1
|
Redway A, Spry C, Brown A, Wiedemann U, Fathoni I, Garnie LF, Qiu D, Egan TJ, Lehane AM, Jackson Y, Saliba KJ, Downer-Riley N. Discovery of antiplasmodial pyridine carboxamides and thiocarboxamides. Int J Parasitol Drugs Drug Resist 2024; 25:100536. [PMID: 38663046 PMCID: PMC11068522 DOI: 10.1016/j.ijpddr.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit β-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.
Collapse
Affiliation(s)
- Alexa Redway
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica; Chemistry Divison, University of Technology, 237 Old Hope Road, Kingston 6, Jamaica
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ainka Brown
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Ursula Wiedemann
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Deyun Qiu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yvette Jackson
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nadale Downer-Riley
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
2
|
Chang B, Xu Q, Guo H, Zhong M, Shen R, Zhao L, Zhao J, Ma T, Chu Y, Zhang J, Fang J. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J Med Chem 2023; 66:3250-3261. [PMID: 36855911 DOI: 10.1021/acs.jmedchem.2c01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.
Collapse
Affiliation(s)
- Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hairui Guo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 453100, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yajun Chu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
3
|
Gonciarz RL, Sakhamuri S, Hooshdaran N, Kumar G, Kim H, Evans MJ, Renslo AR. Elevated labile iron in castration-resistant prostate cancer is targetable with ferrous iron-activatable antiandrogen therapy. Eur J Med Chem 2023; 249:115110. [PMID: 36708680 PMCID: PMC10210592 DOI: 10.1016/j.ejmech.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Clinical responses to second generation androgen signaling inhibitors (e.g., enzalutamide) in metastatic castration-resistant prostate cancer (mCRPC) are variable and transient, and are associated with dose limiting toxicities, including rare but severe CNS effects. We hypothesized that changes to iron metabolism coincident with more advanced disease might be leveraged for tumor-selective delivery of antiandrogen therapy. Using the recently described chemical probes SiRhoNox and 18F-TRX in mCRPC models, we found elevated Fe2+ to be a common feature of mCRPC in vitro and in vivo. We next synthesized ferrous-iron activatable drug conjugates of second and third-generation antiandrogens and found these conjugates possessed comparable or enhanced antiproliferative activity across mCRPC cell line models. Mouse pharmacokinetic studies showed that these prototype antiandrogen conjugates are stable in vivo and limited exposure to conjugate or free antiandrogen in the brain. Our results reveal elevated Fe2+ to be a feature of mCRPC that might be leveraged to improve the tolerability and efficacy of antiandrogen therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Nima Hooshdaran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Garima Kumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Hyunjung Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| |
Collapse
|
4
|
1-(2-Benzyl-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octan-2-yl)ethan-1-ol. MOLBANK 2022. [DOI: 10.3390/m1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The title compound, 1-(2-Benzyl-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octan-2-yl)ethan-1-ol, was synthesized for the first time by the selective reduction in keto ozonide under the action of the strong reducing agent LiAlH4. The product was characterized by NMR, IR, HRMS, and elemental analysis.
