1
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2025; 45:702-726. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Yao Q, Hu Y, Liu Z, Liu JZ, Jiao QC. Evolution and Impact of Imine Reductases (IREDs) Research: A Knowledge Mapping Approach. Mol Biotechnol 2025:10.1007/s12033-025-01421-9. [PMID: 40172741 DOI: 10.1007/s12033-025-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/22/2025] [Indexed: 04/04/2025]
Abstract
Nitrogen-containing compounds, particularly those with chiral amine structures, play a crucial role in the development of organic active pharmaceutical ingredients. Imine reductases (IREDs), NAD(P)H-dependent enzymes that catalyze the reduction of cyclic imines and the reductive amination of prochiral ketones, offer significant industrial potential for the synthesis of chiral amines. However, despite the growing body of research, a comprehensive and unbiased assessment of IRED research remains lacking. This study aims to explore the research landscape and evolution of IREDs using bibliometric and knowledge mapping methods. A total of 239 research articles and reviews on IREDs, published between 2010 and 2024, were retrieved from the Web of Science Core Collection and analyzed using tools such as CiteSpace, VOSviewer, Pajek, and Scimago Graphica. Results showed a consistent increase in both publications and citations, with a sharp rise since 2014. Collaboration network analysis revealed that the United Kingdom leads the field in terms of publications and influential institutions, while ChemCatChem was identified as the journal with the highest number of articles. Nicholas J. Turner emerged as a key researcher, having published the most papers and achieving the second-highest citation frequency. Research trends and keyword analysis highlighted areas of focus such as IRED crystal structure resolution, protein engineering modifications, and expanded industrial applications, including multi-enzyme cascade reactions. Ongoing advancements in synthetic biology, protein modifications, and enzyme engineering are expected to drive further studies on highly active IREDs for asymmetric synthesis of pharmaceutical compounds, positioning this research at the forefront of the field. By employing bibliometric analysis, this study provides the first visual representation of IRED research, offering valuable insights into current trends and emerging topics that will aid scholars in identifying key research areas and potential collaborators.
Collapse
Affiliation(s)
- Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yujun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ziwei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jun-Zhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Tseliou V, Damian M, Mendoza-Avila J, Rabuffetti M, Mutti FG. Reductive amination: Methods for cell-free and whole-cell biocatalysis. Methods Enzymol 2025; 714:269-295. [PMID: 40288842 DOI: 10.1016/bs.mie.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Enzymatic reductive amination is now a green and selective method for the efficient conversion of ketones into chiral amines with high optical purity. Transaminases (TAs) have been widely employed at both laboratory and industrial scale for the synthesis of primary amines. Additionally, amine dehydrogenases (AmDHs), imine reductases (IREDs) and reductive aminases (RedAms) enable the stereoselective synthesis of primary, secondary and tertiary amines. Recent advancements in protein engineering have expanded the substrate scope and improved the stability of these biocatalysts, enabling broader applications. The use of immobilized enzymes and whole-cell systems further enhances the efficiency and sustainability of these methods. This chapter provides detailed protocols for enzymatic reductive amination for the synthesis of primary, secondary, and tertiary chiral amines using isolated or immobilized enzymes, or whole-cell biocatalysts.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Matteo Damian
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Josemarco Mendoza-Avila
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marco Rabuffetti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Department of Chemistry, University of Milan, Via Golgi 19, Milan, Italy
| | - Francesco G Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
| |
Collapse
|
4
|
Kopar M, Senyurt Tuzun N. A Quantum Mechanical Approach to The Mechanism of Asymmetric Synthesis of Chiral Amine by Imine Reductase from Stackebrandtia Nassauensis. Chempluschem 2025; 90:e202400606. [PMID: 39434680 PMCID: PMC11734578 DOI: 10.1002/cplu.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The asymmetric synthesis of tetrahydroisoquinolines (THIQs) has gained importance in recent years due to their significant potential in drug development studies. In this study, the conversion of 1-methyl-3,4-dihydroisoquinoline substrate to a chiral amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline, under the catalysis of the stereoselective imine reductase enzyme from Stackebrandtia nassauensis (SnIR) was investigated in detail to elucidate the mechanism and explain the experimental enantioselectivity. The results were found to be in agreement with the experimental data. To elucidate the reaction mechanism, quantum mechanical calculations were performed by considering a large cluster of the active site of the enzyme. In this regard, possible reaction pathways leading to both R- and S-products with the corresponding intermediates and the transition states for the hydride transfer from the cofactor to the substrate were considered by density functional theory (DFT) calculations, and the factors contributing to the observed stereoselectivity were sought. The calculations supported a stepwise mechanism rather than the concerted protonation and the hydride transfer steps. The stereoselectivity in the hydride transfer was found to be due not only to the stability of the enzyme-subtrate complex but also to the corresponding reaction barriers. The calculations were performed at the wB97XD/6-311+G(2df,2p)//B3LYP/6-31G(d,p) level of theory using the PCM approach.
