
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiang Lin
- Department of Basic Surgery, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Zhang
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Hu A, Liu Y, Zhang H, Wang T, Zhang J, Cheng W, Yu T, Duan Y, Feng J, Chen Z, Ding Y, Li Y, Li M, Rong Z, Shang Y, Shakila SS, Zou Y, Ma F, Guo B. BPIFB1 promotes metastasis of hormone receptor-positive breast cancer via inducing macrophage M2-like polarization. Cancer Sci 2023; 114:4157-4171. [PMID: 37702269 PMCID: PMC10637056 DOI: 10.1111/cas.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Metastasis is an important factor affecting the prognosis of hormone receptor-positive breast cancer (BC). However, the molecular basis for migration and invasion of tumor cells remains poorly understood. Here, we identify that bactericidal/permeability-increasing-fold-containing family B member 1 (BPIFB1), which plays an important role in innate immunity, is significantly elevated in breast cancer and associated with lymph node metastasis. High expression of BPIFB1 and its coding mRNA are significantly associated with poor prognosis of hormone receptor-positive BC. Using enrichment analysis and constructing immune infiltration evaluation, we predict the potential ability of BPIFB1 to promote macrophage M2 polarization. Finally, we demonstrate that BPIFB1 promotes the metastasis of hormone receptor-positive BC by stimulating the M2-like polarization of macrophages via the establishment of BC tumor cells/THP1 co-culture system, qPCR, Transwell assay, and animal experiments. To our knowledge, this is the first report on the role of BPIFB1 as a tumor promoter by activating the macrophage M2 polarization in hormone receptor-positive breast carcinoma. Together, these results provide novel insights into the mechanism of BPIFB1 in BC.
Collapse
Affiliation(s)
- Anbang Hu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yansong Liu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hanyu Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ting Wang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiarui Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Weilun Cheng
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianshui Yu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yunqiang Duan
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jianyuan Feng
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ziang Chen
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yu Ding
- Department of General SurgeryDaqing Oilfield General HospitalDaqingChina
| | - Yanling Li
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mingcui Li
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhiyuan Rong
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuhang Shang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Suborna S. Shakila
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yiyun Zou
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Fei Ma
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Baoliang Guo
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
16
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
17
|
Holubekova V, Loderer D, Grendar M, Mikolajcik P, Kolkova Z, Turyova E, Kudelova E, Kalman M, Marcinek J, Miklusica J, Laca L, Lasabova Z. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. Front Oncol 2023; 13:1206482. [PMID: 37869102 PMCID: PMC10586664 DOI: 10.3389/fonc.2023.1206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a heterogeneous disease caused by molecular changes, as driver mutations, gene methylations, etc., and influenced by tumor microenvironment (TME) pervaded with immune cells with both pro- and anti-tumor effects. The studying of interactions between the immune system (IS) and the TME is important for developing effective immunotherapeutic strategies for CRC. In our study, we focused on the analysis of expression profiles of inflammatory and immune-relevant genes to identify aberrant signaling pathways included in carcinogenesis, metastatic potential of tumors, and association of Kirsten rat sarcoma virus (KRAS) gene mutation. Methods A total of 91 patients were enrolled in the study. Using NGS, differential gene expression analysis of 11 tumor samples and 11 matching non-tumor controls was carried out by applying a targeted RNA panel for inflammation and immunity genes containing 475 target genes. The obtained data were evaluated by the CLC Genomics Workbench and R library. The significantly differentially expressed genes (DEGs) were analyzed in Reactome GSA software, and some selected DEGs were used for real-time PCR validation. Results After prioritization, the most significant differences in gene expression were shown by the genes TNFRSF4, IRF7, IL6R, NR3CI, EIF2AK2, MIF, CCL5, TNFSF10, CCL20, CXCL11, RIPK2, and BLNK. Validation analyses on 91 samples showed a correlation between RNA-seq data and qPCR for TNFSF10, RIPK2, and BLNK gene expression. The top differently regulated signaling pathways between the studied groups (cancer vs. control, metastatic vs. primary CRC and KRAS positive and negative CRC) belong to immune system, signal transduction, disease, gene expression, DNA repair, and programmed cell death. Conclusion Analyzed data suggest the changes at more levels of CRC carcinogenesis, including surface receptors of epithelial or immune cells, its signal transduction pathways, programmed cell death modifications, alterations in DNA repair machinery, and cell cycle control leading to uncontrolled proliferation. This study indicates only basic molecular pathways that enabled the formation of metastatic cancer stem cells and may contribute to clarifying the function of the IS in the TME of CRC. A precise identification of signaling pathways responsible for CRC may help in the selection of personalized pharmacological treatment.