Collapse
|
5
|
Herrmann L, Yaremenko IA, Çapcı A, Struwe J, Tailor D, Dheeraj A, Hodek J, Belyakova YY, Radulov PS, Weber J, Malhotra SV, Terent'ev AO, Ackermann L, Tsogoeva SB. Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer. ChemMedChem 2022; 17:e202200005. [PMID: 35187791 PMCID: PMC9086992 DOI: 10.1002/cmdc.202200005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/24/2022]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Dhanir Tailor
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Arpit Dheeraj
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Sanjay V. Malhotra
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- German Center for Cardiovascular Research (DZHK)Potsdamer Str. 5810785BerlinGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
6
|
Yaremenko IA, Radulov PS, Belyakova YY, Fomenkov DI, Tsogoeva SB, Terent’ev AO. Lewis Acids and Heteropoly Acids in the Synthesis of Organic Peroxides. Pharmaceuticals (Basel) 2022; 15:ph15040472. [PMID: 35455469 PMCID: PMC9025639 DOI: 10.3390/ph15040472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Organic peroxides are an important class of compounds for organic synthesis, pharmacological chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and (3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered in this review will be useful for specialists in the field of organic synthesis, reactions and processes of oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Dmitriy I. Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen–Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| |
Collapse
|
7
|
Fang J, Song F, Wang F. The antimalarial activity of 1,2,4-trioxolane/trioxane hybrids and dimers: A review. Arch Pharm (Weinheim) 2022; 355:e2200077. [PMID: 35388499 DOI: 10.1002/ardp.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/03/2023]
Abstract
Malaria, a mosquito-borne parasitic infection caused by protozoan parasites belonging to the genus Plasmodium, is a dangerous disease that contributes to millions of hospital visits and hundreds and thousands of deaths across the world, especially in Sub-Saharan Africa. Antimalarial agents are vital for treating malaria and controlling transmission, and 1,2,4-trioxolane/trioxane-containing agents, especially artemisinin and its derivatives, own antimalarial efficacy and low toxicity with unique mechanisms of action. Moreover, artemisinin-based combination therapies were recommended by the World Health Organization as the first-line treatment for uncomplicated malaria infection and have remained as the mainstay of the treatment of malaria, demonstrating that 1,2,4-trioxolane/trioxane derivatives are useful prototypes for the control and eradication of malaria. However, malaria parasites have already developed resistance to almost all of the currently available antimalarial agents, creating an urgent need for the search of novel pharmaceutical interventions for malaria. The purpose of this review article is to provide an emphasis on the current scenario (January 2012 to January 2022) of 1,2,4-trioxolane/trioxane hybrids and dimers with potential antimalarial activity and the structure-activity relationships are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Junman Fang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China.,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
8
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
9
|
Gonciarz RL, Renslo AR. Emerging role of ferrous iron in bacterial growth and host-pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Curr Opin Chem Biol 2021; 61:170-178. [PMID: 33714882 PMCID: PMC8106656 DOI: 10.1016/j.cbpa.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/27/2023]
Abstract
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host-pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Chen J, Gonciarz RL, Renslo AR. Expanded scope of Griesbaum co-ozonolysis for the preparation of structurally diverse sensors of ferrous iron. RSC Adv 2021; 11:34338-34342. [PMID: 35497286 PMCID: PMC9042324 DOI: 10.1039/d1ra05932g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/19/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Sterically shielded 1,2,4-trioxolanes prepared by Griesbaum co-ozonolysis have been utilized as chemical sensors of ferrous iron in several recently described chemical probes of labile iron. Here we report optimized conditions for co-ozonolysis that proceed efficiently and with high diastereoselectivity across an expanded range of substrates, and should enable a new generation of labile iron probes with altered reaction kinetics and physicochemical properties. Improved, low temperature conditions for Griesbaum co-ozonolysis enables the preparation of structurally diverse 1,2,4-trioxolane-based sensors of ferrous iron for caging of reporters and therapeutic payloads.![]()
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
11
|
Gonciarz RL, Collisson EA, Renslo AR. Ferrous Iron-Dependent Pharmacology. Trends Pharmacol Sci 2021; 42:7-18. [PMID: 33261861 PMCID: PMC7754709 DOI: 10.1016/j.tips.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The recent emergence of oxidation state selective probes of cellular iron has produced a more nuanced understanding of how cells utilize this crucial nutrient to empower enzyme function, and also how labile ferrous iron contributes to iron-dependent cell death (ferroptosis) and other disease pathologies including cancer, bacterial infections, and neurodegeneration. These findings, viewed in light of the Fenton chemistry promoted by ferrous iron, suggest a new category of therapeutics exhibiting ferrous iron-dependent pharmacology. While still in its infancy, this nascent field draws inspiration from the remarkable activity and tremendous clinical impact of the antimalarial artemisinin. Here, we review recent insights into the role of labile ferrous iron in biology and disease, and describe new therapeutic approaches designed to exploit this divalent transition metal.
