1
|
Chaves-González LE, Jaikel-Víquez D, Lozada-Alvarado S, Granados-Chinchilla F. Unveiling the fungal color palette: pigment analysis of Fusarium solani species complex and Curvularia verruculosa clinical isolates. Can J Microbiol 2024; 70:135-149. [PMID: 38232349 DOI: 10.1139/cjm-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Fungal species in the Nectriaceae, such as Fusarium spp. (Hypocreales: Nectriaceae), are etiologic agents of hyalohyphomycosis capable of producing violaceous or yellowish pigments under certain conditions, while Curvularia spp. (Pleosporales: Pleosporaceae) are agents of phaeohyphomycosis and typically produce melanin in their cell walls. In nectriaceous and pleosporaceous fungi, these pigments are mainly constituted by polyketides (e.g., azaphilones, naphthoquinones, and hydroxyanthraquinones). Considering the importance of pigments synthesized by these genera, this work focused on the selective extraction of pigments produced by eight Fusarium solani species complex and one Curvularia verruculosa isolate recovered from dermatomycosis specimens, their separation, purification, and posterior chemical analysis. The pigments were characterized through spectral and acid-base analysis, and their maximum production time was determined. Moreover, spectral identification of isolates was carried out to approach the taxonomic specificity of pigment production. Herein we describe the isolation and characterization of three acidic pigments, yellowish and pinkish azaphilones (i.e., coaherin A and sclerotiorin), and a purplish xanthone, reported for the first time in the Nectriaceae and Pleosporaceae, which appear to be synthesized in a species-independent manner, in the case of fusaria.
Collapse
Affiliation(s)
- Luis Enrique Chaves-González
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Jaikel-Víquez
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Stefany Lozada-Alvarado
- Laboratorio Clínico y Banco de Sangre, Hospital del Trauma, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Facultad de Ciencias Básicas, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Guo XW, Yu ZQ, Xi J, Ren H, Xiang XY, Wu J, Fang J, Wu QX. Isolation and Identification of Novel Antioxidant Polyketides from an Endophytic Fungus Ophiobolus cirsii LZU-1509. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1593-1606. [PMID: 36634077 DOI: 10.1021/acs.jafc.2c07386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sixteen new polyketides, ophicirsins A-P (1-16), including four novel carbon skeletons (5-9, 14, 15, and 16), were isolated from the extract of an endophytic fungus Ophiobolus cirsii LZU-1509. The unique frameworks of ophicirsin N (14) and O (15) feature a different cyclic ether connected with an aromatic ring system. Ophicirsin P (16) is characterized by the unprecedented heterozygote of a polyketide and an alkaloid. The absolute stereochemistries of those polyketides were characterized via single-crystal X-ray diffraction analysis and the experimental and computational electric circular dichroism spectra comparison. Theoretical reaction pathways in the fermentation to generate different novel skeletons starting from acetyl CoA and malonyl CoA helped to assign their structures. Compounds 1-16 appear almost nontoxic in HepG2 and HT-1080 tumor cells. Their antioxidant effects were further evaluated, and 15 exhibits an excellent protection activity in hydrogen peroxide-stimulated oxidative damage in neuron-like PC12 cells via screening all compounds. Moreover, 15 displays a greater ability to scavenge the 2,2-diphenyl-1-picrylhydrazyl free radicals than resveratrol. Taken together, these findings suggest that the novel polyketides could serve as potential antioxidant agents for neuroprotection.
Collapse
Affiliation(s)
- Xiao-Wei Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhen-Qing Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hao Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Yu Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Ahmed AM, Mahmoud BK, Millán-Aguiñaga N, Abdelmohsen UR, Fouad MA. The endophytic Fusarium strains: a treasure trove of natural products. RSC Adv 2023; 13:1339-1369. [PMID: 36686899 PMCID: PMC9827111 DOI: 10.1039/d2ra04126j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The complexity and structural diversity of the secondary metabolites produced by endophytes make them an attractive source of natural products with novel structures that can help in treating life-changing diseases. The genus Fusarium is one of the most abundant endophytic fungal genera, comprising about 70 species characterized by extraordinary discrepancy in terms of genetics and ability to grow on a wide range of substrates, affecting not only their biology and interaction with their surrounding organisms, but also their secondary metabolism. Members of the genus Fusarium are a source of secondary metabolites with structural and chemical diversity and reported to exhibit diverse pharmacological activities. This comprehensive review focuses on the secondary metabolites isolated from different endophytic Fusarium species along with their various biological activities, reported in the period from April 1999 to April 2022.