Collapse
Affiliation(s)
- Merve Kopar
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| | - Nurcan Senyurt Tuzun
- Department of ChemistryFaculty of Science and LettersIstanbul Technical UniversityMaslakİstanbul34469Turkey
| |
Collapse
|
5
|
Zhu ZY, Shi M, Li CL, Gao YF, Shen XY, Ding XW, Chen FF, Xu JH, Chen Q, Zheng GW. An Engineered Imine Reductase for Highly Diastereo- and Enantioselective Synthesis of β-Branched Amines with Contiguous Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202408686. [PMID: 39118193 DOI: 10.1002/anie.202408686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
β-Branched chiral amines with contiguous stereocenters are valuable building blocks for preparing various biologically active molecules. However, their asymmetric synthesis remains challenging. Herein, we report a highly diastereo- and enantioselective biocatalytic approach for preparing a broad range of β-branched chiral amines starting from their corresponding racemic ketones. This involves a dynamic kinetic resolution-asymmetric reductive amination process catalyzed using only an imine reductase. Four rounds of protein engineering endowed wild-type PocIRED with higher reactivity, better stereoselectivity, and a broader substrate scope. Using the engineered enzyme, various chiral amine products were synthesized with up to >99.9 % ee, >99 : 1 dr, and >99 % conversion. The practicability of the developed biocatalytic method was confirmed by producing a key intermediate of tofacitinib in 74 % yield, >99.9 % ee, and 98 : 2 dr at a challenging substrate loading of 110 g L-1. Our study provides a highly capable imine reductase and a protocol for developing an efficient biocatalytic dynamic kinetic resolution-asymmetric reductive amination reaction system.
Collapse
Affiliation(s)
- Zhen-Yu Zhu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Min Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Chen-Lin Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Yun-Fei Gao
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Xin-Yuan Shen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Xu-Wei Ding
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| |
Collapse
|
6
|
Bernhard LM, Zelenska K, Takashima M, Arisawa M, Murai K, Gröger H. Enantioselective Synthesis of Secondary Amines by Combining Oxidative Rearrangement and Biocatalysis in a One-Pot Process. J Org Chem 2024; 89:8513-8520. [PMID: 38836638 DOI: 10.1021/acs.joc.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This contribution describes the development of chemoenzymatic one-pot processes, which combine an oxidative rearrangement and a biotransformation catalyzed by an imine reductase (IRED), for the synthesis of highly enantiomerically enriched secondary amines, such as an aryl-substituted pyrrolidine and a benzazepine. The benefits of this chemoenzymatic one-pot approach include high overall conversions (up to >99%), high enantiomeric excesses (up to >99% ee), and a straightforward synthetic approach toward secondary amines without the need to isolate the formed intermediate. For the initial chemical reaction, namely, the oxidative rearrangement, PhI(OAc)2 in methanol is used as a non-natural reagent, whereas the enzymatic step requires only stoichiometric amounts of d-glucose along with catalytic amounts of IRED, glucose dehydrogenase (GDH), and the cofactor NADPH. This methodology, demonstrating the compatibility of a "classic" organic synthesis using a non-natural, highly reactive reagent and a subsequent biocatalytic step, can be applied for different amines as substrates, thus making this concept a versatile tool in synthetic organic chemistry in general and for enantioselective synthesis of heterocyclic secondary amines in particular.
Collapse
Affiliation(s)
- Laura M Bernhard
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Kateryna Zelenska
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Mirei Takashima
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Li X, Hu Y, Bailey JD, Lipshutz BH. Impact of Nonionic Surfactants on Reactions of IREDs. Applications to Tandem Chemoenzymatic Sequences in Water. Org Lett 2024; 26:2778-2783. [PMID: 37883080 DOI: 10.1021/acs.orglett.3c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The influence of added surfactant to aqueous reaction mixtures containing various IREDs has been determined. Just the presence of a nonionic surfactant tends to increase both rates and extent of conversion to the targeted amines. The latter can be as much as >40% relative to buffer alone. Several tandem sequences featuring several steps that combine use of an IRED together with various types of chemocatalysis are also presented, highlighting the opportunities for utilizing chemoenzymatic catalysis, all in water.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yuting Hu
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - J Daniel Bailey
- Process Chemistry Development, Takeda Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Roth S, Niese R, Müller M, Hall M. Redox Out of the Box: Catalytic Versatility Across NAD(P)H-Dependent Oxidoreductases. Angew Chem Int Ed Engl 2024; 63:e202314740. [PMID: 37924279 DOI: 10.1002/anie.202314740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
The asymmetric reduction of double bonds using NAD(P)H-dependent oxidoreductases has proven to be an efficient tool for the synthesis of important chiral molecules in research and on industrial scale. These enzymes are commercially available in screening kits for the reduction of C=O (ketones), C=C (activated alkenes), or C=N bonds (imines). Recent reports, however, indicate that the ability to accommodate multiple reductase activities on distinct C=X bonds occurs in different enzyme classes, either natively or after mutagenesis. This challenges the common perception of highly selective oxidoreductases for one type of electrophilic substrate. Consideration of this underexplored potential in enzyme screenings and protein engineering campaigns may contribute to the identification of complementary biocatalytic processes for the synthesis of chiral compounds. This review will contribute to a global understanding of the promiscuous behavior of NAD(P)H-dependent oxidoreductases on C=X bond reduction and inspire future discoveries with respect to unconventional biocatalytic routes in asymmetric synthesis.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Richard Niese
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- BioHealth, Field of Excellence, University of Graz, 8010, Graz, Austria
| |
Collapse
|
9
|
Daniel-Ivad P, Ryan KS. An imine reductase that captures reactive intermediates in the biosynthesis of the indolocarbazole reductasporine. J Biol Chem 2024; 300:105642. [PMID: 38199566 PMCID: PMC10851217 DOI: 10.1016/j.jbc.2024.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.
