1
|
Jouanneau S, Thouand G. Prediction of Influence of Environmental Factors on the Toxicity of Pentachlorophenol on E. coli-Based Bioassays. SENSORS (BASEL, SWITZERLAND) 2025; 25:3215. [PMID: 40432007 PMCID: PMC12115939 DOI: 10.3390/s25103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Evaluating the impact of pollutants on ecosystems and human health is crucial. To achieve this, a wide range of bioassays, using organisms of different trophic levels, are available. Extrapolating the results of these bioassays to real environmental conditions remains a major challenge. This study addresses this challenge by aiming to develop an algorithm capable of predicting the effect of environmental conditions on the impact of a toxicant, pentachlorophenol (PCP). Three abiotic factors were considered: pH, temperature, and conductivity. In the absence of the toxicant, the activity of Escherichia coli is influenced only by pH and temperature. However, exposed to PCP, the sensitivity of the bacteria was affected by these three factors. From these data, a predictive model was established to assess the intensity of the toxic effect induced by PCP. This model was validated using a validation dataset and demonstrated a strong correlation between the experimental and predicted values (r2 ≈ 0.9). Thus, this approach enables the effective prediction of PCP's effects by accounting for environmental variations. This proof of concept constitutes a potential alternative, complementary to conventional models like BLMs (focused on water chemistry for metals) and QSARs (linking structure to intrinsic toxicity), which often overlook the complexities of real-world environmental conditions.
Collapse
Affiliation(s)
- Sulivan Jouanneau
- Nantes Université, Oniris, Centre National de la Recherche Scientifique, Génie des Procédés—Environnement—Agroalimentaire, Unité Mixte de Recherche 6144, F-85000 La Roche sur Yon, France;
| | | |
Collapse
|
2
|
Kharkova AS, Medvedeva AS, Kuznetsova LS, Gertsen MM, Kolesov VV, Arlyapov VA, Reshetilov AN. A "2-in-1" Bioanalytical System Based on Nanocomposite Conductive Polymers for Early Detection of Surface Water Pollution. Polymers (Basel) 2024; 16:1431. [PMID: 38794624 PMCID: PMC11125136 DOI: 10.3390/polym16101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This work proposes an approach to the formation of receptor elements for the rapid diagnosis of the state of surface waters according to two indicators: the biochemical oxygen demand (BOD) index and toxicity. Associations among microorganisms based on the bacteria P. yeei and yeast S. cerevisiae, as well as associations of the yeasts O. polymorpha and B. adeninivorans, were formed to evaluate these indicators, respectively. The use of nanocomposite electrically conductive materials based on carbon nanotubes, biocompatible natural polymers-chitosan and bovine serum albumin cross-linked with ferrocenecarboxaldehyde, neutral red, safranin, and phenosafranin-has made it possible to expand the analytical capabilities of receptor systems. Redox polymers were studied by IR spectroscopy and Raman spectroscopy, the contents of electroactive components were determined by atomic absorption spectroscopy, and electrochemical properties were studied by electrochemical impedance and cyclic voltammetry methods. Based on the proposed kinetic approach to modeling individual stages of bioelectrochemical processes, the chitosan-neutral red/CNT composite was chosen to immobilize the yeast association between O. polymorpha (ks = 370 ± 20 L/g × s) and B. adeninivorans (320 ± 30 L/g × s), and a bovine serum albumin (BSA)-neutral composite was chosen to immobilize the association between the yeast S. cerevisiae (ks = 130 ± 10 L/g × s) and the bacteria P. yeei red/CNT (170 ± 30 L/g × s). After optimizing the composition of the receptor systems, it was shown that the use of nanocomposite materials together with associations among microorganisms makes it possible to determine BOD with high sensitivity (with a lower limit of 0.6 mg/dm3) and detect the presence of a wide range of toxicants of both organic and inorganic origin. Both receptor elements were tested on water samples, showing a high correlation between the results of biosensor analysis of BOD and toxicity and the results of standard analytical methods. The results obtained show broad prospects for creating sensitive and portable bioelectrochemical sensors for the early warning of environmentally hazardous situations based on associations among microorganisms and nanocomposite materials.
