1
|
Vigiani E, Bonardi A, Catarzi D, Varano F, Calenda S, Ceni C, Vagnoni G, Angeli A, Nocentini A, Gratteri P, Supuran CT, Colotta V. Repurposing the amino-3,5-dicyanopyridine scaffold from adenosine receptor ligands to carbonic anhydrase activators. Eur J Med Chem 2025; 291:117578. [PMID: 40186893 DOI: 10.1016/j.ejmech.2025.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
We are repurposing a set of imidazole-containing amino-3,5-dicyanopyridines, previously reported as adenosine receptor ligands, in the role of activators of human-expressed carbonic anhydrase isoenzymes (hCA I, II, VA, and VII) considered relevant to controlling brain functions. Our focus has been to identify new carbonic anhydrase activators (CAAs) as pharmacological tools useful to investigate the CA role in psychiatric and neurodegenerative disorders. All tested compounds were inactive at hCA II, highlighting a trend similar to that of the reference activator histamine. On the contrary, most of them showed different activation profiles at the other CAs tested. In particular, while compounds 13 and 24 had the lowest KA values at hCA VII (KA = 0.8 μM) and I (KA = 0.7 μM), respectively, derivatives 14 and 17 displayed the most effective and balanced activation profile at hCA I, VA, and VII, with KA values in the low micromolar range. The binding mode of compound 14 was investigated in silico using X-ray solved (hCA I and VII) and homology built (hCA VA) structures. Focusing our attention on drug-like compounds to find new pharmacological tools, the ADME properties of all derivatives were in silico calculated to investigate their drug-like behavior. Compound 17 emerged as a candidate, as it showed high oral availability and permeability of the gut-blood barrier, together with a good potential to cross the BBB.
Collapse
Affiliation(s)
- Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Laboratory of Molecular Modeling Cheminformatics & QSAR, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Sara Calenda
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Costanza Ceni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Giulia Vagnoni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Angeli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Laboratory of Molecular Modeling Cheminformatics & QSAR, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Paola Gratteri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Laboratory of Molecular Modeling Cheminformatics & QSAR, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff, 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Mityanov VS, Podrezova AG, Kutasevich AV, Pytskii IS, Khrustalev VN. Boron Trifluoride‐Mediated Synthesis of Oxazole
N
‐oxides. ChemistrySelect 2022. [DOI: 10.1002/slct.202203421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vitaly S. Mityanov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 Moscow 125047 Russian Federation
| | - Alexandra G. Podrezova
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 Moscow 125047 Russian Federation
| | - Anton V. Kutasevich
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 Moscow 125047 Russian Federation
| | - Ivan S. Pytskii
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Academy of Sciences Leninsky prospect 31 bldg. 4 119071 Moscow Russian Federation
| | - Victor N. Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prosp. 47 119071 Moscow Russian Federation
| |
Collapse
|
4
|
Beerkens BL, Koç Ç, Liu R, Florea BI, Le Dévédec SE, Heitman LH, IJzerman AP, van der Es D. A Chemical Biological Approach to Study G Protein-Coupled Receptors: Labeling the Adenosine A 1 Receptor Using an Electrophilic Covalent Probe. ACS Chem Biol 2022; 17:3131-3139. [PMID: 36279267 PMCID: PMC9679998 DOI: 10.1021/acschembio.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) have been known for decades as attractive drug targets. This has led to the development and approval of many ligands targeting GPCRs. Although ligand binding effects have been studied thoroughly for many GPCRs, there are multiple aspects of GPCR signaling that remain poorly understood. The reasons for this are the difficulties that are encountered upon studying GPCRs, for example, a poor solubility and low expression levels. In this work, we have managed to overcome some of these issues by developing an affinity-based probe for a prototypic GPCR, the adenosine A1 receptor (A1AR). Here, we show the design, synthesis, and biological evaluation of this probe in various biochemical assays, such as SDS-PAGE, confocal microscopy, and chemical proteomics.
Collapse
Affiliation(s)
- Bert L.