Collapse
Affiliation(s)
- Veronika Holubekova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Loderer
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Kolkova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
18
|
Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C. Subverted macrophages in the triple-negative breast cancer ecosystem. Biomed Pharmacother 2023; 166:115414. [PMID: 37660651 DOI: 10.1016/j.biopha.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
Collapse
Affiliation(s)
- Linxiao Shang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yuting Zhong
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, Macau 999078, China
| | - Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
19
|
Liu B, Yang Q, Cheng Y, Liu M, Ji Q, Zhang B, Yang Z, Zhou S, Liu D. Calcium phosphate hybrid micelles inhibit orthotopic bone metastasis from triple negative breast cancer by simultaneously killing cancer cells and reprogramming the microenvironment of bone resorption and immunosuppression. Acta Biomater 2023; 166:640-654. [PMID: 37236576 DOI: 10.1016/j.actbio.2023.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Triple negative breast cancer (TNBC) is prone to develop drug resistance and metastasis. Bone is the most common distant metastasis site of breast cancer cell. Patients with bone metastasis from TNBC suffer from unbearable pain due to the growth of bone metastasis and bone destruction. Simultaneously blocking the growth of bone metastasis and reprogramming the microenvironment of bone resorption and immunosuppression is a promising strategy to treat bone metastasis from TNBC. Herein, we prepared a pH and redox responsive drug delivery system, named DZ@CPH, by encapsulating docetaxel (DTX) with hyaluronic acid-polylactic acid micelle then reinforcing with calcium phosphate and zoledronate for targeting to bone metastasis from TNBC. DZ@CPH reduced the activation of osteoclast and inhibited bone resorption by decreasing the expression of nuclear factor κB receptor ligand and increasing the expression of osteoprotegerin in drug-resistant bone metastasis tissue. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the apoptosis-related and invasion-related protein expression. It also increased the sensitivity of orthotopic drug-resistant bone metastasis to DTX by inhibiting the expression of P-glycoprotein, Bcl-2 and transforming growth factor-β in tissue of drug-resistant bone metastasis. Moreover, the ratio between M1 type macrophage to M2 type macrophage in bone metastasis tissue was increased by DZ@CPH. In a word, DZ@CPH blocked the growth of bone metastasis from drug-resistant TNBC through inducing the apoptosis of drug-resistant TNBC cells and reprogramming the microenvironment of bone resorption and immunosuppression. DZ@CPH has a great potential in clinical application for the treatment of bone metastasis from drug-resistant TNBC. STATEMENT OF SIGNIFICANCE: Triple negative breast cancer (TNBC) is prone to develop bone metastasis. Now bone metastasis is still an intractable disease. In this study, docetaxel and zoledronate co-loaded calcium phosphate hybrid micelles (DZ@CPH) were prepared. DZ@CPH reduced the activation of osteoclasts and inhibited bone resorption. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the expression of apoptosis and invasion related protein in bone metastasis tissue. Moreover, the ratio between M1 type macrophages to M2 type macrophages in bone metastases tissue was increased by DZ@CPH. In a word, DZ@CPH blocked vicious cycle between the growth of bone metastasis and bone resorption, which greatly improved the therapeutic effect on bone metastasis from drug-resistant TNBC.
