1
|
Khoonkari M, Liang D, Kamperman M, van Rijn P, Kruyt FAE. The unfolded protein response sensor PERK mediates mechanical stress-induced maturation of focal adhesion complexes in glioblastoma cells. FEBS Lett 2024; 598:3021-3035. [PMID: 39152526 PMCID: PMC11665954 DOI: 10.1002/1873-3468.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/19/2024]
Abstract
Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-β1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Dong Liang
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | - Marleen Kamperman
- Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering‐FB40University of Groningen, University Medical Center GroningenThe Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41, University of Groningen, University Medical Center GroningenThe Netherlands
| | - Frank A. E. Kruyt
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| |
Collapse
|
2
|
Liu Y, Wang M, Lu Y, Zhang S, Kang L, Zheng G, Ren Y, Guo X, Zhao H, Hao H. Construction and validation of a novel and superior protein risk model for prognosis prediction in esophageal cancer. Front Genet 2022; 13:1055202. [DOI: 10.3389/fgene.2022.1055202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is recognized as one of the most common malignant tumors in the word. Based on the biological process of EC occurrence and development, exploring molecular biomarkers can provide a good guidance for predicting the risk, prognosis and treatment response of EC. Proteomics has been widely used as a technology that identifies, analyzes and quantitatively acquires the composition of all proteins in the target tissues. Proteomics characterization applied to construct a prognostic signature will help to explore effective biomarkers and discover new therapeutic targets for EC. This study showed that we established a 8 proteins risk model composed of ASNS, b-Catenin_pT41_S45, ARAF_pS299, SFRP1, Vinculin, MERIT40, BAK and Atg4B via multivariate Cox regression analysis of the proteome data in the Cancer Genome Atlas (TCGA) to predict the prognosis power of EC patients. The risk model had the best discrimination ability and could distinguish patients in the high- and low-risk groups by principal component analysis (PCA) analysis, and the high-risk patients had a poor survival status compared with the low-risk patients. It was confirmed as one independent and superior prognostic predictor by the receiver operating characteristic (ROC) curve and nomogram. K-M survival analysis was performed to investigate the relationship between the 8 proteins expressions and the overall survival. GSEA analysis showed KEGG and GO pathways enriched in the risk model, such as metabolic and cancer-related pathways. The high-risk group presented upregulation of dendritic cells resting, macrophages M2 and NK cells activated, downregulation of plasma cells, and multiple activated immune checkpoints. Most of the potential therapeutic drugs were more appropriate treatment for the low-risk patients. Through adequate analysis and verification, this 8 proteins risk model could act as a great prognostic evaluation for EC patients and provide new insight into the diagnosis and treatment of EC.
Collapse
|
3
|
Lee ST, Kuboki T, Kidoaki S, Aida Y, Ryuzaki S, Okamoto K, Arima Y, Tamada K. Transient Nascent Adhesion at the Initial Stage of Cell Adhesion Visualized on a Plasmonic Metasurface. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shi Ting Lee
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Thasaneeya Kuboki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Yukiko Aida
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Sou Ryuzaki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Koichi Okamoto
- Department of Physics and Electronics Osaka Prefecture University Osaka 599-8531 Japan
| | - Yusuke Arima
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
- Advanced Institute for Materials Research (AIMR) Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
4
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
5
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
6
|
Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci Rep 2019; 9:10460. [PMID: 31320676 PMCID: PMC6639384 DOI: 10.1038/s41598-019-46905-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Focal adhesions (FAs) are multiprotein structures that link the intracellular cytoskeleton to the extracellular matrix. They mediate cell adhesion and migration, crucial to many (patho-) physiological processes. We examined in two cell types from different species the binding dynamics of functionally related FA protein pairs: paxillin and vinculin versus zyxin and VASP. In photobleaching experiments ~40% of paxillin and vinculin remained stably associated with a FA for over half an hour. Zyxin and VASP predominantly displayed more transient interactions. We show protein binding dynamics are influenced by FA location and orientation. In FAs located close to the edge of the adherent membrane paxillin, zyxin and VASP were more dynamic and had larger bound fractions. Zyxin and VASP were also more dynamic and had larger bound fractions at FAs perpendicular compared to parallel to this edge. Finally, we developed a photoconversion assay to specifically visualise stably bound proteins within subcellular structures and organelles. This revealed that while paxillin and vinculin are distributed evenly throughout FAs, their stably bound fractions form small clusters within the FA-complex. These clusters are more concentrated for paxillin than for vinculin and are mostly found at the proximal half of the FA where actin also enters.