H. Beerkens
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Çağla Koç
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rongfang Liu
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands,Oncode
Institute, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daan van der Es
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands,
| |
Collapse
|
5
|
Design, synthesis and evaluation of amino-3,5-dicyanopyridines and thieno[2,3-b]pyridines as ligands of adenosine A1 receptors for the potential treatment of epilepsy. Med Chem Res 2022; 31:1277-1297. [PMID: 35634433 PMCID: PMC9129901 DOI: 10.1007/s00044-022-02908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
Abstract
Due to the implication of adenosine in seizure suppression, adenosine-based therapies such as adenosine receptor (AR) agonists have been investigated. This study aimed at investigating thieno[2,3-b]pyridine derivatives as non-nucleoside A1 agonists that could be used in pharmaco-resistant epilepsy (PRE). Compound 7c (thieno[2,3-b]pyridine derivative), displayed good binding affinity to the rA1 AR (Ki = 61.9 nM). This could be a breakthrough for further investigation of this heterocyclic scaffold as potential ligand. In silico evaluation of this compound raised bioavailability concerns but performed well on drug-likeness tests. The effect of intramolecular cyclisation that occurs during synthesis of thieno[2,3-b]pyridines from the lead compounds, amino-3,5-dicyanopyridine derivatives (6a-s) in relation to AR binding was also evaluated. A significant loss of activity against rA1/rA2A ARs with cyclisation was revealed. Amino-3,5-dicyanopyridines exhibited greater affinity towards rA1 ARs (Ki < 10 nM) than rA2A. Compound 6c had the best rA1 affinity (Ki = 0.076 nM). Novel compounds (6d, 6k, 6l, 6m, 6n, 6o, 6p) were highly selective towards rA1 AR (Ki between 0.179 and 21.0 nM). Based on their high selectivity for A1 ARs, amino-3,5-dicyanopyridines may be investigated further as AR ligands in PRE with the right structural optimisations and formulations. A decrease in rA1 AR affinity is observed with intramolecular cyclisation that occurs during synthesis of thieno[2,3-b]pyridines (7a, 7d, 7c) from amino-3,5-dicyanopyridine derivatives (6a, 6f, 6g). ![]()
Collapse
|
6
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
7
|
Catarzi D, Varano F, Vigiani E, Calenda S, Melani F, Varani K, Vincenzi F, Pasquini S, Mennini N, Nerli G, Dal Ben D, Volpini R, Colotta V. 4-Heteroaryl Substituted Amino-3,5-Dicyanopyridines as New Adenosine Receptor Ligands: Novel Insights on Structure-Activity Relationships and Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040478. [PMID: 35455475 PMCID: PMC9024521 DOI: 10.3390/ph15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
A new set of amino-3,5-dicyanopyridines was synthesized and biologically evaluated at the adenosine receptors (ARs). This chemical class is particularly versatile, as small structural modifications can influence not only affinity and selectivity, but also the pharmacological profile. Thus, in order to deepen the structure–activity relationships (SARs) of this series, different substituents were evaluated at the diverse positions on the dicyanopyridine scaffold. In general, the herein reported compounds show nanomolar binding affinity and interact better with both the human (h) A1 and A2A ARs than with the other subtypes. Docking studies at hAR structure were performed to rationalize the observed affinity data. Of interest are compounds 1 and 5, which can be considered as pan ligands as binding all the ARs with comparable nanomolar binding affinity (A1AR: 1, Ki = 9.63 nM; 5, Ki = 2.50 nM; A2AAR: 1, Ki = 21 nM; 5, Ki = 24 nM; A3AR: 1, Ki = 52 nM; 5, Ki = 25 nM; A2BAR: 1, EC50 = 1.4 nM; 5, EC50 = 1.12 nM). Moreover, these compounds showed a partial agonist profile at all the ARs. This combined AR partial agonist activity could lead us to hypothesize a potential effect in the repair process of damaged tissue that would be beneficial in both wound healing and remodeling.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
- Correspondence:
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Sara Calenda
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Fabrizio Melani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Katia Varani
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Fabrizio Vincenzi
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Silvia Pasquini
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Natascia Mennini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy; (N.M.); (G.N.)
| | - Giulia Nerli
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy; (N.M.); (G.N.)
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S.Agostino 1, 62032 Camerino, Italy; (D.D.B.); (R.V.)
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S.Agostino 1, 62032 Camerino, Italy; (D.D.B.); (R.V.)