Collapse
Affiliation(s)
- Bao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qian Yang
- Department of pharmacy, School of Medicine, Shaanxi Energy Institute, Xianyang, 712000, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Zilberg C, Lyons JG, Gupta R, Damian DL. The Immune Microenvironment in Basal Cell Carcinoma. Ann Dermatol 2023; 35:243-255. [PMID: 37550225 PMCID: PMC10407341 DOI: 10.5021/ad.22.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 08/01/2022] [Indexed: 08/09/2023] Open
Abstract
The immune system plays a key role in the suppression and progression of basal cell carcinoma (BCC). The primary aetiological factor for BCC development is exposure to ultraviolet radiation (UVR) which, particularly in lighter Fitzpatrick skin types, leads to the accumulation of DNA damage. UVR has roles in the generation of an immunosuppressive environment, facilitating cancer progression. Rates of BCC are elevated in immunosuppressed patients, and BCC may undergo spontaneous immune-mediated regression. Histologic and immunohistochemical profiling of BCCs consistently demonstrates the presence of an immune infiltrate and associated immune proteins. Early studies of immune checkpoint inhibitors reveal promising results in BCC. Therefore, the host immune system and tumor responses to it are important in BCC pathogenesis. Understanding these interactions will be beneficial for disease prognostication and therapeutic decisions.
Collapse
Affiliation(s)
- Catherine Zilberg
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia.
| | - James Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Diona Lee Damian
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia
- Melanoma Institute Australia, Sydney, Australia
| |
Collapse
|
21
|
Qing F, Liu Z. Interferon regulatory factor 7 in inflammation, cancer and infection. Front Immunol 2023; 14:1190841. [PMID: 37251373 PMCID: PMC10213216 DOI: 10.3389/fimmu.2023.1190841] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factors (IRFs) family, is located downstream of the pattern recognition receptors (PRRs)-mediated signaling pathway and is essential for the production of type I interferon (IFN-I). Activation of IRF7 inhibits various viral and bacterial infections and suppresses the growth and metastasis of some cancers, but it may also affect the tumor microenvironment and promote the development of other cancers. Here, we summarize recent advances in the role of IRF7 as a multifunctional transcription factor in inflammation, cancer and infection by regulating IFN-I production or IFN-I-independent signaling pathways.
Collapse
|
22
|
Zhao C, Zeng N, Zhou X, Tan Y, Wang Y, Zhang J, Wu Y, Zhang Q. CAA-derived IL-6 induced M2 macrophage polarization by activating STAT3. BMC Cancer 2023; 23:392. [PMID: 37127625 PMCID: PMC10152707 DOI: 10.1186/s12885-023-10826-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are the most abundant types of immune cells in the tumor microenvironment (TME) of breast cancer (BC). TAMs usually exhibit an M2 phenotype and promote tumor progression by facilitating immunosuppression. This study aimed to investigate the effect of CAA-derived IL-6 on macrophage polarization in promoting BC progression. METHODS Human BC samples and adipocytes co-cultured with 4T1 BC cells were employed to explore the properties of CAAs. The co-implantation of adipocytes and 4T1 cells in mouse tumor-bearing model and tail vein pulmonary metastasis model were constructed to investigate the impact of CAAs on BC malignant progression in vivo. The functional assays, qRT-PCR, western blotting assay and ELISA assay were employed to explore the effect of CAA-derived IL-6 on macrophage polarization and programmed cell death protein ligand 1 (PD-L1) expression. RESULTS CAAs were located at the invasive front of BC and possessed a de-differentiated fibroblast phenotype. CAAs facilitated the malignant behaviors of 4T1 cells in vitro, and promoted 4T1 tumor growth and pulmonary metastasis in vivo. The IHC staining of both human BC specimens and xenograft and the in vitro experiment indicated that CAAs could enhance infiltration of M2 macrophages in the TME of 4T1 BC. Furthermore, CAA-educated macrophages could enhance malignant behaviors of 4T1 cells in vitro. More importantly, CAAs could secret abundant IL-6 and thus induce M2 macrophage polarization by activating STAT3. In addition, CAAs could upregulate PD-L1 expression in macrophages. CONCLUSIONS Our study revealed that CAAs and CAA-educated macrophages enhanced the malignant behaviors of BC. Specifically, CAA-derived IL-6 induced migration and M2 polarization of macrophages via activation STAT3 and promoted macrophage PD-L1 expression, thereby leading to BC progression.