Collapse
|
7
|
Yu Q, Xu L, Chen L, Sun B, Yang Z, Lu K, Yang Z. Vinculin expression in non-small cell lung cancer. J Int Med Res 2019; 48:300060519839523. [PMID: 30947597 PMCID: PMC7140223 DOI: 10.1177/0300060519839523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qiuli Yu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Long Chen
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiyun Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Kunqin Lu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Zhiyong Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| |
Collapse
|
8
|
Santoro R, Perrucci GL, Gowran A, Pompilio G. Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells Int 2019; 2019:8203950. [PMID: 30906328 PMCID: PMC6393933 DOI: 10.1155/2019/8203950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
9
|
Luo R, Chen PW, Kuo JC, Jenkins L, Jian X, Waterman CM, Randazzo PA. ARAP2 inhibits Akt independently of its effects on focal adhesions. Biol Cell 2018; 110:257-270. [PMID: 30144359 DOI: 10.1111/boc.201800044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION ARAP2, an Arf GTPase-activating protein (Arf GAP) that binds to adaptor protein with PH domain, PTB domain and leucine zipper motifs 1 (APPL1), regulates focal adhesions (FAs). APPL1 affects FA dynamics by regulating Akt. Here, we tested the hypothesis that ARAP2 affects FAs in part by regulating Akt through APPL1. RESULTS We found that ARAP2 controlled FA dynamics dependent on its enzymatic Arf GAP activity. In some cells, ARAP2 also regulated phosphoAkt (pAkt) levels. However, ARAP2 control of FAs did not require Akt and conversely, the effects on pAkt were independent of FAs. Reducing ARAP2 expression reduced the size and number of FAs in U118, HeLa and MDA-MB-231 cells. Decreasing ARAP2 expression increased pAkt in U118 cells and HeLa cells and overexpressing ARAP2 decreased pAkt in U118 cells; in contrast, ARAP2 had no effect on pAkt in MDA-MB-231 cells. An Akt inhibitor did not block the effect of reduced ARAP2 on FAs in U118. Furthermore, the effect of ARAP2 on Akt did not require Arf GAP activity, which is necessary for effects on FAs and integrin traffic. Altering FAs by other means did not induce the same changes in pAkt as those seen by reducing ARAP2 in U118 cells. In addition, we discovered that ARAP2 and APPL1 had co-ordinated effects on pAkt in U118 cells. Reduced APPL1 expression, as for ARAP2, increased pAkt in U118 and the effect of reduced APPL1 expression was reversed by overexpressing ARAP2. Conversely, the effect of reduced ARAP2 expression was reversed by overexpressing APPL1. ARAP2 is an Arf GAP that has previously been reported to affect FAs by regulating Arf6 and integrin trafficking and to bind to the adaptor proteins APPL1. Here, we report that ARAP2 suppresses pAkt levels in cells co-ordinately with APPL1 and independently of GAP activity and its effect on the dynamic behaviour of FAs. CONCLUSIONS We conclude that ARAP2 affects Akt signalling in some cells by a mechanism independent of FAs or membrane traffic. SIGNIFICANCE Our results highlight an Arf GAP-independent function of ARAP2 in regulating Akt activity and distinguish the effect of ARAP2 on Akt from that on FAs and integrin trafficking, which requires regulation of Arf6.
Collapse
Affiliation(s)
- Ruibai Luo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA.,Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Jean-Cheng Kuo
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lisa Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
11
|
Cheng B, Lin M, Li Y, Huang G, Yang H, Genin GM, Deshpande VS, Lu TJ, Xu F. An Integrated Stochastic Model of Matrix-Stiffness-Dependent Filopodial Dynamics. Biophys J 2017; 111:2051-2061. [PMID: 27806285 DOI: 10.1016/j.bpj.2016.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The ways that living cells regulate their behavior in response to their local mechanical environment underlie growth, development, and healing and are important to critical pathologies such as metastasis and fibrosis. Although extensive experimental evidence supports the hypothesis that this regulation is governed by the dependence of filopodial dynamics upon extracellular matrix stiffness, the pathways for this dependence are unclear. We therefore developed a model to relate filopodial focal adhesion dynamics to integrin-mediated Rho signaling kinetics. Results showed that focal adhesion maturation, i.e., focal adhesion links reinforcement and integrin clustering, dominates over filopodial dynamics. Downregulated focal adhesion maturation leads to the biphasic relationship between extracellular matrix stiffness and retrograde flow that has been observed in embryonic chick forebrain neurons, whereas upregulated maturation leads to the monotonically decreasing relationship that has been observed in mouse embryonic fibroblasts. When integrin-mediated Rho activation and stress-dependent focal adhesion maturation are combined, the model shows how filopodial dynamics endows cells with exquisite mechanosensing. Taken together, the results support the hypothesis that mechanical and structural factors combine with signaling kinetics to enable cells to probe their environments via filopodial dynamics.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Nagasato AI, Yamashita H, Matsuo M, Ueda K, Kioka N. The distribution of vinculin to lipid rafts plays an important role in sensing stiffness of extracellular matrix. Biosci Biotechnol Biochem 2017; 81:1136-1147. [PMID: 28485208 DOI: 10.1080/09168451.2017.1289074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. However, the mechanism how vinculin-vinexin α interaction affects stiffness-dependent cell migration is unclear. Lipid rafts are membrane microdomains that are known to affect ECM-induced signals and cell behaviors. Here, we show that vinculin and vinexin α can localize to lipid rafts. Cell-ECM adhesion, intracellular tension, and a rigid ECM promote vinculin distribution to lipid rafts. The disruption of lipid rafts with Methyl-β-cyclodextrin impaired the ECM stiffness-mediated regulation of vinculin behavior and rapid cell migration on rigid ECM. These results indicate that lipid rafts play an important role in ECM-stiffness regulation of cell migration via vinculin.