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| |
Collapse
|
8
|
Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur J Med Chem 2021; 227:113907. [PMID: 34695776 DOI: 10.1016/j.ejmech.2021.113907] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Adenosine is an endogenous purine-based nucleoside expressed nearly in all body tissues. It regulates various body functions by activating four G-protein coupled receptors, A1, A2A, A2B, and A3. These receptors are widely acknowledged as drug targets for treating different neurological, metabolic, and inflammatory diseases. Although numerous adenosine receptor inhibitors have been developed worldwide, achieving target selectivity is still a big hurdle in drug development. However, the identification of specific radioligands-based affinity assay, fluorescent ligands, and MS-based ligand assay have contributed to the development of selective and potent adenosine ligands. In recent years various small heterocyclic-based molecules have shown some promising results. Istradefylline has been approved for treating Parkinson's in Japan, while preladenant, tozadenant, CVT-6883, MRS-1523, and many more are under different phases of clinical development. The present review is focused on the quest to develop potent and selective adenosine inhibitors from 2013 to early 2021 by various research groups. The review also highlights their biological activity, selectivity, structure-activity relationship, molecular docking, and mechanistic studies. A special emphsesis on drug designing strategies has been also given the manuscript. The comprehensive compilation of research work carried out in the field will provide inevitable scope for designing and developing novel adenosine inhibitors with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
9
|
Unusual ring-opening reaction of 4-benzyl-5-methyl-2-aryloxazole N-oxides with POCl3. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Koszelewski D, Ostaszewski R, Śmigielski P, Hrunyk A, Kramkowski K, Laskowski Ł, Laskowska M, Lizut R, Szymczak M, Michalski J, Gawin K, Kowalczyk P. Pyridine Derivatives-A New Class of Compounds That Are Toxic to E. coli K12, R2-R4 Strains. MATERIALS 2021; 14:ma14185401. [PMID: 34576625 PMCID: PMC8467192 DOI: 10.3390/ma14185401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
A preliminary study of 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines as new potential antimicrobial drugs was performed. Special emphasis was placed on the selection of the structure of target pyridine derivatives with the highest biological activity against different types of Gram-stained bacteria by lipopolysaccharide (LPS). Herein, Escherichia coli model strains K12 (without LPS in its structure) and R2–R4 (with different lengths of LPS in its structure) were used. Studied target compounds were provided with yields ranging from 53% to 91% by the lipase-catalyzed one pot multicomponent reaction of various aromatic aldehydes with malononitrile, and thiols. The presented work showed that the antibacterial activity of the studied pyridines depends on their structure and affects the LPS of bacteria. Moreover, the influence of the pyridines on bacteria possessing smooth and rough LPS and oxidative damage to plasmid DNA caused by investigated compounds was indicated. Additionally, the modification of the bacterial DNA with the tested compounds was performed to detect new potential oxidative damages, which are recognized by the Fpg protein. The obtained damage modification values of the analyzed compounds were compared with the modifications after antibiotics were used in this type of research. The presented studies demonstrate that 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines can be used as substitutes for known antibiotics. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.); (P.Ś.); (A.H.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.); (P.Ś.); (A.H.)
| | - Paweł Śmigielski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.); (P.Ś.); (A.H.)
| | - Anastasiia Hrunyk
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.); (P.Ś.); (A.H.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | - Rafał Lizut
- The John Paul II Catholic University of Lublin, Institute of Mathematics, Informatics and Landscape Architecture ul. Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Jacek Michalski
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (J.M.); (K.G.)
| | - Kamil Gawin
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (J.M.); (K.G.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (J.M.); (K.G.)
- Correspondence:
| |
Collapse
|
11
|
Kurskova AO, Dotsenko VV, Frolov KA, Aksenov NA, Aksenova IV, Krivokolysko BS, Krivokolysko SG. Synthesis and Aminomethylation of 6-Amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile Morpholinium Salt. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221080089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Metzner K, Gross T, Balzulat A, Wack G, Lu R, Schmidtko A. Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice. Purinergic Signal 2021; 17:503-514. [PMID: 34313915 PMCID: PMC8410902 DOI: 10.1007/s11302-021-09806-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Tilman Gross
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Annika Balzulat
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Gesine Wack