Collapse
Affiliation(s)
- Arwa Mortada Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia City Egypt
| | - Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2347759
| | - Natalie Millán-Aguiñaga
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas Ensenada Baja California 22860 Mexico
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia City Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2347759
| | - Mostafa Ahmed Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2347759
| |
Collapse
|
4
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Darshan K, Aggarwal R, Bashyal BM, Singh J, Shanmugam V, Gurjar MS, Solanke AU. Transcriptome Profiling Provides Insights Into Potential Antagonistic Mechanisms Involved in Chaetomium globosum Against Bipolaris sorokiniana. Front Microbiol 2020; 11:578115. [PMID: 33365017 PMCID: PMC7750538 DOI: 10.3389/fmicb.2020.578115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Chaetomium globosum Kunze is recognized as a potential biocontrol fungus against spot blotch of wheat caused by Bipolaris sorokiniana. Its molecular mechanism of biocontrol activity and the biosynthetic pathways involved have not been yet elucidated. Here, global transcriptome profiling of C. globosum strain Cg2 during interaction with B. sorokiniana isolate BS112 using RNA-seq was performed in order to gain insights into the potential mechanisms of antagonism. The Illumina HiSeq platform (2 × 150 bp) yielded an average of 20-22 million reads with 50-58% GC. De novo assembly generated 45,582 transcripts with 27,957 unigenes. Transcriptome analysis displayed distinct expression profiles in the interaction (Cg2-BS112), out of which 6,109 unique differentially expressed genes were present. The predominant transcripts classified as genes involved in "catalytic activity" constituted 45.06%, of which 10.02% were associated with "hydrolytic activity" (GO:0008152), and similarly, in the biological process, 29.18% of transcripts were involved in "metabolic activity" (GO:0004096 and GO:0006979). Heat map and cluster categorization suggested an increase in the expression levels of genes encoding secondary metabolites like polyketide synthase (GO:0009058), S-hydroxymethyl glutathione dehydrogenase (GO:0006069), terpene cyclase (EC 4.2.3.-), aminotran_1_2 domain-containing protein (GO:0009058), and other hydrolytic CAZYmes such as the glycosyl hydrolase (GH) family (GH 13, GH 2, GH 31, and GH 81; GO:0005975), cellulase domain-containing protein, chitinases, β-1, 3-glucanases (GO:0004565), glucan endo-1,3-beta-glucanase (GO:0052861), and proteases (GO:0004177). The obtained RNA-seq data were validated by RT-qPCR using 20 randomly chosen genes, showing consistency with the RNA-seq results. The present work is worldwide the first effort to unravel the biocontrol mechanism of C. globosum against B. sorokiniana. It generated a novel dataset for further studies and facilitated improvement of the gene annotation models in the C. globosum draft genome.