Collapse
Affiliation(s)
- Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Eric A. Collisson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158,Correspondence:
| |
Collapse
|
12
|
Birrell GW, Challis MP, De Paoli A, Anderson D, Devine SM, Heffernan GD, Jacobus DP, Edstein MD, Siddiqui G, Creek DJ. Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum. Mol Cell Proteomics 2020; 19:308-325. [PMID: 31836637 PMCID: PMC7000111 DOI: 10.1074/mcp.ra119.001797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment.
Collapse
Affiliation(s)
- Geoffrey W Birrell
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Matthew P Challis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Amanda De Paoli
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Shane M Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | | | - Michael D Edstein
- Australian Defense Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
13
|
Iovan DA, Jia S, Chang CJ. Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry. Inorg Chem 2019; 58:13546-13560. [PMID: 31185541 PMCID: PMC8544879 DOI: 10.1021/acs.inorgchem.9b01221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Blank BR, Talukder P, Muir RK, Green ER, Skaar EP, Renslo AR. Targeting Mobilization of Ferrous Iron in Pseudomonas aeruginosa Infection with an Iron(II)-Caged LpxC Inhibitor. ACS Infect Dis 2019; 5:1366-1375. [PMID: 31140267 DOI: 10.1021/acsinfecdis.9b00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iron is essential to all life, and competition for this vital nutrient is central to host-pathogen interactions during infection. The opportunistic Gram-negative pathogen Pseudomonas aeruginosa utilizes a diverse array of iron-acquisition strategies, including those enabling import of extracellular ferrous iron. We hypothesize that soluble and redox-active ferrous iron can be employed to activate caged antibiotics at sites of infection in vivo. Here we describe new chemistry that expands the application of our laboratory's Fe2+-activated-prodrug chemistry to cage hydroxamic acids, a class of drugs that present manifold development challenges. We synthesize the caged form of a known LpxC inhibitor and show that it is efficacious in an acute P. aeruginosa mouse-lung infection model, despite showing little activity in cell-culture experiments. Overall, our results are consistent with the Fe2+-promoted uncaging of an antibacterial payload at sites of infection in an animal and lend support to recent reports indicating that extracellular pools of ferrous iron can be utilized by bacterial pathogens like P. aeruginosa during infection.
Collapse
Affiliation(s)
- Brian R. Blank
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Poulami Talukder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Ryan K. Muir
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Erin R. Green
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, Tennessee 37232, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Chung CYS, Timblin GA, Saijo K, Chang CJ. Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 2018; 140:6109-6121. [PMID: 29722974 PMCID: PMC6069982 DOI: 10.1021/jacs.8b02279] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) is a central reactive oxygen species (ROS) that contributes to diseases from obesity to cancer to neurodegeneration but is also emerging as an important signaling molecule. We now report a versatile histochemical approach for detection of H2O2 that can be employed across a broad range of cell and tissue specimens in both healthy and disease states. We have developed a first-generation H2O2-responsive analogue named Peroxymycin-1, which is based on the classic cell-staining molecule puromycin and enables covalent staining of biological samples and retains its signal after fixation. H2O2-mediated boronate cleavage uncages the puromycin aminonucleoside, which leaves a permanent and dose-dependent mark on treated biological specimens that can be detected with high sensitivity and precision through a standard immunofluorescence assay. Peroxymycin-1 is selective and sensitive enough to image both exogenous and endogenous changes in cellular H2O2 levels and can be exploited to profile resting H2O2 levels across a panel of cell lines to distinguish metastatic, invasive cancer cells from less invasive cancer and nontumorigenic counterparts, based on correlations with ROS status. Moreover, we establish that Peroxymycin-1 is an effective histochemical probe for in vivo H2O2 analysis, as shown through identification of aberrant elevations in H2O2 levels in liver tissues in a murine model of nonalcoholic fatty liver disease, thus demonstrating the potential of this approach for studying disease states and progression associated with H2O2. This work provides design principles that should enable development of a broader range of histochemical probes for biological use that operate via activity-based sensing.