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021; 187:114311. [PMID: 33130128 PMCID: PMC8081756 DOI: 10.1016/j.bcp.2020.114311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Prof. Geoffrey Burnstock originated the concept of purinergic signaling. He demonstrated the interactions and biological roles of ionotropic P2X and metabotropic P2Y receptors. This review paper traces the historical origins of many currently used antagonists and agonists for P2 receptors, as well as adenosine receptors, in early attempts to identify ligands for these receptors - prior to the use of chemical libraries for screening. Rather than presenting a general review of current purinergic ligands, we focus on common chemical scaffolds (privileged scaffolds) that can be adapted for multiple receptor targets. By carefully analyzing the structure activity relationships, one can direct the selectivity of these scaffolds toward different receptor subtypes. For example, the weak and non-selective P2 antagonist reactive blue 2 (RB-2) was derivatized using combinatorial synthetic approaches, leading to the identification of selective P2Y2, P2Y4, P2Y12 or P2X2 receptor antagonists. A P2X4 antagonist NC-2600 is in a clinical trial, and A3 adenosine agonists show promise, for chronic pain. P2X7 antagonists have been in clinical trials for depression (JNJ-54175446), inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, inflammatory pain and chronic obstructive pulmonary disease (COPD). P2X3 antagonists are in clinical trials for chronic cough, and an antagonist named after Burnstock, gefapixant, is expected to be the first P2X3 antagonist filed for approval. We are seeing that the vision of Prof. Burnstock to use purinergic signaling modulators, most recently at P2XRs, for treating disease is coming to fruition.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, the Netherlands
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
14
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
15
|
Akhmadiev NS, Akhmetova VR, Ibragimov AG. 2-Amino-3,5-dicarbonitrile-6-sulfanylpyridines: synthesis and multiple biological activity - a review. RSC Adv 2021; 11:11549-11567. [PMID: 35423618 PMCID: PMC8696045 DOI: 10.1039/d1ra00363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 01/26/2023] Open
Abstract
This review integrates the published data of the last decade (from 2010 to 2020) on the synthesis of the 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold, the derivatives of which are widely used in the synthesis of biologically active compounds. Currently, no systematic accounts of synthetic routes towards this class of heterocyclic compounds can be found in the literature. The present-day trends in the catalytic synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines are considered using pseudo-four-component reaction (pseudo-4CR) by condensation of malononitrile molecules with thiols and aldehydes, and alternative three-component (3CR) condensations of malononitrile with 2-arylidenemalononitrile and S-nucleophiles. The latest advances in the catalytic synthesis of biologically active compounds with 2-amino-3,5-dicarbonitrile-6-sulfanylpyridine scaffold via the multicomponent reactions of malononitrile have been discussed.![]()
Collapse
Affiliation(s)
- Nail S Akhmadiev
- Institute of Petrochemistry and Catalysis, Russian Academy of Science 141 Prospekt Octyabrya 450075 Ufa Russian Federation +7 3472 842750 +7 3472 842750
| | - Vnira R Akhmetova
- Institute of Petrochemistry and Catalysis, Russian Academy of Science 141 Prospekt Octyabrya 450075 Ufa Russian Federation +7 3472 842750 +7 3472 842750
| | - Askhat G Ibragimov
- Institute of Petrochemistry and Catalysis, Russian Academy of Science 141 Prospekt Octyabrya 450075 Ufa Russian Federation +7 3472 842750 +7 3472 842750
| |
Collapse
|
16
|
Rueda P, Merlin J, Chimenti S, Feletou M, Paysant J, White PJ, Christopoulos A, Sexton PM, Summers RJ, Charman WN, May LT, Langmead CJ. Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Front Pharmacol 2021; 12:628060. [PMID: 33776771 PMCID: PMC7991592 DOI: 10.3389/fphar.2021.628060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Adenosine A1 receptors (A1R) are a potential target for cardiac injury treatment due to their cardioprotective/antihypertrophic actions, but drug development has been hampered by on-target side effects such as bradycardia and altered renal hemodynamics. Biased agonism has emerged as an attractive mechanism for A1R-mediated cardioprotection that is haemodynamically safe. Here we investigate the pre-clinical pharmacology, efficacy and side-effect profile of the A1R agonist neladenoson, shown to be safe but ineffective in phase IIb trials for the treatment of heart failure. We compare this agent with the well-characterized, pan-adenosine receptor (AR) agonist NECA, capadenoson, and the A1R biased agonist VCP746, previously shown to be safe and cardioprotective in pre-clinical models of heart failure. We show that like VCP746, neladenoson is biased away from Ca2+ influx relative to NECA and the cAMP pathway at the A1R, a profile predictive of a lack of adenosine-like side effects. Additionally, neladenoson was also biased away from the MAPK pathway at the A1R. In contrast to VCP746, which displays more 'adenosine-like' signaling at the A2BR, neladenoson was a highly selective A1R agonist, with biased, weak agonism at the A2BR. Together these results show that unwanted hemodynamic effects of A1R agonists can be avoided by compounds biased away from Ca2+ influx relative to cAMP, relative to NECA. The failure of neladenoson to reach primary endpoints in clinical trials suggests that A1R-mediated cAMP inhibition may be a poor indicator of effectiveness in chronic heart failure. This study provides additional information that can aid future screening and/or design of improved AR agonists that are safe and efficacious in treating heart failure in patients.