Collapse
Affiliation(s)
- Phillip Daniel-Ivad
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
11
|
Sankaranarayanan K, Jensen KF. Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner. Chem Sci 2023; 14:6467-6475. [PMID: 37325140 PMCID: PMC10266459 DOI: 10.1039/d3sc01355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Chemoenzymatic synthesis methods use organic and enzyme chemistry to synthesize a desired small molecule. Complementing organic synthesis with enzyme-catalyzed selective transformations under mild conditions enables more sustainable and synthetically efficient chemical manufacturing. Here, we present a multistep retrosynthesis search algorithm to facilitate chemoenzymatic synthesis of pharmaceutical compounds, specialty chemicals, commodity chemicals, and monomers. First, we employ the synthesis planner ASKCOS to plan multistep syntheses starting from commercially available materials. Then, we identify transformations that can be catalyzed by enzymes using a small database of biocatalytic reaction rules previously curated for RetroBioCat, a computer-aided synthesis planning tool for biocatalytic cascades. Enzymatic suggestions captured by the approach include ones capable of reducing the number of synthetic steps. We successfully plan chemoenzymatic routes for active pharmaceutical ingredients or their intermediates (e.g., Sitagliptin, Rivastigmine, and Ephedrine), commodity chemicals (e.g., acrylamide and glycolic acid), and specialty chemicals (e.g., S-Metalochlor and Vanillin), in a retrospective fashion. In addition to recovering published routes, the algorithm proposes many sensible alternative pathways. Our approach provides a chemoenzymatic synthesis planning strategy by identifying synthetic transformations that could be candidates for enzyme catalysis.
Collapse
Affiliation(s)
- Karthik Sankaranarayanan
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
12
|
Li Y, Yue X, Li Z, Huang Z, Chen F. Asymmetric Synthesis of Sterically Hindered 1-Substituted Tetrahydro-β-carbolines Enabled by Imine Reductase: Enzyme Discovery, Protein Engineering, and Reaction Development. Org Lett 2023; 25:1285-1289. [PMID: 36802632 DOI: 10.1021/acs.orglett.3c00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We report the discovery of a new imine reductase (IRED), named AtIRED, by genome mining. Site-saturation mutagenesis on AtIRED generated two single mutants M118'L and P120'G and the double mutant M118'L/P120'G with improved specific activity toward sterically hindered 1-substituted dihydro-β-carbolines. The synthetic potential of these engineered IREDs was showcased by the preparative-scale synthesis of nine chiral 1-substituted tetrahydro-β-carbolines (THβCs), including (S)-1-t-butyl-THβC and (S)-1-t-pentyl-THβC, in 30-87% isolated yields with excellent optical purities (98-99% ee).
Collapse
Affiliation(s)
- Yitong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Xiaoping Yue
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China
| | - Zhining Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Cataly sis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P.R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Cataly sis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P.R. China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P.R. China.,Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Cataly sis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
13
|
Fan F, Liu C, Cao J, Lyu C, Qiu S, Hu S, Sun T, Mei J, Wang H, Li Y, Zhao W, Mei L, Huang J. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling. J Biotechnol 2023; 364:66-74. [PMID: 36708998 DOI: 10.1016/j.jbiotec.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
As versatile and green biocatalysts for the asymmetric amination of ketones, the insufficient thermostability of transaminases always limits its broad application in the pharmaceutical and fine chemical industries. Here, synthetic shuffling technology was used to enhance stability of (R)-selective transaminase from Aspergillus terreus. The results showed that 30 out of 5000 mutants had improved thermostability by color-based screening method, among which mutants with residual enzyme activity higher than 50% at 45 °C for 10 min were selected for further analysis. Especially, the half-inactivation temperature (T5010), half-life (t1/2), and melting temperature (Tm) of the best mutant M14 (M280C-H210N-M150C-F115L) were 13.7 °C, 165.8 min, and 13.9 °C higher than that of the wild type (WT), respectively. M14 also exhibited a significant biocatalytic efficiency toward acetophenone and 1-acetylnaphthalene, the yield of which were 265.6% and 117.5% higher than WT, respectively. Based on molecular dynamics simulation, improved catalytic efficiency of M14 could be attributed to its increased hydrogen bonds interaction around the mutation sites. Additionally, the introduction of disulfide bond combined with above mutations has a synergistic effect on the improved protein thermostability.
Collapse
Affiliation(s)
- Fangfang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyan Liu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaren Cao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changjiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co. Ltd, Hangzhou 310011, China
| | - Hongpeng Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ye Li
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Lehe Mei
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China; Jinhua Advanced Research Institute, Jinhua 321019, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
14
|
Cárdenas‐Fernández M, Roddan R, Carter EM, Hailes HC, Ward JM. The Discovery of Imine Reductases and their Utilisation for the Synthesis of Tetrahydroisoquinolines. ChemCatChem 2023; 15:e202201126. [PMID: 37081856 PMCID: PMC10107726 DOI: 10.1002/cctc.202201126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Imine reductases (IREDs) are NADPH-dependent enzymes with significant biocatalytic potential for the synthesis of primary, secondary, and tertiary chiral amines. Their applications include the reduction of cyclic imines and the reductive amination of prochiral ketones. In this study, twenty-nine novel IREDs were revealed through genome mining. Imine reductase activities were screened at pH 7 and 9 and in presence of either NADPH or NADH; some IREDs showed good activities at both pHs and were able to accept both cofactors. IREDs with Asn and Glu at the key 187 residue showed preference for NADH. IREDs were also screened against a series of dihydroisoquinolines to synthesise tetrahydroisoquinolines (THIQs), bioactive alkaloids with a wide range of therapeutic properties. Selected IREDs showed high stereoselectivity, as well high THIQ yields (>90 %) when coupled to a glucose-6-phosphate dehydrogenase for NADPH cofactor recycling.