Collapse
Affiliation(s)
- K. Darshan
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Jagmohan Singh
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - V. Shanmugam
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan S. Gurjar
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
6
|
Masi M, Cimmino A, Salzano F, Di Lecce R, Górecki M, Calabrò V, Pescitelli G, Evidente A. Higginsianins D and E, Cytotoxic Diterpenoids Produced by Colletotrichum higginsianum. JOURNAL OF NATURAL PRODUCTS 2020; 83:1131-1138. [PMID: 32191467 DOI: 10.1021/acs.jnatprod.9b01161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two new diterpenoids with tetrasubstituted 3-oxodihydrofuran substituents, named higginsianins D (1) and E (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as methyl 2-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)-decahydronaphthalen-1-ylmethyl]-4,5-dimethyl-3-oxo-2,3-dihydrofuran-2-carboxylate and its 21-epimer by using NMR, HRESIMS, and chemical methods. The relative configurations of higginsianins D and E, which did not afford crystals suitable for X-ray analysis, were determined by NOESY experiments and by comparison with NMR data of higginsianin B. The absolute configuration was established by comparison of experimental and calculated electronic circular dichroism data. The evaluation of 1 and 2 for antiproliferative activity against human A431 cells derived from epidermoid carcinoma and H1299 non-small-cell lung carcinoma cells revealed that 2 exhibited higher cytotoxic activity than 1, with an IC50 value of 1.0 μM against A431 cells. Remarkably, both 1 and 2 were almost ineffective against immortalized keratinocytes, used as a preneoplastic cell line model.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 Street, 01-224 Warsaw, Poland
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | | |
Collapse
|
7
|
Grauso L, Teta R, Esposito G, Menna M, Mangoni A. Computational prediction of chiroptical properties in structure elucidation of natural products. Nat Prod Rep 2019; 36:1005-1030. [PMID: 31166350 DOI: 10.1039/c9np00018f] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: up to 2019This review covers the current status of the quantum mechanical prediction of chiroptical properties, such as electronic CD and optical rotation, as needed for stereochemical assignments in new natural products. The reliability of the prediction of chiroptical properties is steadily increasing, with a parallel decrease in the required computational resources. Now, quantum mechanical calculations for a medium-sized natural product can be reliably performed by natural product chemists on a mainstream PC. This review is aimed to guide natural product chemists through the numerous steps involved in such calculations. Through a concise, but comprehensive, discussion of the current computational practice, enriched by a few illustrative examples, this review provides readers with the theoretical background and practical knowledge needed to select the most appropriate parameters for performing the calculations, to anticipate possible problems, and to critically evaluate the reliability of their computational results. Common reasons for mistakes are also discussed; in particular, the importance of the correct evaluation of conformational ensembles of flexible molecules (an aspect often overlooked in current research) is stressed.
Collapse
Affiliation(s)
- Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Roberta Teta
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Germana Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Alfonso Mangoni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
8
|
Tang XX, Yan X, Fu WH, Yi LQ, Tang BW, Yu LB, Fang MJ, Wu Z, Qiu YK. New β-Lactone with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus MCCC3A00957. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2877-2885. [PMID: 30785752 DOI: 10.1021/acs.jafc.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium solani H915 (MCCC3A00957), a fungus originating from mangrove sediment, showed potent inhibitory activity against tea pathogenic fungus Pestalotiopsis theae. Successive chromatographic separation on an ethyl acetate (EtOAc) extract of F. solani H915 resulted in the isolation of five new alkenoic diacid derivatives: fusarilactones A-C (1-3), and fusaridioic acids B (4) and C (5), in addition to seven known compounds (6-12). The chemical structures of these metabolites were elucidated on the basis of UV, IR, HR-ESI-MS, and NMR spectroscopic data. The antifungal activity of the isolated compounds was evaluated. Compounds with a β-lactone ring (1, 2, and 7) exhibited potent inhibitory activities, while none of the other compounds show activity. The ED50 values of the compounds 1, 2, and 7 were 38.14 ± 1.67, 42.26 ± 1.96, and 18.35 ± 1.27 μg/mL, respectively. In addition, inhibitory activity of these compounds against 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene expression was also detected using real-time RT-PCR. Results indicated that compounds 1, 2, and 7 may inhibit the growth of P. theae by interfering with the biosynthesis of ergosterol by down-regulating the expression of HMG-CoA synthase.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center , Ningbo University , Ningbo 315832 , China
| | - Wen-Hao Fu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Lu-Qi Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Li-Bo Yu
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| |
Collapse
|
9
|
Wang ZF, Zhang W, Xiao L, Zhou YM, Du FY. Characterization and bioactive potentials of secondary metabolites from Fusarium chlamydosporum. Nat Prod Res 2018; 34:889-892. [DOI: 10.1080/14786419.2018.1508142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhao-Fu Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Wei Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao, China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
- Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Zhang Q, Tang HY, Chen M, Yu J, Li H, Gao JM. Natural product driven diversity via skeletal remodeling of caryophyllene β-lactam. Org Biomol Chem 2018; 15:4456-4463. [PMID: 28485737 DOI: 10.1039/c7ob00741h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(-)-β-Caryophyllene was decorated with a privileged β-lactam motif and subsequently converted into highly diverse scaffolds via remodeling of the ring system. The structures were defined by spectroscopic data, X-ray diffraction analysis, and experimental and calculated ECD data. Compound 19 displayed the most potent activity against the rice blast fungus, while 6 had a more potent α-glucosidase inhibition than the drug acarbose. These findings demonstrate a concise protocol to exploit natural product-driven diversity.