Collapse
Affiliation(s)
- Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stefano Chimenti
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Michel Feletou
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Jerome Paysant
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Paul J. White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - William N. Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
17
|
McNeill SM, Baltos JA, White PJ, May LT. Biased agonism at adenosine receptors. Cell Signal 2021; 82:109954. [PMID: 33610717 DOI: 10.1016/j.cellsig.2021.109954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
Adenosine modulates many aspects of human physiology and pathophysiology through binding to the adenosine family of G protein-coupled receptors, which are comprised of four subtypes, the A1R, A2AR, A2BR and A3R. Modulation of adenosine receptor function by exogenous agonists, antagonists and allosteric modulators can be beneficial for a number of conditions including cardiovascular disease, Parkinson's disease, and cancer. Unfortunately, many preclinical drug candidates targeting adenosine receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning adenosine receptor ligands into the clinic, research efforts have focussed on exploiting the phenomenon of biased agonism. Biased agonism provides the opportunity to develop ligands that favour therapeutic signalling pathways, whilst avoiding signalling associated with on-target undesired effects. Recent studies have begun to define the structure-function relationships that underpin adenosine receptor biased agonism and establish how this phenomenon can be harnessed therapeutically. In this review we describe the recent advancements made towards achieving therapeutically relevant biased agonism at adenosine receptors.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
19
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
20
|
Vincenzi F, Pasquini S, Battistello E, Merighi S, Gessi S, Borea PA, Varani K. A 1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic? Front Pharmacol 2020; 11:625134. [PMID: 33362567 PMCID: PMC7756085 DOI: 10.3389/fphar.2020.625134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Enrica Battistello
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Borah P, Deka S, Mailavaram RP, Deb PK. P1 Receptor Agonists/Antagonists in Clinical Trials - Potential Drug Candidates of the Future. Curr Pharm Des 2020; 25:2792-2807. [PMID: 31333097 DOI: 10.2174/1381612825666190716111245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson's disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. OBJECTIVE The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. METHODS In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. RESULTS Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. CONCLUSION This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur (Affiliated to Andhra University), Bhimavaram, W.G. Dist., AP, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman, PO Box-1, 19392, Jordan
| |
Collapse
|
22
|
Sabbah HN. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci 2020; 5:88-106. [PMID: 32043022 PMCID: PMC7000886 DOI: 10.1016/j.jacbts.2019.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Abstract
The burden of heart failure (HF) in terms of health care expenditures, hospitalizations, and mortality is substantial and growing. The failing heart has been described as "energy-deprived" and mitochondrial dysfunction is a driving force associated with this energy supply-demand imbalance. Existing HF therapies provide symptomatic and longevity benefit by reducing cardiac workload through heart rate reduction and reduction of preload and afterload but do not address the underlying causes of abnormal myocardial energetic nor directly target mitochondrial abnormalities. Numerous studies in animal models of HF as well as myocardial tissue from explanted failed human hearts have shown that the failing heart manifests abnormalities of mitochondrial structure, dynamics, and function that lead to a marked increase in the formation of damaging reactive oxygen species and a marked reduction in on demand adenosine triphosphate synthesis. Correcting mitochondrial dysfunction therefore offers considerable potential as a new therapeutic approach to improve overall cardiac function, quality of life, and survival for patients with HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CI (to V), complex I (to V)
- Drp, dynamin-related protein
- ETC, electron transport chain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- MPTP, mitochondrial permeability transition pore
- Mfn, mitofusin
- OPA, optic atrophy
- PGC, peroxisome proliferator-activated receptor coactivator
- PINK, phosphatase and tensin homolog–inducible kinase
- ROS, reactive oxygen species
- TAZ, tafazzin
- cardiolipin
- heart failure
- mitochondria
- mtDNA, mitochondrial deoxyribonucleic acid
- myocardial energetics
- oxidative phosphorylation
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
23
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
24
|
Abstract
Membrane receptors that are activated by the purine nucleoside adenosine (adenosine receptors) or by purine or pyrimidine nucleotides (P2Y and P2X receptors) transduce extracellular signals to the cytosol. They play important roles in physiology and disease. The G protein-coupled adenosine receptors comprise four subtypes: A1, A2A, A2B, and A3. The G-protein-coupled P2Y receptors are subdivided into eight subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, while the P2X receptors represent ATP-gated homomeric or heteromeric ion channels consisting of three subunits; the most important subunits are P2X1, P2X2, P2X3, P2X4, and P2X7. This chapter provides guidance for selecting suitable tool compounds for studying these large and important purine receptor families.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Younis Baqi
- Department of Chemistry, Sultan Qaboos University, Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Catarzi D, Varano F, Varani K, Vincenzi F, Pasquini S, Dal Ben D, Volpini R, Colotta V. Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors Ranging from Pan Ligands to Combined A 1/A 2B Partial Agonists. Pharmaceuticals (Basel) 2019; 12:ph12040159. [PMID: 31652622 PMCID: PMC6958422 DOI: 10.3390/ph12040159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The amino-3,5-dicyanopyridine derivatives belong to an intriguing series of adenosine receptor (AR) ligands that has been developed by both academic researchers and industry. Indeed, the studies carried out to date underline the versatility of the dicyanopyridine scaffold to obtain AR ligands with not only a wide range of affinities but also with diverse degrees of efficacies at the different ARs. These observations prompted us to investigate on the structure-activity relationships (SARs) of this series leading to important previously reported results. The present SAR study has helped to confirm the 1H-imidazol-2-yl group at R2 position as an important feature for producing potent AR agonists. Moreover, the nature of the R1 substituent highly affects not only affinity/activity at the hA1 and hA2B ARs but also selectivity versus the other subtypes. Potent hA1 and hA2B AR ligands were developed, and among them, the 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-[4-(prop-2-en-1-yloxy)phenyl]pyridine-3,5-dicarbonitrile (3) is active in the low nanomolar range at these subtypes and shows a good trend of selectivity versus both the hA2A and hA3 ARs. This combined hA1/hA2B partial agonist activity leads to a synergistic effect on glucose homeostasis and could potentially be beneficial in treating diabetes and related complications.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC); Italy.