Collapse
Affiliation(s)
- Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
- School of BiosciencesUniversity of Kent KentCT2 7NJUK
| | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Eve M. Carter
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
| |
Collapse
|
15
|
Chen FF, He XF, Zhu XX, Zhang Z, Shen XY, Chen Q, Xu JH, Turner NJ, Zheng GW. Discovery of an Imine Reductase for Reductive Amination of Carbonyl Compounds with Sterically Challenging Amines. J Am Chem Soc 2023; 145:4015-4025. [PMID: 36661845 DOI: 10.1021/jacs.2c11354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The synthesis of structurally diverse amines is of fundamental significance in the pharmaceutical industry due to the ubiquitous presence of amine motifs in biologically active molecules. Biocatalytic reductive amination for amine production has attracted great interest owing to its synthetic advantages. Herein, we report the direct synthesis of a wide range of sterically demanding secondary amines, including several important active pharmaceutical ingredients and pharmaceutical intermediates, via reductive amination of carbonyl substrates and bulky amine nucleophiles employing imine reductases. Key to success for this route is the identification of an imine reductase from Penicillium camemberti with unusual substrate specificity and its further engineering, which empowered the accommodation of a broad range of sterically demanding amine nucleophiles encompassing linear alkyl and (hetero)aromatic (oxy)alkyl substituents and the formation of final amine products with up to >99% conversion. The practical utility of the biocatalytic route has been demonstrated by its application in the preparative synthesis of the anti-hyperparathyroidism drug cinacalcet.
Collapse
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Feng He
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Xin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yuan Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
16
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Yang L, Li J, Xu Z, Yao P, Wu Q, Zhu D, Ma Y. Asymmetric Synthesis of Fused-Ring Tetrahydroisoquinolines and Tetrahydro-β-carbolines from 2-Arylethylamines via a Chemoenzymatic Approach. Org Lett 2022; 24:6531-6536. [PMID: 36066397 DOI: 10.1021/acs.orglett.2c02466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While chiral fused-ring tetrahydroisoquinoline (THIQ) and tetrahydro-β-carboline (THβC) scaffolds have attracted considerable interest due to their wide spectrum of biological activities, the synthesis of optically pure chiral fused-ring THIQs and THβCs remains a challenging task. Herein, a group of active imine reductases were identified to convert the imine precursors into the corresponding enantiocomplementary fused-ring THIQs and THβCs with high enantioselectivity and conversion, establishing an efficient and green chemoenzymatic approach to fused-ring alkaloids from 2-arylethylamines.
Collapse
Affiliation(s)
- Linsong Yang
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jianjiong Li
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zefei Xu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Peiyuan Yao
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiaqing Wu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Dunming Zhu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yanhe Ma
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
18
|
Zhu J, Yang L, Wu J, Deng Z, Qu X. Engineering Imine Reductase for Efficient Biosynthesis of 1-Aryl-Tetrahydro-β-Carbolines and Their N-Methylation Products. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinmei Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lu Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
19
|
Nastke A, Gröger H. Biocatalytic Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Zhan Z, Xu Z, Yu S, Feng J, Liu F, Yao P, Wu Q, Zhu D. Stereocomplementary Synthesis of a Key Intermediate for Tofacitinib via Enzymatic Dynamic Kinetic Resolution‐Reductive Amination. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhuangzhuang Zhan
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
21
|
Bernhard LM, McLachlan J, Gröger H. Process Development of Enantioselective Imine Reductase-Catalyzed Syntheses of Pharmaceutically Relevant Pyrrolidines. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Laura M. Bernhard
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jill McLachlan
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Gilio AK, Thorpe TW, Turner N, Grogan G. Reductive aminations by imine reductases: from milligrams to tons. Chem Sci 2022; 13:4697-4713. [PMID: 35655886 PMCID: PMC9067572 DOI: 10.1039/d2sc00124a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
The synthesis of secondary and tertiary amines through the reductive amination of carbonyl compounds is one of the most significant reactions in synthetic chemistry. Asymmetric reductive amination for the formation of chiral amines, which are required for the synthesis of pharmaceuticals and other bioactive molecules, is often achieved through transition metal catalysis, but biocatalytic methods of chiral amine production have also been a focus of interest owing to their selectivity and sustainability. The discovery of asymmetric reductive amination by imine reductase (IRED) and reductive aminase (RedAm) enzymes has served as the starting point for a new industrial approach to the production of chiral amines, leading from laboratory-scale milligram transformations to ton-scale reactions that are now described in the public domain. In this perspective we trace the development of the IRED-catalyzed reductive amination reaction from its discovery to its industrial application on kg to ton scale. In addition to surveying examples of the synthetic chemistry that has been achieved with the enzymes, the contribution of structure and protein engineering to the understanding of IRED-catalyzed reductive amination is described, and the consequent benefits for activity, selectivity and stability in the design of process suitable catalysts. IRED-catalyzed reductive aminations have progressed from mg to ton scale, through advances in enzyme discovery, protein engineering and process biocatalysis.![]()
Collapse
Affiliation(s)
- Amelia K. Gilio
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Thomas W. Thorpe
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicholas Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
23
|
Stockinger P, Borlinghaus N, Sharma M, Aberle B, Grogan G, Pleiss J, Nestl BM. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant. ChemCatChem 2021; 13:5210-5215. [PMID: 35873105 PMCID: PMC9297850 DOI: 10.1002/cctc.202101057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Indexed: 12/31/2022]
Abstract
Imine reductases (IREDs) offer biocatalytic routes to chiral amines and have a natural preference for the NADPH cofactor. In previous work, we reported enzyme engineering of the (R)-selective IRED from Myxococcus stipitatus (NADH-IRED-Ms) yielding a NADH-dependent variant with high catalytic efficiency. However, no IRED with NADH specificity and (S)-selectivity in asymmetric reductions has yet been reported. Herein, we applied semi-rational enzyme engineering to switch the selectivity of NADH-IRED-Ms. The quintuple variant A241V/H242Y/N243D/V244Y/A245L showed reverse stereopreference in the reduction of the cyclic imine 2-methylpyrroline compared to the wild-type and afforded the (S)-amine product with >99 % conversion and 91 % enantiomeric excess. We also report the crystal-structures of the NADPH-dependent (R)-IRED-Ms wild-type enzyme and the NADH-dependent NADH-IRED-Ms variant and molecular dynamics (MD) simulations to rationalize the inverted stereoselectivity of the quintuple variant.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Niels Borlinghaus
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Mahima Sharma
- York Structural Biology Laboratory Department of Chemistry University of York YO10 5DD York UK
| | - Benjamin Aberle
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York YO10 5DD York UK
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Bettina M Nestl
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
24
|
Stein A, Chen D, Igareta NV, Cotelle Y, Rebelein JG, Ward TR. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS CENTRAL SCIENCE 2021; 7:1874-1884. [PMID: 34849402 PMCID: PMC8620556 DOI: 10.1021/acscentsci.1c00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.