Collapse
Affiliation(s)
- Clive Yik-Sham Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Greg A. Timblin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Lobo L, Cabral LIL, Sena MI, Guerreiro B, Rodrigues AS, de Andrade-Neto VF, Cristiano MLS, Nogueira F. New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum. Malar J 2018; 17:145. [PMID: 29615130 PMCID: PMC5883364 DOI: 10.1186/s12936-018-2281-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs. METHODS A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay. RESULTS The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3-71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration. CONCLUSION The investigated, trioxolane-tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.
Collapse
Affiliation(s)
- Lis Lobo
- Global Health and Tropical Medicine, GHTM, Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisbon, Portugal.,Laboratório de Biologia da Malária e Toxoplasmose, Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Lília I L Cabral
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, UAlg, Campus de Gambelas, 8005-139, Faro, Portugal.,Departmento de Química e Farmácia, Faculdade de Ciências e Tecnologia, FCT, Universidade do Algarve, Faro, Portugal
| | - Maria Inês Sena
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, UAlg, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bruno Guerreiro
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, UAlg, Campus de Gambelas, 8005-139, Faro, Portugal.,Departmento de Química e Farmácia, Faculdade de Ciências e Tecnologia, FCT, Universidade do Algarve, Faro, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Nova Medical School, Lisbon, Portugal
| | - Valter Ferreira de Andrade-Neto
- Laboratório de Biologia da Malária e Toxoplasmose, Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Maria L S Cristiano
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, UAlg, Campus de Gambelas, 8005-139, Faro, Portugal. .,Departmento de Química e Farmácia, Faculdade de Ciências e Tecnologia, FCT, Universidade do Algarve, Faro, Portugal.
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisbon, Portugal.
| |
Collapse
|
17
|
Spangler B, Kline T, Hanson J, Li X, Zhou S, Wells JA, Sato AK, Renslo AR. Toward a Ferrous Iron-Cleavable Linker for Antibody–Drug Conjugates. Mol Pharm 2018; 15:2054-2059. [DOI: 10.1021/acs.molpharmaceut.8b00242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Spangler
- Graduate Program in Chemistry & Chemical Biology, University of California, San Francisco, California 94143, United States
| | - Toni Kline
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Jeffrey Hanson
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Xiaofan Li
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | - Sihong Zhou
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | | | - Aaron K. Sato
- Sutro Biopharma, Inc., South San Francisco, California 94080, United States
| | | |
Collapse
|
18
|
Aron AT, Reeves AG, Chang CJ. Activity-based sensing fluorescent probes for iron in biological systems. Curr Opin Chem Biol 2018; 43:113-118. [PMID: 29306820 DOI: 10.1016/j.cbpa.2017.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022]
Abstract
Iron is an essential nutrient for life, and its capacity to cycle between different oxidation states is required for processes spanning oxygen transport and respiration to nucleotide synthesis and epigenetic regulation. However, this same redox ability also makes iron, if not regulated properly, a potentially dangerous toxin that can trigger oxidative stress and damage. New methods that enable monitoring of iron in living biological systems, particularly in labile Fe2+ forms, can help identify its contributions to physiology, aging, and disease. In this review, we summarize recent developments in activity-based sensing (ABS) probes for fluorescence Fe2+ detection.