Collapse
Affiliation(s)
- Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Yan C, Liu W, Li J, Deng Y, Chen S, Liu H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv 2018; 8:14823-14828. [PMID: 35541335 PMCID: PMC9080035 DOI: 10.1039/c8ra02430h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023] Open
Abstract
Two new spiromeroterpenoids, namely fusariumin A (1) and B (2), along with four known terpenoids, asperterpenoid A (3), agathic acid (4), guignardone N (5), and trametenolic acid (6), were obtained from the endophytic fungus Fusarium sp. YD-2, derived from the twigs of Santalum album. Their structures were elucidated by a combination of spectroscopic analyses. The absolute configuration of 1 was determined by single-crystal X-ray diffraction using Cu Kα radiation, and that of 2 was elucidated on the basis of experimental and calculated electronic circular dichroism spectra. Compound 2 exhibited moderate anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide activated RAW264.7 cells with an IC50 value of 50 μM, and compound 3 showed strong anti-inflammatory activity with an IC50 value of 1.6 μM. In the antibacterial assay, compound 1 displayed significant activities against Staphylococcus aureus and Pseudomonas aeruginosa with an MIC value of 6.3 μg mL−1, and compound 3 showed moderate activities against Salmonella enteritidis and Micrococcus luteus with MIC values of 6.3 and 25.2 μg mL−1, respectively. Two new spiromeroterpenoids, namely fusariumin A (1) and B (2), along with four known terpenoids, asperterpenoid A (3), agathic acid (4), guignardone N (5), and trametenolic acid (6), were obtained from the endophytic fungus Fusarium sp. YD-2, derived from the twigs of Santalum album.![]()
Collapse
Affiliation(s)
- Chong Yan
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Weiyang Liu
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Jing Li
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Yanlian Deng
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Senhua Chen
- School of Marine Sciences
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hongju Liu
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| |
Collapse
|
12
|
Chowdhury NS, Sohrab MH, Rana MS, Hasan CM, Jamshidi S, Rahman KM. Cytotoxic Naphthoquinone and Azaanthraquinone Derivatives from an Endophytic Fusarium solani. JOURNAL OF NATURAL PRODUCTS 2017; 80:1173-1177. [PMID: 28257197 DOI: 10.1021/acs.jnatprod.6b00610] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioactivity-guided fractionation of the ethyl acetate extract obtained from the culture of the endophytic fungus Fusarium solani resulted in the isolation of one new naphthoquinone, 9-desmethylherbarine (1), and two azaanthraquinone derivatives, 7-desmethylscorpinone (2) and 7-desmethyl-6-methylbostrycoidin (3), along with four known compounds. Their structures were elucidated by spectral analysis, as well as a direct comparison of spectral data with those of known compounds. Azaanthraquinones 2 and 3 showed cytotoxic activity against four human tumor cell lines, MDA MB 231, MIA PaCa2, HeLa, and NCI H1975. A molecular docking study suggested DNA interactions as the mode of action of these naphthoquinones and azaanthraquinones.
Collapse
Affiliation(s)
- Nargis Sultana Chowdhury
- Pharmaceutical Sciences Research Division (PSRD), BCSIR Laboratories, Dhaka , Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, Bangladesh
- Department of Pharmacy, Manarat International University , Dhaka, Bangladesh
- Department of Pharmacy, Jahangirnagar University , Savar, Dhaka, Bangladesh
| | - Md Hossain Sohrab
- Pharmaceutical Sciences Research Division (PSRD), BCSIR Laboratories, Dhaka , Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, Bangladesh
| | - Md Sohel Rana
- Department of Pharmacy, Jahangirnagar University , Savar, Dhaka, Bangladesh
| | | | - Shirin Jamshidi
- Institute of Pharmaceutical Sciences, King's College London , 7 Trinity Street, London SE1 1DB, U.K
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Sciences, King's College London , 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
13
|
Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 2017; 101:3493-3511. [DOI: 10.1007/s00253-017-8255-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
|
14
|
Wei J, Zhang XY, Deng S, Cao L, Xue QH, Gao JM. α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophaeus. Nat Prod Res 2016; 31:2062-2066. [PMID: 28013556 DOI: 10.1080/14786419.2016.1269100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Twenty-four metabolites 1-24 were isolated from the fermentation broth of Streptomyces xanthophaeus. Their structures were elucidated on the basis of spectroscopic analysis and by comparison of their NMR data with literature data reported. Daidzein (1), genistein (2) and gliricidin (3) inhibited α-glucosidase in vitro with IC50 values of 174.2, 36.1 and 47.4 μM, respectively, more potent than the positive control, acarbose. Docking study revealed that the amino acid residue Thr 215 is the essential binding site for active ligands 2. In addition, the phytotoxic effects of all compounds were assayed on radish seedlings, five of which, 3, 8, 13, 15 and 18, inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 100 ppm, which was comparable or superior to the positive control glyphosate. This is the first report of the phytotoxicity of the compounds.