Collapse
Affiliation(s)
- Alina Stein
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Aix-Marseille
Université, CNRS, Centrale Marseille, iSm2, 13284 Marseille, France
| | - Johannes G. Rebelein
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Li M, Cui Y, Xu Z, Chen X, Feng J, Wang M, Yao P, Wu Q, Zhu D. Asymmetric Synthesis of
N
‐Substituted γ‐Amino Esters and γ‐Lactams Containing α,γ‐Stereogenic Centers via a Stereoselective Enzymatic Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Xi Chen
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| |
Collapse
|
26
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
27
|
Novel (S)-Selective Hydrolase from Arthrobacter sp. K5 for Kinetic Resolution of Cyclic Amines. Catalysts 2021. [DOI: 10.3390/catal11070809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chiral 2-methylpiperidine (2-MPI) is an important building block that has potential for applications in pharmaceuticals and pesticides. In this study, we observed that the hydrolase in Arthrobacter sp. K5 exhibits high (S)-selectivity toward rac-N-pivaloyl-2-MPI to yield (S)-2-MPI with 80.2% enantiomeric excess (ee) in a 38.2% conversion. The hydrolase, which was identified by analyses of partial amino acid sequences of the purified enzyme and genome sequence of Arthrobacter sp. K5, exhibited moderate homology with amidohydrolases up to 67% (molinate hydrolase from Gulosibacter molinativorax). The hydrolase gene was overexpressed in Rhodococcus erythropolis. The recombinant cells produced (S)-2-MPI with 83.5% ee in a 48.4% conversion (E = 26.3) from 100 mM rac-N-pivaloyl-2-MPI. These results suggest the possibility of an efficient preparation of chiral 2-MPI in kinetic resolution.
Collapse
|
28
|
Węglarz I, Michalak K, Mlynarski J. Zinc‐Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2‐Aryl‐Substituted Pyrrolidines as Pharmaceutical Building Blocks. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Izabela Węglarz
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Karol Michalak
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
29
|
Lakó Á, Molnár Z, Mendonça R, Poppe L. Transaminase-mediated synthesis of enantiopure drug-like 1-(3',4'-disubstituted phenyl)propan-2-amines. RSC Adv 2020; 10:40894-40903. [PMID: 35519186 PMCID: PMC9057730 DOI: 10.1039/d0ra08134e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Transaminases (TAs) offer an environmentally and economically attractive method for the direct synthesis of pharmaceutically relevant disubstituted 1-phenylpropan-2-amine derivatives starting from prochiral ketones. In this work, we report the application of immobilised whole-cell biocatalysts with (R)-transaminase activity for the synthesis of novel disubstituted 1-phenylpropan-2-amines. After optimisation of the asymmetric synthesis, the (R)-enantiomers could be produced with 88-89% conversion and >99% ee, while the (S)-enantiomers could be selectively obtained as the unreacted fraction of the corresponding racemic amines in kinetic resolution with >48% conversion and >95% ee.
Collapse
Affiliation(s)
- Ágnes Lakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
| | - Ricardo Mendonça
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca Arany János Str. 11 400028 Cluj-Napoca Romania
| |
Collapse
|
30
|
Sathish M, Nachtigall FM, Santos LS. Bifunctional thiosquaramide catalyzed asymmetric reduction of dihydro-β-carbolines and enantioselective synthesis of (-)-coerulescine and (-)-horsfiline by oxidative rearrangement. RSC Adv 2020; 10:38672-38677. [PMID: 35517527 PMCID: PMC9057260 DOI: 10.1039/d0ra07705d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Tetrahydro-β-carboline (THBC) is a tricyclic ring system that can be found in a large number of bioactive alkaloids. Herein, we report a simple and efficient method for the synthesis of enantiopure THBCs through a chiral thiosquaramide (11b) catalyzed imine reduction of dihydro-β-carbolines (17a-f). The in situ generated Pd-H employed as hydride source in the reaction of differently substituted chiral THBCs (18a-f) afforded high selectivities (R isomers, up to 96% ee) and good isolated yields (up to 88%). Moreover, the chiral thiosquaramide used also afforded exceptional catalyst activity in the syntheses of (-)-coerulescine (5) and (-)-horsfiline (6) with excellent enantioselectivities up to 98% and 93% ee, respectively, via an enantioselective oxidative rearrangement approach.