Collapse
Affiliation(s)
- Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
23
|
Dong Q, Han D, Li B, Yang Y, Ren L, Xiao T, Zhang J, Li Z, Yang H, Liu H. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Int J Biol Macromol 2023; 240:124342. [PMID: 37030459 DOI: 10.1016/j.ijbiomac.2023.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Tumor immunotherapy hold great promise for eradicating tumors. However, immune escape and the immunosuppressive microenvironment of tumor usually limit the efficiency of tumor immunotherapy. Therefore, simultaneously blocking immune escape and improving immunosuppressive microenvironment are the current problems to be solved urgently. Among them, CD47 on cancer cells membrane could bind to signal regulatory protein α (SIRPα) on macrophages membrane and sent out "don't eat me" signal, which was an important pathway of immune escape. The large number of M2-type macrophages in tumor microenvironment was a significant factor contributing to the immunosuppressive microenvironment. Here, we present a drug loading system for enhancing cancer immunotherapy, comprising CD47 antibody (aCD47) and chloroquine (CQ) with Bionic lipoprotein (BLP) carrier (BLP-CQ-aCD47). On the one hand, as drug delivery carrier, BLP could allow CQ to be preferentially taken up by M2-type macrophages, thereby efficiently polarized M2-type tumor-promoting cells into M1-type anti-tumor cells. On the other hand, blocking CD47 from binding to SIRPα could block the "don't eat me" signal, and improve the phagocytosis of macrophages to tumor cells. Taken together, BLP-CQ-aCD47 could block immune escape, improve immunosuppressive microenvironment of tumor, and induce a strong immune response without substantial systemic toxicity. Therefore, it provides a new idea for tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Baoku Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yang Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Lili Ren
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong 510515, China
| | - Hua Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
24
|
Abe C, Bhaswant M, Miyazawa T, Miyazawa T. The Potential Use of Exosomes in Anti-Cancer Effect Induced by Polarized Macrophages. Pharmaceutics 2023; 15:pharmaceutics15031024. [PMID: 36986884 PMCID: PMC10054161 DOI: 10.3390/pharmaceutics15031024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The rapid development of aberrant cells outgrowing their normal bounds, which can subsequently infect other body parts and spread to other organs-a process known as metastasis-is one of the significant characteristics of cancer. The main reason why cancer patients die is because of widespread metastases. This abnormal cell proliferation varies in cancers of over a hundred types, and their response to treatment can vary substantially. Several anti-cancer drugs have been discovered to treat various tumors, yet they still have harmful side-effects. Finding novel, highly efficient targeted therapies based on modifications in the molecular biology of tumor cells is essential to reduce the indiscriminate destruction of healthy cells. Exosomes, an extracellular vesicle, are promising as a drug carrier for cancer therapy due to their good tolerance in the body. In addition, the tumor microenvironment is a potential target to regulate in cancer treatment. Therefore, macrophages are polarized toward M1 and M2 phenotypes, which are involved in cancer proliferation and are malignant. It is evident from recent studies that controlled macrophage polarization might contribute to cancer treatment, by the direct way of using miRNA. This review provides an insight into the potential use of exosomes to develop an 'indirect', more natural, and harmless cancer treatment through regulating macrophage polarization.