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
26
|
Cooper SL, March J, Sabbatini AR, Hill SJ, Jörg M, Scammells PJ, Woolard J. The effect of two selective A 1 -receptor agonists and the bitopic ligand VCP746 on heart rate and regional vascular conductance in conscious rats. Br J Pharmacol 2019; 177:346-359. [PMID: 31596949 PMCID: PMC6989947 DOI: 10.1111/bph.14870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Adenosine is a local mediator that regulates physiological and pathological processes via activation of four GPCRs (A1, A2A, A2B, and A3). We have investigated the effect of two A1‐receptor‐selective agonists and the novel A1‐receptor bitopic ligand VCP746 on the rat cardiovascular system. Experimental Approach The regional haemodynamic responses of these agonist was investigated in conscious rats. Male Sprague–Dawley rats (350–450 g) were chronically implanted with pulsed Doppler flow probes on the renal, mesenteric arteries and the descending abdominal aorta and the jugular vein and caudal artery catheterized. Cardiovascular responses were measured following intravenous infusion (3 min each dose) of CCPA (120, 400, and 1,200 ng·kg−1·min−1), capadenoson or adenosine (30, 100, and 300 μg·kg−1·min−1), or VCP746 (6, 20, and 60 μg·kg−1·min−1) following pre‐dosing with DPCPX (0.1 mg·kg−1, i.v.) or vehicle. Key Results CCPA produced a significant A1‐receptor‐mediated decrease in heart rate that was accompanied by vasoconstrictions in the renal and mesenteric vascular beds but an increase in hindquarters vascular conductance. The partial agonist capadenoson also produced an A1‐receptor‐mediated bradycardia. In contrast, VCP746 produced increases in heart rate and renal and mesenteric vascular conductance that were not mediated by A1‐receptors. In vitro studies confirmed that VCP746 had potent agonist activity at both A2A‐ and A2B‐receptors. Conclusions and Implications These results suggest VCP746 mediates its cardiovascular effects via activation of A2 rather than A1 adenosine receptors. This has implications for the design of future bitopic ligands that incorporate A1 allosteric ligand moieties.