Collapse
Affiliation(s)
- Ayaka Ichikawa Nagasato
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Hiroshi Yamashita
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Michinori Matsuo
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Kazumitsu Ueda
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University , Kyoto , Japan
| | - Noriyuki Kioka
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University , Kyoto , Japan
| |
Collapse
|
14
|
Birukova AA, Shah AS, Tian Y, Gawlak G, Sarich N, Birukov KG. Selective Role of Vinculin in Contractile Mechanisms of Endothelial Permeability. Am J Respir Cell Mol Biol 2016; 55:476-486. [PMID: 27115795 DOI: 10.1165/rcmb.2015-0328oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increased vascular endothelial cell (EC) permeability is a result of intercellular gap formation that may be induced by contraction-dependent and contraction-independent mechanisms. This study investigated a role of the adaptor protein vinculin in EC permeability induced by contractile (thrombin) and noncontractile (IL-6) agonists. Although thrombin and IL-6 caused a similar permeability increase in human pulmonary ECs and disrupted the association between vinculin and vascular endothelial-cadherin, they induced different patterns of focal adhesion (FA) arrangement. Thrombin, but not IL-6, caused formation of large, vinculin-positive FAs, phosphorylation of FA proteins, FA kinase and Crk-associated substrate, and increased vinculin-talin association. Thrombin-induced formation of talin-positive FA and intercellular gaps were suppressed in ECs with small interfering RNA-induced vinculin knockdown. Vinculin knockdown and inhibitors of Rho kinase and myosin-II motor activity also attenuated thrombin-induced EC permeability. Importantly, ectopic expression of the vinculin mutant lacking the F-actin-binding domain decreased thrombin-induced Rho pathway activation and EC permeability. In contrast, IL-6-induced EC permeability did not involve RhoA- or myosin-dependent mechanisms but engaged Janus kinase/signal transducer and activator of transcription-mediated phosphorylation and internalization of vascular endothelial-cadherin. This process was vinculin independent but Janus kinase/tyrosine kinase Src-dependent. These data suggest that vinculin participates in a contractile-dependent mechanism of permeability by integrating FA with stress fibers, leading to maximal RhoA activation and EC permeability response. Vinculin inhibition does not affect contractile-independent mechanisms of EC barrier failure. This study provides, for the first time, a comparative analysis of two alternative mechanisms of vascular endothelial barrier dysfunction and defines a specific role for vinculin in the contractile type of permeability response.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alok S Shah
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Grzegorz Gawlak
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Nicolene Sarich
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Birukova AA, Shah AS, Tian Y, Moldobaeva N, Birukov KG. Dual role of vinculin in barrier-disruptive and barrier-enhancing endothelial cell responses. Cell Signal 2016; 28:541-51. [PMID: 26923917 DOI: 10.1016/j.cellsig.2016.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 01/31/2023]
Abstract
Endothelial cell (EC) barrier disruption induced by edemagenic agonists such as thrombin is a result of increased actomyosin contraction and enforcement of focal adhesions (FA) anchoring contracting stress fibers, which leads to cell retraction and force-induced disruption of cell junctions. In turn, EC barrier enhancement by oxidized phospholipids (OxPAPC) and other agonists is a result of increased tethering forces due to enforcement of the peripheral actin rim and enhancement of cell-cell adherens junction (AJ) complexes promoting EC barrier integrity. This study tested participation of the mechanosensitive adaptor, vinculin, which couples FA and AJ to actin cytoskeleton, in control of the EC permeability response to barrier disruptive (thrombin) and barrier enhancing (OxPAPC) stimulation. OxPAPC and thrombin induced different patterns of FA remodeling. Knockdown of vinculin attenuated both, OxPAPC-induced decrease and thrombin-induced increase in EC permeability. Thrombin stimulated the vinculin association with FA protein talin and suppressed the interaction with AJ protein, VE-cadherin. In contrast, OxPAPC stimulated the vinculin association with VE-cadherin. Thrombin and OxPAPC induced different levels of myosin light chain (MLC) phosphorylation and caused different patterns of intracellular phospho-MLC distribution. Thrombin-induced talin-vinculin and OxPAPC-induced VE-cadherin-vinculin association were abolished by myosin inhibitor blebbistatin. Expression of the vinculin mutant unable to interact with actin attenuated EC permeability changes and MLC phosphorylation caused by both, thrombin and OxPAPC. These data suggest that the specific vinculin interaction with FA or AJ in different contexts of agonist stimulation is defined by development of regional actyomyosin-based tension and participates in both, the barrier-disruptive and barrier-enhancing endothelial responses.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alok S Shah
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yufeng Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nurgul Moldobaeva
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
17
|
Dumbauld DW, García AJ. A helping hand: How vinculin contributes to cell-matrix and cell-cell force transfer. Cell Adh Migr 2015; 8:550-7. [PMID: 25482640 DOI: 10.4161/cam.29139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures-including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other-that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction-mediated by vinculin's autoinhibitory head-tail interaction-allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell's ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell-cell junctions, further underscoring the importance of this protein. Using our lab's recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.
Collapse
Affiliation(s)
- David W Dumbauld
- a Woodruff School of Mechanical Engineering; Georgia Institute of Technology ; Atlanta , GA USA
| | | |
Collapse
|
18
|
Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. SOFT MATTER 2015; 11:4584-4591. [PMID: 25891371 DOI: 10.1039/c4sm02718c] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
Collapse
Affiliation(s)
- Fabian M Hecht
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Nicolas Schierbaum
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Wolfgang H Goldmann
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Soon CF, Tee KS, Youseffi M, Denyer MCT. Tracking traction force changes of single cells on the liquid crystal surface. BIOSENSORS-BASEL 2015; 5:13-24. [PMID: 25808839 PMCID: PMC4384078 DOI: 10.3390/bios5010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.