Collapse
Affiliation(s)
- Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
25
|
Dong H, Zhao S, Zhang C, Wang X. Identification of cuproptosis related subtypes and construction of prognostic signature in gastric cancer. Front Surg 2023; 9:991624. [PMID: 36684237 PMCID: PMC9852337 DOI: 10.3389/fsurg.2022.991624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/24/2022] [Indexed: 01/09/2023] Open
Abstract
Cuprotosis is a novel mechanism of cell death that differs from known mechanisms, which depends on mitochondrial respiration and is closely related to lipoylated components of the tricarboxylic acid (TCA) cycle. However, it is unclear whether cuprotosis-related genes (CRGs) affect the tumor microenvironment (TME) and prognosis of patients with gastric cancer. In this study, the genetic and transcriptional characteristics of CRGs in gastric cancer (GC) were analyzed, and five CRGs that were differentially expressed and correlated with the survival of patients were obtained. Two different molecular subtypes were identified according to the five CRGs. Then, we constructed a CRG_score applied to patients of any age, gender, and stage. Subsequently, we found that cluster B and a high CRG_score had a worse prognosis, fewer immune checkpoints, and higher tumor immune dysfunction and exclusion (TIDE) compared to cluster A and a low CRG_score. In addition, two subtypes and the CRG_score were closely associated with clinicopathological characteristics, human leukocyte antigens (HLAs) and TME cell infiltration. A high CRG_score was featured with decreased microsatellite instability-high (MSI-H) and mutational burden. Meanwhile, the CRG_score was significantly related to the cancer stem cell (CSC) index and chemotherapeutic response. Moreover, we developed a nomogram to predict the survival probability of patients. Our study explained the role of CRGs in GC, and the prognostic signature could potentially provide an approach for personalized tumor therapy.
Collapse
|
26
|
Yang YB, Wu CY, Wang XY, Deng J, Cao WJ, Tang YZ, Wan CC, Chen ZT, Zhan WY, Shan H, Kuang DM, Wei Y. Targeting inflammatory macrophages rebuilds therapeutic efficacy of DOT1L inhibition in hepatocellular carcinoma. Mol Ther 2023; 31:105-118. [PMID: 36183166 PMCID: PMC9840147 DOI: 10.1016/j.ymthe.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Epigenetic reprogramming is a promising therapeutic strategy for aggressive cancers, but its limitations in vivo remain unclear. Here, we showed, in detailed studies of data regarding 410 patients with human hepatocellular carcinoma (HCC), that increased histone methyltransferase DOT1L triggered epithelial-mesenchymal transition-mediated metastasis and served as a therapeutic target for human HCC. Unexpectedly, although targeting DOT1L in vitro abrogated the invasive potential of hepatoma cells, abrogation of DOT1L signals hardly affected the metastasis of hepatoma in vivo. Macrophages, which constitute the major cellular component of the stroma, abrogated the anti-metastatic effect of DOT1L targeting. Mechanistically, NF-κB signal elicited by macrophage inflammatory response operated via a non-epigenetic machinery to eliminate the therapeutic efficacy of DOT1L targeting. Importantly, therapeutic strategy combining DOT1L-targeted therapy with macrophage depletion or NF-κB inhibition in vivo effectively and successfully elicited cancer regression. Moreover, we found that the densities of macrophages in HCC determined malignant cell DOT1L-associated clinical outcome of the patients. Our results provide insight into the crosstalk between epigenetic reprogramming and cancer microenvironments and suggest that strategies to influence the functional activities of inflammatory cells may benefit epigenetic reprogramming therapy.