Collapse
Affiliation(s)
- Allegra T Aron
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Audrey G Reeves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Spangler B, Fontaine SD, Shi Y, Sambucetti L, Mattis AN, Hann B, Wells JA, Renslo AR. A Novel Tumor-Activated Prodrug Strategy Targeting Ferrous Iron Is Effective in Multiple Preclinical Cancer Models. J Med Chem 2016; 59:11161-11170. [PMID: 27936709 PMCID: PMC5184369 DOI: 10.1021/acs.jmedchem.6b01470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Here we describe
a new approach for tumor targeting in which augmented
concentrations of Fe(II) in cancer cells and/or the tumor microenvironment
triggers drug release from an Fe(II)-reactive prodrug conjugate. The
1,2,4-trioxolane scaffold developed to enable this approach can in
principle be applied to a broad range of cancer therapeutics and is
illustrated here with Fe(II)-targeted forms of a microtubule toxin
and a duocarmycin-class DNA-alkylating agent. We show that the intrinsic
reactivity/toxicity of the duocarmycin analog is masked in the conjugated
form and this greatly reduced toxicity in mice. This in turn permitted
elevated dosing levels, leading to higher systemic exposure and a
significantly improved response in tumor xenograft models. Overall
our results suggest that Fe(II)-dependent drug delivery via trioxolane
conjugates could have significant utility in expanding the therapeutic
index of a range of clinical and preclinical stage cancer chemotherapeutics.
Collapse
Affiliation(s)
- Benjamin Spangler
- Graduate Program in Chemistry and Chemical Biology, University of California-San Francisco , San Francisco, California 94158, United States.,Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94158, United States
| | - Shaun D Fontaine
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94158, United States
| | - Yihui Shi
- SRI International , Menlo Park, California 94025-3493, United States
| | - Lidia Sambucetti
- SRI International , Menlo Park, California 94025-3493, United States
| | | | - Byron Hann
- Preclinical Therapeutic Core, University of California-San Francisco , San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California-San Francisco , San Francisco, California 94158, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
20
|
Aron AT, Loehr MO, Bogena J, Chang CJ. An Endoperoxide Reactivity-Based FRET Probe for Ratiometric Fluorescence Imaging of Labile Iron Pools in Living Cells. J Am Chem Soc 2016; 138:14338-14346. [PMID: 27768321 PMCID: PMC5749882 DOI: 10.1021/jacs.6b08016] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Iron is essential for sustaining
life, as its ability to cycle
between multiple oxidation states is critical for catalyzing chemical
transformations in biological systems. However, without proper regulation,
this same redox capacity can trigger oxidative stress events that
contribute to aging along with diseases ranging from cancer to cardiovascular
and neurodegenerative disorders. Despite its importance, methods for
monitoring biological iron bound weakly to cellular ligands−the
labile iron pool−to generate a response that preserves spatial
and temporal information remain limited, owing to the potent fluorescence
quenching ability of iron. We report the design, synthesis, and biological
evaluation of FRET Iron Probe 1 (FIP-1), a reactivity-based probe
that enables ratiometric fluorescence imaging of labile iron pools
in living systems. Inspired by antimalarial natural products and related
therapeutics, FIP-1 links two fluorophores (fluorescein and Cy3) through
an Fe(II)-cleavable endoperoxide bridge, where Fe(II)-triggered peroxide
cleavage leads to a decrease in fluorescence resonance energy transfer
(FRET) from the fluorescein donor to Cy3 acceptor by splitting these
two dyes into separate fragments. FIP-1 responds to Fe(II) in aqueous
buffer with selectivity over competing metal ions and is capable of
detecting changes in labile iron pools within living cells with iron
supplementation and/or depletion. Moreover, application of FIP-1 to
a model of ferroptosis reveals a change in labile iron pools during
this form of cell death, providing a starting point to study iron
signaling in living systems.