Collapse
Affiliation(s)
- Anna S. Kharkova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Anastasia S. Medvedeva
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Lyubov S. Kuznetsova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Maria M. Gertsen
- Laboratory of Soil Chemistry and Ecology, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia;
| | - Vladimir V. Kolesov
- Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences, 111250 Moscow, Russia;
| | - Vyacheslav A. Arlyapov
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
3
|
Fan C, He N, Yuan J. Cascaded amplifying circuit enables sensitive detection of fungal pathogens. Biosens Bioelectron 2024; 250:116058. [PMID: 38281368 DOI: 10.1016/j.bios.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
The rapid and accurate detection of fungal pathogens is of utmost importance in the fields of healthcare, food safety, and environmental monitoring. In this study, we implemented a cascaded amplifying circuit in Saccharomyces cerevisiae to improve the G protein-coupled receptor (GPCR) mediated fungal detection. The GPCR signaling pathway was coupled with the galactose-regulated (GAL) system and a positive feedback loop was implemented to enhance the performance of yeast biosensor. We systematically compared four generations of biosensors for detecting the mating pheromone of Candida albicans, and the best biosensor exhibited the limit of detection (LOD) as low as 0.25 pM and the limit of quantification (LOQ) of 1 pM after 2 h incubation. Subsequently, we developed a betaxanthin-based colorimetric module for the easy visualization of signal outputs, and the resulting biosensors can give reliable naked-eye readouts. In summary, we demonstrated that cascaded amplifying circuits could substantially improve the engineered yeast biosensors with a better sensitivity and signal output magnitude, which will pave the way for their real-world applications in public health.
Collapse
Affiliation(s)
- Cong Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Nike He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China; Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Gao W, Fan W, Wang D, Sun J, Li Y, Tang C, Fan M. Assessing fresh water acute toxicity with Surface-Enhanced Raman Scattering (SERS). Talanta 2024; 267:125163. [PMID: 37690416 DOI: 10.1016/j.talanta.2023.125163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
It's well known that the toxicity of chemicals in the environment depends not only their concentrations, but more importantly, their bio-availability. Thus, the acute toxicity test of environmental water samples is of great importance in water quality evaluation. In this work, water acute toxicity was determined via SERS approach for the first time based on the reaction between Escherichia coli (E. coli) and p-benzoquinone (BQ). The E. coli was used as the subject of toxicity assay. Under normal conditions, the BQ molecules can be transformed into Hydroquinone (HQ) by the E. coli bacteria; subsequently, the BQ will continue to react with the resulting HQ to form Quinone hydroquinone (QHQ). This process could be impaired in the presence of many toxic chemicals. Bromide modified Ag NPs was then introduced for the highly sensitive SERS detection of the product (HQ and QHQ). Several key factors that may affect water acute toxicity evaluation have been explored, which include the initial BQ and E. coli concentration, the incubation time with BQ, and the sodium chloride concentration. Later, the established system was applied for the toxicity evaluation of Cu2+. It was found that the IC50 value of Cu2+ was 0.94 mg/L, which is superior compared with literature report. This study provides a promising SERS method for assessing acute toxicity in water bodies with high sensitivity and short detection time.