Collapse
Affiliation(s)
- Yi-Bin Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, and The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Cai-Yuan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Xu-Yan Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, and The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wen-Jie Cao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Yun-Zhi Tang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao-Chao Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Tian Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan-Yu Zhan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, and The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
27
|
Cheng Z, Han J, Jiang F, Chen W, Ma X. Prognostic pyroptosis-related lncRNA signature predicts the efficacy of immunotherapy in hepatocellular carcinoma. Biochem Biophys Rep 2022; 32:101389. [PMID: 36438599 PMCID: PMC9684700 DOI: 10.1016/j.bbrep.2022.101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a common malignant tumor of the liver, remains high incidence and poor prognosis. Although pyroptosis as well as lncRNA have been believed to play important roles in the tumorigenesis, diagnosis and prognosis, the role of pyroptosis-related lncRNAs (PRlncRs) in HCC remains obscure. Here, we identified 73 significantly differentially expressed and overall survival (OS) related pyroptosis-related lncRNAs (PRlncRs) in noncancerous and HCC samples. Based on LASSO regression and Cox regression analyses, we set up a novel prognostic model including six PRlncRs (MKLN1-AS, AC139491.2, AC145207.5, AC099850.3, AL590705.3 and AL049840.5), which showed good correlation with the OS of HCC patients. Considering that the risk score was negatively related to clinicopathologic features including T stage (T1-2 and T3-4), clinical stage (stage I-II and stage III-IV) and histological grade (G1, G2, G3 and G4), we further constructed a predictive nomogram containing the risk score and other clinicopathological features to predict the OS rates for HCC patients. In addition, the proposed signature was closely related to immune infiltration and offered improved clinical utility for immune checkpoint inhibitors (ICIs) strategies and chemotherapeutic drug selection in HCC. In conclusion, we established a considerable accurate risk signature consisting of 6 PRlncRs in HCC, which could predict the prognosis and efficacy of immunotherapy for HCC patients. Pyroptosis-related lncRNA signature showed good correlation with the OS of HCC patients. The nomogram model could predict the 1-, 2- and 3-year survival of individual HCC patients. HCC patients with low risk scores would be more sensitive to Axitinib and Sorafenib. Pyroptosis-related lncRNA signature could predict the efficacy of immunotherapy in HCC.
Collapse
Affiliation(s)
- Zina Cheng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Juechen Han
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fa Jiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaolu Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- Corresponding author. College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
28
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
29
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Yang W, Qiu Z, Zhang J, Zhi X, Yang L, Qiu M, Zhao L, Wang T. Correlation Between Immune Cell Infiltration and PD-L1 Expression and Immune-Related lncRNA Determination in Triple-Negative Breast Cancer. Front Genet 2022; 13:878658. [PMID: 35432487 PMCID: PMC9008733 DOI: 10.3389/fgene.2022.878658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
As a key element of the tumor microenvironment (TME), immune cell infiltration (ICI) is a frequently observed histologic finding in people with triple-negative breast cancer (TNBC), and it is linked to immunotherapy sensitivity. Nonetheless, the ICI in TNBC, to the best of our knowledge, has not been comprehensively characterized. In our current work, computational algorithms based on biological data from next-generation sequencing were employed to characterize ICI in a large cohort of TNBC patients. We defined various ICI patterns by unsupervised clustering and constructed the ICI scores using the principal component analysis (PCA). We observed patients with different clustering patterns had distinct ICI profiles and different signatures of differentially expressed genes. Patients with a high ICI score tended to have an increased PD-L1 expression and improved outcomes, and these patients were associated with decreased tumor mutational burden (TMB). Interestingly, it was showed that patients with high TMB exhibited an ameliorated overall survival (OS) than patients with low TMB. Furthermore, TMB scores only affected the prognosis of TNBC patients in the low-ICI score group but not in the high group. Finally, we identified a new immune-related lncRNA (irlncRNA) signature and established a risk model for the TNBC prognosis prediction. In addition, the high-risk group was related to poor prognosis, a high infiltration level of plasma B cells, monocytes, M2 macrophages, and neutrophils and a low PD-L1 expression. Therefore, the characterization and systematic evaluation of ICI patterns might potentially predict the prognosis and immunotherapy response in TNBC patients.