Collapse
Affiliation(s)
- Allegra T Aron
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §Howard Hughes Medical Institute, University of California, Berkeley , Berkeley, California 94720, United States
| | - Morten O Loehr
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §Howard Hughes Medical Institute, University of California, Berkeley , Berkeley, California 94720, United States
| | - Jana Bogena
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §Howard Hughes Medical Institute, University of California, Berkeley , Berkeley, California 94720, United States
| | - Christopher J Chang
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §Howard Hughes Medical Institute, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
21
|
A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol 2016; 12:680-5. [PMID: 27376690 PMCID: PMC4990480 DOI: 10.1038/nchembio.2116] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Improved methods for studying intracellular reactive iron(II) are of significant interest for studies of iron metabolism and disease relevant changes in iron homeostasis. Here we describe a highly-selective reactivity-based probe in which Fenton-type reaction with intracellular labile iron(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mark on treated cells that can be detected with high sensitivity and precision using the high-content, plate-based immunofluorescence assay described. Using this new probe and screening approach, we detected alteration of cellular labile iron(II) in response extracellular iron conditioning, overexpression of iron storage and/or export proteins, and post-translational regulation of iron export. Finally, we utilized this new tool to demonstrate the presence of augmented labile iron(II) pools in cancer cells as compared to non-tumorigenic cells.
Collapse
|
22
|
Lauterwasser EMW, Fontaine SD, Li H, Gut J, Katneni K, Charman SA, Rosenthal PJ, Bogyo M, Renslo AR. Trioxolane-Mediated Delivery of Mefloquine Limits Brain Exposure in a Mouse Model of Malaria. ACS Med Chem Lett 2015; 6:1145-9. [PMID: 26617969 DOI: 10.1021/acsmedchemlett.5b00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022] Open
Abstract
Peroxidic antimalarial agents including the sequiterpene artemisinins and the synthetic 1,2,4-trioxolanes function via initial intraparasitic reduction of an endoperoxide bond. By chemically coupling this reduction to release of a tethered drug species it is possible to confer two distinct pharmacological effects in a parasite-selective fashion, both in vitro and in vivo. Here we demonstrate the trioxolane-mediated delivery of the antimalarial agent mefloquine in a mouse malaria model. Selective partitioning of the trioxolane-mefloquine conjugate in parasitized erythrocytes, combined with effective exclusion of the conjugate from brain significantly reduced brain exposure as compared to mice directly administered mefloquine. These studies suggest the potential of trioxolane-mediated drug delivery to mitigate off-target effects of existing drugs, including the adverse neuropsychiatric effects of mefloquine use in therapeutic and chemoprophylactic settings.
Collapse
Affiliation(s)
| | | | - Hao Li
- Departments
of Pathology and Microbiology and Immunology, Stanford School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | | | - Kasiram Katneni
- Centre for Drug Candidate Optimisation,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | - Matthew Bogyo
- Departments
of Pathology and Microbiology and Immunology, Stanford School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | | |
Collapse
|
23
|
From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg Med Chem 2015; 23:5120-30. [PMID: 25913864 DOI: 10.1016/j.bmc.2015.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented.
Collapse
|
24
|
Fontaine SD, DiPasquale AG, Renslo AR. Efficient and stereocontrolled synthesis of 1,2,4-trioxolanes useful for ferrous iron-dependent drug delivery. Org Lett 2014; 16:5776-9. [PMID: 25331549 PMCID: PMC4227544 DOI: 10.1021/ol5028392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ferrous iron-promoted reduction of a hindered peroxide bond underlies the antimalarial action of the 1,2,4-trioxane artemisinin and the 1,2,4-trioxolane arterolane. In appropriately designed systems, a 1,2,4-trioxolane ring can serve as a trigger to realize ferrous iron-dependent and parasite-selective drug delivery, both in vitro and in vivo. A stereocontrolled, expeditious (three steps), and efficient (67-71% overall yield) synthesis of 1,2,4-trioxolanes possessing the requisite 3″ substitution pattern that enables ferrous iron-dependent drug delivery is reported. The key synthetic step involves a diastereoselective Griesbaum co-ozonolysis reaction to afford primarily products with a trans relationship between the 3″ substituent and the peroxide bridge, as confirmed by X-ray structural analysis of a 3″-substituted 4-nitrobenzoate analogue.
Collapse
Affiliation(s)
- Shaun D Fontaine
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| | | | | |
Collapse
|