Collapse
Affiliation(s)
- Manda Sathish
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca Casilla 747 3460000 Talca Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca Casilla 747 3460000 Talca Chile
| | - Fabiane M Nachtigall
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile Talca 3467987 Chile
| | - Leonardo S Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca Casilla 747 3460000 Talca Chile
| |
Collapse
|
31
|
Stockinger P, Roth S, Müller M, Pleiss J. Systematic Evaluation of Imine-Reducing Enzymes: Common Principles in Imine Reductases, β-Hydroxy Acid Dehydrogenases, and Short-Chain Dehydrogenases/ Reductases. Chembiochem 2020; 21:2689-2695. [PMID: 32311225 PMCID: PMC7540600 DOI: 10.1002/cbic.202000213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
The enzymatic, asymmetric reduction of imines is catalyzed by imine reductases (IREDs), members of the short-chain dehydrogenase/reductase (SDR) family, and β-hydroxy acid dehydrogenase (βHAD) variants. Systematic evaluation of the structures and substrate-binding sites of the three enzyme families has revealed four common principles for imine reduction: structurally conserved cofactor-binding domains; tyrosine, aspartate, or glutamate as proton donor; at least four characteristic flanking residues that adapt the donor's pKa and polarize the substrate; and a negative electrostatic potential in the substrate-binding site to stabilize the transition state. As additional catalytically relevant positions, we propose alternative proton donors in IREDs and βHADs as well as proton relays in IREDs, βHADs, and SDRs. The functional role of flanking residues was experimentally confirmed by alanine scanning of the imine-reducing SDR from Zephyranthes treatiae. Mutating the "gatekeeping" phenylalanine at standard position 200 resulted in a tenfold increase in imine-reducing activity.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Sebastian Roth
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
32
|
Meyer LE, Brundiek H, von Langermann J. Integration of ion exchange resin materials for a downstream-processing approach of an imine reductase-catalyzed reaction. Biotechnol Prog 2020; 36:e3024. [PMID: 32410373 DOI: 10.1002/btpr.3024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/31/2022]
Abstract
In this study, an ion exchange resin-based downstream-processing concept for imine reductase (IRED)-catalyzed reactions was investigated. As a model reaction, 2-methylpyrroline was converted to its corresponding product (S)-2-methylpyrrolidine with >99% of conversion by the (S)-selective IRED from Paenibacillus elgii B69. Under optimized reaction conditions full conversion was achieved using a substrate concentration of 150 and 500 mmol/L of d-glucose. Seven commercially available cation- and anion-exchange resins were studied with respect to their ability to recover the product from the reaction solution. Without any pretreatment, cation-exchange resins Amberlite IR-120(H), IRN-150, Dowex Monosphere 650C, and Dowex Marathon MSC showed high recovery capacities (up to >90%). A 150-ml preparative scale reaction was performed yielding ~1 g hydrochloride salt product with >99% purity. Any further purification steps, for example, by column chromatography or recrystallization, were not required.
Collapse
Affiliation(s)
- Lars-Erik Meyer
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| | | | - Jan von Langermann
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
33
|
Zhang YH, Chen FF, Li BB, Zhou XY, Chen Q, Xu JH, Zheng GW. Stereocomplementary Synthesis of Pharmaceutically Relevant Chiral 2-Aryl-Substituted Pyrrolidines Using Imine Reductases. Org Lett 2020; 22:3367-3372. [DOI: 10.1021/acs.orglett.0c00802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu-Hui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bo-Bo Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yi Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
34
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Thorpe TW, France SP, Hussain S, Marshall JR, Zawodny W, Mangas-Sanchez J, Montgomery SL, Howard RM, Daniels DSB, Kumar R, Parmeggiani F, Turner NJ. One-Pot Biocatalytic Cascade Reduction of Cyclic Enimines for the Preparation of Diastereomerically Enriched N-Heterocycles. J Am Chem Soc 2019; 141:19208-19213. [DOI: 10.1021/jacs.9b10053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thomas W. Thorpe
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Scott P. France
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shahed Hussain
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - James R. Marshall
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Wojciech Zawodny
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sarah L. Montgomery
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Roger M. Howard
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - David S. B. Daniels
- Pfizer Worldwide Research and Development Discovery Park, Sandwich, Kent CT13 9NJ, U.K
| | - Rajesh Kumar
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
36
|
Glinsky-Olivier N, Yang S, Retailleau P, Gandon V, Guinchard X. Enantioselective Gold-Catalyzed Pictet–Spengler Reaction. Org Lett 2019; 21:9446-9451. [DOI: 10.1021/acs.orglett.9b03656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicolas Glinsky-Olivier
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay CEDEX 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, IP Paris, route de Saclay, Palaiseau CEDEX 91128, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay CEDEX 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, IP Paris, route de Saclay, Palaiseau CEDEX 91128, France
| | - Xavier Guinchard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
37
|
Duan J, Li B, Qin Y, Dong Y, Ren J, Li G. Recent progress in directed evolution of stereoselective monoamine oxidases. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0272-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoamine oxidases (MAOs) use molecular dioxygen as oxidant to catalyze the oxidation of amines to imines. This type of enzyme can be employed for the synthesis of primary, secondary, and tertiary amines by an appropriate deracemization protocol. Consequently, MAOs are an attractive class of enzymes in biocatalysis. However, they also have limitations in enzyme-catalyzed processes due to the often-observed narrow substrate scope, low activity, or poor/wrong stereoselectivity. Therefore, directed evolution was introduced to eliminate these obstacles, which is the subject of this review. The main focus is on recent efforts concerning the directed evolution of four MAOs: monoamine oxidase (MAO-N), cyclohexylamine oxidase (CHAO),D-amino acid oxidase (pkDAO), and 6-hydroxy-D-nicotine oxidase (6-HDNO).