Collapse
Affiliation(s)
- Wenlin Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhen Qiu
- Department of Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Junjun Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Xiao Zhi
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lili Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Min Qiu
- Department of Thyroid Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| | - Lihua Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| |
Collapse
|
31
|
Figueiredo J, Santos T, Miranda A, Alexandre D, Teixeira B, Simões P, Lopes-Nunes J, Cruz C. Ligands as Stabilizers of G-Quadruplexes in Non-Coding RNAs. Molecules 2021; 26:6164. [PMID: 34684745 PMCID: PMC8540333 DOI: 10.3390/molecules26206164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
The non-coding RNAs (ncRNA) are RNA transcripts with different sizes, structures and biological functions that do not encode functional proteins. RNA G-quadruplexes (rG4s) have been found in small and long ncRNAs. The existence of an equilibrium between rG4 and stem-loop structures in ncRNAs and its effect on biological processes remains unexplored. For example, deviation from the stem-loop leads to deregulated mature miRNA levels, demonstrating that miRNA biogenesis can be modulated by ions or small molecules. In light of this, we report several examples of rG4s in certain types of ncRNAs, and the implications of G4 stabilization using small molecules, also known as G4 ligands, in the regulation of gene expression, miRNA biogenesis, and miRNA-mRNA interactions. Until now, different G4 ligands scaffolds were synthesized for these targets. The regulatory role of the above-mentioned rG4s in ncRNAs can be used as novel therapeutic approaches for adjusting miRNA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Hen-rique, 6200-506 Covilhã, Portugal; (J.F.); (T.S.); (A.M.); (D.A.); (B.T.); (P.S.); (J.L.-N.)
| |
Collapse
|
32
|
Wang X, Cao K, Guo E, Mao X, Guo L, Zhang C, Guo J, Wang G, Yang X, Sun J, Miao S. Identification of Immune-Related LncRNA Pairs for Predicting Prognosis and Immunotherapeutic Response in Head and Neck Squamous Cell Carcinoma. Front Immunol 2021; 12:658631. [PMID: 33995377 PMCID: PMC8116744 DOI: 10.3389/fimmu.2021.658631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have multiple functions with regard to the cancer immunity response and the tumor microenvironment. The prognosis of head and neck squamous cell carcinoma (HNSCC) is still poor currently, and it may be effective to predict the clinical outcome and immunotherapeutic response of HNSCC by immunogenic analysis. Therefore, by using univariate COX analysis and Lasso Cox regression, we identified a signature consisting of 21 immune-related lncRNA pairs (IRLPs) that predicted clinical outcome and Immunotherapeutic response in HNSCC. Specifically, it was associated with immune cell infiltration (i.e., T cells CD4 memory resting, CD8 T cells, macrophages M0, M2, and NK cells), and more importantly this signature was strongly related with immune checkpoint inhibitors (ICIs) [such as PDCD1 (r = -0.35, P < 0.001), CTLA4 (r = -0.26, P < 0.001), LAG3 (r = -0.22, P < 0.001) and HAVCR2 (r = -0.2, P < 0.001)] and immunotherapy-related biomarkers (MMR and HLA). The present study highlighted the value of the 21 IRLPs signature as a predictor of prognosis and immunotherapeutic response in HNSCC.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kui Cao
- Department of Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Erliang Guo
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lunhua Guo
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cong Zhang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junnan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gang Wang
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianguang Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ji Sun
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
33
|
Zhang C, Yang M, Ericsson AC. Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Front Immunol 2021; 12:620510. [PMID: 33763066 PMCID: PMC7982479 DOI: 10.3389/fimmu.2021.620510] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident macrophages (TRMs) are heterogeneous populations originating either from monocytes or embryonic progenitors, and distribute in lymphoid and non-lymphoid tissues. TRMs play diverse roles in many physiological processes, including metabolic function, clearance of cellular debris, and tissue remodeling and defense. Macrophages can be polarized to different functional phenotypes depending on their origin and tissue microenvironment. Specific macrophage subpopulations are associated with disease progression. In studies of fate-mapping and single-cell RNA sequencing methodologies, several critical molecules have been identified to induce the change of macrophage function. These molecules are potential markers for diagnosis and selective targets for novel macrophage-mediated treatment. In this review, we discuss some of the recent findings regarding less-known molecules and new functions of well-known molecules. Understanding the mechanisms of these molecules in macrophages has the potential to yield new macrophage-mediated treatments or diagnostic approaches to disease.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, University of Missouri Mutant Mouse Resource and Research Center, Columbia, MO, United States
| |
Collapse
|