Collapse
Affiliation(s)
- Weixing Gao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wanli Fan
- School of Civil and Architectural Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ji Sun
- School of Emergency Management, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, Sichuan, 610200, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
5
|
Yudina NY, Kozlova TN, Bogachikhin DA, Kosarenina MM, Arlyapov VA, Alferov SV. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. BIOSENSORS 2023; 13:1011. [PMID: 38131771 PMCID: PMC10742246 DOI: 10.3390/bios13121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Biosensors based on an oxygen electrode, a mediator electrode, and a mediator microbial biofuel cell (MFC) using the bacteria Gluconobacter oxydans B-1280 were formed and tested to determine the integral toxicity. G. oxydans bacteria exhibited high sensitivity to the toxic effects of phenol, 2,4-dinitrophenol, salicylic and trichloroacetic acid, and a number of heavy metal ions. The system "G. oxydans bacteria-ferrocene-graphite-paste electrode" was superior in sensitivity to biosensors formed using an oxygen electrode and MFC, in particular regarding heavy metal ions (EC50 of Cr3+, Mn2+, and Cd2+ was 0.8 mg/dm3, 0.3 mg/dm3 and 1.6 mg/dm3, respectively). It was determined that the period of stable functioning of electrochemical systems during measurements was reduced by half (from 30 to 15 days) due to changes in the enzyme system of microbial cells when exposed to toxicants. Samples of the products made from polymeric materials were analyzed using developed biosensor systems and standard biotesting methods based on inhibiting the growth of duckweed Lemna minor, reducing the motility of bull sperm, and quenching the luminescence of the commercial test system "Ecolum". The developed bioelectrocatalytic systems were comparable in sensitivity to commercial biosensors, which made it possible to correlate the results and identify, by all methods, a highly toxic sample containing diphenylmethane-4,4'-diisocyanate according to GC-MS data.
Collapse
Affiliation(s)
- Natalia Yu. Yudina
- Chemistry Department, Federal State Budgetary Educational Establishment of Higher Education, Tula State University, 300012 Tula, Russia; (N.Y.Y.); (V.A.A.)
| | - Tatyana N. Kozlova
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia; (T.N.K.)
| | - Daniil A. Bogachikhin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia; (T.N.K.)
| | - Maria M. Kosarenina
- Chemistry Department, Federal State Budgetary Educational Establishment of Higher Education, Tula State University, 300012 Tula, Russia; (N.Y.Y.); (V.A.A.)
| | - Vyacheslav A. Arlyapov
- Chemistry Department, Federal State Budgetary Educational Establishment of Higher Education, Tula State University, 300012 Tula, Russia; (N.Y.Y.); (V.A.A.)
| | - Sergey V. Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia; (T.N.K.)
| |
Collapse
|
6
|
Liu Y, Yang Y, Fan Y, Zhao Q, Gao G, Zhi J. Feasibility investigation and development of microbial electrochemical biosensors for marine pollution monitoring. Talanta 2023; 255:124204. [PMID: 36580811 DOI: 10.1016/j.talanta.2022.124204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Electrochemical biosensor, as a real-time and rapid detection method, has rarely been explored in marine monitoring. In present work, microbial electrochemical biosensors based on two design strategies: disperse system and integrated microbial electrode, were systematically discussed and their feasibility in marine biotoxicity assessment were investigated. An isolation method was initially investigated to eliminate the potential interference and detect the biological response accurately. The influence of water salinity on the current response was eliminated by adopting the salt-tolerant bacteria Staphylococcus aureus as test microorganism and buffer solution with sufficient ionic strength. The biotoxicity of heavy metal ions and pesticides were sensitively determined. Furthermore, a novel integrated microbial biosensor was designed by immobilizing S. aureus with a redox-active gel that consists of chitosan and poly (diallyl dimethyl ammonium chloride) mixture and confined potassium ferricyanide via electrostatic interaction. The IC50 values for Cu2+, Zn2+, Cr2O72- and Ni2+ were 3.01 mg/L, 1.34 mg/L, 7.64 mg/L and 9.41 mg/L, respectively. This work not only verified the feasibility of electrochemical biosensor in marine pollution monitoring, but also compared the pros and cons of two biosensor design strategies, which provide a guidance for the future development and application of marine monitoring devices based on electrochemical method.