Collapse
Affiliation(s)
- Jing Wei
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| | - Xiu-Yun Zhang
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| | - Shan Deng
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| | - Lin Cao
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| | - Quan-Hong Xue
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| | - Jin-Ming Gao
- a Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy , Northwest A&F University , Yangling , P.R. China
| |
Collapse
|
15
|
Shen WY, Bai R, Wang AR, He JY, Wang H, Zhang Y, Zhao XF, Dong JY. Two new polyhydroxysterols produced by Fusarium solani, an endophytic fungus from Chloranthus multistachys. Nat Prod Res 2016; 30:2173-82. [DOI: 10.1080/14786419.2016.1154052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- W. Y. Shen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
- First Affiliated Hospital, Huzhou Teachers College, The First People’s Hospital of Huzhou, Huzhou, China
| | - R. Bai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| | - A. R. Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - J. Y. He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| | - H. Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| | - Y. Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| | - X. F Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| | - J. Y. Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Li G, Kusari S, Golz C, Strohmann C, Spiteller M. Three cyclic pentapeptides and a cyclic lipopeptide produced by endophytic Fusarium decemcellulare LG53. RSC Adv 2016. [DOI: 10.1039/c6ra10905e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endophytic Fusarium decemcellulare LG53 harbored in Mahonia fortunei produces three cyclic pentapeptides (1–3) and the cyclic lipopeptide, fusaristatin A (4).
Collapse
Affiliation(s)
- Gang Li
- Institute of Environmental Research (INFU)
- Department of Chemistry and Chemical Biology
- Chair of Environmental Chemistry and Analytical Chemistry
- 44221 Dortmund
- Germany
| | - Souvik Kusari
- Institute of Environmental Research (INFU)
- Department of Chemistry and Chemical Biology
- Chair of Environmental Chemistry and Analytical Chemistry
- 44221 Dortmund
- Germany
| | - Christopher Golz
- Inorganic Chemistry
- Department of Chemistry and Chemical Biology
- 44221 Dortmund
- Germany
| | - Carsten Strohmann
- Inorganic Chemistry
- Department of Chemistry and Chemical Biology
- 44221 Dortmund
- Germany
| | - Michael Spiteller
- Institute of Environmental Research (INFU)
- Department of Chemistry and Chemical Biology
- Chair of Environmental Chemistry and Analytical Chemistry
- 44221 Dortmund
- Germany
| |
Collapse
|
17
|
Abstract
The natural product (−)-β-caryophyllene is considered as an ideal initiator to generate diverse scaffolds by transannular cyclization due to its macrocyclic structure and abundant availability in nature.