Collapse
Affiliation(s)
- Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Andrea R Sabbatini
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
27
|
Dal Ben D, Lambertucci C, Buccioni M, Martí Navia A, Marucci G, Spinaci A, Volpini R. Non-Nucleoside Agonists of the Adenosine Receptors: An Overview. Pharmaceuticals (Basel) 2019; 12:E150. [PMID: 31597388 PMCID: PMC6958362 DOI: 10.3390/ph12040150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
Potent and selective adenosine receptor (AR) agonists are of pharmacological interest for the treatment of a wide range of diseases and conditions. Among these derivatives, nucleoside-based agonists represent the great majority of molecules developed and reported to date. However, the limited availability of compounds selective for a specific AR subtype (i.e., A2BAR) and a generally long and complex synthetic route for largely substituted nucleosides are the main drawbacks of this category of molecules. Non-nucleoside agonists represent an alternative set of compounds able to stimulate the AR function and based on simplified structures. This review provides an updated overview on the structural classes of non-nucleoside AR agonists and their biological activities, with emphasis on the main derivatives reported in the literature. A focus is also given to the synthetic routes employed to develop these derivatives and on molecular modeling studies simulating their interaction with ARs.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Aleix Martí Navia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| |
Collapse
|
28
|
Sanches BM, Ferreira EI. Is prodrug design an approach to increase water solubility? Int J Pharm 2019; 568:118498. [DOI: 10.1016/j.ijpharm.2019.118498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
29
|
Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, di Cesare Mannelli L, Ghelardini C, Lucarini E, Dal Ben D, Spinaci A, Bartolucci G, Menicatti M, Colotta V. Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. J Med Chem 2019; 62:6894-6912. [PMID: 31306001 DOI: 10.1021/acs.jmedchem.9b00106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new series of amino-3,5-dicyanopyridines (1-31) was synthesized and biologically evaluated in order to further investigate the potential of this scaffold to obtain adenosine receptor (AR) ligands. In general, the modifications performed have led to compounds having high to good human (h) A1AR affinity and an inverse agonist profile. While most of the compounds are hA1AR-selective, some derivatives behave as mixed hA1AR inverse agonists/A2A and A2B AR antagonists. The latter compounds (9-12) showed that they reduce oxaliplatin-induced neuropathic pain by a mechanism involving the alpha7 subtype of nAchRs, similar to the nonselective AR antagonist caffeine, taken as the reference compound. Along with the pharmacological evaluation, chemical stability of methyl 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)sulfanyl)methyl)benzoate 10 was assessed in plasma matrices (rat and human), and molecular modeling studies were carried out to better rationalize the available structure-activity relationships.
Collapse
Affiliation(s)
- Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia , Università degli Studi di Ferrara , Via Fossato di Mortara 17-19 , 44121 Ferrara , Italy
| | - Lorenzo di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Elena Lucarini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia , Università degli Studi di Firenze , Viale Pieraccini, 6 , 50139 Firenze , Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute , Università degli Studi di Camerino , Via S. Agostino 1 , 62032 Camerino , Macerata , Italy
| | - Gianluca Bartolucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Marta Menicatti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Via Ugo Schiff, 6 , 50019 Sesto Fiorentino , Italy
| |
Collapse
|
30
|
Expanding the chemical space of sp3-enriched 4,5-disubstituted oxazoles via synthesis of novel building blocks. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02475-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
A. M. Subbaiah M, Mandlekar S, Desikan S, Ramar T, Subramani L, Annadurai M, Desai SD, Sinha S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Singh S, Sinha J, Thakur M, Kadow JF, Meanwell NA. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2019; 62:3553-3574. [DOI: 10.1021/acs.jmedchem.9b00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Cooper SL, Soave M, Jörg M, Scammells PJ, Woolard J, Hill SJ. Probe dependence of allosteric enhancers on the binding affinity of adenosine A 1 -receptor agonists at rat and human A 1 -receptors measured using NanoBRET. Br J Pharmacol 2019; 176:864-878. [PMID: 30644086 PMCID: PMC6433648 DOI: 10.1111/bph.14575] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenosine is a local mediator that regulates a number of physiological and pathological processes via activation of adenosine A1 -receptors. The activity of adenosine can be regulated at the level of its target receptor via drugs that bind to an allosteric site on the A1 -receptor. Here, we have investigated the species and probe dependence of two allosteric modulators on the binding characteristics of fluorescent and nonfluorescent A1 -receptor agonists. EXPERIMENTAL APPROACH A Nano-luciferase (Nluc) BRET (NanoBRET) methodology was used. This used N-terminal Nluc-tagged A1 -receptors expressed in HEK293T cells in conjunction with both fluorescent A1 -receptor agonists (adenosine and NECA analogues) and a fluorescent antagonist CA200645. KEY RESULTS PD 81,723 and VCP171 elicited positive allosteric effects on the binding affinity of orthosteric agonists at both the rat and human A1 -receptors that showed clear probe dependence. Thus, the allosteric effect on the highly selective partial agonist capadenoson was much less marked than for the full agonists NECA, adenosine, and CCPA in both species. VCP171 and, to a lesser extent, PD 81,723, also increased the specific binding of three fluorescent A1 -receptor agonists in a species-dependent manner that involved increases in Bmax and pKD . CONCLUSIONS AND IMPLICATIONS These results demonstrate the power of the NanoBRET ligand-binding approach to study the effect of allosteric ligands on the binding of fluorescent agonists to the adenosine A1 -receptor in intact living cells. Furthermore, our studies suggest that VCP171 and PD 81,723 may switch a proportion of A1 -receptors to an active agonist conformation (R*).