Collapse
Affiliation(s)
- Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
7
|
Li S, Cai M, Wang Q, Yuan Z, Li R, Wang C, Sun Y. Effect of long-term exposure to dyeing wastewater treatment plant effluent on growth and gut microbiota of adult zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53674-53684. [PMID: 36864334 DOI: 10.1007/s11356-023-26167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Strict standards have been put forward for the treatment and discharge of dyeing wastewater worldwide. However, there are still traces amount of pollutants, especially emerging pollutants in dyeing wastewater treatment plant (DWTP) effluent. Few studies have focused on the chronic biological toxicity effect and mechanism of DWTP effluent. In this study, 3-month chronic compound toxic effects were investigated by the exposure of DWTP effluent using adult zebrafish. Significantly higher mortality and fatness and significantly lower body weight and body length were found in the treatment group. In addition, long-term exposure to DWTP effluent also obviously reduced liver-body weight ratio of zebrafish, causing abnormal liver development of zebrafish. Moreover, DWTP effluent led to obvious changes in the gut microbiota and microbial diversity of zebrafish. At phylum level, significantly higher of Verrucomicrobia but lower Tenericutes, Actinobacteria, and Chloroflexi were found in the control group. At genus level, the treatment group had significantly higher abundance of Lactobacillus, but significantly lower abundance of Akkermansia, Prevotella, Bacteroides, and Sutterella. These results suggested that long-term exposure to DWTP effluent led to imbalance of gut microbiota in zebrafish. In general, this research indicated that DWTP effluent pollutants could result in negative health outcomes to aquatic organisms.
Collapse
Affiliation(s)
- Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Mingcan Cai
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zixi Yuan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Ruixuan Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yingxue Sun
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
8
|
Reinikovaite V, Zukauskas S, Zalneravicius R, Ratautaite V, Ramanavicius S, Bucinskas V, Vilkiene M, Ramanavicius A, Samukaite-Bubniene U. Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design. BIOSENSORS 2022; 13:bios13010066. [PMID: 36671901 PMCID: PMC9855892 DOI: 10.3390/bios13010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 05/31/2023]
Abstract
The development of microbial fuel cells based on electro-catalytic processes is among the novel topics, which are recently emerging in the sustainable development of energetic systems. Microbial fuel cells have emerged as unique biocatalytic systems, which transform the chemical energy accumulated in renewable organic fuels and at the same time reduce pollution from hazardous organic compounds. However, not all microorganisms involved in metabolic/catalytic processes generate sufficient redox potential. In this research, we have assessed the applicability of the microorganism Rhizobium anhuiense as a catalyst suitable for the design of microbial fuel cells. To improve the charge transfer, several redox mediators were tested, namely menadione, riboflavin, and 9,10-phenanthrenequinone (PQ). The best performance was determined for a Rhizobium anhuiense-based bio-anode mediated by menadione with a 0.385 mV open circuit potential and 5.5 μW/cm2 maximal power density at 0.35 mV, which generated 50 μA/cm2 anode current at the same potential.
Collapse
Affiliation(s)
- Viktorija Reinikovaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Sarunas Zukauskas
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Rokas Zalneravicius
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Electrochemical Material Science, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics, and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
| | - Monika Vilkiene
- Lithuanian Research Center for Agriculture and Forestry, Instituto Ave. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Mechatronics, Robotics, and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
| |
Collapse
|
9
|
Kharkova A, Arlyapov V, Medvedeva A, Lepikash R, Melnikov P, Reshetilov A. Mediator Microbial Biosensor Analyzers for Rapid Determination of Surface Water Toxicity. SENSORS (BASEL, SWITZERLAND) 2022; 22:8522. [PMID: 36366221 PMCID: PMC9655160 DOI: 10.3390/s22218522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Microbial mediator biosensors for surface water toxicity determination make it possible to carry out an early assessment of the environmental object’s quality without time-consuming standard procedures based on standard test-organisms, and provide broad opportunities for receptor element modifying depending on the required operational parameters analyzer. Four microorganisms with broad substrate specificity and nine electron acceptors were used to form a receptor system for toxicity assessment. Ferrocene was the most effective mediator according to its high rate constant of interaction with the microorganisms (0.33 ± 0.01 dm3/(g × s) for yeast Saccharomyces cerevisiae). Biosensors were tested on samples containing four heavy metal ions (Cu2+, Zn2+, Pb2+, Cd2+), two phenols (phenol and p-nitrophenol), and three natural water samples. The «ferrocene- Escherichia coli» and «ferrocene-Paracoccus yeei, E. coli association» systems showed good operational stability with a relative standard deviation of 6.9 and 7.3% (14 measurements) and a reproducibility of 7 and 5.2% using copper (II) ions as a reference toxicant. Biosensor analysis with these systems was shown to highly correlate with the results of the standard method using Chlorella algae as a test object. Developed biosensors allow for a valuation of the polluted natural water’s impact on the ecosystem via an assessment of the influence on bacteria and yeast in the receptor system. The systems could be used in toxicological monitoring of natural waters.