Collapse
Affiliation(s)
- Chin Fhong Soon
- Biosensor and Bioengineering Laboratory, MiNT-SRC, Universiti Tun Hussein Onn Malaysia, 83000 Batu Pahat, Malaysia.
| | - Kian Sek Tee
- Biosensor and Bioengineering Laboratory, MiNT-SRC, Universiti Tun Hussein Onn Malaysia, 83000 Batu Pahat, Malaysia.
| | - Mansour Youseffi
- School of Engineering, Design and Technology-Medical Engineering, University of Bradford, BD7 1DP Bradford, UK.
| | - Morgan C T Denyer
- School of Medical Sciences, University of Bradford, BD7 1DP Bradford, UK.
| |
Collapse
|
20
|
Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: The emerging role of p130Cas. Eur J Cell Biol 2014; 93:445-54. [DOI: 10.1016/j.ejcb.2014.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
|
21
|
Liang Q, Han Q, Huang W, Nan G, Xu BQ, Jiang JL, Chen ZN. HAb18G/CD147 regulates vinculin-mediated focal adhesion and cytoskeleton organization in cultured human hepatocellular carcinoma cells. PLoS One 2014; 9:e102496. [PMID: 25033086 PMCID: PMC4102505 DOI: 10.1371/journal.pone.0102496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Focal adhesions (FAs), integrin-mediated macromolecular complexes located at the cell membrane extracellular interface, have been shown to regulate cell adhesion and migration. Our previous studies have indicated that HAb18G/CD147 (CD147) is involved in cytoskeleton reorganization and FA formation in human hepatocellular carcinoma (HCC) cells. However, the precise mechanisms underlying these processes remain unclear. In the current study, we determined that CD147 was involved in vinculin-mediated FA focal adhesion formation in HCC cells. We also found that deletion of CD147 led to reduced vinculin-mediated FA areas (P<0.0001), length/width ratios (P<0.0001), and mean intensities (P<0.0001). CD147 promoted lamellipodia formation by localizing Arp2/3 to the leading edge of the cell. Deletion of CD147 significantly reduced the fluorescence (t1/2) recovery times (22.7±3.3 s) of vinculin-mediated focal adhesions (P<0.0001). In cell-spreading assays, CD147 was found to be essential for dynamic focal adhesion enlargement and disassembly. Furthermore, the current data showed that CD147 reduced tyrosine phosphorylation in vinculin-mediated focal adhesions, and enhanced the accumulation of the acidic phospholipid phosphatidylinositol-4, 5-bisphosphate (PIP2). Together, these results revealed that CD147 is involved in vinculin-mediated focal adhesion formation, which subsequently promotes cytoskeleton reorganization to facilitate invasion and migration of human HCC cells.
Collapse
Affiliation(s)
- Qiang Liang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’ an, Shaanxi, China
| | - Wan Huang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gang Nan
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bao-Qing Xu
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian-Li Jiang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| |
Collapse
|
22
|
Auernheimer V, Goldmann WH. Serine phosphorylation on position 1033 of vinculin impacts cellular mechanics. Biochem Biophys Res Commun 2014; 450:1095-8. [DOI: 10.1016/j.bbrc.2014.06.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
|
23
|
Bonakdar N, Schilling A, Lennert P, Spörrer M, Gerum RC, Alonso JL, Goldmann WH. Measuring mechanical properties in cells: three easy methods for biologists. Cell Biol Int 2014; 38:1227-32. [PMID: 24803101 DOI: 10.1002/cbin.10303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Navid Bonakdar
- Department of Physics, Biophysics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Yamashita H, Ichikawa T, Matsuyama D, Kimura Y, Ueda K, Craig SW, Harada I, Kioka N. Interaction of the vinculin proline-rich linker region with vinexin α in sensing extracellular matrix stiffness. J Cell Sci 2014; 127:1875-86. [DOI: 10.1242/jcs.133645] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although extracellular matrix (ECM) stiffness is an important factor of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL region-binding protein vinexin are involved in sensing stiffness of ECM substrates. A rigid substrate increases cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these regulations. Furthermore, vinexin depletion impaired the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin α plays a critical role in sensing ECM stiffness and mechanotransduction.
Collapse
|
25
|
|
26
|
Huang Y, Day RN, Gunst SJ. Vinculin phosphorylation at Tyr1065 regulates vinculin conformation and tension development in airway smooth muscle tissues. J Biol Chem 2013; 289:3677-88. [PMID: 24338477 DOI: 10.1074/jbc.m113.508077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vinculin localizes to membrane adhesion junctions in smooth muscle tissues, where its head domain binds to talin and its tail domain binds to filamentous actin, thus linking actin filaments to the extracellular matrix. Vinculin can assume a closed conformation, in which the head and tail domains bind to each other and mask the binding sites for actin and talin, and an open activated conformation that exposes the binding sites for talin and actin. Acetylcholine stimulation of tracheal smooth muscle tissues induces the recruitment of vinculin to the cell membrane and its interaction with talin and actin, which is required for active tension development. Vinculin phosphorylation at Tyr(1065) on its C terminus increases concurrently with tension development in tracheal smooth muscle tissues. In the present study, the role of vinculin phosphorylation at Tyr(1065) in regulating the conformation and function of vinculin during airway smooth muscle contraction was evaluated. Vinculin constructs with point mutations at Tyr(1065) (vinculin Y1065F and vinculin Y1065E) and vinculin conformation-sensitive FRET probes were expressed in smooth muscle tissues to determine how Tyr(1065) phosphorylation affects smooth muscle contraction and the conformation and cellular functions of vinculin. The results show that vinculin phosphorylation at tyrosine 1065 is required for normal tension generation in airway smooth muscle during contractile stimulation and that Tyr(1065) phosphorylation regulates the conformation and scaffolding activity of the vinculin molecule. We conclude that the phosphorylation of vinculin at tyrosine 1065 provides a mechanism for regulating the function of vinculin in airway smooth muscle in response to contractile stimulation.
Collapse
Affiliation(s)
- Youliang Huang
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | | | | |
Collapse
|
27
|
CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 2013; 71:727-44. [PMID: 23974298 PMCID: PMC3901934 DOI: 10.1007/s00018-013-1450-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.
Collapse
|
28
|
Abstract
The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology.