Collapse
|
38
|
Guo J, Higgins MA, Daniel-Ivad P, Ryan KS. An Asymmetric Reductase That Intercepts Acyclic Imino Acids Produced in Situ by a Partner Oxidase. J Am Chem Soc 2019; 141:12258-12267. [PMID: 31298853 DOI: 10.1021/jacs.9b03307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acyclic imines are unstable in aqueous conditions. For this reason, known imine reductases, which enable the synthesis of chiral amines, mainly intercept stable cyclic imines. Here we report the detailed biochemical and structural characterization of Bsp5, an imino acid reductase from the d-2-hydroxyacid dehydrogenase family that reduces acyclic imino acids produced in situ by a partner oxidase. We determine a 1.6 Å resolution structure of Bsp5 in complex with d-arginine and coenzyme NADPH. Combined with mutagenesis work, our study reveals the minimal structural constraints for its biosynthetic activity. Furthermore, we demonstrate that Bsp5 can intercept more complex products from an alternate oxidase partner, suggesting that this oxidase-imino acid reductase pair could be evolved for biocatalytic conversion of l-amino acids to d-amino acids.
Collapse
Affiliation(s)
- Jin Guo
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Melanie A Higgins
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Phillip Daniel-Ivad
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Katherine S Ryan
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
39
|
Borlinghaus N, Weinmann L, Krimpzer F, Scheller PN, Al‐Shameri A, Lauterbach L, Coquel A, Lattemann C, Hauer B, Nestl BM. Cascade Biotransformation to Access 3‐Methylpiperidine in Whole Cells. ChemCatChem 2019. [DOI: 10.1002/cctc.201900702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niels Borlinghaus
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Leonie Weinmann
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Florian Krimpzer
- Sanofi Chimie, Pharmaceutics Development Platform Impasse des Ateliers 1 Vitry sur Seine 94400 France
| | - Philipp N. Scheller
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Ammar Al‐Shameri
- Institute of ChemistryTechnical University of Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Lars Lauterbach
- Institute of ChemistryTechnical University of Berlin Strasse des 17. Juni 135 Berlin 10623 Germany
| | - Anne‐Sophie Coquel
- Sanofi Chimie, Pharmaceutics Development Platform Impasse des Ateliers 1 Vitry sur Seine 94400 France
| | - Claus Lattemann
- Sanofi Chimie, Pharmaceutics Development Platform Impasse des Ateliers 1 Vitry sur Seine 94400 France
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| |
Collapse
|
40
|
Gilbert SH, Viseur V, Clarke ML. A consecutive process for C-C and C-N bond formation with high enantio-and diastereo-control: direct reductive amination of chiral ketones using hydrogenation catalysts. Chem Commun (Camb) 2019; 55:6409-6412. [PMID: 31094372 DOI: 10.1039/c9cc00923j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High diastereoselectivity was observed in the Rh-catalysed reductive amination of 3-arylcyclohexanones to form tertiary amines. This was incorporated into a one-pot enantioselective conjugate addition and diastereoselective reductive amination, including an example of assisted tandem catalysis.
Collapse
Affiliation(s)
- Sophie H Gilbert
- School of Chemistry, University of St Andrews, EaStCHEM, St Andrews, Fife, UK.
| | | | | |
Collapse
|
41
|
Bornadel A, Bisagni S, Pushpanath A, Montgomery SL, Turner NJ, Dominguez B. Technical Considerations for Scale-Up of Imine-Reductase-Catalyzed Reductive Amination: A Case Study. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Amin Bornadel
- Johnson Matthey Plc., 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, U.K
| | - Serena Bisagni
- Johnson Matthey Plc., 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, U.K
| | - Ahir Pushpanath
- Johnson Matthey Plc., 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, U.K
| | - Sarah L. Montgomery
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Beatriz Dominguez
- Johnson Matthey Plc., 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, U.K
| |
Collapse
|
42
|
Li J, Wang WX, Chen HP, Li ZH, He J, Zheng YS, Sun H, Huang R, Yuan QX, Wang X, Feng T, Liu JK. (±)-Xylaridines A and B, Highly Conjugated Alkaloids from the Fungus Xylaria longipes. Org Lett 2019; 21:1511-1514. [DOI: 10.1021/acs.orglett.9b00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Sheng Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huan Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qing-Xia Yuan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xian Wang
- College of Chemistry & Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
43
|
Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ, Armstrong FA. Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Clare F. Megarity
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Rachel S. Heath
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester Manchester M1 7DN UK
| | - Lei Wan
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Giorgio Morello
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Rosalind L. Booth
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Adam J. Sills
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Jamie H. Warner
- Department of MaterialsUniversity of Oxford Parks Road Oxford OX1 3PH UK
| | - Nicholas J. Turner
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester Manchester M1 7DN UK
| | - Fraser A. Armstrong
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
44
|
Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ, Armstrong FA. Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angew Chem Int Ed Engl 2019; 58:4948-4952. [PMID: 30633837 PMCID: PMC6491978 DOI: 10.1002/anie.201814370] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/05/2022]
Abstract
In living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ are cycled rapidly between ferredoxin–NADP+ reductase and a second enzyme—the pairs being juxtaposed within the 5–100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme‐catalysed reactions.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Bhavin Siritanaratkul
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Rachel S Heath
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Lei Wan
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Giorgio Morello
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sarah R FitzPatrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Rosalind L Booth
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Adam J Sills
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | | | - Jamie H Warner
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