Collapse
Affiliation(s)
- Anna Kharkova
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Vyacheslav Arlyapov
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Anastasia Medvedeva
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Roman Lepikash
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Pavel Melnikov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prospect Vernadskogo 86, Moscow 119571, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (FRC PSCBR), Russian Academy of Sciences, 5 Nauki Avenue, Moscow 142290, Russia
| |
Collapse
|
10
|
A novel, environmentally friendly dual-signal water toxicity biosensor developed through the continuous release of Fe3+. Biosens Bioelectron 2022; 220:114864. [DOI: 10.1016/j.bios.2022.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
11
|
Cao Z, Li C, Yang X, Wang S, Zhang X, Zhao C, Xue B, Gao C, Zhou H, Yang Y, Shen Z, Sun F, Wang J, Qiu Z. Rapid Quantitative Detection of Live Escherichia coli Based on Chronoamperometry. BIOSENSORS 2022; 12:bios12100845. [PMID: 36290982 PMCID: PMC9599875 DOI: 10.3390/bios12100845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 05/31/2023]
Abstract
The rapid quantitative detection of Escherichia coli (E. coli) is of great significance for evaluating water and food safety. At present, the conventional bacteria detection methods cannot meet the requirements of rapid detection in water environments. Herein, we report a method based on chronoamperometry to rapidly and quantitatively detect live E. coli. In this study, the current indicator i0 and the electricity indicator A were used to record the cumulative effect of bacteria on an unmodified glassy carbon electrode (GCE) surface during chronoamperometric detection. Through the analysis of influencing factors and morphological characterization, it was proved that the changes of the two set electrochemical indicator signals had a good correlation with the concentration of E. coli; detection time was less than 5 min, the detection range of E. coli was 104−108 CFU/mL, and the error range was <30%. The results of parallel experiments and spiking experiments showed that this method had good repeatability, stability, and sensitivity. Humic acid and dead cells did not affect the detection results. This study not only developed a rapid quantitative detection method for E. coli in the laboratory, but also realized a bacterial detection scheme based on the theory of bacterial dissolution and adsorption for the first time, providing a new direction and theoretical basis for the development of electrochemical biosensors in the future.
Collapse
Affiliation(s)
- Zhuosong Cao
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chao Gao
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Yutong Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
12
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
13
|
Dong J, Chang X, Li D, Liu C. Acute toxicity assay based on electrochemical method for detection of antibiotic residues in water. ELECTROANAL 2022. [DOI: 10.1002/elan.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Zang Y, Zhao H, Cao B, Xie B, Yi Y, Liu H. Enhancing the sensitivity of water toxicity detection based on suspended Shewanella oneidensis MR-1 by reversing extracellular electron transfer direction. Anal Bioanal Chem 2022; 414:3057-3066. [PMID: 35192018 DOI: 10.1007/s00216-022-03919-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023]
Abstract
Water toxicity detection is of great significance to ensure the safety of water supply. With suspended electrochemically active bacteria (EAB) as the sensing element, a novel microbial electrochemical sensor (MES) has recently been reported for the real-time detection of water toxicity, but its practical applications need to further improve the sensitivity. Extracellular electron transfer (EET) is an important factor affecting MES performance. In the study, the EET of suspended EAB-based MES was optimized to further enhance the sensitivity. Firstly, by using a model EAB stain Shewanella oneidensis MR-1, it was revealed that the sensitivity was increased at most 2.7 times with inward EET (i.e., cathodic polarization). Then, a novel conjecture based on electron transfer and energy fluxes was proposed and testified to explain this phenomenon. Finally, three key operating parameters of inward EET were orthogonally optimized. The optimized parameters of inward EET included a potential of - 0.5 V, a cell density of 1.8 × 108 CFU/mL, and an electron acceptor concentration of 15 mM.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, China. .,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