Collapse
|
29
|
Aliuos P, Sen A, Reich U, Dempwolf W, Warnecke A, Hadler C, Lenarz T, Menzel H, Reuter G. Inhibition of fibroblast adhesion by covalently immobilized protein repellent polymer coatings studied by single cell force spectroscopy. J Biomed Mater Res A 2013; 102:117-27. [PMID: 23596088 DOI: 10.1002/jbm.a.34686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 01/16/2023]
Abstract
Cochlea implants (CI) restore the hearing in patients with sensorineural hearing loss by electrical stimulation of the auditory nerve via an electrode array. The increase of the impedance at the electrode-tissue interface due to a postoperative connective tissue encapsulation leads to higher power consumption of the implants. Therefore, reduced adhesion and proliferation of connective tissue cells around the CI electrode array is of great clinical interest. The adhesion of cells to substrate surfaces is mediated by extracellular matrix (ECM) proteins. Protein repellent polymers (PRP) are able to inhibit unspecific protein adsorption. Thus, a reduction of cell adhesion might be achieved by coating the electrode carriers with PRPs. The aim of this study was to investigate the effects of two different PRPs, poly(dimethylacrylamide) (PDMAA) and poly(2-ethyloxazoline) (PEtOx), on the strength and the temporal dynamics of the initial adhesion of fibroblasts. Polymers were immobilized onto glass plates by a photochemical grafting onto method. Water contact angle measurements proved hydrophilic surface properties of both PDMAA and PEtOx (45 ± 1° and 44 ± 1°, respectively). The adhesion strength of NIH3T3 fibroblasts after 5, 30, and 180 s of interaction with surfaces was investigated by using single cell force spectroscopy. In comparison to glass surfaces, both polymers reduced the adhesion of fibroblasts significantly at all different interaction times and lower dynamic rates of adhesion were observed. Thus, both PDMAA and PEtOx represented antiadhesive properties and can be used as implant coatings to reduce the unspecific ECM-mediated adhesion of fibroblasts to surfaces.
Collapse
Affiliation(s)
- Pooyan Aliuos
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goldmann WH, Auernheimer V, Thievessen I, Fabry B. Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 2013; 37:397-405. [PMID: 23494917 DOI: 10.1002/cbin.10064] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein, vinculin, is important for transmitting mechanical forces and orchestrating mechanical signalling events. Deregulation of vinculin results in altered cell adhesion, contractility, motility and growth, all of which are important processes in cancer metastasis. This review summarises recent reports on the role of vinculin in cellular force generation and signalling, and discusses implications for a role of vinculin in promoting cancer cell migration in 3D environments.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
31
|
Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 2013; 341:80-96. [PMID: 23376253 DOI: 10.1016/j.canlet.2013.01.042] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/12/2022]
Abstract
Cancer cells undergo genetic changes allowing their adaptation to environmental changes, thereby obtaining an advantage during the long metastatic route, disseminated of several changes in the surrounding environment. In particular, plasticity in cell motility, mainly due to epigenetic regulation of cancer cells by environmental insults, engage adaptive strategies aimed essentially to survive in hostile milieu, thereby escaping adverse sites. This review is focused on tumor microenvironment as a collection of structural and cellular elements promoting plasticity and adaptive programs. We analyze the role of extracellular matrix stiffness, hypoxia, nutrient deprivation, acidity, as well as different cell populations of tumor microenvironment.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | |
Collapse
|
32
|
Golji J, Wendorff T, Mofrad MRK. Phosphorylation primes vinculin for activation. Biophys J 2012; 102:2022-30. [PMID: 22824265 DOI: 10.1016/j.bpj.2012.01.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 12/29/2011] [Accepted: 01/31/2012] [Indexed: 01/13/2023] Open
Abstract
Vinculin phosphorylation has been implicated as a potential mechanism for focal adhesion growth and maturation. Four vinculin residues-Y100, S1033, S1045, and Y1065-are phosphorylated by kinases during focal adhesion maturation. In this study, phosphorylation at each of these residues is simulated using molecular dynamics models. The simulations demonstrate that once each phosphorylated vinculin structure is at equilibrium, significant local conformational changes result that may impact either vinculin activation or vinculin binding to actin and PIP2. Simulation of vinculin activation after phosphorylation shows that the added phosphoryl groups can prime vinculin for activation. It remains to be seen if vinculin can be phosphorylated at S1033 in vivo, but these simulations highlight that in the event of a S1033 phophorylation vinculin will likely be primed for activation.
Collapse
Affiliation(s)
- Javad Golji
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
33
|
Viale-Bouroncle S, Gosau M, Küpper K, Möhl C, Brockhoff G, Reichert TE, Schmalz G, Ettl T, Morsczeck C. Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Differentiation 2012; 84:366-370. [PMID: 23142732 DOI: 10.1016/j.diff.2012.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Abstract
Stem cell fate can be induced by the grade of stiffness of the extracellular matrix, depending on the developed tissue or complex tissues. For example, a rigid extracellular matrix induces the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs), while a softer surface induces the osteogenic differentiation in dental follicle cells (DFCs). To determine whether differentiation of ectomesenchymal dental precursor cells is supported by similar grades of extracellular matrices (ECMs) stiffness, we examined the influence of the surface stiffness on the proliferation and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Cell proliferation of SHED was significantly decreased on cell culture surfaces with a muscle-like stiffness. A dexamethasone-based differentiation medium induced the osteogenic differentiation of SHED on substrates of varying mechanical stiffness. Here, the hardest surface improved the induction of osteogenic differentiation in comparison to that with the softest stiffness. In conclusion, our study showed that the osteogenic differentiation of ectomesenchymal dental precursor cells SHED and DFCs are not supported by similar grades of ECM stiffness.