45
|
Zumbrägel N, Gröger H. One-pot synthesis of a 3-thiazolidine through combination of an Asinger-type multi-component-condensation reaction with an enzymatic imine reduction. J Biotechnol 2019; 291:35-40. [DOI: 10.1016/j.jbiotec.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
46
|
Xie DF, Yang JX, Lv CJ, Mei JQ, Wang HP, Hu S, Zhao WR, Cao JR, Tu JL, Huang J, Mei LH. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol 2019; 293:8-16. [PMID: 30703468 DOI: 10.1016/j.jbiotec.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
Abstract
Amine transaminases are a class of efficient and industrially-desired biocatalysts for the production of chiral amines. In this study, stabilized variants of the (R)-selective amine transaminase from Aspergillus terreus (AT-ATA) were constructed by consensus mutagenesis. Using Consensus Finder (http://cbs-kazlab.oit.umn.edu/), six positions with the most prevalent amino acid (over 60% threshold) among the homologous family members were identified. Subsequently, these six residues were individually mutated to match the consensus sequence (I77 L, Q97E, H210N, N245D, G292D, and I295 V) using site-directed mutagenesis. Compared to that of the wild-type, the thermostability of all six single variants was improved. The H210N variant displayed the largest shift in thermostability, with a 3.3-fold increase in half-life (t1/2) at 40 °C, and a 4.6 °C increase in T5010 among the single variants. In addition, the double mutant H210N/I77L displayed an even larger shift with 6.1-fold improvement of t1/2 at 40 °C, and a 6.6 °C increase in T5010. Furtherly, the H210N/I77L mutation was introduced into the previously engineered thermostable AT-ATA by the introduction of disulfide bonds, employing B-factor and folding free energy (ΔΔGfold) calculations. Our results showed that the combined variant H210N/I77L/M150C-M280C had the largest shift in thermostability, with a 16.6-fold improvement of t1/2 and a 11.8 °C higher T5010.
Collapse
Affiliation(s)
- Dong-Fang Xie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun-Xing Yang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chang-Jiang Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jia-Qi Mei
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84102, United States
| | - Hong-Peng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Sheng Hu
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Wei-Rui Zhao
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
| | - Jia-Ren Cao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun-Liang Tu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| | - Le-He Mei
- Department of Biological and Pharmaceutical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China.
| |
Collapse
|
47
|
Zumbrägel N, Machui P, Nonnhoff J, Gröger H. Enantioselective Biocatalytic Reduction of 2 H-1,4-Benzoxazines Using Imine Reductases. J Org Chem 2019; 84:1440-1447. [PMID: 30562025 DOI: 10.1021/acs.joc.8b02867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biocatalytic reduction of 2 H-1,4-benzoxazines using imine reductases is reported. This process enables a smooth and enantioselective synthesis of the resulting cyclic amines under mild conditions in aqueous media by means of a catalytic amount of the cofactor NADPH as hydride source as well as glucose as the reducing agent used in stoichiometric amounts for in situ cofactor recycling. Several substrates were studied, and the 3,4-dihydro-2 H-1,4-benzoxazines were obtained with up to 99% ee. In addition, the efficiency of this reduction process based on imine reductases as catalysts has been demonstrated for one 2 H-1,4-benzoxazine on an elevated laboratory scale running at a substrate loading of 10 g L-1 in the presence of a tailor-made whole-cell catalyst.
Collapse
Affiliation(s)
- Nadine Zumbrägel
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Paul Machui
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Jannis Nonnhoff
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| |
Collapse
|
48
|
Zawodny W, Montgomery SL, Marshall JR, Finnigan JD, Turner NJ, Clayden J. Chemoenzymatic Synthesis of Substituted Azepanes by Sequential Biocatalytic Reduction and Organolithium-Mediated Rearrangement. J Am Chem Soc 2018; 140:17872-17877. [PMID: 30521324 DOI: 10.1021/jacs.8b11891] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enantioenriched 2-aryl azepanes and 2-arylbenzazepines were generated biocatalytically by asymmetric reductive amination using imine reductases or by deracemization using monoamine oxidases. The amines were converted to the corresponding N'-aryl ureas, which rearranged on treatment with base with stereospecific transfer of the aryl substituent to the 2-position of the heterocycle via a configurationally stable benzyllithium intermediate. The products are previously inaccessible enantioenriched 2,2-disubstituted azepanes and benzazepines.
Collapse
Affiliation(s)
- Wojciech Zawodny
- School of Chemistry , University of Manchester, Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Sarah L Montgomery
- School of Chemistry , University of Manchester, Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - James R Marshall
- School of Chemistry , University of Manchester, Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - James D Finnigan
- Prozomix Limited , Station Court , Haltwhistle NE49 9HN , United Kingdom
| | - Nicholas J Turner
- School of Chemistry , University of Manchester, Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| |
Collapse
|
49
|
Yao P, Xu Z, Yu S, Wu Q, Zhu D. Imine Reductase‐Catalyzed Enantioselective Reduction of Bulky α,β‐Unsaturated Imines en Route to a Pharmaceutically Important Morphinan Skeleton. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peiyuan Yao
- University of Chinese Academy of Sciences 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of Technology Guangzhou 510006 People's Republic of China
| | - Zefei Xu
- University of Chinese Academy of Sciences 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Shanshan Yu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- University of Chinese Academy of Sciences 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- University of Chinese Academy of Sciences 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
50
|
Chen J, Han X, Lu X. Palladium(II)-Catalyzed Asymmetric Tandem Cyclization of 2-Aminoaryl Alkynones: An Approach to Chiral 1,2,3,4-Tetrahydro-β-carbolines. Org Lett 2018; 20:7470-7473. [DOI: 10.1021/acs.orglett.8b03247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiuling Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiyan Lu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|