Collapse
Affiliation(s)
- Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
34
|
Annulation of pyrrole ring in 4-acylpyridine-3,5-dicarbonitriles in the presence of ammonia. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02434-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
37
|
Voors AA, Shah SJ, Bax JJ, Butler J, Gheorghiade M, Hernandez AF, Kitzman DW, McMurray JJV, Wirtz AB, Lanius V, van der Laan M, Solomon SD. Rationale and design of the phase 2b clinical trials to study the effects of the partial adenosine A1-receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced (PANTHEON) and preserved (PANACHE) ejection fraction. Eur J Heart Fail 2018; 20:1601-1610. [PMID: 30225882 DOI: 10.1002/ejhf.1295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 07/07/2018] [Indexed: 12/28/2022] Open
Abstract
Despite major advances in the treatment of chronic heart failure (HF) with reduced ejection fraction (HFrEF), morbidity and mortality associated with the condition remain high, suggesting the need for additional treatment options, particularly haemodynamically neutral treatments that do not alter blood pressure, heart rate, or renal function. HF with preserved ejection fraction (HFpEF) is also associated with high morbidity and mortality and adequate treatment options are limited; thus there is a critical unmet need for the development of novel therapies for HFpEF. Chronic HFrEF and HFpEF are both systemic disorders that affect not only the heart but several other tissues and organs including skeletal muscle, leading to exercise intolerance and dyspnoea. Partial adenosine A1-receptor agonists represent a novel potential therapy for HF regardless of underlying ejection fraction given their minimal effect on heart rate and blood pressure, and preclinical data demonstrate several possible beneficial mechanisms, including improved mitochondrial function and sarcoplasmic reticulum Ca2+ -ATPase (SERCA2a) activity, enhanced energy substrate utilization, reverse ventricular remodelling, and anti-ischemic, cardioprotective properties. However, data on this class of drugs in humans are scarce, and the optimal dose of the partial adenosine A1 receptor, neladenoson bialanate, has not been defined. Here we describe the design and rationale of two randomized, double-blind, placebo-controlled, parallel-group, dose-finding phase 2b trials, PANTHEON (HFrEF) and PANACHE (HFpEF), that will advance our understanding of the potential benefit and optimal dose of neladenoson bialanate and provide critical information for the planning of future phase 3 trials.
Collapse
Affiliation(s)
- Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sanjiv J Shah
- Feinberg Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeroen J Bax
- Leiden University Medical Center, Leiden, The Netherlands
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Mihai Gheorghiade
- Feinberg Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Sections on Cardiovascular Medicine and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John J V McMurray
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | | - Scott D Solomon
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Bardasov IN, Alekseeva AU, Ershov OV. Dibromomalononitrile-potassium bromide complex as a mild bromination and oxidation reagent for the synthesis of mono-, di- and trimethoxyphenyl bromopyridines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Dal Ben D, Lambertucci C, Colotta V. The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A 2B receptor. Eur J Med Chem 2018. [PMID: 29525433 DOI: 10.1016/j.ejmech.2018.02.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new series of amino-3,5-dicyanopyridines (3-28) as analogues of the adenosine hA2B receptor agonist BAY60-6583 (compound 1) was synthesized. All the compounds that interact with the hA2B adenosine receptor display EC50 values in the range 9-350 nM behaving as partial agonists, with the only exception being the 2-{[4-(4-acetamidophenyl)-6-amino-3,5-dicyanopyridin-2-yl]thio}acetamide (8) which shows a full agonist profile. Moreover, the 2-[(1H-imidazol-2-yl)methylthio)]-6-amino-4-(4-cyclopropylmethoxy-phenyl)pyridine-3,5-dicarbonitrile (15) turns out to be 3-fold more active than 1 although less selective. This result can be considered a real breakthrough due to the currently limited number of non-adenosine hA2B AR agonists reported in literature. To simulate the binding mode of nucleoside and non-nucleoside agonists at the hA2B AR, molecular docking studies were performed at homology models of this AR subtype developed by using two crystal structures of agonist-bound A2A AR as templates. These investigations allowed us to represent a hypothetical binding mode of hA2B receptor agonists belonging to the amino-3,5-dicyanopyridine series and to rationalize the observed SAR.
Collapse
Affiliation(s)
- Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
40
|
Dyachenko VD, Dyachenko IV, Nenajdenko VG. Cyanothioacetamide: a polyfunctional reagent with broad synthetic utility. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Rautio J, Kärkkäinen J, Sloan KB. Prodrugs – Recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 2017; 109:146-161. [DOI: 10.1016/j.ejps.2017.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
|