Collapse
|
34
|
Schäfer C, Rymarczyk G, Ding L, Kirber MT, Bolotina VM. Role of molecular determinants of store-operated Ca(2+) entry (Orai1, phospholipase A2 group 6, and STIM1) in focal adhesion formation and cell migration. J Biol Chem 2012; 287:40745-57. [PMID: 23043102 DOI: 10.1074/jbc.m112.407155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Store-operated Ca(2+) entry is important for cell migration. RESULTS This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration. CONCLUSION Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly. SIGNIFICANCE Results uncovered new parameters of Orai1, STIM1, and PLA2g6 involvement in cell migration. Store-operated Ca(2+) entry and its major determinants are known to be important for cell migration, but the mechanism of their involvement in this complex process is unknown. This study presents a detailed characterization of distinct roles of Orai1, STIM1, and PLA2g6 in focal adhesion (FA) formation and migration. Using HEK293 cells, we discovered that although molecular knockdown of Orai1, STIM1, or PLA2g6 resulted in a similar reduction in migration velocity, there were profound differences in their effects on number, localization, and lifetime of FAs. Knockdown of STIM1 caused an increase in lifetime and number of FAs, their redistribution toward lamellae region, and an increase in cell tail length. In contrast, the number of FAs in Orai1- or PLA2g6-deficient cells was significantly reduced, and FAs accumulated closer to the leading edge. Assembly rate and Vinculin phosphorylation of FAs was similarly reduced in Orai1, PLA2g6, or STIM1-deficient cells. Although Orai1 and PLA2g6 accumulated and co-localized at the leading edge, STIM1 distribution was more complex. We found STIM1 protrusions in lamellipodia, which co-localized with FAs, whereas major accumulation could be seen in central and retracting parts of the cell. Interestingly, knockdown of Orai1 and PLA2g6 produced similar and non-additive effect on migration, whereas knockdown of STIM1 simultaneously with either Orai1 or PLA2g6 produced additional inhibition. Together these data suggest that although Orai1, PLA2g6, and STIM1 play major roles in formation of new FAs at the leading edge, STIM1 may also be involved in Orai1- and PLA2g6-independent disassembly of FAs in the back of cells.
Collapse
Affiliation(s)
- Claudia Schäfer
- Ion Channel and Calcium Signaling Unit, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
35
|
Le Dévédec SE, Geverts B, de Bont H, Yan K, Verbeek FJ, Houtsmuller AB, van de Water B. The residence time of focal adhesion kinase (FAK) and paxillin at focal adhesions in renal epithelial cells is determined by adhesion size, strength and life cycle status. J Cell Sci 2012; 125:4498-506. [PMID: 22767508 DOI: 10.1242/jcs.104273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and enable cell proliferation, survival and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is unclear. We have used photobleaching assays of whole cells to determine the protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffuse cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.
Collapse
Affiliation(s)
- Sylvia E Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, Gorlaeus Laboratoria, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Development of a novel liquid crystal based cell traction force transducer system. Biosens Bioelectron 2012; 39:14-20. [PMID: 22809522 DOI: 10.1016/j.bios.2012.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
Keratinocyte traction forces play a crucial role in wound healing. The aim of this study was to develop a novel cell traction force (CTF) transducer system based on cholesteryl ester liquid crystals (LC). Keratinocytes cultured on LC induced linear and isolated deformation lines in the LC surface. As suggested by the fluorescence staining, the deformation lines appeared to correlate with the forces generated by the contraction of circumferential actin filaments which were transmitted to the LC surface via the focal adhesions. Due to the linear viscoelastic behavior of the LC, Hooke's equation was used to quantify the CTFs by associating Young's modulus of LC to the cell induced stresses and biaxial strain in forming the LC deformation. Young's modulus of the LC was profiled by using spherical indentation and determined at approximately 87.1±17.2kPa. A new technique involving cytochalasin-B treatment was used to disrupt the intracellular force generating actin fibers, and consequently the biaxial strain in the LC induced by the cells was determined. Due to the improved sensitivity and spatial resolution (∼1μm) of the LC based CTF transducer, a wide range of CTFs was determined (10-120nN). These were found to be linearly proportional to the length of the deformations. The linear relationship of CTF-deformations was then applied in a bespoke CTF mapping software to estimate CTFs and to map CTF fields. The generated CTF map highlighted distinct distributions and different magnitude of CTFs were revealed for polarized and non-polarized keratinocytes.
Collapse
|
37
|
|
38
|
Mierke CT. The biomechanical properties of 3d extracellular matrices and embedded cells regulate the invasiveness of cancer cells. Cell Biochem Biophys 2012; 61:217-36. [PMID: 21516307 DOI: 10.1007/s12013-011-9193-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The malignancy of tumors depends on the biomechanical properties of cancer cells and their microenvironment, which enable cancer cells to migrate through the connective tissue, transmigrate through basement membranes and endothelial monolayers and form metastases in targeted organs. The current focus of cancer research is still based on biological capabilities such as molecular genetics and gene signaling, but these approaches ignore the mechanical nature of the invasion process of cancer cells. This review will focus on how structural, biochemical and mechanical properties of extracellular matrices (ECMs), and adjacent cells regulate the invasiveness of cancer cells. In addition, it presents how cancer cells create their own microenvironment by restructuring of the ECM and by interaction with stromal cells, which then further contribute to the progression of cancer disease. Finally, this review will point out that mechanical properties are a critical determinant for the efficiency of cancer cell invasion and the progression of cancer which might affect the future development of new cancer treatments.