15
|
Žalnėravičius R, Paškevičius A, Samukaitė-Bubnienė U, Ramanavičius S, Vilkienė M, Mockevičienė I, Ramanavičius A. Microbial Fuel Cell Based on Nitrogen-Fixing Rhizobium anhuiense Bacteria. BIOSENSORS 2022; 12:113. [PMID: 35200373 PMCID: PMC8869864 DOI: 10.3390/bios12020113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/01/2023]
Abstract
In this study, the nitrogen-fixing, Gram-negative soil bacteria Rhizobium anhuiense was successfully utilized as the main biocatalyst in a bacteria-based microbial fuel cell (MFC) device. This research investigates the double-chambered, H-type R. anhuiense-based MFC that was operated in modified Norris medium (pH = 7) under ambient conditions using potassium ferricyanide as an electron acceptor in the cathodic compartment. The designed MFC exhibited an open-circuit voltage (OCV) of 635 mV and a power output of 1.07 mW m-2 with its maximum power registered at 245 mV. These values were further enhanced by re-feeding the anode bath with 25 mM glucose, which has been utilized herein as the main carbon source. This substrate addition led to better performance of the constructed MFC with a power output of 2.59 mW m-2 estimated at an operating voltage of 281 mV. The R. anhuiense-based MFC was further developed by improving the charge transfer through the bacterial cell membrane by applying 2-methyl-1,4-naphthoquinone (menadione, MD) as a soluble redox mediator. The MD-mediated MFC device showed better performance, resulting in a slightly higher OCV value of 683 mV and an almost five-fold increase in power density to 4.93 mW cm-2. The influence of different concentrations of MD on the viability of R. anhuiense bacteria was investigated by estimating the optical density at 600 nm (OD600) and comparing the obtained results with the control aliquot. The results show that lower concentrations of MD, ranging from 1 to 10 μM, can be successfully used in an anode compartment in which R. anhuiense bacteria cells remain viable and act as a main biocatalyst for MFC applications.
Collapse
Affiliation(s)
- Rokas Žalnėravičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania;
| | - Urtė Samukaitė-Bubnienė
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
| | - Monika Vilkienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto Av.1, Akademija, LT-58344 Kedainiai, Lithuania; (M.V.); (I.M.)
| | - Ieva Mockevičienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto Av.1, Akademija, LT-58344 Kedainiai, Lithuania; (M.V.); (I.M.)
| | - Arūnas Ramanavičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
16
|
|
17
|
Yu D, Li R, Sun X, Zhang H, Yu H, Dong S. Colorimetric and Electrochemical Dual-Signal Method for Water Toxicity Detection Based on Escherichia coli and p-Benzoquinone. ACS Sens 2021; 6:2674-2681. [PMID: 34185518 DOI: 10.1021/acssensors.1c00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of simple and rapid toxicity detection methods has important practical significance. In this work, a dual-signal method with colorimetric and electrochemical properties for water toxicity detection was proposed for the first time based on a rapid color reaction between Escherichia coli (E. coli) and p-benzoquinone (BQ). Here, E. coli was used as a biocatalyst and BQ was used as a mediator. An IC50 value of 0.75 mg L-1 for Cu2+ was obtained using a two-step electrochemical detection method. Strikingly, toxicity could also be estimated visually by the naked eye, and the minimum detection limit was 3.2 mg L-1 for Cu2+. The dual-signal toxicity detection method extends the function of BQ, and the result is more reliable than the traditional single-signal method. This simple and rapid toxicity detection method shows certain application prospects.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| | - Rongbing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, P. R. China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, P. R. China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
18
|
Hassan RY, Febbraio F, Andreescu S. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:1279. [PMID: 33670122 PMCID: PMC7916843 DOI: 10.3390/s21041279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.