Collapse
Affiliation(s)
- Hao-Yu Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Science
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
18
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Zhang Q, Xiao J, Sun QQ, Qin JC, Pescitelli G, Gao JM. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10962-9. [PMID: 25350301 DOI: 10.1021/jf503846z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bioassay-guided fractionation of the fermentation extract of Xylaria sp. XC-16, an endophyte from Toona sinensis led to the isolation of two new cytochalasans cytochalasin Z27, 1, and cytochalasin Z28, 2, along with three known compounds seco-cytochalasin E, 3, and cytochalasin Z18, 4, and cytochalasin E, 5. The structures of 1 and 2 were elucidated by spectroscopic and electronic circular dichroism methods. Compound 5 was shown to be potently cytotoxic against brine shrimp (LC50 = 2.79 μM), comparable to that of the positive agent toosendanin (LC50 = 4.03 μM), and also exhibited potential phytotoxic effects on Lactuca sativa and Raphanus sativus L. seedlings, which are higher than that of the positive control glyphosate. Additionally, the fungicidal effect of 2 against the phytopathogen Gibberella saubinetti was better than that of hymexazol. This is the first report of the three types of cytochalasins present in genus Xylaria. A structure-phytotoxicity activity relationship is also discussed.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Science, Northwest A&F University , Yangling 712100, Shaanxi P. R. China
| | | | | | | | | | | |
Collapse
|
20
|
Wu RB, Cheng ZB, Han QH, Lin TT, Zhou JW, Tang GH, Yin S. Determination of the Absolute Stereochemistry of Two New Aristophyllene Sesquiterpenes: A Combined Theoretical and Experimental Investigation. Chirality 2014; 26:189-93. [DOI: 10.1002/chir.22294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Rui-Bo Wu
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Zhong-Bin Cheng
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Qing-Hua Han
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Ting-Ting Lin
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Jing-Wei Zhou
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| |
Collapse
|
21
|
Zhang Q, Wang SQ, Tang HY, Li XJ, Zhang L, Xiao J, Gao YQ, Zhang AL, Gao JM. Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain-many compounds method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11447-52. [PMID: 24188331 DOI: 10.1021/jf403200g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
On the basis of the OSMAC (one strain-many compounds) strategy, 14 indole diketopiperazine (DKP) alkaloids, including spirotryprostatins (1-3), tryprostatins (4-6), and cyclotryprostatins (7-14), were isolated from the endophyte Aspergillus fumigatus associated with Melia azedarach L. Their structures were identified by nuclear magnetic resonance and electrospray ionization mass spectrometry data. All the indole DKPs were evaluated for plant growth regulation using the lettuce (Lactuca sativa) seedling growth bioassay, which showed the plant growth influence of the seedling. Among these compounds tested, a tryprostatin-type compound, brevianamide F (6), was identified as a new type of natural potential plant growth inhibitor with a response index (RI) higher than that of the positive control glyphosate, a broad-spectrum systemic herbicide. 6 can also inhibit turnip (Raphanus sativus) shoot and root elongation with RIs of -0.76 and -0.70, respectively, at 120 ppm, and it strongly inhibits amaranth (Amaranthus mangostanus) seedling growth with a high RI of -0.9 at 40 ppm. The structure-allelopathic activity relationship analysis of these isolated alkaloids indicates that tryprostatin-type alkaloids without the C5 prenyl and methoxy group give the most potent inhibition of seedling growth. Brevianamide F (6) could be used to develop a natural eco-friendly herbicide.
Collapse
Affiliation(s)
- Qiang Zhang
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science, Northwest A&F University , Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun X, Kong X, Gao H, Zhu T, Wu G, Gu Q, Li D. Two new meroterpenoids produced by the endophytic fungus Penicillium sp. SXH-65. Arch Pharm Res 2013; 37:978-82. [PMID: 24166709 DOI: 10.1007/s12272-013-0268-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Two new meroterpenoids, arisugacins I (1) and J (2), together with five known meroterpenoids including arisugacin B (3), arisugacin F (4), arisugacin G (5), territrem B (6) and territrem C (7) were isolated from an endophytic fungus Penicillium sp. SXH-65. Their structures were determined by extensive spectroscopic experiments and comparison with literature data. Their cytotoxicities were evaluated against Hela, HL-60 and K562 cell lines, and only 3 and 4 exhibited weak cytotoxicities against Hela, HL-60 and K562 cell lines with IC50 values ranging from 24 to 60 μM.
Collapse
Affiliation(s)
- Xinhua Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Jin-Ming Gao
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, Department of Chemistry and Chemical Engineering, College of Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | | | | |
Collapse
|
24
|
Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G. Chaetoglobosin Vb
from Endophytic Chaetomium Globosum
: Absolute Configuration of Chaetoglobosins. Chirality 2012; 24:668-74. [DOI: 10.1002/chir.22068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/12/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Min Xue
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science; Northwest A&F University; Yangling People's Republic of China
| | - Qiang Zhang
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science; Northwest A&F University; Yangling People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science; Northwest A&F University; Yangling People's Republic of China
| | - He Li
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science; Northwest A&F University; Yangling People's Republic of China
| | - Jun-Mian Tian
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Science; Northwest A&F University; Yangling People's Republic of China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Pisa Italy
| |
Collapse
|