Collapse
Affiliation(s)
- Claudia T Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
39
|
Vinculin motion modes analysis with elastic network model. Int J Mol Sci 2012; 13:208-20. [PMID: 22312248 PMCID: PMC3269682 DOI: 10.3390/ijms13010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022] Open
Abstract
Vinculin is an important protein for the linkage between adhesion molecules and the actin cytoskeleton. The activation mechanism of vinculin is still controversial. In order to provide useful information for a better understanding of its activation, we analyze the motion mode of vinculin with elastic network model in this work. The results show that, to some extent, the five domains will present structural rigidity in the motion process. The differences between the structure fluctuations of these domains are significant. When vinculin interacted with other partners, the central long alpha-helix of the first domain becomes bent. This bending deformation can weaken the interaction between the first domain and the tail domain. This motion mode of the first domain is in good agreement with the information extracted from some realistic complex structures. With the aid of the anisotropy elastic network mode, we analyze the motion directions of these domains. The fourth domain has a rotational motion. This rotation is favorable for the releasing of the tail domain from the pincer-like clamp, which is formed by the first and the third domain. All these motion modes are an inherent feature of the structure, and these modes mainly depend on the topology character of the structure.
Collapse
|
40
|
Möhl C, Kirchgessner N, Schäfer C, Hoffmann B, Merkel R. Quantitative mapping of averaged focal adhesion dynamics in migrating cells by shape normalization. J Cell Sci 2012; 125:155-65. [PMID: 22250204 DOI: 10.1242/jcs.090746] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The spatially ordered formation and disassembly of focal adhesions is a basic requirement for effective cell locomotion. Because focal adhesions couple the contractile actin-myosin network to the substrate, their distribution determines the pattern of traction forces propelling the cell in a certain direction. In the present study, we quantitatively analyzed the spatial patterning of cell-substrate adhesion in migrating cells by mapping averaged focal adhesion growth dynamics to a standardized cell coordinate system. These maps revealed distinct zones of focal adhesion assembly, disassembly and stability and were strongly interrelated with corresponding actin flow and traction force patterns. Moreover, the mapping technique enables precise detection of even minute responses of adhesion dynamics upon targeted signaling perturbations. For example, the partial inhibition of vinculin phosphorylation was followed by the reduced number of newly formed adhesions, whereas growth dynamics of existing adhesions remained unaffected.
Collapse
Affiliation(s)
- Christoph Möhl
- Institute of Complex Systems, ICS7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | |
Collapse
|
41
|
Faust U, Hampe N, Rubner W, Kirchgeßner N, Safran S, Hoffmann B, Merkel R. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS One 2011; 6:e28963. [PMID: 22194961 PMCID: PMC3241701 DOI: 10.1371/journal.pone.0028963] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 11/18/2011] [Indexed: 01/16/2023] Open
Abstract
Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.
Collapse
Affiliation(s)
- Uta Faust
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nico Hampe
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Rubner
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Norbert Kirchgeßner
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sam Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7, Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
42
|
Niediek V, Born S, Hampe N, Kirchgessner N, Merkel R, Hoffmann B. Cyclic stretch induces reorientation of cells in a Src family kinase- and p130Cas-dependent manner. Eur J Cell Biol 2011; 91:118-28. [PMID: 22178114 DOI: 10.1016/j.ejcb.2011.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 10/23/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g. around blood vessels, within the lung epithelia or around the intestine, is cyclic stretch. As a response, many cell types reorient their actin cytoskeleton and main cell axis almost perpendicular to the direction of stretch. Despite the vital necessity of cellular adaptation to cyclic stretch, the underlying mechanosensory signal cascades are far from being understood. Here we show an important function of Src-family kinase activity in cellular reorientation upon cyclic stretch. Deletion of all three family members, namely c-Src, Yes and Fyn (SYF), results in a strongly impaired cell reorientation of mouse embryonic fibroblasts with an only incomplete reorientation upon expression of c-Src. We further demonstrate that this reorientation phenotype of SYF-depleted cells is not caused by affected protein exchange dynamics within focal adhesions or altered cell force generation. Instead, Src-family kinases regulate the reorientation in a mechanotransduction-dependent manner, since knock-down and knock-out of p130Cas, a putative stretch sensor known to be phosphorylated by Src-family kinases, also reduce cellular reorientation upon cyclic stretch. This impaired reorientation is identical in intensity upon mutating stretch-sensitive tyrosines of p130Cas only. These statistically highly significant data pinpoint early events in a Src family kinase- and p130Cas-dependent mechanosensory/mechanotransduction pathway.
Collapse
Affiliation(s)
- Verena Niediek
- Institute of Complex Systems 7, Biomechanics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Janoštiak R, Tolde O, Brůhová Z, Novotný M, Hanks SK, Rösel D, Brábek J. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol Biol Cell 2011; 22:4256-67. [PMID: 21937722 PMCID: PMC3216652 DOI: 10.1091/mbc.e11-03-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Crk-associated substrate (CAS) Tyr-12 phosphorylation has an important role in ligand binding, CAS localization, turnover of adhesion structures, migration, and invasiveness. CAS Tyr-12 phosphorylation thus possibly represents a novel regulatory mechanism by which CAS-mediated signaling could trigger different cellular responses. Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein–tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas–/– mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.
Collapse
Affiliation(s)
- Radoslav Janoštiak
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang W, Sakamoto N, Hanamura K, Miyazawa R, Sato M. Role of Intercellular Junctions in Redistribution of Focal Adhesions and Orientation of Vascular Endothelial Cells Exposed to Cyclic Stretching. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0194-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
45
|
Viale-Bouroncle S, Völlner F, Möhl C, Küpper K, Brockhoff G, Reichert TE, Schmalz G, Morsczeck C. Soft matrix supports osteogenic differentiation of human dental follicle cells. Biochem Biophys Res Commun 2011; 410:587-592. [PMID: 21684253 DOI: 10.1016/j.bbrc.2011.06.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/09/2023]
Abstract
The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.