Collapse
Affiliation(s)
- Rabeay Y.A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt;
- National Research Centre (NRC), Applied Organic Chemistry Department, El Bohouth st., Dokki, Giza 12622, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
19
|
Thangavel A. Inclusion and Charge Transfer Interaction of a Multi-Redox Active 1,3,5-Triazine Derivative by Cucurbit[7,8]urils. J Org Chem 2021; 86:1178-1182. [PMID: 33327719 DOI: 10.1021/acs.joc.0c02198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The redox active 1,3,5-triazine derivative (MPT) was used as a guest to study host-guest, charge transfer interaction with CB[7,8] in water. The multi-redox active MPT undergoes four chemically and electrochemically reversible one electron redox states in organic media, but in water, the fourth redox state shows an unstable nature. As a guest, the host-guest interaction of MPT was studied with two macrocyclic cucurbit[7,8]uril (CB[7,8]) hosts in water; resulting supramolecular complexes were characterized by NMR, ESI-MS, UV-vis, ITC, and cyclic voltammetric studies.
Collapse
Affiliation(s)
- Arumugam Thangavel
- Department of Chemistry and Biochemistry, California State University Dominguez Hills, Carson, California 90747, United States
| |
Collapse
|
20
|
Yu D, Fang Y, Liu L, He J, Han X, Yu H, Dong S. Fabrication of a Novel, Cost-Effective Double-Sided Indium Tin Oxide-Based Nanoribbon Electrode and Its Application of Acute Toxicity Detection in Water. ACS Sens 2020; 5:3923-3929. [PMID: 33305577 DOI: 10.1021/acssensors.0c01566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microelectrode plays a crucial role in developing a rapid biosensor for detecting toxicity in water. In this study, a nanoribbon electrode (NRE) with amplified microelectrode signal was successfully prepared by electrodepositing 2-allylphenol on a double-sided indium tin oxide glass. The NRE provided a simple mean for obtaining large steady-state current response. Its advantages were discussed by contrasting the toxicity detection of 3,5-dichlorophenol (DCP) with single microelectrode, microelectrode array, and millimeter electrode as working electrodes in which potassium ferricyanide (K3[Fe(CN)6]) was adopted as a mediator, and Escherichia coli was selected as bioreceptor. At a constant potential of 450 mV, the current reached a steady state within 10 s. The biosensor was constructed using the NRE as working electrode, and its feasibility was verified by determining the toxicity of DCP. A 50% inhibitory concentration (IC50) of 3.01 mg/L was obtained by analyzing the current responses of different concentrations of DCP within 1 h. These results exhibited that the proposed method based on the as-prepared NRE was a rapid, sensitive, and cost-effective way for toxicity detection in water.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, Wuhan, Hubei 430072, P. R. China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Xuerong Han
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Chen Y, Wang D, Liu Y, Gao G, Zhi J. Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron 2020; 176:112914. [PMID: 33353760 DOI: 10.1016/j.bios.2020.112914] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
This paper reports on an innovative strategy based on the electrochemical collision technique to quantify the redox activity of two bacterial species: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. Thionine (TH), as a redox mediator, was electrostatically adsorbed on bacterial surface and formed the bacterium-TH complexes. TH can receive electrons from bacterial metabolic pathways and be reduced. When a single bacterium-TH complex collides on the ultramicroelectrode, the reduced TH will be re-oxidized at certain potential and generate current spike. The frequency of the spikes is linearly proportional to the living bacteria concentration, and the redox activity of individual bacterium can be quantified by the charges enclosed in the current spike. The redox ability of Gram-negative E.coli to the TH mediator was 6.79 ± 0.26 × 10-18 mol per bacterial cell in 30 min, which is relatively more reactive than B. subtilis (3.52 ± 0.31 × 10-18 mol per cell). The spike signals, fitted by 3D COMSOL Multiphysics simulation, revealed that there is inherent redox ability difference of two bacterial strains besides the difference in bacterial size and collision position. This work successfully quantified the bacterial redox activity to mediator in single cells level, which is of great significance to improve understanding of heterogeneous electron transfer process and build foundations to the microorganism selection in the design of microbial electrochemical devices.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|