Collapse
Affiliation(s)
- Sandra Viale-Bouroncle
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Singh P, Gan CS, Guo T, Phang HQ, Sze SK, Koh CG. Investigation of POPX2 phosphatase functions by comparative phosphoproteomic analysis. Proteomics 2011; 11:2891-900. [PMID: 21656682 DOI: 10.1002/pmic.201100044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Identifying the substrates and biochemical pathway regulated by phosphatases has always been more challenging than finding those regulated by kinases. Here, we report the use of phosphoproteomic methods to analyse the pathways regulated by POPX2 (partner of PIX 2) phosphatase. POPX2 is a serine/threonine phosphatase, found in many cancer types. The levels of the POPX2 have been found to be up-regulated in the more invasive breast cancer cells compared with non-invasive ones. Our observations also suggest that POPX2 level is positively correlated with cell motility. Thus, finding substrates or pathways regulated by POPX2 will help to elucidate the regulatory mechanism of cancer cell motility and invasiveness. We have also developed and validated a protocol using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) to enrich the phosphopeptides followed by LC-MS/MS to allow comparison between the phosphoproteomes of control and POPX2 overexpressing cells. With this approach, we were able to identify a biochemical pathway through which POPX2 exerts its apparent cellular function: the regulation of activity of glycogen synthase kinase-3, which in turn modulates extracellular signal-regulated kinase and cell motility.
Collapse
Affiliation(s)
- Pritpal Singh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | |
Collapse
|
47
|
Diez G, Auernheimer V, Fabry B, Goldmann WH. Head/tail interaction of vinculin influences cell mechanical behavior. Biochem Biophys Res Commun 2011; 406:85-8. [PMID: 21295550 DOI: 10.1016/j.bbrc.2011.01.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 01/13/2023]
Abstract
This study evaluates the influence of vinculin in closed conformation on the mechanical properties of cells. We demonstrate that MEFvin(-/-) cells transfected with the eGFP-vinculin mutant A50I (talin-binding-deficient-vinculin in a constitutively closed conformation) show 2-fold lower stiffness and focal adhesion density compared to MEFvin(+/+) and MEF(Rescue) cells. MEF(A50I) cells are as stiff as MEFvin(-/-) cells with similar focal adhesion density. Further, 2D traction microscopy indicates that MEF(A50I) and MEFvin(-/-) cells generate 3- to 4-fold less strain energy than MEFvin(+/+) and MEF(Rescue) cells. These results demonstrate that vinculin's mechano-coupling function is dependent on its conformational state.
Collapse
Affiliation(s)
- Gerold Diez
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen, Germany
| | | | | | | |
Collapse
|
48
|
Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J, Takeda K, Rondé P. FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Mol Biol Cell 2011; 22:964-75. [PMID: 21289086 PMCID: PMC3069021 DOI: 10.1091/mbc.e10-08-0725] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FAK plays a key role in the regulation of cell migration. The authors show that the phosphorylation status of FAK at Tyr-925 is involved in FA turnover, formation of FAs, and increase in cell edge protrusion, together with activation of the p130CAS/Rac1 signaling pathway. Cell migration is a highly complex process that requires the coordinated formation of membrane protrusion and focal adhesions (FAs). Focal adhesion kinase (FAK), a major signaling component of FAs, is involved in the disassembly process of FAs through phosphorylation and dephosphorylation of its tyrosine residues, but the role of such phosphorylations in nascent FA formation and turnover near the cell front and in cell protrusion is less well understood. In the present study, we demonstrate that, depending on the phosphorylation status of Tyr-925 residue, FAK modulates cell migration via two specific mechanisms. FAK−/− mouse embryonic fibroblasts (MEFs) expressing nonphosphorylatable Y925F-FAK show increased interactions between FAK and unphosphorylated paxillin, which lead to FA stabilization and thus decreased FA turnover and reduced cell migration. Conversely, MEFs expressing phosphomimetic Y925E-FAK display unchanged FA disassembly rates, show increase in phosphorylated paxillin in FAs, and exhibit increased formation of nascent FAs at the cell leading edges. Moreover, Y925E-FAK cells present enhanced cell protrusion together with activation of the p130CAS/Dock180/Rac1 signaling pathway. Together, our results demonstrate that phosphorylation of FAK at Tyr-925 is required for FAK-mediated cell migration and cell protrusion.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213, Centre National de la Recherche Scientifique, and Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
New insights into vinculin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:191-231. [PMID: 21414589 DOI: 10.1016/b978-0-12-386043-9.00005-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vinculin is a cytoplasmic actin-binding protein enriched in focal adhesions and adherens junctions that is essential for embryonic development. Much is now known regarding the role of vinculin in governing cell-matrix adhesion. In the past decade that the crystal structure of vinculin and the molecular details for how vinculin regulates adhesion events have emerged. The recent data suggests a critical function for vinculin in regulating integrin clustering, force generation, and strength of adhesion. In addition to an important role in cell-matrix adhesion, vinculin is also emerging as a regulator of apoptosis, Shigella entry into host cells, and cadherin-based cell-cell adhesion. A close inspection of this work reveals that there are similarities between vinculin's role in focal adhesions and these processes and also some intriguing differences.
Collapse
|
50
|
Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal 2010; 8:22. [PMID: 20822526 PMCID: PMC2941745 DOI: 10.1186/1478-811x-8-22] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/07/2010] [Indexed: 12/13/2022] Open
Abstract
During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.
Collapse
Affiliation(s)
- Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|